1
|
Dumais J. Mechanics and hydraulics of pollen tube growth. THE NEW PHYTOLOGIST 2021; 232:1549-1565. [PMID: 34492127 DOI: 10.1111/nph.17722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
All kingdoms of life have evolved tip-growing cells able to mine their environment or deliver cargo to remote targets. The basic cellular processes supporting these functions are understood in increasing detail, but the multiple interactions between them lead to complex responses that require quantitative models to be disentangled. Here, I review the equations that capture the fundamental interactions between wall mechanics and cell hydraulics starting with a detailed presentation of James Lockhart's seminal model. The homeostatic feedbacks needed to maintain a steady tip velocity are then shown to offer a credible explanation for the pulsatile growth observed in some tip-growing cells. Turgor pressure emerges as a central variable whose role in the morphogenetic process has been a source of controversy for more than 50 yr. I argue that recasting Lockhart's work as a process of chemical stress relaxation can clarify how cells control tip growth and help us internalise the important but passive role played by turgor pressure in the morphogenetic process.
Collapse
Affiliation(s)
- Jacques Dumais
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Region of Valparaíso, Chile
| |
Collapse
|
2
|
Ménesi D, Klement É, Ferenc G, Fehér A. The Arabidopsis Rho of Plants GTPase ROP1 Is a Potential Calcium-Dependent Protein Kinase (CDPK) Substrate. PLANTS (BASEL, SWITZERLAND) 2021; 10:2053. [PMID: 34685862 PMCID: PMC8539224 DOI: 10.3390/plants10102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
Plant Rho-type GTPases (ROPs) are versatile molecular switches involved in a number of signal transduction pathways. Although it is well known that they are indirectly linked to protein kinases, our knowledge about their direct functional interaction with upstream or downstream protein kinases is scarce. It is reasonable to suppose that similarly to their animal counterparts, ROPs might also be regulated by phosphorylation. There is only, however, very limited experimental evidence to support this view. Here, we present the analysis of two potential phosphorylation sites of AtROP1 and two types of potential ROP-kinases. The S74 site of AtROP1 has been previously shown to potentially regulate AtROP1 activation dependent on its phosphorylation state. However, the kinase phosphorylating this evolutionarily conserved site could not be identified: we show here that despite of the appropriate phosphorylation site consensus sequences around S74 neither the selected AGC nor CPK kinases phosphorylate S74 of AtROP1 in vitro. However, we identified several phosphorylation sites other than S74 for the CPK17 and 34 kinases in AtROP1. One of these sites, S97, was tested for biological relevance. Although the mutation of S97 to alanine (which cannot be phosphorylated) or glutamic acid (which mimics phosphorylation) somewhat altered the protein interaction strength of AtROP1 in yeast cells, the mutant proteins did not modify pollen tube growth in an in vivo test.
Collapse
Affiliation(s)
- Dalma Ménesi
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
| | - Éva Klement
- Laboratory of Proteomics Research, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; or
- Single Cell Omics ACF, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
3
|
Dong B, Yang Q, Song Z, Niu L, Cao H, Liu T, Du T, Yang W, Qi M, Chen T, Wang M, Jin H, Meng D, Fu Y. Hyperoside promotes pollen tube growth by regulating the depolymerization effect of actin-depolymerizing factor 1 on microfilaments in okra. HORTICULTURE RESEARCH 2021; 8:145. [PMID: 34193835 PMCID: PMC8245483 DOI: 10.1038/s41438-021-00578-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Mature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2-3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.
Collapse
Affiliation(s)
- Biying Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Qing Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Zhihua Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Lili Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Hongyan Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Tengyue Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Tingting Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Wanlong Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Meng Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Ting Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Mengying Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Haojie Jin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China
| | - Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China.
| | - Yujie Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Forestry, Beijing Forestry University, Beijing, 100000, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150000, China.
| |
Collapse
|
4
|
Hayashi M, Palmgren M. The quest for the central players governing pollen tube growth and guidance. PLANT PHYSIOLOGY 2021; 185:682-693. [PMID: 33793904 PMCID: PMC8133568 DOI: 10.1093/plphys/kiaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/02/2023]
Abstract
Recent insights into the mechanism of pollen tube growth and guidance point to the importance of H+ dynamics, which are regulated by the plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Maki Hayashi
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Author for communication:
| |
Collapse
|
5
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
6
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Guo J, Yang Z. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2428-2438. [PMID: 32173729 PMCID: PMC7178420 DOI: 10.1093/jxb/eraa134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/06/2023]
Abstract
Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected. The apical active ROP modulates exocytosis to the cell apex for PM and cell wall expansion differentially occurring at the tip. The differentiation of the cell wall involves at least the preferential distribution of deformable pectin polymers to the apex and non-deformable pectin polymers to the shank of pollen tubes, facilitating the apical cell expansion driven by high internal turgor pressure. Recent studies have generated inroads into how the ROP GTPase-based intracellular signaling is coordinated spatiotemporally with the external wall mechanics to maintain the tubular cell shape and how the apical cell wall mechanics are regulated to allow rapid tip growth while maintaining the cell wall integrity under the turgor pressure. Evidence suggests that exocytosis and endocytosis play crucial but distinct roles in this spatiotemporal coordination. In this review, we summarize recent advances in the regulation and coordination of the differential pectin distribution and the apical domain of active ROP by exocytosis and endocytosis in pollen tubes.
Collapse
Affiliation(s)
- Jingzhe Guo
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Correspondence:
| |
Collapse
|
8
|
Tian C, Shi Q, Cui X, Guo J, Yang Z, Shi J. Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth. J Math Biol 2019; 79:1319-1355. [PMID: 31280334 DOI: 10.1007/s00285-019-01396-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 06/06/2019] [Indexed: 11/28/2022]
Abstract
A reaction-diffusion model is proposed to describe the mechanisms underlying the spatial distributions of ROP1 and calcium on the pollen tube tip. The model assumes that the plasma membrane ROP1 activates itself through positive feedback loop, while the cytosolic calcium ions inhibit ROP1 via a negative feedback loop. Furthermore it is proposed that lateral movement of molecules on the plasma membrane are depicted by diffusion. It is shown that bistable or oscillatory dynamics could exist even in the non-spatial model, and stationary and oscillatory spatiotemporal patterns are found in the full spatial model which resemble the experimental data of pollen tube tip growth.
Collapse
Affiliation(s)
- Chenwei Tian
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Qingyan Shi
- Department of Mathematics, College of William and Mary, Williamsburg, VA, 23187-8795, USA.,School of Mathematical Sciences, Tongji University, Shanghai, 200092, China
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | - Junping Shi
- Department of Mathematics, College of William and Mary, Williamsburg, VA, 23187-8795, USA.
| |
Collapse
|
9
|
Parrotta L, Faleri C, Guerriero G, Cai G. Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:329-342. [PMID: 31128704 DOI: 10.1016/j.plantsci.2019.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 03/15/2019] [Indexed: 05/08/2023]
Abstract
Cold is an abiotic stress seriously threatening crop productivity by decreasing biomass production. The pollen tube is a target of cold stress, but also a useful model to address questions on cell wall biosynthesis. We here provide (immuno)cytological data relative to the impact of cold on the pollen tube cell wall. We clearly show that the growth pattern is severely affected by the stress, since the typical pulsed-growth mechanism accompanied by the periodic deposition of pectin rings is absent/severely reduced. Additionally, pectins and cellulose accumulate in bulges provoked by the stress, while callose, which colocalizes with pectins in the periodic rings formed during pulsed growth, accumulates randomly in the stressed samples. The altered distribution of the cell wall components is accompanied by differences in the localization of glucan synthases: cellulose synthase shows a more diffuse localization, while callose synthase shows a more frequent cytoplasmic accumulation, thereby denoting a failure in plasma membrane insertion. The cell wall observations are complemented by the analysis of intracellular Ca2+, pH and reactive oxygen species (ROS): while in the case of pH no major differences are observed, a less focused Ca2+ and ROS gradients are present in the stressed samples. The standard oscillatory growth of pollen tubes is recovered by transient changes of turgor pressure induced by hypoosmotic media. Overall our data contribute to the understanding of the impact that cold stress has on the normal development of the pollen tube and unveil the cell wall-related aberrant features accompanying the observed alterations.
Collapse
Affiliation(s)
- Luigi Parrotta
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Via Irnerio 42, Bologna, Italy
| | - Claudia Faleri
- Università di Siena, Dipartimento di Scienze della Vita, via P.A. Mattioli 4, Siena, Italy
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Giampiero Cai
- Università di Siena, Dipartimento di Scienze della Vita, via P.A. Mattioli 4, Siena, Italy.
| |
Collapse
|
10
|
Li Z, Kim SJ. Autonomous microfluidic actuators for periodic sequential flow generation. SCIENCE ADVANCES 2019; 5:eaat3080. [PMID: 31016234 PMCID: PMC6474772 DOI: 10.1126/sciadv.aat3080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/01/2019] [Indexed: 05/12/2023]
Abstract
Control of periodic sequential flows of multisolutions is invaluable in a variety of technology and science applications, but it requires complex and expensive external controllers. Here, we present microfluidic systems that autonomously regulate periodic sequential flows without any user instructions or dynamic external controllers. The systems consist of astable and monostable actuators that mimic the functions of analog electronic circuits. With a constant water head pressure of the input solution acting as the sole driving force, these systems generate periodic sequential flows in a predetermined and sophisticated manner. We validate our technology with the applications that have been previously addressed only by dynamic external controllers: dynamic staining of cell nuclei and playing a touchscreen piano. Our approach provides a useful and effective alternative to dynamic external controllers.
Collapse
|
11
|
Qian D, Xiang Y. Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. Int J Mol Sci 2019; 20:ijms20061403. [PMID: 30897737 PMCID: PMC6471457 DOI: 10.3390/ijms20061403] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
In plant cells, calcium (Ca2+) serves as a versatile intracellular messenger, participating in several fundamental and important biological processes. Recent studies have shown that the actin cytoskeleton is not only an upstream regulator of Ca2+ signaling, but also a downstream regulator. Ca2+ has been shown to regulates actin dynamics and rearrangements via different mechanisms in plants, and on this basis, the upstream signaling encoded within the Ca2+ transient can be decoded. Moreover, actin dynamics have also been proposed to act as an upstream of Ca2+, adjust Ca2+ oscillations, and establish cytosolic Ca2+ ([Ca2+]cyt) gradients in plant cells. In the current review, we focus on the advances in uncovering the relationship between the actin cytoskeleton and calcium in plant cells and summarize our current understanding of this relationship.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Li H, Luo N, Wang W, Liu Z, Chen J, Zhao L, Tan L, Wang C, Qin Y, Li C, Xu T, Yang Z. The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes. Nat Commun 2018; 9:2573. [PMID: 29968705 PMCID: PMC6030205 DOI: 10.1038/s41467-018-04838-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/11/2018] [Indexed: 11/08/2022] Open
Abstract
The dynamic maintenance of polar domains in the plasma membrane (PM) is critical for many fundamental processes, e.g., polar cell growth and growth guidance but remains poorly characterized. Rapid tip growth of Arabidopsis pollen tubes requires dynamic distribution of active ROP1 GTPase to the apical domain. Here, we show that clathrin-mediated endocytosis (CME) coordinates lateral REN4 with apical ROP1 signaling. REN4 interacted with but antagonized active ROP1. REN4 also interacts and co-localizes with CME components, but exhibits an opposite role to CME, which removes both REN4 and active ROP1 from the PM. Mathematical modeling shows that REN4 restrains the spatial distribution of active ROP1 and is important for the robustness of polarity control. Hence our results indicate that REN4 acts as a spatiotemporal rheostat by interacting with ROP1 to initiate their removal from the PM by CME, thereby coordinating a dynamic demarcation between apical and lateral domains during rapid tip growth.
Collapse
Affiliation(s)
- Hui Li
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Nan Luo
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Weidong Wang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
| | - Zengyu Liu
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jisheng Chen
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Liangtao Zhao
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Chunyan Wang
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
| | - Yuan Qin
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Chao Li
- School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Tongda Xu
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecolog, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, 201602, Shanghai, China
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92508, USA.
- FAFU-UCR Joint Center for Horticultural Biology and Metebolomics, Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
13
|
Julien JD, Boudaoud A. Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models. ACTA ACUST UNITED AC 2018; 1:34-42. [PMID: 32743126 PMCID: PMC7388974 DOI: 10.1016/j.tcsw.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022]
Abstract
The generation of anisotropic shapes occurs during morphogenesis of almost all organisms. With the recent renewal of the interest in mechanical aspects of morphogenesis, it has become clear that mechanics contributes to anisotropic forms in a subtle interaction with various molecular actors. Here, we consider plants, fungi, oomycetes, and bacteria, and we review the mechanisms by which elongated shapes are generated and maintained. We focus on theoretical models of the interplay between growth and mechanics, in relation with experimental data, and discuss how models may help us improve our understanding of the underlying biological mechanisms.
Collapse
Affiliation(s)
- Jean-Daniel Julien
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France.,Laboratoire de Physique, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
14
|
Simultaneous imaging and functional studies reveal a tight correlation between calcium and actin networks. Proc Natl Acad Sci U S A 2018; 115:E2869-E2878. [PMID: 29507239 DOI: 10.1073/pnas.1711037115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tip-growing cells elongate in a highly polarized manner via focused secretion of flexible cell-wall material. Calcium has been implicated as a vital factor in regulating the deposition of cell-wall material. However, deciphering the molecular and mechanistic calcium targets in vivo has remained challenging. Here, we investigated intracellular calcium dynamics in the moss Physcomitrella patens, which provides a system with an abundant source of genetically identical tip-growing cells, excellent cytology, and a large molecular genetic tool kit. To visualize calcium we used a genetically encoded cytosolic FRET probe, revealing a fluctuating tipward gradient with a complex oscillatory profile. Wavelet analysis coupled with a signal-sifting algorithm enabled the quantitative comparison of the calcium behavior in cells where growth was inhibited mechanically, pharmacologically, or genetically. We found that cells with suppressed growth have calcium oscillatory profiles with longer frequencies, suggesting that there is a feedback between the calcium gradient and growth. To investigate the mechanistic basis for this feedback we simultaneously imaged cytosolic calcium and actin, which has been shown to be essential for tip growth. We found that high cytosolic calcium promotes disassembly of a tip-focused actin spot, while low calcium promotes assembly. In support of this, abolishing the calcium gradient resulted in dramatic actin accumulation at the tip. Together these data demonstrate that tipward calcium is quantitatively linked to actin accumulation in vivo and that the moss P. patens provides a powerful system to uncover mechanistic links between calcium, actin, and growth.
Collapse
|
15
|
Lamport DTA, Tan L, Held MA, Kieliszewski MJ. Pollen tube growth and guidance: Occam's razor sharpened on a molecular arabinogalactan glycoprotein Rosetta Stone. THE NEW PHYTOLOGIST 2018; 217:491-500. [PMID: 28990197 DOI: 10.1111/nph.14845] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Occam's Razor suggests a new model of pollen tube tip growth based on a novel Hechtian oscillator that integrates a periplasmic arabinogalactan glycoprotein-calcium (AGP-Ca2+ ) capacitor with tip-localized AGPs as the source of tip-focussed cytosolic Ca2+ oscillations: Hechtian adhesion between the plasma membrane and the cell wall of the growing tip acts as a piconewton force transducer that couples the internal stress of a rapidly growing wall to the plasma membrane. Such Hechtian transduction opens stretch-activated Ca2+ channels and activates H+ -ATPase proton pump efflux that dissociates periplasmic AGP-Ca2+ resulting in a Ca2+ influx that activates exocytosis of wall precursors. Thus, a highly simplified pectic primary cell wall regulates its own synthesis by a Hechtian growth oscillator that regulates overall tip growth. By analogy with the three cryptic inscriptions of the classical Rosetta Stone, the Hechtian Hypothesis translates classical AGP function as a Ca2+ capacitor, pollen tube guide and wall plasticizer into a simple but widely applicable model of tip growth. Even wider ramifications of the Hechtian oscillator may implicate AGPs in osmosensing or gravisensing and other tropisms, leading us yet further towards the Holy Grail of plant growth.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | | |
Collapse
|
16
|
Oscillatory fungal cell growth. Fungal Genet Biol 2017; 110:10-14. [PMID: 29229585 DOI: 10.1016/j.fgb.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/26/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Cells are dynamic systems, the state of which undergoes constant alteration that results in morphological changes and movement. Many dynamic cellular processes that appear continuous are driven by underlying mechanisms that oscillate with distinct periods. For example eukaryotic cells do not grow continuously, but rather by pulsed extension of the periphery. Stepwise cell extension at the hyphal tips of several filamentous fungi was discovered 20 years ago, but only a few molecular details of the mechanism have been clarified since then. A recent study has provided evidence for correlations among intracellular Ca2+ levels, actin assembly, exocytosis and cell extension in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. The coordinated oscillation of these machineries are likely to be ubiquitous among all eukaryotes. Indeed, intracellular Ca2+ levels and/or actin polymerization oscillate in mammalian and plant cells. This review summarizes the mechanisms of oscillation in several systems.
Collapse
|
17
|
Aloisi I, Cai G, Faleri C, Navazio L, Serafini-Fracassini D, Del Duca S. Spermine Regulates Pollen Tube Growth by Modulating Ca 2+-Dependent Actin Organization and Cell Wall Structure. FRONTIERS IN PLANT SCIENCE 2017; 8:1701. [PMID: 29033970 PMCID: PMC5627395 DOI: 10.3389/fpls.2017.01701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/15/2017] [Indexed: 05/25/2023]
Abstract
Proper growth of the pollen tube depends on an elaborate mechanism that integrates several molecular and cytological sub-processes and ensures a cell shape adapted to the transport of gametes. This growth mechanism is controlled by several molecules among which cytoplasmic and apoplastic polyamines. Spermine (Spm) has been correlated with various physiological processes in pollen, including structuring of the cell wall and modulation of protein (mainly cytoskeletal) assembly. In this work, the effects of Spm on the growth of pear pollen tubes were analyzed. When exogenous Spm (100 μM) was supplied to germinating pollen, it temporarily blocked tube growth, followed by the induction of apical swelling. This reshaping of the pollen tube was maintained also after growth recovery, leading to a 30-40% increase of tube diameter. Apical swelling was also accompanied by a transient increase in cytosolic calcium concentration and alteration of pH values, which were the likely cause for major reorganization of actin filaments and cytoplasmic organelle movement. Morphological alterations of the apical and subapical region also involved changes in the deposition of pectin, cellulose, and callose in the cell wall. Thus, results point to the involvement of Spm in cell wall construction as well as cytoskeleton organization during pear pollen tube growth.
Collapse
Affiliation(s)
- Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Candeo A, Doccula FG, Valentini G, Bassi A, Costa A. Light Sheet Fluorescence Microscopy Quantifies Calcium Oscillations in Root Hairs of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:1161-1172. [PMID: 28379562 PMCID: PMC6383626 DOI: 10.1093/pcp/pcx045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs.
Collapse
Affiliation(s)
- Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Fabrizio G. Doccula
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milano, Italy
| |
Collapse
|
19
|
Zhang Q, Zhang M, Djeghlaf L, Bataille J, Gamby J, Haghiri-Gosnet AM, Pallandre A. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips. Electrophoresis 2017; 38:953-976. [DOI: 10.1002/elps.201600429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Qiongdi Zhang
- Centre de Nanosciences et de Nanotechnologies, CNRS UMR-9001, Univ. Paris Sud; Université Paris-Saclay; C2N France
| | - Ming Zhang
- Centre de Nanosciences et de Nanotechnologies, CNRS UMR-9001, Univ. Paris Sud; Université Paris-Saclay; C2N France
| | - Lyas Djeghlaf
- Centre de Nanosciences et de Nanotechnologies, CNRS UMR-9001, Univ. Paris Sud; Université Paris-Saclay; C2N France
| | - Jeanne Bataille
- Institut Galien Paris Sud, CNRS UMR-8612, Univ. Paris Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - Jean Gamby
- Centre de Nanosciences et de Nanotechnologies, CNRS UMR-9001, Univ. Paris Sud; Université Paris-Saclay; C2N France
| | - Anne-Marie Haghiri-Gosnet
- Centre de Nanosciences et de Nanotechnologies, CNRS UMR-9001, Univ. Paris Sud; Université Paris-Saclay; C2N France
| | - Antoine Pallandre
- Laboratoire de Chimie Physique, CNRS UMR-8000, Univ. Paris Sud; Université Paris-Saclay; Orsay France
| |
Collapse
|
20
|
Ju Y, Guo L, Cai Q, Ma F, Zhu QY, Zhang Q. Arabidopsis JINGUBANG Is a Negative Regulator of Pollen Germination That Prevents Pollination in Moist Environments. THE PLANT CELL 2016; 28:2131-2146. [PMID: 27468890 PMCID: PMC5059805 DOI: 10.1105/tpc.16.00401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/23/2016] [Indexed: 05/14/2023]
Abstract
The molecular mechanism of pollen germination and pollen tube growth has been revealed in detail during the last decade, while the mechanism that suspends pollen grains in a dormant state is largely unclear. Here, we identified the JINGUBANG (JGB) gene by screening pollen-specific genes for those that are unnecessary for pollen germination. We showed that the pollen of the jgb loss-of-function mutant exhibited hyperactive germination in sucrose-only medium and inside the anther, while this phenotype was rescued by the transgenic expression of JGB in jgb plants. JGB contains seven WD40 repeats and is highly conserved in flowering plants. Overexpression of JGB inhibits pollen germination. These results indicate that JGB is a novel negative regulator of pollen germination. In addition, we found that jasmonic acid (JA) abundance was significantly elevated in jgb pollen, while exogenous application of methyl jasmonate rescued the inhibition of pollen germination in plants overexpressing JGB Based on the molecular features of JGB and on the finding that it interacts with a known JA biosynthesis-related transcription factor, TCP4, we propose that JGB, together with TCP4, forms a regulatory complex that controls pollen JA synthesis, ensuring pollination in moist environments.
Collapse
Affiliation(s)
- Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Liang Guo
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiang Cai
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiao-Yun Zhu
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Kovaleva LV, Voronkov AS, Zakharova EV, Minkina YV, Timofeeva GV, Andreev IM. Exogenous IAA and ABA stimulate germination of petunia male gametophyte by activating Ca2+-dependent K+-channels and by modulating the activity of plasmalemma H+-ATPase and actin cytoskeleton. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Zhao X, Wang J, Yuan J, Wang XL, Zhao QP, Kong PT, Zhang X. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:211-224. [PMID: 25690466 DOI: 10.1111/nph.13327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/10/2015] [Indexed: 05/07/2023]
Abstract
Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jing Yuan
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xi-Li Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Pei-Tao Kong
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
23
|
Multiple independent autonomous hydraulic oscillators driven by a common gravity head. Nat Commun 2015; 6:7301. [PMID: 26073884 PMCID: PMC4470298 DOI: 10.1038/ncomms8301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 04/24/2015] [Indexed: 11/17/2022] Open
Abstract
Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity-head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s – 2 h) and flow rates (0.10 – 63 μL min−1) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.
Collapse
|
24
|
Qin Y, Dong J. Focusing on the focus: what else beyond the master switches for polar cell growth? MOLECULAR PLANT 2015; 8:582-94. [PMID: 25744359 PMCID: PMC5124495 DOI: 10.1016/j.molp.2014.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 05/21/2023]
Abstract
Cell polarity, often associated with polarized cell expansion/growth in plants, describes the uneven distribution of cellular components, such as proteins, nucleic acids, signaling molecules, vesicles, cytoskeletal elements, and organelles, which may ultimately modulate cell shape, structure, and function. Pollen tubes and root hairs are model cell systems for studying the molecular mechanisms underlying sustained tip growth. The formation of intercalated epidermal pavement cells requires excitatory and inhibitory pathways to coordinate cell expansion within single cells and between cells in contact. Strictly controlled cell expansion is linked to asymmetric cell division in zygotes and stomatal lineages, which require integrated processes of pre-mitotic cellular polarization and division asymmetry. While small GTPase ROPs are recognized as fundamental signaling switches for cell polarity in various cellular and developmental processes in plants, the broader molecular machinery underpinning polarity establishment required for asymmetric division remains largely unknown. Here, we review the widely used ROP signaling pathways in cell polar growth and the recently discovered feedback loops with auxin signaling and PIN effluxers. We discuss the conserved phosphorylation and phospholipid signaling mechanisms for regulating uneven distribution of proteins, as well as the potential roles of novel proteins and MAPKs in the polarity establishment related to asymmetric cell division in plants.
Collapse
Affiliation(s)
- Yuan Qin
- Center for Genomics and Biotechnology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA; The Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
25
|
Nagawa S, Xu T, Yang Z. RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 2014; 1:78-88. [PMID: 21686259 DOI: 10.4161/sgtp.1.2.14544] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | | | |
Collapse
|
26
|
Liu J, Hussey PJ. Dissecting the regulation of pollen tube growth by modeling the interplay of hydrodynamics, cell wall and ion dynamics. FRONTIERS IN PLANT SCIENCE 2014; 5:392. [PMID: 25157262 PMCID: PMC4127481 DOI: 10.3389/fpls.2014.00392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/22/2014] [Indexed: 05/30/2023]
Abstract
Hydrodynamics, cell wall and ion dynamics are all important properties that regulate pollen tube growth. Currently, the two main pollen tube growth models, the cell wall model and the hydrodynamic model do not appear to be reconcilable. Here we develop an integrative model for pollen tube growth and show that our model reproduces key experimental observations: (1) that the hypertonic condition leads to a much longer oscillatory period and that the hypotonic condition halves the oscillatory period; (2) that oscillations in turgor are experimentally undetectable; (3) that increasing the extracellular calcium concentration or decreasing the pH decreases the growth oscillatory amplitude; (4) that knockout of Raba4d, a member of the Rab family of small GTPase proteins, decreases pollen tube length after germination for 24 h. Using the model generated here, we reveal that (1) when cell wall extensibility is large, pollen tube may sustain growth at different volume changes and maintain relatively stable turgor; (2) turgor increases if cell wall extensibility decreases; (3) increasing turgor due to decrease in osmolarity in the media, although very small, increases volume change. However, increasing turgor due to decrease in cell wall extensibility decreases volume change. In this way regulation of pollen tube growth by turgor is context dependent. By changing the osmolarity in the media, the main regulatory points are extracellular osmolarity for water flow and turgor for the volume encompassed by the cell wall. However, if the viscosity of cell wall changes, the main regulatory points are turgor for water flow and wall extensibility for the volume encompassed by the cell wall. The novel methodology developed here reveals the underlying context-dependent regulatory principle of pollen tube growth.
Collapse
Affiliation(s)
- Junli Liu
- School of Biological and Biomedical Sciences, Durham UniversityDurham, UK
| | - Patrick J. Hussey
- School of Biological and Biomedical Sciences, Durham UniversityDurham, UK
| |
Collapse
|
27
|
No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 2014; 15:5094-114. [PMID: 24663059 PMCID: PMC3975442 DOI: 10.3390/ijms15035094] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022] Open
Abstract
The mechanisms through which plant cells control growth and shape are the result of the coordinated action of many events, notably cell wall stress relaxation and turgor-driven expansion. The scalar nature of turgor pressure would drive plant cells to assume spherical shapes; however, this is not the case, as plant cells show an amazing variety of morphologies. Plant cell walls are dynamic structures that can display alterations in matrix polysaccharide composition and concentration, which ultimately affect the wall deformation rate. The wide varieties of plant cell shapes, spanning from elongated cylinders (as pollen tubes) and jigsaw puzzle-like epidermal cells, to very long fibres and branched stellate leaf trichomes, can be understood if the underlying mechanisms regulating wall biosynthesis and cytoskeletal dynamics are addressed. This review aims at gathering the available knowledge on the fundamental mechanisms regulating expansion, growth and shape in plant cells by putting a special emphasis on the cell wall-cytoskeleton system continuum. In particular, we discuss from a molecular point of view the growth mechanisms characterizing cell types with strikingly different geometries and describe their relationship with primary walls. The purpose, here, is to provide the reader with a comprehensive overview of the multitude of events through which plant cells manage to expand and control their final shapes.
Collapse
|
28
|
Miyawaki KN, Yang Z. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:449. [PMID: 25295042 PMCID: PMC4170102 DOI: 10.3389/fpls.2014.00449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/20/2014] [Indexed: 05/04/2023]
Abstract
Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound "active" state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes.
Collapse
Affiliation(s)
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
- *Correspondence: Zhenbiao Yang, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, 900 University Avenue, Riverside, CA 92521, USA e-mail:
| |
Collapse
|
29
|
Qin T, Liu X, Li J, Sun J, Song L, Mao T. Arabidopsis microtubule-destabilizing protein 25 functions in pollen tube growth by severing actin filaments. THE PLANT CELL 2014; 26:325-39. [PMID: 24424096 PMCID: PMC3963579 DOI: 10.1105/tpc.113.119768] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The formation of distinct actin filament arrays in the subapical region of pollen tubes is crucial for pollen tube growth. However, the molecular mechanisms underlying the organization and dynamics of the actin filaments in this region remain to be determined. This study shows that Arabidopsis thaliana MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) has the actin filament-severing activity of an actin binding protein. This protein negatively regulated pollen tube growth by modulating the organization and dynamics of actin filaments in the subapical region of pollen tubes. MDP25 loss of function resulted in enhanced pollen tube elongation and inefficient fertilization. MDP25 bound directly to actin filaments and severed individual actin filaments, in a manner that was dramatically enhanced by Ca(2+), in vitro. Analysis of a mutant that bears a point mutation at the Ca(2+) binding sites demonstrated that the subcellular localization of MDP25 was determined by cytosolic Ca(2+) level in the subapical region of pollen tubes, where MDP25 was disassociated from the plasma membrane and moved into the cytosol. Time-lapse analysis showed that the F-actin-severing frequency significantly decreased and a high density of actin filaments was observed in the subapical region of mdp25-1 pollen tubes. This study reveals a mechanism whereby calcium enhances the actin filament-severing activity of MDP25 in the subapical region of pollen tubes to modulate pollen tube growth.
Collapse
|
30
|
Shachar-Hill B, Hill AE, Powell J, Skepper JN, Shachar-Hill Y. Mercury-sensitive water channels as possible sensors of water potentials in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5195-205. [PMID: 24098048 PMCID: PMC3830494 DOI: 10.1093/jxb/ert311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The growing pollen tube is central to plant reproduction and is a long-standing model for cellular tip growth in biology. Rapid osmotically driven growth is maintained under variable conditions, which requires osmosensing and regulation. This study explores the mechanism of water entry and the potential role of osmosensory regulation in maintaining pollen growth. The osmotic permeability of the plasmalemma of Lilium pollen tubes was measured from plasmolysis rates to be 1.32±0.31×10(-3) cm s(-1). Mercuric ions reduce this permeability by 65%. Simulations using an osmotic model of pollen tube growth predict that an osmosensor at the cell membrane controls pectin deposition at the cell tip; inhibiting the sensor is predicted to cause tip bursting due to cell wall thinning. It was found that adding mercury to growing pollen tubes caused such a bursting of the tips. The model indicates that lowering the osmotic permeability per se does not lead to bursting but rather to thickening of the tip. The time course of induced bursting showed no time lag and was independent of mercury concentration, compatible with a surface site of action. The submaximal bursting response to intermediate mercuric ion concentration was independent of the concentration of calcium ions, showing that bursting is not due to a competitive inhibition of calcium binding or entry. Bursting with the same time course was also shown by cells growing on potassium-free media, indicating that potassium channels (implicated in mechanosensing) are not involved in the bursting response. The possible involvement of mercury-sensitive water channels as osmosensors and current knowledge of these in pollen cells are discussed.
Collapse
Affiliation(s)
| | - Adrian E. Hill
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
- * To whom correspondence should be addressed. E-mail:
| | - Janet Powell
- Multi-Imaging Centre, Cambridge University, Cambridge, UK
| | | | - Yair Shachar-Hill
- Department of Plant Biology, Plant Biology Building, Michigan State University, East Lansing, MI 48824-1312, USA
| |
Collapse
|
31
|
Martins TV, Evans MJ, Woolfenden HC, Morris RJ. Towards the Physics of Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2013; 2:541-88. [PMID: 27137393 PMCID: PMC4844391 DOI: 10.3390/plants2040541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/21/2022]
Abstract
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew J Evans
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh C Woolfenden
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
32
|
Hepler PK, Rounds CM, Winship LJ. Control of cell wall extensibility during pollen tube growth. MOLECULAR PLANT 2013; 6:998-1017. [PMID: 23770837 PMCID: PMC4043104 DOI: 10.1093/mp/sst103] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this review, we address the question of how the tip-growing pollen tube achieves its rapid rate of elongation while maintaining an intact cell wall. Although turgor is essential for growth to occur, the local expansion rate is controlled by local changes in the viscosity of the apical wall. We focus on several different structures and underlying processes that are thought to be major participants including exocytosis, the organization and activity of the actin cytoskeleton, calcium and proton physiology, and cellular energetics. We think that the actin cytoskeleton, in particular the apical cortical actin fringe, directs the flow of vesicles to the apical domain, where they fuse with the plasma membrane and contribute their contents to the expanding cell wall. While pH gradients, as generated by a proton-ATPase located on the plasma membrane along the side of the clear zone, may regulate rapid actin turnover and new polymerization in the fringe, the tip-focused calcium gradient biases secretion towards the polar axis. The recent data showing that exocytosis of new wall material precedes and predicts the process of cell elongation provide support for the idea that the intussusception of newly secreted pectin contributes to decreases in apical wall viscosity and to cell expansion. Other prime factors will be the localization and activity of the enzyme pectin methyl-esterase, and the chelation of calcium by pectic acids. Finally, we acknowledge a role for reactive oxygen species in the control of wall viscosity.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
33
|
Guan Y, Guo J, Li H, Yang Z. Signaling in pollen tube growth: crosstalk, feedback, and missing links. MOLECULAR PLANT 2013; 6:1053-64. [PMID: 23873928 PMCID: PMC3842152 DOI: 10.1093/mp/sst070] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
Pollen tubes elongate rapidly at their tips through highly polarized cell growth known as tip growth. Tip growth requires intensive exocytosis at the tip, which is supported by a dynamic cytoskeleton and vesicle trafficking. Several signaling pathways have been demonstrated to coordinate pollen tube growth by regulating cellular activities such as actin dynamics, exocytosis, and endocytosis. These signaling pathways crosstalk to form a signaling network that coordinates the cellular processes required for tip growth. The homeostasis of key signaling molecules is critical for the proper elongation of the pollen tube tip, and is commonly fine-tuned by positive and negative regulations. In addition to the major signaling pathways, emerging evidence implies the roles of other signals in the regulation of pollen tube growth. Here we review and discuss how these signaling networks modulate the rapid growth of pollen tubes.
Collapse
Affiliation(s)
- Yuefeng Guan
- Shanghai Center for Plant Stress Biology and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | | | | | | |
Collapse
|
34
|
Abstract
Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
35
|
Kim SJ, Yokokawa R, Takayama S. Microfluidic oscillators with widely tunable periods. LAB ON A CHIP 2013; 13:1644-1648. [PMID: 23429765 PMCID: PMC3604044 DOI: 10.1039/c3lc41415a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present experiments and theory of a constant flow-driven microfluidic oscillator with widely tunable oscillation periods. This oscillator converts two constant input-flows from a syringe pump into an alternating, periodic output-flow with oscillation periods that can be adjusted to between 0.3 s to 4.1 h by tuning an external membrane capacitor. This capacitor allows multiple adjustable periods at a given input flow-rate, thus providing great flexibility in device operation. Also, we show that a sufficiently large external capacitance, relative to the internal capacitance of the microfluidic valve itself, is a critical requirement for oscillation. These widely tunable microfluidic oscillators are envisioned to be broadly useful for the study of biological rhythms, as on-chip timing sources for microfluidic logic circuits, and other applications that require variation in timed flow switching.
Collapse
Affiliation(s)
- Sung-Jin Kim
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryuji Yokokawa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Microengineering, Kyoto University, Yoshida-honmachi, Sakyo, Kyoto, 606-8501 JAPAN
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Nano-Bio and Chemical Engineering WCU Project, UNIST, Ulsan, Republic of Korea
| |
Collapse
|
36
|
Tunc-Ozdemir M, Rato C, Brown E, Rogers S, Mooneyham A, Frietsch S, Myers CT, Poulsen LR, Malhó R, Harper JF. Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLoS One 2013; 8:e55277. [PMID: 23424627 PMCID: PMC3570425 DOI: 10.1371/journal.pone.0055277] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/29/2012] [Indexed: 01/03/2023] Open
Abstract
The Arabidopsis thaliana genome contains 20 CNGCs, which are proposed to encode cyclic nucleotide gated, non-selective, Ca²⁺-permeable ion channels. CNGC7 and CNGC8 are the two most similar with 74% protein sequence identity, and both genes are preferentially expressed in pollen. Two independent loss-of-function T-DNA insertions were identified for both genes and used to generate plant lines in which only one of the two alleles was segregating (e.g., cngc7-1+/-/cngc8-2-/- and cngc7-3-/-/cngc8-1+/-). While normal pollen transmission was observed for single gene mutations, pollen harboring mutations in both cngc7 and 8 were found to be male sterile (transmission efficiency reduced by more than 3000-fold). Pollen grains harboring T-DNA disruptions of both cngc7 and 8 displayed a high frequency of bursting when germinated in vitro. The male sterile defect could be rescued through pollen expression of a CNGC7 or 8 transgene including a CNGC7 with an N-terminal GFP-tag. However, rescue efficiencies were reduced ∼10-fold when the CNGC7 or 8 included an F to W substitution (F589W and F624W, respectively) at the junction between the putative cyclic nucleotide binding-site and the calmodulin binding-site, identifying this junction as important for proper functioning of a plant CNGC. Using confocal microscopy, GFP-CNGC7 was found to preferentially localize to the plasma membrane at the flanks of the growing tip. Together these results indicate that CNGC7 and 8 are at least partially redundant and provide an essential function at the initiation of pollen tube tip growth.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
| | - Claudia Rato
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Lisboa, Portugal
| | - Elizabeth Brown
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
| | - Stephanie Rogers
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
| | - Amanda Mooneyham
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
| | - Sabine Frietsch
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
| | - Candace T. Myers
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
| | - Lisbeth Rosager Poulsen
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
- Department of Plant Biology and Biotechnology, Centre for Membrane Pumps in Cells and Disease (PUMPKIN), University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark
| | - Rui Malhó
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Lisboa, Portugal
| | - Jeffrey F. Harper
- Department of Biochemistry, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
37
|
Wang L, Lv X, Li H, Zhang M, Wang H, Jin B, Chen T. Inhibition of apoplastic calmodulin impairs calcium homeostasis and cell wall modeling during Cedrus deodara pollen tube growth. PLoS One 2013; 8:e55411. [PMID: 23405148 PMCID: PMC3566176 DOI: 10.1371/journal.pone.0055411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022] Open
Abstract
Calmodulin (CaM) is one of the most well-studied Ca(2+) transducers in eukaryotic cells. It is known to regulate the activity of numerous proteins with diverse cellular functions; however, the functions of apoplastic CaM in plant cells are still poorly understood. By combining pharmacological analysis and microscopic techniques, we investigated the involvement of apoplastic CaM in pollen tube growth of Cedrus deodara (Roxb.) Loud. It was found that the tip-focused calcium gradient was rapidly disturbed as one of the early events after application of pharmacological agents, while the cytoplasmic organization was not significantly affected. The deposition and distribution of acidic pectins and esterified pectins were also dramatically changed, further perturbing the normal modeling of the cell wall. Several protein candidates from different functional categories may be involved in the responses to inhibition of apoplastic CaM. These results revealed that apoplastic CaM functions to maintain the tip-focused calcium gradient and to modulate the distribution/transformation of pectins during pollen tube growth.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xueqin Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Hong Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Technology, Yangzhou University, Yangzhou, China
| | - Min Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tong Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Yang Z, Lavagi I. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:601-607. [PMID: 23177207 PMCID: PMC3545472 DOI: 10.1016/j.pbi.2012.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 05/17/2023]
Abstract
Breaking of the cell membrane symmetry to form polarized or localized domains/regions of the plasma membrane (PM) is a fundamental cellular process that occurs in essentially all cellular organisms, and is required for a wide variety of cellular functions/behaviors including cell morphogenesis, cell division and cell differentiation. In plants, the development of localized or polarized PM domains has been linked to a vast array of cellular and developmental processes such as polar cell expansion, asymmetric cell division, cell morphogenesis, the polarization of auxin transporters (and thus auxin polar transport), secondary cell wall patterning, cell type specification, and tissue pattern formation. Rho GTPases from plants (ROPs) are known to be involved in many of these processes. Here, we review the current knowledge on ROP involvement in breaking symmetry and propose that ROP-based self-organizing signaling may provide a common mechanism for the spatial control of PM domains required in various cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Zhenbiao Yang
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
39
|
Kroeger J, Geitmann A. The pollen tube paradigm revisited. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:618-24. [PMID: 23000432 DOI: 10.1016/j.pbi.2012.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 05/10/2023]
Abstract
The polar growth process characterizing pollen tube elongation has attracted numerous modeling attempts over the past years. While initial models focused on recreating the correct cellular geometry, recent models are increasingly based on experimentally assessed cellular parameters such as the dynamics of signaling processes and the mechanical properties of the cell wall. Recent modeling attempts have therefore substantially gained in biological relevance and predictive power. Different modeling methods are explained and the power and limitations of individual models are compared. Focus is on several recent models that use closed feedback loops in order to generate limit cycles representing the oscillatory behavior observed in growing tubes.
Collapse
|
40
|
Steinhorst L, Kudla J. Calcium - a central regulator of pollen germination and tube growth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1573-81. [PMID: 23072967 DOI: 10.1016/j.bbamcr.2012.10.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/01/2012] [Accepted: 10/06/2012] [Indexed: 12/30/2022]
Abstract
Pollen tubes grow rapidly by very fast rates and reach extended lengths to bring about fertilization during plant reproduction. The pollen tube grows exclusively at its tip. Fundamental for such local, tip-focused growth are the presence of internal gradients and transmembrane fluxes of ions. Consequently, vegetative pollen tube cells are an excellent single cell model system to investigate cell biological processes of vesicle transport, cytoskeleton reorganization and regulation of ion transport. The second messenger Ca(2+) has emerged as a central and crucial modulator that not only regulates but also integrates the coordination each of these processes. In this review we reflect on recent advances in our understanding of the mechanisms of Ca(2+) function in pollen tube growth, focusing on its role in basic cellular processes such as control of cell growth, vesicular transport and intracellular signaling by localized gradients of second messengers. In particular we discuss new insights into the identity and role of Ca(2+) conductive ion channels and present experimental addressable hypotheses about their regulation. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany
| | | |
Collapse
|
41
|
Craddock C, Lavagi I, Yang Z. New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol 2012; 22:492-501. [PMID: 22795444 DOI: 10.1016/j.tcb.2012.05.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
Abstract
In animal and plant cells, a wide range of key cellular processes that require the establishment of cell polarity are governed by Rho-GTPases. In contrast to animals and yeast, however, plants possess a single Rho-GTPase subfamily called Rho-like GTPases from plants (ROPs). This raises the question of how plants achieve the high level of regulation required for polar cellular processes. It is becoming evident that plants have evolved specific regulators, including ROP-Guanine Exchange Factors (GEFs) and the Rop-interactive CRIB motif-containing protein (RIC) effectors. Recent research shows that the spatiotemporal dynamics of ROPs, the cytoskeleton, endocytosis, and exocytosis are intertwined. This review focuses on the proposed self-organizing nature of ROPs in plants and how ROP-mediated cellular mechanisms compare with those responsible for cell polarity in animals and yeast.
Collapse
Affiliation(s)
- Christian Craddock
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92508, USA
| | | | | |
Collapse
|
42
|
Liu J, Knight H, Hurst CH, Knight MR. Modelling and experimental analysis of the role of interacting cytosolic and vacuolar pools in shaping low temperature calcium signatures in plant cells. MOLECULAR BIOSYSTEMS 2012; 8:2205-20. [PMID: 22722805 DOI: 10.1039/c2mb25072a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major challenge to understanding low temperature calcium signatures in plants is defining how these signatures emerge from the interactions of different molecular components that are stored in different subcellular pools of a plant cell. Here we develop an integrative model that incorporates the interactions of Ca²⁺, H⁺, K⁺, Cl⁻ and ATP in both cytosolic and vacuolar pools. Our analysis reveals how these four major ions along with ATP forms a complex network to relate the emergence of calcium signatures to other responses (e.g. pH response). Modelling results are in agreement with experimental observations for both cytosolic free calcium concentration ([Ca²⁺](c)) and pH. The model is further validated by experimentally measuring the response of [Ca²⁺](c) to six fluctuating (rather than constant) temperature profiles. We found that modelling results are in reasonable agreement with experimental observations, in particular, if the rate of reducing temperature is relatively high. In addition, we show that both calcium-induced calcium release (CICR) at the vacuolar membrane and transport of ions from the cytosolic pool to the vacuolar membrane play important roles in the interaction between cytosolic and vacuolar pools. In combination they control the amount and timing of calcium release from the vacuolar to cytosolic pool, shaping the specific calcium signature. The methodology and principles developed here establish an integrative view on the role of cytosolic and vacuolar pools in shaping calcium signatures in general, and they are universally applicable to study of the interactions of multiple subcellular pools.
Collapse
Affiliation(s)
- Junli Liu
- Durham Centre for Crop Improvement Technology, The Integrative Cell Biology Laboratory and The Biophysical Sciences Institute, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
43
|
COLAÇO R, MORENO N, FEIJÓ J. On the fast lane: mitochondria structure, dynamics and function in growing pollen tubes. J Microsc 2012; 247:106-18. [DOI: 10.1111/j.1365-2818.2012.03628.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Howell AS, Jin M, Wu CF, Zyla TR, Elston TC, Lew DJ. Negative feedback enhances robustness in the yeast polarity establishment circuit. Cell 2012; 149:322-33. [PMID: 22500799 DOI: 10.1016/j.cell.2012.03.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/12/2011] [Accepted: 02/13/2012] [Indexed: 11/26/2022]
Abstract
Many cells undergo symmetry-breaking polarization toward a randomly oriented "front" in the absence of spatial cues. In budding yeast, such polarization involves a positive feedback loop that enables amplification of stochastically arising clusters of polarity factors. Previous mathematical modeling suggested that, if more than one cluster were amplified, the clusters would compete for limiting resources and the largest would "win," explaining why yeast cells always make one and only one bud. Here, using imaging with improved spatiotemporal resolution, we show the transient coexistence of multiple clusters during polarity establishment, as predicted by the model. Unexpectedly, we also find that initial polarity factor clustering is oscillatory, revealing the presence of a negative feedback loop that disperses the factors. Mathematical modeling predicts that negative feedback would confer robustness to the polarity circuit and make the kinetics of competition between polarity factor clusters relatively insensitive to polarity factor concentration. These predictions are confirmed experimentally.
Collapse
Affiliation(s)
- Audrey S Howell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
45
|
Rojas ER, Hotton S, Dumais J. Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 2012; 101:1844-53. [PMID: 22004737 DOI: 10.1016/j.bpj.2011.08.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/17/2011] [Accepted: 08/02/2011] [Indexed: 12/20/2022] Open
Abstract
Morphogenesis of plant cells is tantamount to the shaping of the stiff cell wall that surrounds them. To this end, these cells integrate two concomitant processes: 1), deposition of new material into the existing wall, and 2), mechanical deformation of this material by the turgor pressure. However, due to uncertainty regarding the mechanisms that coordinate these processes, existing models typically adopt a limiting case in which either one or the other dictates morphogenesis. In this report, we formulate a simple mechanism in pollen tubes by which deposition causes turnover of cell wall cross-links, thereby facilitating mechanical deformation. Accordingly, deposition and mechanics are coupled and are both integral aspects of the morphogenetic process. Among the key experimental qualifications of this model are: its ability to precisely reproduce the morphologies of pollen tubes; its prediction of the growth oscillations exhibited by rapidly growing pollen tubes; and its prediction of the observed phase relationships between variables such as wall thickness, cell morphology, and growth rate within oscillatory cells. In short, the model captures the rich phenomenology of pollen tube morphogenesis and has implications for other plant cell types.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA.
| | | | | |
Collapse
|
46
|
Kroeger J, Geitmann A. Modeling pollen tube growth: feeling the pressure to deliver testifiable predictions. PLANT SIGNALING & BEHAVIOR 2011; 6:1828-30. [PMID: 22042043 PMCID: PMC3329360 DOI: 10.4161/psb.6.11.17324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The frequency and amplitude of oscillatory pollen tube growth can be altered by changing the osmotic value of the surrounding medium. This has motivated the proposition that the periodic change in growth velocity is caused by changes in turgor pressure. Using mathematical modeling we recently demonstrated that the oscillatory pollen tube growth does not require turgor to change but that this behavior can be explained with a mechanism that relies on changes in the mechanical properties of the cell wall which in turn are caused by temporal variations in the secretion of cell wall precursors. The model also explains why turgor and growth rate are correlated for oscillatory growth with long growth cycles while they seem uncorrelated for oscillatory growth with short growth cycles. The predictions made by the model are testifiable by experimental data and therefore represent an important step towards understanding the dynamics of the growth behavior in walled cells.
Collapse
Affiliation(s)
- Jens Kroeger
- Department of Physiology, Centre for Nonlinear Dynamics, McGill University; Montréal, Québec, Canada
| | - Anja Geitmann
- Département de sciences biologiques, Institut de recherche en biologie végétale, Université de Montréal; Montréal, Québec, Canada
- Correspondence to: Anja Geitmann,
| |
Collapse
|
47
|
Whalley HJ, Sargeant AW, Steele JF, Lacoere T, Lamb R, Saunders NJ, Knight H, Knight MR. Transcriptomic analysis reveals calcium regulation of specific promoter motifs in Arabidopsis. THE PLANT CELL 2011; 23:4079-95. [PMID: 22086087 PMCID: PMC3246331 DOI: 10.1105/tpc.111.090480] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 05/18/2023]
Abstract
Increases in intracellular calcium concentration ([Ca(2+)](c)) mediate plant responses to stress by regulating the expression of genes encoding proteins that confer tolerance. Several plant stress genes have previously been shown to be calcium-regulated, and in one case, a specific promoter motif Abscisic Acid Responsive-Element (ABRE) has been found to be regulated by calcium. A comprehensive survey of the Arabidopsis thaliana transcriptome for calcium-regulated promoter motifs was performed by measuring the expression of genes in Arabidopsis seedlings responding to three calcium elevations of different characteristics, using full genome microarray analysis. This work revealed a total of 269 genes upregulated by [Ca(2+)](c) in Arabidopsis. Bioinformatic analysis strongly indicated that at least four promoter motifs were [Ca(2+)](c)-regulated in planta. We confirmed this finding by expressing in plants chimeric gene constructs controlled exclusively by these cis-elements and by testing the necessity and sufficiency of calcium for their expression. Our data reveal that the C-Repeat/Drought-Responsive Element, Site II, and CAM box (along with the previously identified ABRE) promoter motifs are calcium-regulated. The identification of these promoter elements targeted by the second messenger intracellular calcium has implications for plant signaling in response to a variety of stimuli, including cold, drought, and biotic stress.
Collapse
Affiliation(s)
- Helen J. Whalley
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Alexander W. Sargeant
- Plant Stress Lab, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - John F.C. Steele
- Plant Stress Lab, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Tim Lacoere
- Plant Stress Lab, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Rebecca Lamb
- Plant Stress Lab, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Nigel J. Saunders
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Heather Knight
- Plant Stress Lab, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Marc R. Knight
- Plant Stress Lab, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Address correspondence to
| |
Collapse
|
48
|
Qin Y, Yang Z. Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 2011; 22:816-24. [PMID: 21729760 DOI: 10.1016/j.semcdb.2011.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 12/31/2022]
Abstract
Pollen tubes extend rapidly in an oscillatory manner by the extreme form of polarized growth, tip growth, and provide an exciting system for studying the spatiotemporal control of polarized cell growth. The Rho-family ROP GTPase is a key signaling molecule in this growth control and is periodically activated at the apical plasma membrane to spatially define the apical growth region and temporally precede the burst of growth. The spatiotemporal dynamics of ROP GTPase is interconnected with actin dynamics and polar exocytosis that is required for tip-targeted membrane and wall expansion. Recent advances in the study of the mechanistic interlinks between ROP-centered signaling and spatiotemporal dynamics of cell membrane and wall remodeling will be discussed.
Collapse
Affiliation(s)
- Yuan Qin
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
49
|
Kroeger JH, Zerzour R, Geitmann A. Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 2011; 6:e18549. [PMID: 21541026 PMCID: PMC3081820 DOI: 10.1371/journal.pone.0018549] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/03/2011] [Indexed: 11/25/2022] Open
Abstract
Turgor generates the stress that leads to the expansion of plant cell walls during cellular growth. This has been formalized by the Lockhart equation, which can be derived from the physical laws of the deformation of viscoelastic materials. However, the experimental evidence for such a direct correlation between growth rate and turgor is inconclusive. This has led to challenges of the Lockhart model. We model the oscillatory growth of pollen tubes to investigate this relationship. We couple the Lockhart equation to the dynamical equations for the change in material properties. We find that the correct implementation of the Lockhart equation within a feedback loop leading to low amplitude oscillatory growth predicts that in this system changes in the global turgor do not influence the average growth rate in a linear manner, consistent with experimental observations. An analytic analysis of our model demonstrates in which regime the average growth rate becomes uncorrelated from the turgor pressure.
Collapse
Affiliation(s)
- Jens H. Kroeger
- Department of Physiology, Centre for Nonlinear Dynamics, McGill University, Montréal, Québec, Canada
| | - Rabah Zerzour
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Anja Geitmann
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
50
|
Liu J, Hussey P. Towards the creation of a systems tip growth model for a pollen tube. PLANT SIGNALING & BEHAVIOR 2011; 6:520-2. [PMID: 21474995 PMCID: PMC3142380 DOI: 10.4161/psb.6.4.14750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 05/08/2023]
Abstract
Essential features of pollen tube growth are polarization of extracellular ion fluxes, intracellular ion gradients, and oscillating dynamics. These features in pollen tube growth are regulated by a wide range of spatiotemporally organized functions such as exocytosis and endocytosis, actin cytoskeleton reorganization, cell wall deposition and assembly, intracellular signalling, fertilization, and self-incompatibility. Recently, by developing a compartmental model, we have demonstrated that the tip and shank in a pollen tube combine in an integrative and self-regulatory system of ion and growth dynamics. Recent developments in modelling and the wealth of experimental data can be used to develop a systems model that provides an integrative view of the the interactions between the different functions that affect pollen tube growth.
Collapse
Affiliation(s)
- Junli Liu
- Durham University, School of Biological and Biomedical Sciences, Durham, UK.
| | | |
Collapse
|