1
|
Robinson KS, Sennhenn P, Yuan DS, Liu H, Taddei D, Qian Y, Luo W. TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 2025; 44:494-512. [PMID: 39609612 PMCID: PMC11832424 DOI: 10.1038/s41388-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, also known as Bax Inhibitor-1 (BI-1), has been heavily researched for its cytoprotective functions. TMBIM6 functional diversity includes modulating cell survival, stress, metabolism, cytoskeletal dynamics, organelle function, regulating cytosolic acidification, calcium, and reactive oxygen species (ROS). Clinical research shows TMBIM6 plays a key role in many of the world's top diseases/injuries (i.e., Alzheimer's, Parkinson's, diabetes, obesity, brain injury, liver disease, heart disease, aging, etc.), including cancer, where TMBIM6 expression impacts patient survival, chemoresistance, cancer progression, and metastasis. We show TMBIM6 is activated by, and undergoes, different conformational changes that dictate its function following a significant change in the cell's IntraCellular Environment (ICE). TMBIM6 agonism, following ICE change, can help the cell overcome multiple stresses including toxin exposure, viral infection, wound healing, and excitotoxicity. However, in cancer cells TMBIM6 agonism results in rapid paraptotic induction irrespective of the cancer type, sub-type, genotype or phenotype. Furthermore, the level of TMBIM6 expression in cancer did not dictate the level of paraptotic induction; however, it did dictate the rate at which paraptosis occurred. TMBIM6 agonism did not induce paraptosis in cancer via canonical routes involving p38 MAPK, JNK, ERK, UPR, autophagy, proteasomes, or Caspase-9. Instead, TMBIM6 agonism in cancer upregulates cytosolic Ca2+ and ROS, activates lysosome biogenesis, and induces paraptosis via ERAD II mechanisms. In xenograft models, we show TMBIM6 agonism induces rapid cancer cell death with no toxicity, even at high doses of TMBIM6 agonist (>450 mg/kg). In summary, this study shows TMBIM6's functional diversity is only activated by severe ICE change in diseased/injured cells, highlighting its transformative potential as a therapeutic target across various diseases and injuries, including cancer.
Collapse
Affiliation(s)
| | | | | | - Hai Liu
- Viva Biotech, Shanghai, China
| | | | | | - Wei Luo
- MicroQuin, Cambridge, MA, USA
| |
Collapse
|
2
|
Zindl CL, Wilson CG, Chadha AS, Duck LW, Cai B, Harbour SN, Nagaoka-Kamata Y, Hatton RD, Gao M, Figge DA, Weaver CT. Distal colonocytes targeted by C. rodentium recruit T-cell help for barrier defence. Nature 2024; 629:669-678. [PMID: 38600382 PMCID: PMC11096101 DOI: 10.1038/s41586-024-07288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Interleukin 22 (IL-22) has a non-redundant role in immune defence of the intestinal barrier1-3. T cells, but not innate lymphoid cells, have an indispensable role in sustaining the IL-22 signalling that is required for the protection of colonic crypts against invasion during infection by the enteropathogen Citrobacter rodentium4 (Cr). However, the intestinal epithelial cell (IEC) subsets targeted by T cell-derived IL-22, and how T cell-derived IL-22 sustains activation in IECs, remain undefined. Here we identify a subset of absorptive IECs in the mid-distal colon that are specifically targeted by Cr and are differentially responsive to IL-22 signalling. Major histocompatibility complex class II (MHCII) expression by these colonocytes was required to elicit sustained IL-22 signalling from Cr-specific T cells, which was required to restrain Cr invasion. Our findings explain the basis for the regionalization of the host response to Cr and demonstrate that epithelial cells must elicit MHCII-dependent help from IL-22-producing T cells to orchestrate immune protection in the intestine.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - C Garrett Wilson
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Awalpreet S Chadha
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lennard W Duck
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baiyi Cai
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stacey N Harbour
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yoshiko Nagaoka-Kamata
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin D Hatton
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Gao
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Figge
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T Weaver
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
4
|
Lee W, Sung S, Ha J, Kim E, An ES, Kim SH, Kim SH, Kim HY. Molecular and Genomic Analysis of the Virulence Factors and Potential Transmission of Hybrid Enteropathogenic and Enterotoxigenic Escherichia coli (EPEC/ETEC) Strains Isolated in South Korea. Int J Mol Sci 2023; 24:12729. [PMID: 37628911 PMCID: PMC10454139 DOI: 10.3390/ijms241612729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause diarrhea and mortality in children. The virulence genes in the strains isolated from different sources in the South Korea were identified, and their phylogenetic positions were analyzed. The EPEC/ETEC hybrid strains harbored eae and est encoding E. coli attaching and effacing lesions and heat-stable enterotoxins of EPEC and ETEC, respectively. Genome-wide phylogeny revealed that all hybrids (n = 6) were closely related to EPEC strains, implying the potential acquisition of ETEC virulence genes during ETEC/EPEC hybrid emergence. The hybrids represented diverse serotypes (O153:H19 (n = 3), O49:H10 (n = 2), and O71:H19 (n = 1)) and sequence types (ST546, n = 4; ST785, n = 2). Furthermore, heat-stable toxin-encoding plasmids possessing estA and various other virulence genes and transporters, including nleH2, hlyA, hlyB, hlyC, hlyD, espC, espP, phage endopeptidase Rz, and phage holin, were identified. These findings provide insights into understanding the pathogenicity of EPEC/ETEC hybrid strains and may aid in comparative studies, virulence characterization, and understanding evolutionary biology.
Collapse
Affiliation(s)
- Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Soohyun Sung
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Jina Ha
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Eiseul Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Eun Sook An
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (W.L.); (S.S.); (J.H.); (E.S.A.); (S.H.K.)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
5
|
Jin J, Yuan Y, Xian W, Tang Z, Fu J, Liu X. The ever-increasing necessity of mass spectrometry in dissecting protein post-translational modifications catalyzed by bacterial effectors. Mol Microbiol 2023. [PMID: 37127430 DOI: 10.1111/mmi.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Protein post-translational modifications (PTMs), such as ADP-ribosylation and phosphorylation, regulate multiple fundamental biological processes in cells. During bacterial infection, effector proteins are delivered into host cells through dedicated bacterial secretion systems and can modulate important cellular pathways by covalently modifying their host targets. These strategies enable intruding bacteria to subvert various host processes, thereby promoting their own survival and proliferation. Despite rapid expansion of our understanding of effector-mediated PTMs in host cells, analytical measurements of these molecular events still pose significant challenges in the study of host-pathogen interactions. Nevertheless, with major technical breakthroughs in the last two decades, mass spectrometry (MS) has evolved to be a valuable tool for detecting protein PTMs and mapping modification sites. Additionally, large-scale PTM profiling, facilitated by different enrichment strategies prior to MS analysis, allows high-throughput screening of host enzymatic substrates of bacterial effectors. In this review, we summarize the advances in the studies of two representative PTMs (i.e., ADP-ribosylation and phosphorylation) catalyzed by bacterial effectors during infection. Importantly, we will discuss the ever-increasing role of MS in understanding these molecular events and how the latest MS-based tools can aid in future studies of this booming area of pathogenic bacteria-host interactions.
Collapse
Affiliation(s)
- Jie Jin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
6
|
St. Louis BM, Quagliato SM, Lee PC. Bacterial effector kinases and strategies to identify their target host substrates. Front Microbiol 2023; 14:1113021. [PMID: 36846793 PMCID: PMC9950578 DOI: 10.3389/fmicb.2023.1113021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Post-translational modifications (PTMs) are critical in regulating protein function by altering chemical characteristics of proteins. Phosphorylation is an integral PTM, catalyzed by kinases and reversibly removed by phosphatases, that modulates many cellular processes in response to stimuli in all living organisms. Consequently, bacterial pathogens have evolved to secrete effectors capable of manipulating host phosphorylation pathways as a common infection strategy. Given the importance of protein phosphorylation in infection, recent advances in sequence and structural homology search have significantly expanded the discovery of a multitude of bacterial effectors with kinase activity in pathogenic bacteria. Although challenges exist due to complexity of phosphorylation networks in host cells and transient interactions between kinases and substrates, approaches are continuously being developed and applied to identify bacterial effector kinases and their host substrates. In this review, we illustrate the importance of exploiting phosphorylation in host cells by bacterial pathogens via the action of effector kinases and how these effector kinases contribute to virulence through the manipulation of diverse host signaling pathways. We also highlight recent developments in the identification of bacterial effector kinases and a variety of techniques to characterize kinase-substrate interactions in host cells. Identification of host substrates provides new insights for regulation of host signaling during microbial infection and may serve as foundation for developing interventions to treat infection by blocking the activity of secreted effector kinases.
Collapse
Affiliation(s)
- Brendyn M. St. Louis
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | - Sydney M. Quagliato
- Department of Biological Sciences, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, United States
| | | |
Collapse
|
7
|
Yu K, Huang Z, Xiao Y, Wang D. Shewanella infection in humans: Epidemiology, clinical features and pathogenicity. Virulence 2022; 13:1515-1532. [PMID: 36065099 PMCID: PMC9481105 DOI: 10.1080/21505594.2022.2117831] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The genus Shewanella consists of Gram-negative proteobacteria that are ubiquitously distributed in environment. As the members of this genus have rapidly increased within the past decade, several species have become emerging pathogens worldwide, attracting the attention of the medical community. These species are also associated with severe community- and hospital-acquired infections. Patients infected with Shewanella spp. had experiences of occupational or recreational exposure; meanwhile, the process of infection is complex and the pathogenicity is influenced by a variety of factors. Here, an exhaustive internet-based literature search was carried out in PUBMED using terms “Achromobacter putrefaciens,” “Pseudomonas putrefaciens,” “Alteromonas putrefaciens” and “Shewanella” to search literatures published between 1978 and June 2022. We provided a comprehensive review on the epidemiology, clinical features and pathogenicity of Shewanella, which will contribute a better understanding of its clinical aetiology, and facilitate the timely diagnosis and effective treatment of Shewanella infection for clinicians and public health professionals.
Collapse
Affiliation(s)
- Keyi Yu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Zhenzhou Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Yue Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| | - Duochun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing, China
| |
Collapse
|
8
|
Targeting of microvillus protein Eps8 by the NleH effector kinases from enteropathogenic E. coli. Proc Natl Acad Sci U S A 2022; 119:e2204332119. [PMID: 35976880 PMCID: PMC9407544 DOI: 10.1073/pnas.2204332119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.
Collapse
|
9
|
Sanchez-Garrido J, Ruano-Gallego D, Choudhary JS, Frankel G. The type III secretion system effector network hypothesis. Trends Microbiol 2022; 30:524-533. [PMID: 34840074 DOI: 10.1016/j.tim.2021.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Type III secretion system (T3SS) effectors are key virulence factors that underpin the infection strategy of many clinically important Gram-negative pathogens, including Salmonella enterica, Shigella spp., enteropathogenic and enterohemorrhagic Escherichia coli and their murine equivalent, Citrobacter rodentium. The cellular processes or proteins targeted by the effectors can be common to multiple pathogens or pathogen-specific. The main approach to understanding T3SS-mediated pathogenesis has been to determine the contribution of one effector at a time, with the aim of piecing together individual functions and unveiling infection mechanisms. However, in contrast to this prevailing approach, simultaneous deletion of multiple effectors revealed that they function as an interconnected network in vivo, uncovering effector codependency and context-dependent effector essentiality. This paradigm shift in T3SS biology is at the heart of this opinion article.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| | - David Ruano-Gallego
- Department of Molecular Evolution, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial-Consejo Superior de Investigaciones Científicas (INTA-CSIC), Madrid, Spain.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
10
|
Reprogramming of Cell Death Pathways by Bacterial Effectors as a Widespread Virulence Strategy. Infect Immun 2022; 90:e0061421. [PMID: 35467397 DOI: 10.1128/iai.00614-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of programmed cell death (PCD) processes during bacterial infections is an evolving arms race between pathogens and their hosts. The initiation of apoptosis, necroptosis, and pyroptosis pathways are essential to immunity against many intracellular and extracellular bacteria. These cellular self-destructive mechanisms are used by the infected host to restrict and eliminate bacterial pathogens. Without a tight regulatory control, host cell death can become a double-edged sword. Inflammatory PCDs contribute to an effective immune response against pathogens, but unregulated inflammation aggravates the damage caused by bacterial infections. Thus, fine-tuning of these pathways is required to resolve infection while preserving the host immune homeostasis. In turn, bacterial pathogens have evolved secreted virulence factors or effector proteins that manipulate PCD pathways to promote infection. In this review, we discuss the importance of controlled cell death in immunity to bacterial infection. We also detail the mechanisms employed by type 3 secreted bacterial effectors to bypass these pathways and their importance in bacterial pathogenesis.
Collapse
|
11
|
Zindl CL, Witte SJ, Laufer VA, Gao M, Yue Z, Janowski KM, Cai B, Frey BF, Silberger DJ, Harbour SN, Singer JR, Turner H, Lund FE, Vallance BA, Rosenberg AF, Schoeb TR, Chen JY, Hatton RD, Weaver CT. A nonredundant role for T cell-derived interleukin 22 in antibacterial defense of colonic crypts. Immunity 2022; 55:494-511.e11. [PMID: 35263568 PMCID: PMC9126440 DOI: 10.1016/j.immuni.2022.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-22 is central to immune defense at barrier sites. We examined the contributions of innate lymphoid cell (ILC) and T cell-derived IL-22 during Citrobacter rodentium (C.r) infection using mice that both report Il22 expression and allow lineage-specific deletion. ILC-derived IL-22 activated STAT3 in C.r-colonized surface intestinal epithelial cells (IECs) but only temporally restrained bacterial growth. T cell-derived IL-22 induced a more robust and extensive activation of STAT3 in IECs, including IECs lining colonic crypts, and T cell-specific deficiency of IL-22 led to pathogen invasion of the crypts and increased mortality. This reflected a requirement for T cell-derived IL-22 for the expression of a host-protective transcriptomic program that included AMPs, neutrophil-recruiting chemokines, and mucin-related molecules, and it restricted IFNγ-induced proinflammatory genes. Our findings demonstrate spatiotemporal differences in the production and action of IL-22 by ILCs and T cells during infection and reveal an indispensable role for IL-22-producing T cells in the protection of the intestinal crypts.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Steven J Witte
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vincent A Laufer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zongliang Yue
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen M Janowski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Baiyi Cai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Blake F Frey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel J Silberger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stacey N Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey R Singer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Henrietta Turner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce A Vallance
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Alexander F Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
12
|
Citrobacter rodentium(ϕStx2dact), a murine infection model for enterohemorrhagic Escherichia coli. Curr Opin Microbiol 2022; 65:183-190. [PMID: 34929548 PMCID: PMC9069446 DOI: 10.1016/j.mib.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
The formation of attaching and effacing (A/E) lesions on intestinal epithelium, combined with Shiga toxin production, are hallmarks of enterohemorrhagic Escherichia coli (EHEC) infection that can lead to lethal hemolytic uremic syndrome. Although an animal infection model that fully recapitulates human disease remains elusive, mice orally infected with Citrobacter rodentium(ϕStx2dact), a natural murine pathogen lysogenized with an EHEC-derived Shiga toxin 2-producing bacteriophage, develop intestinal A/E lesions and toxin-dependent systemic disease. This model has facilitated investigation of how: (A) phage gene expression and prophage induction contribute to disease and are potentially triggered by antibiotic treatment; (B) virulence gene expression is altered by microbiota and the colonic metabolomic milieu; and (C) innate immune signaling is affected by Stx. Thus, the model provides a unique tool for accessing diverse aspects of EHEC pathogenesis.
Collapse
|
13
|
Kolbe KR, Sanches TR, Fanelli C, Garnica MR, Urbano de Castro L, Gooch K, Thomas S, Taylor S, Gorringe A, Noronha IDL, Andrade L. Acute kidney injury in a mouse model of meningococcal disease. Int J Immunopathol Pharmacol 2021; 35:20587384211056507. [PMID: 34930061 PMCID: PMC8725215 DOI: 10.1177/20587384211056507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction Meningococcal disease is associated with high mortality. When acute kidney injury (AKI)
occurs in patients with severe meningococcal disease, it is typically attributable to
sepsis, although meningococcal disease and lipopolysaccharide release are rarely
investigated. Therefore, we evaluated renal tissue in a mouse model of meningococcal
disease. Methods Female BALB/c mice were induced to AKI by meningococcal challenge. Markers of renal
function were evaluated in infected and control mice. Results In the infected mice, serum concentrations of tumor necrosis factor alpha, interferon
gamma, interleukins (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-12), and
granulocyte–macrophage colony-stimulating factor were elevated, as was renal
interstitial infiltration with lymphocytes and neutrophils (p < 0.01
for the latter). Histological analysis showed meningococcal microcolonies in the renal
interstitium, without acute tubular necrosis. Infected mice also showed elevated renal
expression of toll-like receptor 2, toll-like receptor 4, and Tamm–Horsfall protein. The
expression of factors in the intrinsic pathway of apoptosis was equal to or lower than
that observed in the control mice. Urinary sodium and potassium were also lower in
infected mice, probably due to a tubular defect. Conclusion Our findings corroborate those of other studies of AKI in sepsis. To our knowledge,
this is the first time that meningococci have been identified in renal interstitium and
that the resulting apoptosis and inflammation have been evaluated. However, additional
studies are needed in order to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Karin R Kolbe
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita R Sanches
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Camilla Fanelli
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | - Margoth R Garnica
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | - Irene de L Noronha
- Division of Nephrology, 28133University of São Paulo School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
14
|
Yadav M, Srinivasan M, Tulsian NK, Liu YX, Lin Q, Rosenshine I, Sivaraman J. Binding specificity of type three secretion system effector NleH2 to multi-cargo chaperone CesT and their phosphorylation. Protein Sci 2021; 30:2433-2444. [PMID: 34662450 DOI: 10.1002/pro.4210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
Gram-negative pathogens like Enteropathogenic Escherichia coli (EPEC) utilize the type three secretion system (T3SS) to translocate various effector proteins that are needed to "hijack" the host system for pathogenic survival. Specialized T3SS chaperones inside bacterial cells stabilize these effector proteins and facilitate their translocation. CesT is a unique multi-cargo chaperone that interacts with and translocates ~10 different effector proteins. Here, we report the specific interaction between CesT and its key effector, NleH2, and explore the potential role of NleH2 as a kinase for CesT phosphorylation. First, we identified the chaperone-binding domain (CBD; 19-97aa) of NleH2, and mapped the specific interaction sites for both CesT and NleH2. The N- and C-terminal residues of the CBD interact with the dimeric interface of CesT. Further, we compared the CesT binding to NleH2, to that of another key effector Tir and with the global carbon regulator CsrA. Notably, the effectors have the binding regions at the β-sheet core and dimer interface of CesT, whereas the CsrA regulator interacts predominantly through the C-terminal region, which is found ~17 Å away from the effectors-binding sites. Next, we showed that NleH2 remains an active kinase even as a complex with CesT and is responsible for its autophosphorylation as well as phosphorylation of CesT at Tyr153. Collectively, our findings enhance the understanding of the role of multi-cargo chaperone CesT in orchestrating effector translocation through T3SS.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Nikhil K Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Yu Xuan Liu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
15
|
In vivo studies on Citrobacter rodentium and host cell death pathways. Curr Opin Microbiol 2021; 64:60-67. [PMID: 34601305 DOI: 10.1016/j.mib.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Citrobacter rodentium is a mouse-specific extracellular enteropathogen, commonly used as a small animal model for studying human enteropathogenic Escherichia coli infections. Both pathogens share a core set of virulence factors, including a type III secretion system, which enables translocation of effector proteins into infected cells to subvert host antimicrobial responses. Notably, these bacterial effectors have been reported to specifically target components of the apoptotic, necroptotic and pyroptotic signaling cascades in vivo, resulting in compromised immune cell recruitment and impaired mucosal homeostasis. Identifying the contributions of each cell death modality to bacterial control in a physiological model represents a crucial step in furthering our understanding of host-pathogen evolution and may provide insight into the host evasion strategies utilised by other enteric pathogens.
Collapse
|
16
|
Type III secretion system effector subnetworks elicit distinct host immune responses to infection. Curr Opin Microbiol 2021; 64:19-26. [PMID: 34537517 DOI: 10.1016/j.mib.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
Citrobacter rodentium, a natural mouse pathogen which colonises the colon of immuno-competent mice, provides a robust model for interrogating host-pathogen-microbiota interactions in vivo. This model has been key to providing new insights into local host responses to enteric infection, including changes in intestinal epithelial cell immunometabolism and mucosal immunity. C. rodentium injects 31 bacterial effectors into epithelial cells via a type III secretion system (T3SS). Recently, these effectors were shown to be able to form multiple intracellular subnetworks which can withstand significant contractions whilst maintaining virulence. Here we highlight recent advances in understanding gut mucosal responses to infection and effector biology, as well as potential uses for artificial intelligence (AI) in understanding infectious disease and speculate on the role of T3SS effector networks in host adaption.
Collapse
|
17
|
Chatterjee S, Lekmeechai S, Constantinou N, Grzybowska EA, Kozik Z, Choudhary JS, Berger CN, Frankel G, Clements A. The type III secretion system effector EspO of enterohaemorrhagic Escherichia coli inhibits apoptosis through an interaction with HAX-1. Cell Microbiol 2021; 23:e13366. [PMID: 34021690 PMCID: PMC7613270 DOI: 10.1111/cmi.13366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Many enteric pathogens employ a type III secretion system (T3SS) to translocate effector proteins directly into the host cell cytoplasm, where they subvert signalling pathways of the intestinal epithelium. Here, we report that the anti-apoptotic regulator HS1-associated protein X1 (HAX-1) is an interaction partner of the T3SS effectors EspO of enterohaemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium, OspE of Shigella flexneri and Osp1STYM of Salmonella enterica serovar Typhimurium. EspO, OspE and Osp1STYM have previously been reported to interact with the focal adhesions protein integrin linked kinase (ILK). We found that EspO localizes both to the focal adhesions (ILK localisation) and mitochondria (HAX-1 localisation), and that increased expression of HAX-1 leads to enhanced mitochondrial localisation of EspO. Ectopic expression of EspO, OspE and Osp1STYM protects cells from apoptosis induced by staurosporine and tunicamycin. Depleting cells of HAX-1 indicates that the anti-apoptotic activity of EspO is HAX-1 dependent. Both HAX-1 and ILK were further confirmed as EspO1-interacting proteins during infection using T3SS-delivered EspO1. Using cell detachment as a proxy for cell death we confirmed that T3SS-delivered EspO1 could inhibit cell death induced during EPEC infection, to a similar extent as the anti-apoptotic effector NleH, or treatment with the pan caspase inhibitor z-VAD. In contrast, in cells lacking HAX-1, EspO1 was no longer able to protect against cell detachment, while NleH1 and z-VAD maintained their protective activity. Therefore, during both infection and ectopic expression EspO protects cells from cell death by interacting with HAX-1. These results suggest that despite the differences between EHEC, C. rodentium, Shigella and S. typhimurium infections, hijacking HAX-1 anti-apoptotic signalling is a common strategy to maintain the viability of infected cells. TAKE AWAY: EspO homologues are found in EHEC, Shigella, S. typhimurium and some EPEC. EspO homologues interact with HAX-1. EspO protects infected cells from apoptosis. EspO joins a growing list of T3SS effectors that manipulate cell death pathways.
Collapse
Affiliation(s)
- Sharanya Chatterjee
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Sujinna Lekmeechai
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Nicolas Constantinou
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Ewa A. Grzybowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland
| | - Zuzanna Kozik
- Functional Proteomics Group, The Institute for Cancer Research, London, UK
| | - Jyoti S. Choudhary
- Functional Proteomics Group, The Institute for Cancer Research, London, UK
| | - Cedric N. Berger
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Abigail Clements
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| |
Collapse
|
18
|
Identification of a Family of Vibrio Type III Secretion System Effectors That Contain a Conserved Serine/Threonine Kinase Domain. mSphere 2021; 6:e0059921. [PMID: 34346702 PMCID: PMC8386410 DOI: 10.1128/msphere.00599-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus is a marine Gram-negative bacterium that is a leading cause of seafood-borne gastroenteritis. Pandemic strains of V. parahaemolyticus rely on a specialized protein secretion machinery known as the type III secretion system 2 (T3SS2) to cause disease. The T3SS2 mediates the delivery of effector proteins into the cytosol of infected cells, where they subvert multiple cellular pathways. Here, we identify a new T3SS2 effector protein encoded by VPA1328 (VP_RS21530) in V. parahaemolyticus RIMD2210633. Bioinformatic analysis revealed that VPA1328 is part of a larger family of uncharacterized T3SS effector proteins with homology to the VopG effector protein in Vibrio cholerae AM-19226. These VopG-like proteins are found in many but not all T3SS2 gene clusters and are distributed among diverse Vibrio species, including V. parahaemolyticus, V. cholerae, V. mimicus, and V. diabolicus and also in Shewanella baltica. Structure-based prediction analyses uncovered the presence of a conserved C-terminal kinase domain in VopG orthologs, similar to the serine/threonine kinase domain found in the NleH family of T3SS effector proteins. However, in contrast to NleH effector proteins, in tissue culture-based infections, VopG did not impede host cell death or suppress interleukin 8 (IL-8) secretion, suggesting a yet undefined role for VopG during V. parahaemolyticus infection. Collectively, our work reveals that VopG effector proteins, a new family of likely serine/threonine kinases, is widely distributed in the T3SS2 effector armamentarium among marine bacteria. IMPORTANCE Vibrio parahaemolyticus is the leading bacterial cause of seafood-borne gastroenteritis worldwide. The pathogen relies on a type III secretion system to deliver a variety of effector proteins into the cytosol of infected cells to subvert cellular function. In this study, we identified a novel Vibrio parahaemolyticus effector protein that is similar to the VopG effector of Vibrio cholerae. VopG-like effectors were found in diverse Vibrio species and contain a conserved serine/threonine kinase domain that bears similarity to the kinase domain in the enterohemorrhagic Escherichia coli (EHEC) and Shigella NleH effectors that manipulate host cell survival pathways and host immune responses. Together our findings identify a new family of Vibrio effector proteins and highlight the role of horizontal gene transfer events among marine bacteria in shaping T3SS gene clusters.
Collapse
|
19
|
Flowers LJ, Hu S, Shrestha A, Martinot AJ, Leong JM, Osburne MS. Citrobacter rodentium Lysogenized with a Shiga Toxin-Producing Phage: A Murine Model for Shiga Toxin-Producing E. coli Infection. Methods Mol Biol 2021; 2291:381-397. [PMID: 33704765 DOI: 10.1007/978-1-0716-1339-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Shiga toxin-producing E. coli (STEC) is a common foodborne pathogen in developed countries. STEC generates "attaching and effacing" (AE) lesions on colonic epithelium, characterized by effacement of microvilli and the formation of actin "pedestals" beneath intimately attached bacteria. In addition, STEC are lysogenized with a phage that, upon induction, can produce potent Shiga toxins (Stx), potentially leading to both hemorrhagic colitis and hemolytic uremic syndrome. Investigation of the pathogenesis of this disease has been challenging because STEC does not readily colonize conventional mice.Citrobacter rodentium (CR) is a related mouse pathogen that also generates AE lesions. Whereas CR does not produce Stx, a murine model for STEC utilizes CR lysogenized with an E. coli-derived Stx phage, generating CR(Φstx), which both colonizes conventional mice and readily gives rise to systemic disease. We present here key methods for the use of CR(Φstx) infection as a highly predictable murine model for infection and disease by STEC. Importantly, we detail CR(Φstx) inoculation by feeding, determination of pathogen colonization, production of phage and toxin, and assessment of intestinal and renal pathology. These methods provide a framework for studying STEC-mediated systemic disease that may aid in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Laurice J Flowers
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University Graduate School in Biomedical Sciences, Boston, MA, USA.,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding, Guangzhou, China
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Marcia S Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
20
|
Selvaraj C, Vierra M, Dinesh DC, Abhirami R, Singh SK. Structural insights of macromolecules involved in bacteria-induced apoptosis in the pathogenesis of human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:1-38. [PMID: 34090612 DOI: 10.1016/bs.apcsb.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Marisol Vierra
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
21
|
Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi Baghshomali Y, Slater SL, Wagner N, Glegola-Madejska I, Roumeliotis TI, Pupko T, Fernández LÁ, Rodríguez-Patón A, Choudhary JS, Frankel G. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531. [PMID: 33707240 DOI: 10.1126/science.abc9531] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.
Collapse
Affiliation(s)
- David Ruano-Gallego
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Julia Sanchez-Garrido
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Zuzanna Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Elena Núñez-Berrueco
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Massiel Cepeda-Molero
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | | | - Yasaman Naemi Baghshomali
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sabrina L Slater
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Izabela Glegola-Madejska
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Luis Ángel Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Microbial Biotechnology, Madrid, Spain
| | - Alfonso Rodríguez-Patón
- Laboratorio de Inteligencia Artificial, Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, Spain
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
22
|
Ashida H, Suzuki T, Sasakawa C. Shigella infection and host cell death: a double-edged sword for the host and pathogen survival. Curr Opin Microbiol 2020; 59:1-7. [PMID: 32784063 DOI: 10.1016/j.mib.2020.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
In response to bacterial infection, epithelial cells undergo several types of cell death, including apoptosis, necrosis, pyroptosis, and necroptosis, which serve to expel the infected cells and activate the innate and acquired immune responses. Shigella initially invades macrophages and subsequently surrounding enterocytes; the pathogen executes macrophage cell death but prevents epithelial cell death in order to maintain its foothold for replication. To this end, Shigella delivers versatile effector proteins via the type III secretion system (T3SS), allowing it to efficiently colonize the intestinal epithelium. In this article, we review insights into the mechanisms underlying circumvention of the host cell death by Shigella, as an example of bacterial fine-tuning of host cell death pathways.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan; Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan.
| |
Collapse
|
23
|
Riebisch AK, Mühlen S. Attaching and effacing pathogens: the effector ABC of immune subversion. Future Microbiol 2020; 15:945-958. [PMID: 32716209 DOI: 10.2217/fmb-2019-0274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The innate immune response resembles an essential barrier to bacterial infection. Many bacterial pathogens have, therefore, evolved mechanisms to evade from or subvert the host immune response in order to colonize, survive and multiply. The attaching and effacing pathogens enteropathogenic Escherichia coli, enterohaemorrhagic E. coli, Escherichia albertii and Citrobacter rodentium are Gram-negative extracellular gastrointestinal pathogens. They use a type III secretion system to inject effector proteins into the host cell to manipulate a variety of cellular processes. Over the last decade, considerable progress was made in identifying and characterizing the effector proteins of attaching and effacing pathogens that are involved in the inhibition of innate immune signaling pathways, in determining their host cell targets and elucidating the mechanisms they employ. Their functions will be reviewed here.
Collapse
Affiliation(s)
- Anna Katharina Riebisch
- Systems-Oriented Immunology & Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute for Molecular & Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.,Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Sabrina Mühlen
- Institute for Infectiology, University of Münster, 48149 Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, 48149 Münster, Germany
| |
Collapse
|
24
|
Ashida H, Sasakawa C, Suzuki T. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase-8. EMBO J 2020; 39:e104469. [PMID: 32657447 PMCID: PMC7459423 DOI: 10.15252/embj.2020104469] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Upon invasive bacterial infection of colonic epithelium, host cells induce several types of cell death to eliminate pathogens. For instance, necroptosis is a RIPK‐dependent lytic cell death that serves as a backup system to fully eliminate intracellular pathogens when apoptosis is inhibited; this phenomenon has been termed “cell death crosstalk”. To maintain their replicative niche and multiply within cells, some enteric pathogens prevent epithelial cell death by delivering effectors via the type III secretion system. In this study, we found that Shigella hijacks host cell death crosstalk via a dual mechanism: inhibition of apoptosis by the OspC1 effector and inhibition of necroptosis by the OspD3 effector. Upon infection by Shigella, host cells recognize blockade of caspase‐8 apoptosis signaling by OspC1 effector as a key danger signal and trigger necroptosis as a backup form of host defense. To counteract this backup defense, Shigella delivers the OspD3 effector, a protease, to degrade RIPK1 and RIPK3, preventing necroptosis. We believe that blockade of host cell death crosstalk by Shigella is a unique intracellular survival tactic for prolonging the bacterium's replicative niche.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Chihiro Sasakawa
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Nippon Institute for Biological Science, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
25
|
He TT, Zhou Y, Liu YL, Li DY, Nie P, Li AH, Xie HX. Edwardsiella piscicida
type III protein EseJ suppresses apoptosis through down regulating type 1 fimbriae, which stimulate the cleavage of caspase‐8. Cell Microbiol 2020; 22:e13193. [DOI: 10.1111/cmi.13193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/24/2020] [Accepted: 02/10/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Ying Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Duan You Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao China
- School of Marine Science and EngineeringQingdao Agricultural University Qingdao China
| | - Ai Hua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| |
Collapse
|
26
|
Lacey CA, Miao EA. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036459. [PMID: 31501197 DOI: 10.1101/cshperspect.a036459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune sensors can recognize when host cells are irrevocably compromised by pathogens, and in response can trigger programmed cell death (pyroptosis, apoptosis, and necroptosis). Innate sensors can directly bind microbial ligands; for example, NAIP/NLRC4 detects flagellin/rod/needle, whereas caspase-11 detects lipopolysaccharide. Other sensors are guards that monitor normal function of cellular proteins; for instance, pyrin monitors Rho GTPases, whereas caspase-8 and receptor-interacting protein kinase (RIPK)3 guards RIPK1 transcriptional signaling. Some proteins that need to be guarded can be duplicated as decoy domains, as seen in the integrated decoy domains within NLRP1 that watch for microbial attack. Here, we discuss the evolutionary battle between pathogens and host innate immune sensors/guards, illustrated by the Red Queen hypothesis. We discuss in depth four pathogens, and how they either fail in this evolutionary race (Chromobacterium violaceum, Burkholderia thailandensis), or how the evolutionary race generates increasingly complex virulence factors and host innate immune signaling pathways (Yersinia species, and enteropathogenic Escherichia coli [EPEC]).
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
27
|
Godlewski M, Kobylińska A. Bax Inhibitor 1 (BI-1) as a conservative regulator of Programmed Cell Death. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Programmed cell death (PCD) is a physiological process in which infected or unnecessary cells due to their suicidal death capability can be selectively eliminated. Pro- and antiapoptotic proteins play an important role in the induction or inhibition of this process. Presented article shows property of Bax-1 (BI-1) inhibitor which is one of the conservative protein associated with the endoplasmic reticulum (ER) as well as its cytoprotective role in the regulation of cellular processes. It was shown that: 1) BI-1 is a small protein consisting of 237 amino acids (human protein - 36 kDa) and has 6 (in animals) and 7 (in plants) α-helical transmembrane domains, 2) BI-1 is expressed in all organisms and in most tissues, moreover its level depends on the functional condition of cells and it is involved in the development or reaction to biotic and abiotic stresses, 3) BI-1 forms a pH-dependent Ca2+ channel enabling release of these ions from the ER, 4) cytoprotective effects of BI-1 requires a whole, unchanged C-terminus, 5) BI-1 can interact directly with numerous other proteins, BI-1 protein affects numerous cellular processes, including: counteracting ER stress, oxidative stress, loss of cellular Ca2+ homeostasis as well as this protein influences on sphingolipid metabolism, autophagy, actin polymerization, lysosomal activity and cell proliferation. Studies of BI-1 functions will allow understanding the mechanisms of anticancer therapy or increases the knowledge of crop tolerance to environmental stresses.
Collapse
Affiliation(s)
- Mirosław Godlewski
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| | - Agnieszka Kobylińska
- Katedra Ekofizjologii Roślin, Instytut Biologii Eksperymentalnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, Łódź
| |
Collapse
|
28
|
Doycheva D, Kaur H, Tang J, Zhang JH. The characteristics of the ancient cell death suppressor, TMBIM6, and its related signaling pathways after endoplasmic reticulum stress. J Neurosci Res 2019; 98:77-86. [PMID: 31044452 DOI: 10.1002/jnr.24434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
Abstract
Activation of the unfolded protein response in combination with generation of reactive oxygen species, from cytochrome P450 members and NADPH-P450 reductases, are two major consequences of Endoplasmic Reticulum (ER) stress that cause oxidative damage and cell death. Herein, we reviewed the role of Bax Inhibitor-1 (BI-1), an evolutionarily conserved protein encoded by the Transmembrane Bax inhibitor Motif Containing 6 gene, in protection from ER stress. As BI-1 has multimodal properties that can target a wide array of pathophysiological consequences after injury, our main objective was to explore BI-1's protective role in ER stress and its potential signaling pathways.
Collapse
Affiliation(s)
- Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurology, School of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
29
|
Park BC, Reese M, Tagliabracci VS. Thinking outside of the cell: Secreted protein kinases in bacteria, parasites, and mammals. IUBMB Life 2019; 71:749-759. [PMID: 30941842 DOI: 10.1002/iub.2040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023]
Abstract
Previous decades have seen an explosion in our understanding of protein kinase function in human health and disease. Hundreds of unique kinase structures have been solved, allowing us to create generalized rules for catalysis, assign roles of communities within the catalytic core, and develop specific drugs for targeting various pathways. Although our understanding of intracellular kinases has developed at a fast rate, our exploration into extracellular kinases has just begun. In this review, we will cover the secreted protein kinase families found in humans, bacteria, and parasites. © 2019 IUBMB Life, 71(6):749-759, 2019.
Collapse
Affiliation(s)
- Brenden C Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Reese
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
30
|
Pinaud L, Sansonetti PJ, Phalipon A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 2018; 26:266-283. [DOI: 10.1016/j.tim.2018.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
|
31
|
Kralicek SE, Nguyen M, Rhee KJ, Tapia R, Hecht G. EPEC NleH1 is significantly more effective in reversing colitis and reducing mortality than NleH2 via differential effects on host signaling pathways. J Transl Med 2018; 98:477-488. [PMID: 29396422 PMCID: PMC5920738 DOI: 10.1038/s41374-017-0016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a foodborne pathogen that uses a type III secretion system to translocate effector molecules into host intestinal epithelial cells (IECs) subverting several host cell processes and signaling cascades. Interestingly, EPEC infection induces only modest intestinal inflammation in the host. The homologous EPEC effector proteins, NleH1 and NleH2, suppress the nuclear factor-κB (NF-κB) pathway and apoptosis in vitro. Increased apoptosis and activation of NF-κB and MAP kinases (MAPK) contribute to the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to determine if NleH1 and NleH2 also block MAPK pathways in vitro and in vivo, and to compare the effects of these bacterial proteins on a murine model of colitis. Cultured IECs were infected with various strains of EPEC expressing NleH1 and NleH2, or not, and the activation of ERK1/2 and p38 was determined. In addition, the impact of infection with various strains of EPEC on murine DSS colitis was assessed by change in body weight, colon length, histology, and survival. Activation of apoptosis and MAPK signaling were also evaluated. Our data show that NleH1, but not NleH2, suppresses ERK1/2 and p38 activation in vitro. Interestingly, NleH1 affords significantly greater protection against and hastens recovery from dextran sodium sulfate (DSS)-induced colitis compared to NleH2. Strikingly, colitis-associated mortality was abolished by infection with EPEC strains expressing NleH1. Interestingly, in vivo NleH1 suppresses activation of ERK1/2 and p38 and blocks apoptosis independent of the kinase domain that inhibits NF-κB. In contrast, NleH2 suppresses only caspase-3 and p38, but not ERK1/2. We conclude that NleH1 affords greater protection against and improves recovery from DSS colitis compared to NleH2 due to its ability to suppress ERK1/2 in addition to NF-κB, p38, and apoptosis. These findings warrant further investigation of anti-inflammatory bacterial proteins as novel treatments for IBD.
Collapse
Affiliation(s)
- Sarah E. Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Mai Nguyen
- Cortexyme Inc, South San Francisco, CA, USA
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju, Wonju, Gangwon-do, Republic of Korea
| | - Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - Gail Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA. .,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA. .,Edward Hines Jr. VA Hospital, Hines, IL, USA.
| |
Collapse
|
32
|
Shenoy AR, Furniss RCD, Goddard PJ, Clements A. Modulation of Host Cell Processes by T3SS Effectors. Curr Top Microbiol Immunol 2018; 416:73-115. [PMID: 30178263 DOI: 10.1007/82_2018_106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection.
Collapse
Affiliation(s)
- Avinash R Shenoy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Philippa J Goddard
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Abigail Clements
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK.
| |
Collapse
|
33
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|
34
|
A Type III Effector NleF from EHEC Inhibits Epithelial Inflammatory Cell Death by Targeting Caspase-4. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4101745. [PMID: 28593173 PMCID: PMC5448047 DOI: 10.1155/2017/4101745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Enterohemorrhagic E. coli (EHEC) is a highly pathogenic bacterial strain capable of inducing severe gastrointestinal disease. Here, we show that EHEC uses the T3SS effector NleF to counteract the host inflammatory response by dampening caspase-4-mediated inflammatory epithelial cell death and by preventing the production of IL-1β. The other two inflammatory caspases, caspase-1 and caspase-5, are not involved in EHEC ΔnleF-induced inflammatory cell death. We found that NleF not only interrupted the heterodimerization of caspase-4-p19 and caspase-4-p10, but also inhibited the interaction of caspase-1 and caspase-4. The last four amino acids of the NleF carboxy terminus are essential in inhibiting caspase-4-dependent inflammatory cell death.
Collapse
|
35
|
Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017; 277:61-75. [PMID: 28462526 PMCID: PMC5416822 DOI: 10.1111/imr.12534] [Citation(s) in RCA: 1199] [Impact Index Per Article: 149.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicates that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programmed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal, or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1β and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
36
|
Pallett MA, Crepin VF, Serafini N, Habibzay M, Kotik O, Sanchez-Garrido J, Di Santo JP, Shenoy AR, Berger CN, Frankel G. Bacterial virulence factor inhibits caspase-4/11 activation in intestinal epithelial cells. Mucosal Immunol 2017; 10:602-612. [PMID: 27624779 PMCID: PMC5159625 DOI: 10.1038/mi.2016.77] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
The human pathogen enteropathogenic Escherichia coli (EPEC), as well as the mouse pathogen Citrobacter rodentium, colonize the gut mucosa via attaching and effacing lesion formation and cause diarrheal diseases. EPEC and C. rodentium type III secretion system (T3SS) effectors repress innate immune responses and infiltration of immune cells. Inflammatory caspases such as caspase-1 and caspase-4/11 are crucial mediators of host defense and inflammation in the gut via their ability to process cytokines such as interleukin (IL)-1β and IL-18. Here we report that the effector NleF binds the catalytic domain of caspase-4 and inhibits its proteolytic activity. Following infection of intestinal epithelial cells (IECs) EPEC inhibited caspase-4 and IL-18 processing in an NleF-dependent manner. Depletion of caspase-4 in IECs prevented the secretion of mature IL-18 in response to infection with EPECΔnleF. NleF-dependent inhibition of caspase-11 in colons of mice prevented IL-18 secretion and neutrophil influx at early stages of C. rodentium infection. Neither wild-type C. rodentium nor C. rodentiumΔnleF triggered neutrophil infiltration or IL-18 secretion in Cas11 or Casp1/11-deficient mice. Thus, IECs have a key role in modulating early innate immune responses in the gut via a caspase-4/11-IL-18 axis, which is targeted by virulence factors encoded by enteric pathogens.
Collapse
Affiliation(s)
- Mitchell A. Pallett
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Valerie F. Crepin
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris, France,Inserm U668, Paris, France
| | - Maryam Habibzay
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Olga Kotik
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Julia Sanchez-Garrido
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France,Inserm U668, Paris, France
| | - Avinash R. Shenoy
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Cedric N. Berger
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, UK,Corresponding author, Gad Frankel, MRC CMBI, Flowers Building, Imperial College, London, SW7 2AZ,
| |
Collapse
|
37
|
Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci Rep 2017; 7:45126. [PMID: 28345580 PMCID: PMC5366862 DOI: 10.1038/srep45126] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Caspase-1, also known as interleukin-1β (IL-1β)-converting enzyme (ICE), regulates antimicrobial host defense, tissue repair, tumorigenesis, metabolism and membrane biogenesis. On activation within an inflammasome complex, caspase-1 induces pyroptosis and converts pro-IL-1β and pro-IL-18 into their biologically active forms. “ICE−/−” or “Casp1−/−” mice generated using 129 embryonic stem cells carry a 129-associated inactivating passenger mutation on the caspase-11 locus, essentially making them deficient in both caspase-1 and caspase-11. The overlapping and unique functions of caspase-1 and caspase-11 are difficult to unravel without additional genetic tools. Here, we generated caspase-1–deficient mouse (Casp1Null) on the C57BL/6 J background that expressed caspase-11. Casp1Null cells did not release IL-1β and IL-18 in response to NLRC4 activators Salmonella Typhimurium and flagellin, canonical or non-canonical NLRP3 activators LPS and ATP, Escherichia coli, Citrobacter rodentium and transfection of LPS, AIM2 activators Francisella novicida, mouse cytomegalovirus and DNA, and the infectious agents Listeria monocytogenes and Aspergillus fumigatus. We further demonstrated that caspase-1 and caspase-11 differentially contributed to the host defense against A. fumigatus infection and to endotoxemia.
Collapse
|
38
|
Liu Q. TMBIM-mediated Ca 2+ homeostasis and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:850-857. [PMID: 28064000 DOI: 10.1016/j.bbamcr.2016.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Ca2+ is a ubiquitous intracellular messenger that regulates numerous physiological activities in humans, animals, plants, and bacteria. Cytosolic Ca2+ is kept at a low level, but subcellular organelles such as the endoplasmic reticulum (ER) and Golgi apparatus maintain high-concentration Ca2+ stores. Under resting conditions, store Ca2+ homeostasis is dynamically regulated to equilibrate between active Ca2+ uptake and passive Ca2+ leak processes. The evolutionarily conserved Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins mediate Ca2+ homeostasis and cell death. This review focuses on recent advances in functional and structural analysis of TMBIM proteins in regulation of the two related functions. The roles of TMBIM proteins in pathogen infection and cancer are also discussed with prospects for treatment. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
39
|
Model of Host-Pathogen Interaction Dynamics Links In Vivo Optical Imaging and Immune Responses. Infect Immun 2016; 85:IAI.00606-16. [PMID: 27821583 PMCID: PMC5203651 DOI: 10.1128/iai.00606-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/16/2016] [Indexed: 01/13/2023] Open
Abstract
Tracking disease progression in vivo is essential for the development of treatments against bacterial infection. Optical imaging has become a central tool for in vivo tracking of bacterial population development and therapeutic response. For a precise understanding of in vivo imaging results in terms of disease mechanisms derived from detailed postmortem observations, however, a link between the two is needed. Here, we develop a model that provides that link for the investigation of Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli (EPEC). We connect in vivo disease progression of C57BL/6 mice infected with bioluminescent bacteria, imaged using optical tomography and X-ray computed tomography, to postmortem measurements of colonic immune cell infiltration. We use the model to explore changes to both the host immune response and the bacteria and to evaluate the response to antibiotic treatment. The developed model serves as a novel tool for the identification and development of new therapeutic interventions.
Collapse
|
40
|
Pearson JS, Giogha C, Wong Fok Lung T, Hartland EL. The Genetics of EnteropathogenicEscherichia coliVirulence. Annu Rev Genet 2016; 50:493-513. [DOI: 10.1146/annurev-genet-120215-035138] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaclyn S. Pearson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Cristina Giogha
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| |
Collapse
|
41
|
The Type III Secretion System Effector SeoC of Salmonella enterica subsp. salamae and S. enterica subsp. arizonae ADP-Ribosylates Src and Inhibits Opsonophagocytosis. Infect Immun 2016; 84:3618-3628. [PMID: 27736780 PMCID: PMC5116738 DOI: 10.1128/iai.00704-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/02/2016] [Indexed: 01/23/2023] Open
Abstract
Salmonella species utilize type III secretion systems (T3SSs) to translocate effectors into the cytosol of mammalian host cells, subverting cell signaling and facilitating the onset of gastroenteritis. In this study, we compared a draft genome assembly of Salmonella enterica subsp. salamae strain 3588/07 against the genomes of S. enterica subsp. enterica serovar Typhimurium strain LT2 and Salmonella bongori strain 12419. S. enterica subsp. salamae encodes the Salmonella pathogenicity island 1 (SPI-1), SPI-2, and the locus of enterocyte effacement (LEE) T3SSs. Though several key S Typhimurium effector genes are missing (e.g., avrA, sopB, and sseL), S. enterica subsp. salamae invades HeLa cells and contains homologues of S. bongori sboK and sboC, which we named seoC SboC and SeoC are homologues of EspJ from enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), which inhibit Src kinase-dependent phagocytosis by ADP-ribosylation. By screening 73 clinical and environmental Salmonella isolates, we identified EspJ homologues in S. bongori, S. enterica subsp. salamae, and Salmonella enterica subsp. arizonae The β-lactamase TEM-1 reporter system showed that SeoC is translocated by the SPI-1 T3SS. All the Salmonella SeoC/SboC homologues ADP-ribosylate Src E310 in vitro Ectopic expression of SeoC/SboC inhibited phagocytosis of IgG-opsonized beads into Cos-7 cells stably expressing green fluorescent protein (GFP)-FcγRIIa. Concurrently, S. enterica subsp. salamae infection of J774.A1 macrophages inhibited phagocytosis of beads, in a seoC-dependent manner. These results show that S. bongori, S. enterica subsp. salamae, and S. enterica subsp. arizonae share features of the infection strategy of extracellular pathogens EPEC and EHEC and shed light on the complexities of the T3SS effector repertoires of Enterobacteriaceae.
Collapse
|
42
|
Robinson KS, Aw R. The Commonalities in Bacterial Effector Inhibition of Apoptosis. Trends Microbiol 2016; 24:665-680. [PMID: 27117049 DOI: 10.1016/j.tim.2016.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/13/2016] [Accepted: 04/01/2016] [Indexed: 02/09/2023]
Abstract
Antiapoptotic pathways of the host cell play integral roles in bacterial pathogenesis, with inhibition of those pathways resulting in halted disease pathology. Certain pathogens have developed elegant mechanisms to modulate the fate of the host cell, many of which target novel pathways that are poorly understood in the context of the cell biology. Bacterial pathogenesis research not only promotes the understanding of the role of antiapoptotic pathways in bacterial infection, but has a broader context in understanding the epitome of human disease, that is, developing the understanding of tumorigenic or inflammatory pathways. Here we review host antiapoptotic signalling pathways manipulated by translocated bacterial effectors that propagate the disease state, drawing common parallels and showing the novel differences.
Collapse
Affiliation(s)
- Keith S Robinson
- Department of Life Science, Imperial College London, London, UK.
| | - Rochelle Aw
- Department of Life Science, Imperial College London, London, UK
| |
Collapse
|
43
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
44
|
Zhang Z, Wang M, Eisel F, Tchatalbachev S, Chakraborty T, Meinhardt A, Bhushan S. UropathogenicEscherichia coliEpigenetically Manipulate Host Cell Death Pathways. J Infect Dis 2015; 213:1198-207. [DOI: 10.1093/infdis/jiv569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/19/2015] [Indexed: 11/14/2022] Open
|
45
|
Luo J, Hu J, Zhang Y, Hu Q, Li S. Hijacking of death receptor signaling by bacterial pathogen effectors. Apoptosis 2015; 20:216-23. [PMID: 25528554 DOI: 10.1007/s10495-014-1068-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Death receptors such as Tumor necrosis factor receptor 1, FAS and TNF-associated apoptosis-inducing ligand-R1/2 play a major role in counteracting with bacterial pathogen infection through regulation of inflammation and programmed cell death. The highly regulated death receptor signaling is frequently targeted by gram-negative bacterial pathogens such as Salmonella, Shigella, enteropathogenic Escherichia coli and enterohamorrhagic Escherichia coli, which harbor a conserved type III secretion system that delivers a repertoire of effector proteins to manipulate host signal transductions for their own benefit. This review focuses on how bacterial gut pathogens hijack death receptor signaling to inhibit host NF-κB and programmed cell death pathways.
Collapse
Affiliation(s)
- Jie Luo
- Taihe Hospital, Hubei University of Medicine, #32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | | | | | | | | |
Collapse
|
46
|
Sanchez-Villamil J, Navarro-Garcia F. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol 2015; 10:1009-33. [DOI: 10.2217/fmb.15.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| |
Collapse
|
47
|
Asrat S, Davis KM, Isberg RR. Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cell Microbiol 2015; 17:785-795. [PMID: 25850689 DOI: 10.1111/cmi.12445] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Abstract
Bacterial secretion systems play a central role in interfering with host inflammatory responses to promote replication in tissue sites. Many intracellular bacteria utilize secretion systems to promote their uptake and survival within host cells. An intracellular niche can help bacteria avoid killing by phagocytic cells, and may limit host sensing of bacterial components. Secretion systems can also play an important role in limiting host sensing of bacteria by translocating proteins that disrupt host immune signalling pathways. Extracellular bacteria, on the other hand, utilize secretion systems to prevent uptake by host cells and maintain an extracellular niche. Secretion systems, in this case, limit sensing and inflammatory signalling which can occur as bacteria replicate and release bacterial products in the extracellular space. In this review, we will cover the common mechanisms used by intracellular and extracellular bacteria to modulate innate immune and inflammatory signalling pathways, with a focus on translocated proteins of the type III and type IV secretion systems.
Collapse
Affiliation(s)
- Seblewongel Asrat
- Howard Hughes Medical Institute, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Science, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA
| | - Kimberly M Davis
- Howard Hughes Medical Institute, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA
| | - Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02111, USA
| |
Collapse
|
48
|
Grishin AM, Beyrakhova KA, Cygler M. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 2015; 24:604-20. [PMID: 25565677 DOI: 10.1002/pro.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E5
| | | | | |
Collapse
|
49
|
Santos AS, Finlay BB. Bringing down the host: enteropathogenic and enterohaemorrhagic Escherichia coli effector-mediated subversion of host innate immune pathways. Cell Microbiol 2015; 17:318-32. [PMID: 25588886 DOI: 10.1111/cmi.12412] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022]
Abstract
Enteric bacterial pathogens commonly use a type III secretion system (T3SS) to successfully infect intestinal epithelial cells and survive and proliferate in the host. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC; EHEC) colonize the human intestinal mucosa, form characteristic histological lesions on the infected epithelium and require the T3SS for full virulence. T3SS effectors injected into host cells subvert cellular pathways to execute a variety of functions within infected host cells. The EPEC and EHEC effectors that subvert innate immune pathways--specifically those involved in phagocytosis, host cell survival, apoptotic cell death and inflammatory signalling--are all required to cause disease. These processes are reviewed within, with a focus on recent work that has provided insights into the functions and host cell targets of these effectors.
Collapse
Affiliation(s)
- Andrew S Santos
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
50
|
Blasche S, Arens S, Ceol A, Siszler G, Schmidt MA, Häuser R, Schwarz F, Wuchty S, Aloy P, Uetz P, Stradal T, Koegl M. The EHEC-host interactome reveals novel targets for the translocated intimin receptor. Sci Rep 2014; 4:7531. [PMID: 25519916 PMCID: PMC4269881 DOI: 10.1038/srep07531] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) manipulate their human host through at least 39 effector proteins which hijack host processes through direct protein-protein interactions (PPIs). To identify their protein targets in the host cells, we performed yeast two-hybrid screens, allowing us to find 48 high-confidence protein-protein interactions between 15 EHEC effectors and 47 human host proteins. In comparison to other bacteria and viruses we found that EHEC effectors bind more frequently to hub proteins as well as to proteins that participate in a higher number of protein complexes. The data set includes six new interactions that involve the translocated intimin receptor (TIR), namely HPCAL1, HPCAL4, NCALD, ARRB1, PDE6D, and STK16. We compared these TIR interactions in EHEC and enteropathogenic E. coli (EPEC) and found that five interactions were conserved. Notably, the conserved interactions included those of serine/threonine kinase 16 (STK16), hippocalcin-like 1 (HPCAL1) as well as neurocalcin-delta (NCALD). These proteins co-localize with the infection sites of EPEC. Furthermore, our results suggest putative functions of poorly characterized effectors (EspJ, EspY1). In particular, we observed that EspJ is connected to the microtubule system while EspY1 appears to be involved in apoptosis/cell cycle regulation.
Collapse
Affiliation(s)
- Sonja Blasche
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Stefan Arens
- Institute of Molecular Cell Biology, University of Münster, Schlossplatz 5, D-48149 Münster
| | - Arnaud Ceol
- 1] Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain [2] Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139 Milan - Italy
| | - Gabriella Siszler
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster
| | - Roman Häuser
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Frank Schwarz
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Stefan Wuchty
- 1] Dept. of Computer Science, Univ. of Miami, 1365 Memorial Drive, Coral Gables, FL 33146, USA [2] Center for Computational Science, Univ. of Miami, 1365 Memorial Drive, Coral Gables, FL 33146, USA
| | - Patrick Aloy
- 1] Joint IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Theresia Stradal
- 1] Institute of Molecular Cell Biology, University of Münster, Schlossplatz 5, D-48149 Münster [2] Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig
| | - Manfred Koegl
- Genomics and Proteomics Core Facilities, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|