1
|
Yang S, Williams SJ, Courtney M, Burchill L. Warfare under the waves: a review of bacteria-derived algaecidal natural products. Nat Prod Rep 2025; 42:681-719. [PMID: 39749862 DOI: 10.1039/d4np00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health. These blooms may also result in oxygen-deprived environments leading to mass fish deaths that threaten the survival of other aquatic life. In freshwater and estuarine ecosystems, traditional chemical strategies to mitigate algal blooms include the use of herbicides, metal salts, or oxidants. Though effective, these agents are non-selective, toxic to other species, and cause loss of biodiversity. They can persist in ecosystems, contaminating the food web and providing an impetus for cost-effective, targeted algal-control methods that protect ecosystems. In marine ecosystems, harmful algal blooms are even more challenging to treat due to the lack of scalable solutions and the challenge of dispersal of algal control agents in open ocean settings. Natural products derived from algae-bacteria interactions have led to the evolution of diverse bacteria-derived algaecidal natural products, which are highly potent, species specific and have potential for combating harmful algal blooms. They provide valuable starting points for the development of eco-friendly algae control methods. This review provides a comprehensive overview of all bacterial algaecides and their activities, categorized into two major groups: (1) algaecides produced in ecologically significant associations between bacteria and algae, and (2) algaecides with potentially coincidental activity but without an ecological role in specific bacteria-algae interactions. This review contributes to a better understanding of the chemical ecology of parasitic algal-bacterial interactions, "the warfare under the waves", and highlights the potential applications of bacteria-derived algaecides to provide solutions to harmful algal blooms.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Myles Courtney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Vieira AR, Camacho F, Sousa ML, Luelmo S, Santarém N, Cordeiro-da-Silva A, Leão PN. The Cyanobacterial Oxadiazine Nocuolin A Shows Broad-Spectrum Toxicity Against Protozoans and the Nematode C. elegans. MICROBIAL ECOLOGY 2025; 88:9. [PMID: 40035794 PMCID: PMC11880066 DOI: 10.1007/s00248-025-02507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Cyanobacteria, known to be rich sources of valuable natural products (NPs) with relevant biological properties, are a unique subject to study the interplay between chemistry and ecology. Cultivation of cyanobacteria as isolated strains may only reveal a small fraction of their NPs. In contrast, investigating microbial interactions from an ecological perspective is a particularly fruitful approach to unveil both new chemistry and bioactivity. Cyanobacteria and amoebae are known to co-exist in diverse environments, but the interaction between these organisms has been poorly investigated. Defense strategies against grazer organisms may rely on morphological changes including biofilm formation or increased motility; however, secretion of toxic metabolites seems to be more effective on this regard. Among the most structurally unique cyanobacterial secondary metabolites is nocuolin A, an 1,2,3-oxadiazine metabolite isolated from the cyanobacterial strain Nodularia sp. LEGE 06071 that exhibits potent anti-proliferative activity against several human cancer lines, associated with impairment of mitochondrial oxidative phosphorylation. In this work, we show that nocuolin A is toxic against two well-known model amoebae, Acanthamoeba and Dictyostelium, leading to amoebae encystation and decrease in viability. In addition, in lawn grazing assays, we observed that Nodularia sp. LEGE 06071, the producer strain of nocuolin A, was not grazed by amoeba, while a related strain, which does not produce detectable levels of nocuolin A, was. These results support the possible involvement of nocuolin A as a chemical mediator during the interaction between these organisms. Furthermore, we show that this cyanobacterial metabolite also exhibits potent toxicity against other protozoan organisms and a free-living nematode, making it an interesting broad-spectrum scaffold for the development of antiprotozoal or anti-helminthic drugs.
Collapse
Affiliation(s)
- Ana R Vieira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Francisco Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
- Department of Biology and Chemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria L Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Sara Luelmo
- Institute for Research and Innovation in Health (I3s), University of Porto, Porto, Portugal
| | - Nuno Santarém
- Institute for Research and Innovation in Health (I3s), University of Porto, Porto, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Institute for Research and Innovation in Health (I3s), University of Porto, Porto, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
3
|
Vasquez-Moscoso CA, Merlano JAR, Olivera Gálvez A, Volcan Almeida D. Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture. Prep Biochem Biotechnol 2025; 55:26-35. [PMID: 38970798 DOI: 10.1080/10826068.2024.2365357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.
Collapse
Affiliation(s)
- Camila A Vasquez-Moscoso
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Juan Antonio Ramírez Merlano
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | |
Collapse
|
4
|
Cuniolo A, Martin MV, Berón CM. Ferroptotic cyanobacteria as biocontrol agent of the southern house mosquito Culex quinquefasciatus. J Invertebr Pathol 2024; 207:108225. [PMID: 39455051 DOI: 10.1016/j.jip.2024.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Culex quinquefasciatus is a hematophagous mosquito, widely distributed around the world, that plays a crucial role in public and veterinary health. As an efficient vector of etiological agents, it exhibits a marked preference for urban environments and human blood. Despite advances in mosquito-borne disease control, managing mosquito populations remains an economically efficient and safe strategy to reduce the impact of epidemic outbreaks. However, achieving this goal requires ecologically acceptable tools that ensure sustainability and minimize adverse environmental impacts. In the present work, we investigated the effect of a non-toxigenic model cyanobacterium on Cx. quinquefasciatus larvae through regulated cell death. We observed that heat stress treatment of Synechocystis PCC 6803 inducing ferroptosis, results in larval lipid oxidation, leading to their death. This effect can be mitigated by rearing larvae in an environment containing canonical inhibitors of ferroptosis, such as ferrostatin 1, or antioxidants, like glutathione and ascorbic acid. Furthermore, larval cell death induced by ferroptotic cyanobacteria is closely linked to oxidative dysregulation and lipid peroxidation, both hallmarks of ferroptosis. Moreover, while ferroptotic Synechocystis significantly affects larval development, it does not influence oviposition site selection by gravid females.
Collapse
Affiliation(s)
- Antonella Cuniolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| |
Collapse
|
5
|
Zhang Y, Liu K, Lv J, Peng X, Tang Y, Zhao L, Cheng Y, Liu Q. Effects of Nitrogen and Phosphorus in Sediment on the Occurrence of Cladophora sp. (Cladophoraceae) in Aquaculture Ponds. BIOLOGY 2024; 13:739. [PMID: 39336166 PMCID: PMC11428272 DOI: 10.3390/biology13090739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
To explore the impact of sedimentary nitrogen and phosphorus on Cladophora occurrence, we conducted a microecosystem experiment simulating different nitrogen and phosphorus content as well as nitrogen-to-phosphorus ratios in the sediment. Subsequently, to further explore the specific mechanism of influence that epiphytic algae have on Cladophora, we designed various microsystem culture experiments. These results revealed that an N/P ratio of 40:1 was relatively unfavorable for Cladophora growth. Additionally, there was an extremely significant negative correlation between the benthic cyanobacteria coverage on the sediment surface and the wet weight of Cladophora (p < 0.01), indicating that benthic cyanobacteria could inhibit the growth of Cladophora. Total nitrogen levels in the water column showed a significant positive correlation with phytoplankton biomass (p < 0.05), while benthic cyanobacteria coverage exhibited an extremely significant positive correlation with phytoplankton biomass through phosphorus absorption and nitrogen release (p < 0.01). Metabolite analysis of benthic cyanobacteria identified annotations for 313 metabolites; among them cis,cis-muconic acid (32.48‱), erucamide (9.52‱), phosphoric acid (6.97‱), fenpropidin (6.53‱), and propionic acid (5.16‱) accounted for proportions exceeding 5‱. However, none of these metabolites have been recognized as allelochemicals or toxins at present. This study provides novel insights into controlling Cladophora occurrence by considering sediment nutrients, including nitrogen and phosphorus, along with allelochemicals.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
| | - Kaifang Liu
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Jun Lv
- Henan Academy of Fishery Sciences, Zhengzhou 450044, China
| | - Xinliang Peng
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yongtao Tang
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Liangjie Zhao
- College of Fisheries, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrion of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Qigen Liu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Luz R, Cordeiro R, Gonçalves V, Vasconcelos V, Urbatzka R. Screening of Lipid-Reducing Activity and Cytotoxicity of the Exometabolome from Cyanobacteria. Mar Drugs 2024; 22:412. [PMID: 39330293 PMCID: PMC11433081 DOI: 10.3390/md22090412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Cyanobacteria are rich producers of secondary metabolites, excreting some of these to the culture media. However, the exometabolome of cyanobacteria has been poorly studied, and few studies have dwelled on its characterization and bioactivity assessment. In this work, exometabolomes of 56 cyanobacterial strains were characterized by HR-ESI-LC-MS/MS. Cytotoxicity was assessed on two carcinoma cell lines, HepG2 and HCT116, while the reduction in lipids was tested in zebrafish larvae and in a steatosis model with fatty acid-overloaded human liver cells. The exometabolome analysis using GNPS revealed many complex clusters of unique compounds in several strains, with no identifications in public databases. Three strains reduced viability in HCT116 cells, namely Tolypotrichaceae BACA0428 (30.45%), Aphanizomenonaceae BACA0025 (40.84%), and Microchaetaceae BACA0110 (46.61%). Lipid reduction in zebrafish larvae was only observed by exposure to Dulcicalothrix sp. BACA0344 (60%). The feature-based molecular network shows that this bioactivity was highly correlated with two flavanones, a compound class described in the literature to have lipid reduction activity. The exometabolome characterization of cyanobacteria strains revealed a high chemodiversity, which supports it as a source for novel bioactive compounds, despite most of the time being overlooked.
Collapse
Affiliation(s)
- Rúben Luz
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.C.); (V.G.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair—Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Rita Cordeiro
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.C.); (V.G.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair—Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vítor Gonçalves
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal; (R.C.); (V.G.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning; UNESCO Chair—Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9500-321 Ponta Delgada, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (V.V.); (R.U.)
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (V.V.); (R.U.)
| |
Collapse
|
7
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Ubero-Pascal N, Aboal M. Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity. Toxins (Basel) 2024; 16:190. [PMID: 38668615 PMCID: PMC11054157 DOI: 10.3390/toxins16040190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Cyanobacteria are harmful algae that are monitored worldwide to prevent the effects of the toxins that they can produce. Most research efforts have focused on direct or indirect effects on human populations, with a view to gain easy accurate detection and quantification methods, mainly in planktic communities, but with increasing interest shown in benthos. However, cyanobacteria have played a fundamental role from the very beginning in both the development of our planet's biodiversity and the construction of new habitats. These organisms have colonized almost every possible planktic or benthic environment on earth, including the most extreme ones, and display a vast number of adaptations. All this explains why they are the most important or the only phototrophs in some habitats. The negative effects of cyanotoxins on macroinvertebrates have been demonstrated, but usually under conditions that are far from natural, and on forms of exposure, toxin concentration, or composition. The cohabitation of cyanobacteria with most invertebrate groups is long-standing and has probably contributed to the development of detoxification means, which would explain the survival of some species inside cyanobacteria colonies. This review focuses on benthic cyanobacteria, their capacity to produce several types of toxins, and their relationships with benthic macroinvertebrates beyond toxicity.
Collapse
Affiliation(s)
- Nicolás Ubero-Pascal
- Department of Zoology and Physical Anthropology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain;
| | - Marina Aboal
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
9
|
Matos ÂP, Saldanha-Corrêa FMP, Gomes RDS, Hurtado GR. Exploring microalgal and cyanobacterial metabolites with antiprotozoal activity against Leishmania and Trypanosoma parasites. Acta Trop 2024; 251:107116. [PMID: 38159713 DOI: 10.1016/j.actatropica.2023.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Neglected tropical diseases (NTD) like Leishmaniasis and trypanosomiasis affect millions of people annually, while currently used antiprotozoal drugs have serious side effects. Drug research based on natural products has shown that microalgae and cyanobacteria are a promising platform of biochemically active compounds with antiprotozoal activity. These unicellular photosynthetic organisms are rich in polyunsaturated fatty acids, pigments including phycocyanin, chlorophylls and carotenoids, polyphenols, bioactive peptides, terpenes, alkaloids, which have proven antioxidant, antimicrobial, antiviral, antiplasmodial and antiprotozoal properties. This review provides up-to-date information regarding ongoing studies on substances synthesized by microalgae and cyanobacteria with notable activity against Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei, the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis, respectively. Extracts of several freshwater or marine microalgae have been tested on different strains of Leishmania and Trypanosoma parasites. For instance, ethanolic extract of Chlamydomonas reinhardtii and Tetraselmis suecica have biological activity against T. cruzi, due to their high content of carotenoids, chlorophylls, phenolic compounds and flavonoids that are associated with trypanocidal activity. Halophilic Dunaliella salina showed moderate antileishmanial activity that may be attributed to the high β-carotene content in this microalga. Peptides such as almiramides, dragonamides, and herbamide that are biosynthesized by marine cyanobacteria Lyngbya majuscula were found to have increased activity in micromolar scale IC50 against L. donovani, T. Cruzi, and T. brucei parasites. The cyanobacterial peptides symplocamide and venturamide isolated from Symploca and Oscillatoria species, respectively, and the alkaloid nostocarbonile isolated from Nostoc have shown promising antiprotozoal properties and are being explored for pharmaceutical and medicinal purposes. The discovery of new molecules from microalgae and cyanobacteria with therapeutic potential against Leishmaniasis and trypanosomiasis may address an urgent medical need: effective and safe treatments of NTDs.
Collapse
Affiliation(s)
- Ângelo Paggi Matos
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rodovia Presidente Dutra Km 138, Eugênio de Melo, São José dos Campos 12247-004, Brazil.
| | | | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Gabriela Ramos Hurtado
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rodovia Presidente Dutra Km 138, Eugênio de Melo, São José dos Campos 12247-004, Brazil; Institute of Science and Technology, São Paulo State University (UNESP), Rodovia Presidente Dutra Km 138, Eugênio de Melo, São José dos Campos 12247-004, Brazil.
| |
Collapse
|
10
|
Vizon C, Urbanowiez A, Raviglione D, Bonnard I, Nugues MM. Benthic cyanobacterial metabolites interact to reduce coral larval survival and settlement. HARMFUL ALGAE 2024; 132:102582. [PMID: 38331546 DOI: 10.1016/j.hal.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Benthic cyanobacterial mats (BCMs) are becoming increasingly abundant on coral reefs worldwide. High growth rates and prolific toxin production give them the potential to cause widespread coral recruitment failure through allelopathic effects, but few studies have made the link between their toxicity for coral larvae and in situ toxin concentrations. Here we investigated the allelopathic effects of the benthic cyanobacterium Anabaena sp.1 on larvae of the coral Pocillopora acuta. This cyanobacterium produces several non-ribosomal cyclic lipopeptides of the laxaphycin family with cytotoxic properties. Therefore, we measured the concentration of laxaphycins A and B in Anabaena mats and in the water column and tested their effects on coral larvae. We found that Anabaena crude extract reduces both larval survivorship and settlement and that laxaphycin B reduces settlement. When larvae were exposed to both laxaphycins, there was a reduction in both larval survival and settlement. In the natural reef environment, laxaphycin A and B concentrations increased with increasing proximity to Anabaena mats, with concentrations being consistently above LC50 and EC50 thresholds within a 1 cm distance of the mats. This study demonstrates that laxaphycins reduce the survival and inhibit the settlement of coral larvae at concentrations found near Anabaena mats in situ. It further shows a combined effect between two cyanobacterial metabolites. As BCMs become more common, more of their secondary metabolites might be released in the water column. Their occurrence will lead to a reduction in coral recruitment rates, contributing to the continuing decline of coral reefs and shift in community structure.
Collapse
Affiliation(s)
- Camille Vizon
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 avenue Paul Alduy, 66860 Perpignan, France.
| | - Axel Urbanowiez
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 avenue Paul Alduy, 66860 Perpignan, France
| | - Delphine Raviglione
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 avenue Paul Alduy, 66860 Perpignan, France; Plateau technique MSXM, Plateforme Bio2mar, Université de Perpignan via Domitia, Perpignan, Cedex 9, France
| | - Isabelle Bonnard
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 avenue Paul Alduy, 66860 Perpignan, France; Plateau technique MSXM, Plateforme Bio2mar, Université de Perpignan via Domitia, Perpignan, Cedex 9, France; Laboratoire d'Excellence Corail, 66860 Perpignan, France
| | - Maggy M Nugues
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, 52 avenue Paul Alduy, 66860 Perpignan, France; Laboratoire d'Excellence Corail, 66860 Perpignan, France
| |
Collapse
|
11
|
Dai Q, Shan J, Deng X, Yang H, Chen C, Zhao Y. The characteristics of H6 against Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7702-7711. [PMID: 38170350 DOI: 10.1007/s11356-023-31616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Algal bloom caused by Microcystis aeruginosa has always been the focus of attention; microbial algal control has the advantages of significant effect, low investment cost, and environmental friendliness; the use of microbial technology to inhibit the bloom has a broad prospect for development. In this study, a strain of Enterobacterium algicidal bacteria screened from a river was used to study the algicidal characteristics against Microcystis aeruginosa using SEM, 3-D EEM and zeta potential. The results showed that the optimal dosage (v/v) of the strain was 5% and the removal rate of algal cells was 70% after 7 days. When the algal density was OD680nm = 0.3, the removal rate of algal cells reached 83% after 7 days. In the pH range of 5 ~ 11, the removal rate of algal cells was 70 ~ 80% after 7 days. Algicidal bacteria H6 is mainly indirect algae lysis and is supplemented by direct algae lysis. Algicidal bacteria H6 removes algicidal substances by secreting high temperature resistant algicidal substances and algicidal products are humic acids. Algicidal bacterium H6 was a strain of Enterobacterium with good algicidal effect in a wide pH range, which enriched the bacterial resources in the control of cyanobacteria bloom in water. The high temperature resistance of the algae-soluble substance secreted by the algae-soluble substance provided convenience for the subsequent preparation and application of bacterial powder.
Collapse
Affiliation(s)
- Qunwei Dai
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jing Shan
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xinshuang Deng
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huixian Yang
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chuntan Chen
- School of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yulian Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
12
|
Cock IE, Cheesman MJ. A Review of the Antimicrobial Properties of Cyanobacterial Natural Products. Molecules 2023; 28:7127. [PMID: 37894609 PMCID: PMC10608859 DOI: 10.3390/molecules28207127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The development of multiple-drug-resistant pathogens has prompted medical research toward the development of new and effective antimicrobial therapies. Much research into novel antibiotics has focused on bacterial and fungal compounds, and on chemical modification of existing compounds to increase their efficacy or reactivate their antimicrobial properties. In contrast, cyanobacteria have been relatively overlooked for antibiotic discovery, and much more work is required. This may be because some cyanobacterial species produce environmental toxins, leading to concerns about the safety of cyanobacterial compounds in therapy. Despite this, several cyanobacterial-derived compounds have been identified with noteworthy inhibitory activity against bacterial, fungal and protozoal growth, as well as viral replication. Additionally, many of these compounds have relatively low toxicity and are therefore relevant targets for drug development. Of particular note, several linear and heterocyclic peptides and depsipeptides with potent activity and good safety indexes have been identified and are undergoing development as antimicrobial chemotherapies. However, substantial further studies are required to identify and screen the myriad other cyanobacterial-derived compounds to evaluate their therapeutic potential. This study reviews the known phytochemistry of cyanobacteria, and where relevant, the effects of those compounds against bacterial, fungal, protozoal and viral pathogens, with the aim of highlighting gaps in the literature and focusing future studies in this field.
Collapse
Affiliation(s)
- Ian E. Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD 4111, Australia
| | - Matthew J. Cheesman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
13
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
14
|
Büttner H, Pidot SJ, Scherlach K, Hertweck C. Endofungal bacteria boost anthelminthic host protection with the biosurfactant symbiosin. Chem Sci 2022; 14:103-112. [PMID: 36605741 PMCID: PMC9769094 DOI: 10.1039/d2sc04167g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Effective protection of soil fungi from predators is crucial for their survival in the niche. Thus, fungi have developed efficient defence strategies. We discovered that soil beneficial Mortierella fungi employ a potent cytotoxin (necroxime) against fungivorous nematodes. Interestingly, this anthelminthic agent is produced by bacterial endosymbionts (Candidatus Mycoavidus necroximicus) residing within the fungus. Analysis of the symbiont's genome indicated a rich biosynthetic potential, yet nothing has been known about additional metabolites and their potential synergistic functions. Here we report that two distinct Mortierella endosymbionts produce a novel cyclic lipodepsipeptide (symbiosin), that is clearly of bacterial origin, but has striking similarities to various fungal specialized metabolites. The structure and absolute configuration of symbiosin were fully elucidated. By comparative genomics of symbiosin-positive strains and in silico analyses of the deduced non-ribosomal synthetases, we assigned the (sym) biosynthetic gene cluster and proposed an assembly line model. Bioassays revealed that symbiosin is not only an antibiotic, in particular against mycobacteria, but also exhibits marked synergistic effects with necroxime in anti-nematode tests. By functional analyses and substitution experiments we found that symbiosin is a potent biosurfactant and that this particular property confers a boost in the anthelmintic action, similar to formulations of therapeutics in human medicine. Our findings illustrate that "combination therapies" against parasites already exist in ecological contexts, which may inspire the development of biocontrol agents and therapeutics.
Collapse
Affiliation(s)
- Hannah Büttner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute792 Elizabeth StreetMelbourne3000Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI)Beutenbergstrasse 11a07745 JenaGermany,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena07743 JenaGermany
| |
Collapse
|
15
|
Hydrodynamic conditions affect the proteomic profile of marine biofilms formed by filamentous cyanobacterium. NPJ Biofilms Microbiomes 2022; 8:80. [PMID: 36253388 PMCID: PMC9576798 DOI: 10.1038/s41522-022-00340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Proteomic studies on cyanobacterial biofilms can be an effective approach to unravel metabolic pathways involved in biofilm formation and, consequently, obtain more efficient biofouling control strategies. Biofilm development by the filamentous cyanobacterium Toxifilum sp. LEGE 06021 was evaluated on different surfaces, glass and perspex, and at two significant shear rates for marine environments (4 s-1 and 40 s-1). Higher biofilm development was observed at 4 s-1. Overall, about 1877 proteins were identified, and differences in proteome were more noticeable between hydrodynamic conditions than those found between surfaces. Twenty Differentially Expressed Proteins (DEPs) were found between 4 s-1 vs. 40 s-1. On glass, some of these DEPs include phage tail proteins, a carotenoid protein, cyanophynase glutathione-dependent formaldehyde dehydrogenase, and the MoaD/ThiS family protein, while on perspex, DEPs include transketolase, dihydroxy-acid dehydratase, iron ABC transporter substrate-binding protein and protein NusG. This study contributes to developing a standardized protocol for proteomic analysis of filamentous cyanobacterial biofilms. This kind of proteomic analysis can also be useful for different research fields, given the broad spectrum of promising secondary metabolites and added-value compounds produced by cyanobacteria, as well as for the development of new antibiofilm strategies.
Collapse
|
16
|
Qixin L, Xuan F, Zhiya S, Wenxin S, Shuo W, Ji L. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing. BIORESOURCE TECHNOLOGY 2022; 354:127161. [PMID: 35429596 DOI: 10.1016/j.biortech.2022.127161] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
In order to further obtain sustainable wastewater treatment technology, in-depth analysis based on algal-bacterial symbiosis, quorum sensing signal molecules and algal-bacterial relationship will lay the foundation for the synergistic algal-bacterial wastewater treatment process. The methods of enhancing algae and bacteria wastewater treatment technology were systematically explored, including promoting symbiosis, reducing algicidal behavior, eliminating the interference of quorum sensing inhibitor, and developing algae and bacteria granular sludge. These findings can provide guidance for sustainable economic and environmental development, and facilitate carbon emissions reduction by using algae and bacteria synergistic wastewater treatment technology in further attempts. The future work should be carried out in the following four aspects: (1) Screening of dominant microalgae and bacteria; (2) Coordination of stable (emerging) contaminants removal; (3) Utilization of algae to produce fertilizers and feed (additives), and (4) Constructing recombinant algae and bacteria for reducing carbon emissions and obtaining high value-added products.
Collapse
Affiliation(s)
- Liu Qixin
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Feng Xuan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Sheng Zhiya
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 2W2, Canada
| | - Shi Wenxin
- College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Wang Shuo
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| | - Li Ji
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| |
Collapse
|
17
|
Wurlitzer JM, Stanišić A, Ziethe S, Jordan PM, Günther K, Werz O, Kries H, Gressler M. Macrophage-targeting oligopeptides from Mortierella alpina. Chem Sci 2022; 13:9091-9101. [PMID: 36091214 PMCID: PMC9365243 DOI: 10.1039/d2sc00860b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/15/2022] [Indexed: 12/27/2022] Open
Abstract
The realm of natural products of early diverging fungi such as Mortierella species is largely unexplored. Herein, the nonribosomal peptide synthetase (NRPS) MalA catalysing the biosynthesis of the surface-active biosurfactants, malpinins, has been identified and biochemically characterised. The investigation of the substrate specificity of respective adenylation (A) domains indicated a substrate-tolerant enzyme with an unusual, inactive C-terminal NRPS module. Specificity-based precursor-directed biosynthesis yielded 20 new congeners produced by a single enzyme. Moreover, MalA incorporates artificial, click-functionalised amino acids which allowed postbiosynthetic coupling to a fluorophore. The fluorescent malpinin conjugate penetrates mammalian cell membranes via an phagocytosis-mediated mechanism, suggesting Mortierella oligopeptides as carrier peptides for directed cell targeting. The current study demonstrates substrate-specificity testing as a powerful tool to identify flexible NRPS modules and highlights basal fungi as reservoir for chemically tractable compounds in pharmaceutical applications. Specificity profiling of a nonribosomal peptide synthetase of an early diverging fungus revealed high substrate flexibility. Feeding studies with click-functionalised amino acids enabled the production of fluorescent peptides targeting macrophages.![]()
Collapse
Affiliation(s)
- Jacob M. Wurlitzer
- Department Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology (Hans-Knöll-Institute), Friedrich-Schiller-University, Winzerlaer Strasse 2, Jena 07745, Germany
| | - Aleksa Stanišić
- Junior Group Biosynthetic Design of Natural Products at the Leibniz Institute for Natural Product Research and Infection Biology (Hans-Knöll-Institute), Beutenbergstrasse 11a, Jena 07745, Germany
| | - Sebastian Ziethe
- Department Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology (Hans-Knöll-Institute), Friedrich-Schiller-University, Winzerlaer Strasse 2, Jena 07745, Germany
| | - Paul M. Jordan
- Department Pharmaceutical/Medicinal Chemistry at the Friedrich-Schiller-University, Philosophenweg 14, Jena 07743, Germany
| | - Kerstin Günther
- Department Pharmaceutical/Medicinal Chemistry at the Friedrich-Schiller-University, Philosophenweg 14, Jena 07743, Germany
| | - Oliver Werz
- Department Pharmaceutical/Medicinal Chemistry at the Friedrich-Schiller-University, Philosophenweg 14, Jena 07743, Germany
| | - Hajo Kries
- Junior Group Biosynthetic Design of Natural Products at the Leibniz Institute for Natural Product Research and Infection Biology (Hans-Knöll-Institute), Beutenbergstrasse 11a, Jena 07745, Germany
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Leibniz Institute for Natural Product Research and Infection Biology (Hans-Knöll-Institute), Friedrich-Schiller-University, Winzerlaer Strasse 2, Jena 07745, Germany
| |
Collapse
|
18
|
Molina-Grima E, García-Camacho F, Acién-Fernández FG, Sánchez-Mirón A, Plouviez M, Shene C, Chisti Y. Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnol Adv 2021; 55:107884. [PMID: 34896169 DOI: 10.1016/j.biotechadv.2021.107884] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/09/2023]
Abstract
Production of phytoplankton (microalgae and cyanobacteria) in commercial raceway ponds and other systems is adversely impacted by phytoplankton pathogens, including bacteria, fungi and viruses. In addition, cultures are susceptible to productivity loss, or crash, through grazing by contaminating zooplankton such as protozoa, rotifers and copepods. Productivity loss and product contamination are also caused by otherwise innocuous invading phytoplankton that consume resources in competition with the species being cultured. This review is focused on phytoplankton competitors, pathogens and grazers of significance in commercial culture of microalgae and cyanobacteria. Detection and identification of these biological contaminants are discussed. Operational protocols for minimizing contamination, and methods of managing it, are discussed.
Collapse
Affiliation(s)
- Emilio Molina-Grima
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain
| | | | | | | | - Maxence Plouviez
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Carolina Shene
- Center for Biotechnology and Bioengineering (CeBiB), Center of Food Biotechnology and Bioseparations, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Francisco Salazar 01145, Temuco 4780000, Chile
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
19
|
Ferreira L, Morais J, Preto M, Silva R, Urbatzka R, Vasconcelos V, Reis M. Uncovering the Bioactive Potential of a Cyanobacterial Natural Products Library Aided by Untargeted Metabolomics. Mar Drugs 2021; 19:633. [PMID: 34822504 PMCID: PMC8624515 DOI: 10.3390/md19110633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
The Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) holds a vast number of cyanobacteria whose chemical richness is still largely unknown. To expedite its bioactivity screening we developed a natural products library. Sixty strains and four environmental samples were chromatographed, using a semiautomatic HPLC system, yielding 512 fractions that were tested for their cytotoxic activity against 2D and 3D models of human colon carcinoma (HCT 116), and non-cancerous cell line hCMEC/D3. Six fractions showed high cytotoxicity against 2D and 3D cell models (group A), and six other fractions were selected by their effects on 3D cells (group B). The metabolome of each group was organized and characterized using the MolNetEnhancer workflow, and its processing with MetaboAnalyst allowed discrimination of the mass features with the highest fold change, and thus the ones that might be bioactive. Of those, mass features without precedented identification were mostly found in group A, indicating seven possible novel bioactive molecules, alongside in silico putative annotation of five cytotoxic compounds. Manual dereplication of group B tentatively identified nine pheophytin and pheophorbide derivatives. Our approach enabled the selection of 7 out of 60 cyanobacterial strains for anticancer drug discovery, providing new data concerning the chemical composition of these cyanobacteria.
Collapse
Affiliation(s)
- Leonor Ferreira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (L.F.); (J.M.); (M.P.); (R.S.); (R.U.); (V.V.)
| | - João Morais
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (L.F.); (J.M.); (M.P.); (R.S.); (R.U.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Marco Preto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (L.F.); (J.M.); (M.P.); (R.S.); (R.U.); (V.V.)
| | - Raquel Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (L.F.); (J.M.); (M.P.); (R.S.); (R.U.); (V.V.)
| | - Ralph Urbatzka
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (L.F.); (J.M.); (M.P.); (R.S.); (R.U.); (V.V.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (L.F.); (J.M.); (M.P.); (R.S.); (R.U.); (V.V.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Mariana Reis
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (L.F.); (J.M.); (M.P.); (R.S.); (R.U.); (V.V.)
| |
Collapse
|
20
|
Luo Y, Yang Y, Hou W, Fu J. Novel Algicides against Bloom-Forming Cyanobacteria from Allelochemicals: Design, Synthesis, Bioassay, and 3D-QSAR Study. BIOLOGY 2021; 10:biology10111145. [PMID: 34827137 PMCID: PMC8614697 DOI: 10.3390/biology10111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Due to the frequent outbreaks of cyanobacteria bloom worldwide, research on novel algicides has attracted more and more attention. At present, allelochemicals have been reported as promising natural algicides. However, current studies mainly focus on the parent compounds, and the structural modification of original allelochemicals has been rarely involved. In this study, phenolic acid derivatives were innovatively synthesized as potential algicides, and lead compounds with excellent activity were found. For instance, upon the algicidal activity on Aphanizomenon flos-aquae, the EC50 of the best active compound 18 reached 0.63 µM (0.17 mg/L), while the EC50 values of previously reported allelochemicals have been basically at the mg/L level. The result indicates that the algicides reported in this study are more efficient at inhibiting cyanobacteria with lower effective concentrations than most previously reported compounds. Moreover, 3D-QSAR models were constructed and provided a theoretical guidance for further structure optimization of compounds to achieve better algicidal activity. Abstract Cyanobacteria bloom caused by water eutrophication has threatened human health and become a global environmental problem. To develop green algicides with strong specificity and high efficiency, three series of ester and amide derivatives from parent allelochemicals of caffeic acid (CA), cinnamic acid (CIA), and 3-hydroxyl-2-naphthoic acid (HNA) were designed and synthesized. Their inhibitory effects on the growth of five harmful cyanobacterial species, Microcystis aeruginosa (M. aeruginosa), Microcystis wesenbergii (M. wesenbergii), Microcystis flos-aquae (M. flos-aquae), Aphanizomenon flos-aquae (Ap. flos-aquae), and Anabaena flos-aquae (An. flos-aquae), were evaluated. The results revealed that CIA esters synthesized by cinnamic acid and fatty alcohols showed the best inhibition effect, with EC50 values ranging from 0.63 to >100 µM. Moreover, some CIA esters exhibited a good selectivity in inhibiting cyanobacteria. For example, the inhibitory activity of naphthalen-2-yl cinnamate was much stronger on Ap. flos-aquae (EC50 = 0.63 µM) than other species (EC50 > 10 µM). Three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis was performed and the results showed that the steric hindrance of the compounds influenced the algicidal activity. Further mechanism study found that the inhibition of CIA esters on the growth of M. aeruginosa might be related to the accumulation of malondialdehyde (MDA).
Collapse
Affiliation(s)
- Yin Luo
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yushun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China;
| | - Wenguang Hou
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Correspondence: (W.H.); (J.F.); Tel.: +86-27-8779-2101 (J.F.)
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (W.H.); (J.F.); Tel.: +86-27-8779-2101 (J.F.)
| |
Collapse
|
21
|
Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria. Nat Microbiol 2021; 6:1118-1128. [PMID: 34446927 DOI: 10.1038/s41564-021-00952-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Environmental bacteria, such as Streptomyces spp., produce specialized metabolites that are potent antibiotics and therapeutics. Selected specialized antimicrobials are co-produced and function together synergistically. Co-produced antimicrobials comprise multiple chemical classes and are produced by a wide variety of bacteria in different environmental niches, suggesting that their combined functions are ecologically important. Here, we highlight the exquisite mechanisms that underlie the simultaneous production and functional synergy of 16 sets of co-produced antimicrobials. To date, antibiotic and antifungal discovery has focused mainly on single molecules, but we propose that methods to target co-produced antimicrobials could widen the scope and applications of discovery programs.
Collapse
|
22
|
Dhakal D, Chen M, Luesch H, Ding Y. Heterologous production of cyanobacterial compounds. J Ind Microbiol Biotechnol 2021; 48:6119914. [PMID: 33928376 PMCID: PMC8210676 DOI: 10.1093/jimb/kuab003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
Cyanobacteria produce a plethora of compounds with unique chemical structures and diverse biological activities. Importantly, the increasing availability of cyanobacterial genome sequences and the rapid development of bioinformatics tools have unraveled the tremendous potential of cyanobacteria in producing new natural products. However, the discovery of these compounds based on cyanobacterial genomes has progressed slowly as the majority of their corresponding biosynthetic gene clusters (BGCs) are silent. In addition, cyanobacterial strains are often slow-growing, difficult for genetic engineering, or cannot be cultivated yet, limiting the use of host genetic engineering approaches for discovery. On the other hand, genetically tractable hosts such as Escherichia coli, Actinobacteria, and yeast have been developed for the heterologous expression of cyanobacterial BGCs. More recently, there have been increased interests in developing model cyanobacterial strains as heterologous production platforms. Herein, we present recent advances in the heterologous production of cyanobacterial compounds in both cyanobacterial and noncyanobacterial hosts. Emerging strategies for BGC assembly, host engineering, and optimization of BGC expression are included for fostering the broader applications of synthetic biology tools in the discovery of new cyanobacterial natural products.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 31610, USA
| |
Collapse
|
23
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|
24
|
Śliwińska-Wilczewska S, Wiśniewska K, Konarzewska Z, Cieszyńska A, Barreiro Felpeto A, Lewandowska AU, Latała A. The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145681. [PMID: 33940759 DOI: 10.1016/j.scitotenv.2021.145681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Allelopathy is widespread in marine, brackish, and freshwater habitats. Literature data indicate that allelopathy could offer a competitive advantage for some phytoplankton species by reducing the growth of competitors. It is also believed that allelopathy may affect species succession. Thus, allelopathy may play a role in the development of blooms. Over the past few decades, the world's coastal waters have experienced increases in the numbers of cyanobacterial and microalgal blooming events. Understanding how allelopathy is implicated with other biological and environmental factors as a bloom-development mechanism is an important topic for future research. This review focuses on a taxonomic overview of allelopathic cyanobacteria and microalgae, the biological and environmental factors that affect allelochemical production, their role in ecological dynamics, and their physiological modes of action, as well as potential industrial applications of allelopathic compounds.
Collapse
Affiliation(s)
- Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Zofia Konarzewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Cieszyńska
- Institute of Oceanology Polish Academy of Sciences, Department of Marine Physics, Marine Biophysics Laboratory, Sopot, Poland
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anita U Lewandowska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adam Latała
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
25
|
Chaïb S, Pistevos JC, Bertrand C, Bonnard I. Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Liu F, Giometto A, Wu M. Microfluidic and mathematical modeling of aquatic microbial communities. Anal Bioanal Chem 2021; 413:2331-2344. [PMID: 33244684 PMCID: PMC7990691 DOI: 10.1007/s00216-020-03085-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/27/2023]
Abstract
Aquatic microbial communities contribute fundamentally to biogeochemical transformations in natural ecosystems, and disruption of these communities can lead to ecological disasters such as harmful algal blooms. Microbial communities are highly dynamic, and their composition and function are tightly controlled by the biophysical (e.g., light, fluid flow, and temperature) and biochemical (e.g., chemical gradients and cell concentration) parameters of the surrounding environment. Due to the large number of environmental factors involved, a systematic understanding of the microbial community-environment interactions is lacking. In this article, we show that microfluidic platforms present a unique opportunity to recreate well-defined environmental factors in a laboratory setting in a high throughput way, enabling quantitative studies of microbial communities that are amenable to theoretical modeling. The focus of this article is on aquatic microbial communities, but the microfluidic and mathematical models discussed here can be readily applied to investigate other microbiomes.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020; 25:molecules25245804. [PMID: 33316949 PMCID: PMC7763478 DOI: 10.3390/molecules25245804] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria and microalgae are oxygen-producing photosynthetic unicellular organisms encompassing a great diversity of species, which are able to grow under all types of extreme environments and exposed to a wide variety of predators and microbial pathogens. The antibacterial compounds described for these organisms include alkaloids, fatty acids, indoles, macrolides, peptides, phenols, pigments and terpenes, among others. This review presents an overview of antibacterial peptides isolated from cyanobacteria and microalgae, as well as their synergism and mechanisms of action described so far. Antibacterial cyanopeptides belong to different orders, but mainly from Oscillatoriales and Nostocales. Cyanopeptides have different structures but are mainly cyclic peptides. This vast peptide repertoire includes ribosomal and abundant non-ribosomal peptides, evaluated by standard conventional methodologies against pathogenic Gram-negative and Gram-positive bacteria. The antibacterial activity described for microalgal peptides is considerably scarcer, and limited to protein hydrolysates from two Chlorella species, and few peptides from Tetraselmis suecica. Despite the promising applications of antibacterial peptides and the importance of searching for new natural sources of antibiotics, limitations still persist for their pharmaceutical applications.
Collapse
|
28
|
Chen Q, Wang L, Qi Y, Ma C. Imaging mass spectrometry of interspecies metabolic exchange revealed the allelopathic interaction between Microcystis aeruginosa and its antagonist. CHEMOSPHERE 2020; 259:127430. [PMID: 32593822 DOI: 10.1016/j.chemosphere.2020.127430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The frequent outbreaks of cyanobacterial blooms which caused serious societal and economic loss have become a worldwide problem. Interactions between toxic cyanobacteria and heterotrophic bacteria competitors play a pivotal role in the formation of toxic cyanobacterial bloom, but the underlying mechanisms of interactions between them await further research. The antagonist activity of Pseudomonas grimontii (P.grimontii) was confirmed by reduction in chlorophyll a concentration of Microcystis aeruginosa (M. aeruginosa) in an infected culture for a 7d period. The initial concentration of P.grimontii affected the M. aeruginosa activity significantly. When the 10% (V/V) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the reduction of M. aeruginosa reached to 91.81% and 78.25% after 7 days, respectively. While a 0.1% (v/v) concentration of P.grimontii A01 and P.grimontii A14 cultures were infected, the M. aeruginosa increased 31.13% and 16.67% occurred, respectively. The content of reactive oxygen species (ROS) and malondialdehyde (MDA) increased with increasing of P.grimontii fermentation liquid, indicating the M. aeruginosa underwent oxidative stress. Using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) imaging mass spectrometry (IMS) profiling of co-cultures of M. aeruginosa and its antagonist P.grimontii, we revealed novel interspecies allelopathic interactions and compete molecule. We showed the spatial secondary metabolites may mediate the interactions in which P.grimontii inhibits growth of M. aeruginosa. Additionally, we revealed how M. aeruginosa feedback to the P.grimontii, which stimulates secondary metabolites such as [D-Asp3]-microcystin-LR released by M. aeruginosa. IMS method highlights the significance of allelopathic interactions between a widely distributed toxic cyanobacteria and its bacteria competitors.
Collapse
Affiliation(s)
- Qingfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lihong Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Chunxia Ma
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
29
|
Cutolo E, Tosoni M, Barera S, Herrera-Estrella L, Dall’Osto L, Bassi R. A Phosphite Dehydrogenase Variant with Promiscuous Access to Nicotinamide Cofactor Pools Sustains Fast Phosphite-Dependent Growth of Transplastomic Chlamydomonas reinhardtii. PLANTS 2020; 9:plants9040473. [PMID: 32276527 PMCID: PMC7238262 DOI: 10.3390/plants9040473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/23/2023]
Abstract
Heterologous expression of the NAD+-dependent phosphite dehydrogenase (PTXD) bacterial enzyme from Pseudomonas stutzerii enables selective growth of transgenic organisms by using phosphite as sole phosphorous source. Combining phosphite fertilization with nuclear expression of the ptxD transgene was shown to be an alternative to herbicides in controlling weeds and contamination of algal cultures. Chloroplast expression of ptxD in Chlamydomonas reinhardtii was proposed as an environmentally friendly alternative to antibiotic resistance genes for plastid transformation. However, PTXD activity in the chloroplast is low, possibly due to the low NAD+/NADP+ ratio, limiting the efficiency of phosphite assimilation. We addressed the intrinsic constraints of the PTXD activity in the chloroplast and improved its catalytic efficiency in vivo via rational mutagenesis of key residues involved in cofactor binding. Transplastomic lines carrying a mutagenized PTXD version promiscuously used NADP+ and NAD+ for converting phosphite into phosphate and grew faster compared to those expressing the wild type protein. The modified PTXD enzyme also enabled faster and reproducible selection of transplastomic colonies by directly plating on phosphite-containing medium. These results allow using phosphite as selective agent for chloroplast transformation and for controlling biological contaminants when expressing heterologous proteins in algal chloroplasts, without compromising on culture performance.
Collapse
Affiliation(s)
- Edoardo Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Matteo Tosoni
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Simone Barera
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA) Cinvestav, 36821 Irapuato, Guanajuato, Mexico;
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Sciences, Texas Tech University, Box 42122, Lubbock, TX 79409, USA
| | - Luca Dall’Osto
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
| | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.C.); (M.T.); (S.B.); (L.D.)
- Correspondence: ; Tel.: +39-045-802-7916
| |
Collapse
|
30
|
Sousa ML, Ribeiro T, Vasconcelos V, Linder S, Urbatzka R. Portoamides A and B are mitochondrial toxins and induce cytotoxicity on the proliferative cell layer of in vitro microtumours. Toxicon 2019; 175:49-56. [PMID: 31887317 DOI: 10.1016/j.toxicon.2019.12.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
Cyanobacteria are known to produce many toxins and other secondary metabolites. The study of their specific mode of action may reveal the biotechnological potential of such compounds. Portoamides A and B (PAB) are cyclic peptides isolated from the cyanobacteria Phormidium sp. due to their growth repression effect on microalgae and were shown to be cytotoxic against certain cancer cell lines. In the present work, viability was assessed on HCT116 colon cancer cells grown as monolayer culture and as multicellular spheroids (MTS), non-carcinogenic cells and on zebrafish larvae. HCT116 cells and epithelial RPE-1hTERT cells showed very similar degrees of sensitivities to PAB. PAB were able to penetrate the MTS, showing a four-fold high IC50 compared to monolayer cultures. The toxicity of PAB was similar at 4 °C and 37 °C suggesting energy-independent uptake. PAB exposure decreased ATP production, mitochondrial maximal respiration rates and induced mitochondrial membrane hyperpolarization. PAB induced general organelle stress response, indicated by an increase of the mitochondrial damage sensor PINK-1, and of phosphorylation of eIF2α, characteristic for endoplasmic reticulum stress. In summary, these findings show general toxicity of PAB on immortalized cells, cancer cells and zebrafish embryos, likely due to mitochondrial toxicity.
Collapse
Affiliation(s)
- Maria Lígia Sousa
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Tiago Ribeiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal; FCUP - Faculty of Sciences of University of Porto, Porto, Portugal
| | - Stig Linder
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ralph Urbatzka
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal.
| |
Collapse
|
31
|
Macías FA, Mejías FJ, Molinillo JM. Recent advances in allelopathy for weed control: from knowledge to applications. PEST MANAGEMENT SCIENCE 2019; 75:2413-2436. [PMID: 30684299 DOI: 10.1002/ps.5355] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/27/2023]
Abstract
Allelopathy is the biological phenomenon of chemical interactions between living organisms in the ecosystem, and must be taken into account in addressing pest and weed problems in future sustainable agriculture. Allelopathy is a multidisciplinary science, but in some cases, aspects of its chemistry are overlooked, despite the need for a deep knowledge of the chemical structural characteristics of allelochemicals to facilitate the design of new herbicides. This review is focused on the most important advances in allelopathy, paying particular attention to the design and development of phenolic compounds, terpenoids and alkaloids as herbicides. The isolation of allelochemicals is mainly addressed, but other aspects such as the analysis and activities of derivatives or analogs are also covered. Furthermore, the use of allelopathy in the fight against parasitic plants is included. The past 12 years have been a prolific period for publications on allelopathy. This critical review discusses future research areas in this field and the state of the art is analyzed from the chemist's perspective. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - Francisco Jr Mejías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - José Mg Molinillo
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| |
Collapse
|
32
|
Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019; 17:E320. [PMID: 31151260 PMCID: PMC6627551 DOI: 10.3390/md17060320] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin's lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.
Collapse
Affiliation(s)
- Justine Demay
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| | - Anita Reinhardt
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Benjamin Marie
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| |
Collapse
|
33
|
Shishido TK, Jokela J, Humisto A, Suurnäkki S, Wahlsten M, Alvarenga DO, Sivonen K, Fewer DP. The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium. Mar Drugs 2019; 17:md17050271. [PMID: 31067786 PMCID: PMC6562525 DOI: 10.3390/md17050271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/05/2023] Open
Abstract
Microcystins are a family of chemically diverse hepatotoxins produced by distantly related cyanobacteria and are potent inhibitors of eukaryotic protein phosphatases 1 and 2A. Here we provide evidence for the biosynthesis of rare variants of microcystin that contain a selection of homo-amino acids by the benthic cyanobacterium Phormidium sp. LP904c. This strain produces at least 16 microcystin chemical variants many of which contain homophenylalanine or homotyrosine. We retrieved the complete 54.2 kb microcystin (mcy) gene cluster from a draft genome assembly. Analysis of the substrate specificity of McyB1 and McyC adenylation domain binding pockets revealed divergent substrate specificity sequences, which could explain the activation of homo-amino acids which were present in 31% of the microcystins detected and included variants such as MC-LHty, MC-HphHty, MC-LHph and MC-HphHph. The mcy gene cluster did not encode enzymes for the synthesis of homo-amino acids but may instead activate homo-amino acids produced during the synthesis of anabaenopeptins. We observed the loss of microcystin during cultivation of a closely related strain, Phormidium sp. DVL1003c. This study increases the knowledge of benthic cyanobacterial strains that produce microcystin variants and broadens the structural diversity of known microcystins.
Collapse
Affiliation(s)
- Tânia Keiko Shishido
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 5D, FI-0014 Helsinki, Finland.
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Anu Humisto
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Suvi Suurnäkki
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Danillo O Alvarenga
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| |
Collapse
|
34
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
35
|
Fernandes K, Gomes A, Calado L, Yasui G, Assis D, Henry T, Fonseca A, Pinto E. Toxicity of Cyanopeptides from Two Microcystis Strains on Larval Development of Astyanax altiparanae. Toxins (Basel) 2019; 11:E220. [PMID: 31013880 PMCID: PMC6520764 DOI: 10.3390/toxins11040220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
Absorption and accumulation of bioavailable cyanobacterial metabolites (including cyanotoxins) are likely in fish after senescence and the rupturing of cells during bloom episodes. We determined the toxicity of cyanopeptides identified from two strains of Microcystis (M. panniformis MIRS-04 and M. aeruginosa NPDC-01) in a freshwater tropical fish, Astyanax altiparanae (yellowtail tetra, lambari). Aqueous extracts of both Microcystis strains were prepared in order to simulate realistic fish exposure to these substances in a freshwater environment. Both strains were selected because previous assays evidenced the presence of microcystins (MCs) in MIRS-04 and lack of cyanotoxins in NPDC-01. Identification of cyanobacterial secondary metabolites was performed by LC-HR-QTOF-MS and quantification of the MC-LR was carried out by LC-QqQ-MS/MS. MIRS-04 produces the MCs MC-LR, MC-LY and MC-HilR as well as micropeptins B, 973, 959 and k139. NPCD-01 biosynthetizes microginins FR1, FR2/FR4 and SD-755, but does not produce MCs. Larval fish survival and changes in morphology were assessed for 96 h exposure to aqueous extracts of both strains at environmentally relevant concentrations from 0.1 to 0.5 mg (dry weight)/mL, corresponding to 0.15 to 0.74 μg/mL of MC-LR (considering dried amounts of MIRS-04 for comparison). Fish mortality increased with concentration and time of exposure for both strains of Microcystis. The frequencies of morphological abnormalities increased with concentration in both strains, and included abdominal and pericardial oedema, and spinal curvature. Results demonstrate that toxicity was not solely caused by MCs, other classes of cyanobacterial secondary metabolites contributed to the observed toxicity.
Collapse
Affiliation(s)
- Kelly Fernandes
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
- School of Pharmaceutical Sciences, University of Sao Paulo, 580 Professor Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| | - Andreia Gomes
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
- Federal Institute of Education Science and Technology of Rio de Janeiro, Washington Luis Highway, Niteroi, RJ 24310-000, Brazil.
| | - Leonardo Calado
- National Center for Research and Conservation of Continentals' Fish-CEPTA, SP-201 (Pref. Euberto Nemésio Pereira de Godoy-Motorway), Km 6.5, Pirassununga, SP 13630-970, Brazil.
- Faculty of Technology, State University of Campinas, 1888 Paschoal Marmo Street, Limeira, SP 13484-332, Brazil.
| | - George Yasui
- National Center for Research and Conservation of Continentals' Fish-CEPTA, SP-201 (Pref. Euberto Nemésio Pereira de Godoy-Motorway), Km 6.5, Pirassununga, SP 13630-970, Brazil.
| | - Diego Assis
- Bruker Daltonics Corporation, Condomínio BBP-Barão de Mauá, Atibaia, SP 12954-260, Brazil.
| | - Theodore Henry
- Institute of Life and Earth Sciences (ILES), Center for Marine Biodiversity & Biotechnology (CMBB), The School of Energy, Geoscience, Infrastructure and Society (EGIS), Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Ana Fonseca
- Natural Resources Institute, Federal University of Itajubá, 1303 BPS Avenue, Itajubá, MG 37500-903, Brazil.
| | - Ernani Pinto
- School of Pharmaceutical Sciences, University of Sao Paulo, 580 Professor Lineu Prestes Avenue, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
36
|
Antunes J, Pereira S, Ribeiro T, Plowman JE, Thomas A, Clerens S, Campos A, Vasconcelos V, Almeida JR. A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Mar Drugs 2019; 17:E111. [PMID: 30759807 PMCID: PMC6410096 DOI: 10.3390/md17020111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclic peptides portoamides produced by the cyanobacterium Phormidium sp. LEGE 05292 were previously isolated and their ability to condition microcommunities by allelopathic effect was described. These interesting bioactive properties are, however, still underexplored as their biotechnological applications may be vast. This study aims to investigate the antifouling potential of portoamides, given that a challenge in the search for new environmentally friendly antifouling products is to find non-toxic natural alternatives with the ability to prevent colonization of different biofouling species, from bacteria to macroinvertebrates. A multi-bioassay approach was applied to assess portoamides antifouling properties, marine ecotoxicity and molecular mode of action. Results showed high effectiveness in the prevention of mussel larvae settlement (EC50 = 3.16 µM), and also bioactivity towards growth and biofilm disruption of marine biofouling bacterial strains, while not showing toxicity towards both target and non-target species. Antifouling molecular targets in mussel larvae include energy metabolism modifications (failure in proton-transporting ATPases activity), structural alterations of the gills and protein and gene regulatory mechanisms. Overall, portoamides reveal a broad-spectrum bioactivity towards diverse biofouling species, including a non-toxic and reversible effect towards mussel larvae, showing potential to be incorporated as an active ingredient in antifouling coatings.
Collapse
Affiliation(s)
- Jorge Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Sandra Pereira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Tiago Ribeiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | | | - Ancy Thomas
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
| | - Stefan Clerens
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch P 8140, New Zealand.
- Riddet Institute, Massey University, Palmerston North P 4442, New Zealand.
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Joana R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
37
|
Brilisauer K, Rapp J, Rath P, Schöllhorn A, Bleul L, Weiß E, Stahl M, Grond S, Forchhammer K. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms. Nat Commun 2019; 10:545. [PMID: 30710081 PMCID: PMC6358636 DOI: 10.1038/s41467-019-08476-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
Antimetabolites are small molecules that inhibit enzymes by mimicking physiological substrates. We report the discovery and structural elucidation of the antimetabolite 7-deoxy-sedoheptulose (7dSh). This unusual sugar inhibits the growth of various prototrophic organisms, including species of cyanobacteria, Saccharomyces, and Arabidopsis. We isolate bioactive 7dSh from culture supernatants of the cyanobacterium Synechococcus elongatus. A chemoenzymatic synthesis of 7dSh using S. elongatus transketolase as catalyst and 5-deoxy-d-ribose as substrate allows antimicrobial and herbicidal bioprofiling. Organisms treated with 7dSh accumulate 3-deoxy-d-arabino-heptulosonate 7-phosphate, which indicates that the molecular target is 3-dehydroquinate synthase, a key enzyme of the shikimate pathway, which is absent in humans and animals. The herbicidal activity of 7dSh is in the low micromolar range. No cytotoxic effects on mammalian cells have been observed. We propose that the in vivo inhibition of the shikimate pathway makes 7dSh a natural antimicrobial and herbicidal agent. Mother Nature is a valuable resource for the discovery of drug and agricultural chemicals. Here, the authors show that 7-deoxy-sedoheptulose produced by a cyanobacterium is an antimicrobial and herbicidal compound that acts through inhibition of 3-dehydroquniate synthase in the shikimate pathway.
Collapse
Affiliation(s)
- Klaus Brilisauer
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.,Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Johanna Rapp
- Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Pascal Rath
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Anna Schöllhorn
- Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls Universität Tübingen, Eugenstraße 6, 72076, Tübingen, Germany
| | - Elisabeth Weiß
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls Universität Tübingen, Eugenstraße 6, 72076, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| | - Karl Forchhammer
- Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
38
|
Tan K, Huang Z, Ji R, Qiu Y, Wang Z, Liu J. A review of allelopathy on microalgae. MICROBIOLOGY-SGM 2019; 165:587-592. [PMID: 30688632 DOI: 10.1099/mic.0.000776] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Algal blooms have severe impacts on the utilization of water resources. The discovery of allelopathy provides a new dimension to solving this problem due to its high efficiency, safety and economy. Allelopathy can suppress the growth of microalgae by impairing the structure, photosynthesis and enzyme activity of algal cells. In the current work, we first demonstrate the allelopathy and allelochemicals derived from both plants and algae. We then expound the potential mechanisms of allelopathy on microalgae. Next, the potential application of allelochemicals in water environment is proposed. Finally, the key challenge and future perspective are presented.
Collapse
Affiliation(s)
- Kaiting Tan
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ziqi Huang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ruibo Ji
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yongting Qiu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
39
|
Sphaerocyclamide, a prenylated cyanobactin from the cyanobacterium Sphaerospermopsis sp. LEGE 00249. Sci Rep 2018; 8:14537. [PMID: 30266955 PMCID: PMC6162287 DOI: 10.1038/s41598-018-32618-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/12/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanobactins are a family of linear and cyclic peptides produced through the post-translational modification of short precursor peptides. A mass spectrometry-based screening of potential cyanobactin producers led to the discovery of a new prenylated member of this family of compounds, sphaerocyclamide (1), from Sphaerospermopsis sp. LEGE 00249. The sphaerocyclamide biosynthetic gene cluster (sph) encoding the novel macrocyclic prenylated cyanobactin, was sequenced. Heterologous expression of the sph gene cluster in Escherichia coli confirmed the connection between genomic and mass spectrometric data. Unambiguous establishment of the orientation and site of prenylation required the full structural elucidation of 1 using Nuclear Magnetic Resonance (NMR), which demonstrated that a forward prenylation occurred on the tyrosine residue. Compound 1 was tested in pharmacologically or ecologically relevant biological assays and revealed moderate antimicrobial activity towards the fouling bacterium Halomonas aquamarina CECT 5000.
Collapse
|
40
|
Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J, Binder D, Hilgers F, Domröse A, Drepper T, Kohlheyer D, Jaeger KE, Loeschcke A. Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 2018; 13:e0200940. [PMID: 30024935 PMCID: PMC6053208 DOI: 10.1371/journal.pone.0200940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are naturally produced to prevail amongst competitors in a shared habitat and thus represent a valuable source for antibiotic discovery. The transformation of newly discovered antibiotic compounds into effective drugs often requires additional surfactant components for drug formulation. Nature may also provide blueprints in this respect: A cocktail of two compounds consisting of the antibacterial red pigment prodigiosin and the biosurfactant serrawettin W1 is naturally produced by the bacterium Serratia marcescens, which occurs in highly competitive habitats including soil. We show here a combinatorial antibacterial effect of these compounds, but also of prodigiosin mixed with other (bio)surfactants, against the soil-dwelling bacterium Corynebacterium glutamicum taken as a model target bacterium. Prodigiosin exerted a combinatorial inhibitory effect with all tested surfactants in a disk diffusion assay which was especially pronounced in combination with N-myristoyltyrosine. Minimal inhibitory and bactericidal concentrations (MIC and MBC) of the individual compounds were 2.56 μg/mL prodigiosin and 32 μg/mL N-myristoyltyrosine, and the MIC of prodigiosin was decreased by 3 orders of magnitude to 0.005 μg/mL in the presence of 16 μg/mL N-myristoyltyrosine, indicative of synergistic interaction. Investigation of bacterial survival revealed similar combinatorial effects; moreover, antagonistic effects were observed at higher compound concentrations. Finally, the investigation of microcolony formation under combined application of concentrations just below the MBC revealed heterogeneity of responses with cell death or delayed growth. In summary, this study describes the combinatorial antibacterial effects of microbial biomolecules, which may have ecological relevance by inhibiting cohabiting species, but shall furthermore inspire drug development in the combat of infectious disease.
Collapse
Affiliation(s)
- Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Grünberger
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Beatrix Santiago-Schübel
- Central Division of Analytical Chemistry ZEA-3: Analytik/Biospec, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Sebastian Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Pietruszka
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Aachener Verfahrenstechnik (AVT.MSB), RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| |
Collapse
|
41
|
Leitão E, Ger KA, Panosso R. Selective Grazing by a Tropical Copepod ( Notodiaptomus iheringi) Facilitates Microcystis Dominance. Front Microbiol 2018. [PMID: 29527199 PMCID: PMC5829094 DOI: 10.3389/fmicb.2018.00301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Top-down grazer control of cyanobacteria is a controversial topic due to conflicting reports of success and failure as well as a bias toward studies in temperate climates with large generalist grazers like Daphnia. In the tropical lowland lakes of Brazil, calanoid copepods of the Notodiaptomus complex dominate zooplankton and co-exist in high abundance with permanent blooms of toxic cyanobacteria, raising questions for grazer effects on bloom dynamics (i.e., top-down control vs. facilitation of cyanobacterial dominance). Accordingly, the effect of copepod grazing on the relative abundance of Microcystis co-cultured with a eukaryotic phytoplankton (Cryptomonas) was evaluated in a series of 6-day laboratory experiments. Grazer effects were tested in incubations where the growth of each phytoplankton in the presence or absence of the copepod Notodiaptomus iheringi was monitored in 1 L co-cultures, starting with a 6-fold initial dominance of Cryptomonas by biomass. Compared to the no grazer controls, N. iheringi reduced the growth of both phytoplankton, but Cryptomonas growth was reduced to negative values while Microcystis growth continued positively despite grazers. Hence, in a matter of 6 days selective grazing by N. iheringi increased the biomass of Microcystis relative to Cryptomonas by an order of magnitude compared to controls, and thus, facilitated the dominance of this cyanobacterium. To account for the potential effect of allelopathy, we performed a secondary experiment comparing the abundance and growth rate of Microcystis and Cryptomonas in single and mixed co-cultures in the absence of grazers. The growth rate of Microcystis was unaffected by the presence or relative abundance of Cryptomonas, and vice versa, indicating no allelopathic effects. Our results suggest that selectively grazing zooplankton may facilitate cyanobacteria blooms by grazing on their eukaryotic phytoplankton competitors in nature. Given that selective grazers predominate zooplankton biomass in warmer waters, grazer facilitation of blooms may be a common but poorly understood regulator of plankton dynamics in a warmer and more eutrophic world.
Collapse
Affiliation(s)
- Ewaldo Leitão
- Graduate Program of Ecology, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Microbiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kemal A Ger
- Graduate Program of Ecology, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Microbiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Renata Panosso
- Graduate Program of Ecology, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Microbiology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
42
|
Ramos V, Morais J, Castelo-Branco R, Pinheiro Â, Martins J, Regueiras A, Pereira AL, Lopes VR, Frazão B, Gomes D, Moreira C, Costa MS, Brûle S, Faustino S, Martins R, Saker M, Osswald J, Leão PN, Vasconcelos VM. Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established LEGE culture collection. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:1437-1451. [PMID: 29899596 PMCID: PMC5982461 DOI: 10.1007/s10811-017-1369-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 05/11/2023]
Abstract
Cyanobacteria are a well-known source of bioproducts which renders culturable strains a valuable resource for biotechnology purposes. We describe here the establishment of a cyanobacterial culture collection (CC) and present the first version of the strain catalog and its online database (http://lege.ciimar.up.pt/). The LEGE CC holds 386 strains, mainly collected in coastal (48%), estuarine (11%), and fresh (34%) water bodies, for the most part from Portugal (84%). By following the most recent taxonomic classification, LEGE CC strains were classified into at least 46 genera from six orders (41% belong to the Synechococcales), several of them are unique among the phylogenetic diversity of the cyanobacteria. For all strains, primary data were obtained and secondary data were surveyed and reviewed, which can be reached through the strain sheets either in the catalog or in the online database. An overview on the notable biodiversity of LEGE CC strains is showcased, including a searchable phylogenetic tree and images for all strains. With this work, 80% of the LEGE CC strains have now their 16S rRNA gene sequences deposited in GenBank. Also, based in primary data, it is demonstrated that several LEGE CC strains are a promising source of extracellular polymeric substances (EPS). Through a review of previously published data, it is exposed that LEGE CC strains have the potential or actual capacity to produce a variety of biotechnologically interesting compounds, including common cyanotoxins or unprecedented bioactive molecules. Phylogenetic diversity of LEGE CC strains does not entirely reflect chemodiversity. Further bioprospecting should, therefore, account for strain specificity of the valuable cyanobacterial holdings of LEGE CC.
Collapse
Affiliation(s)
- Vitor Ramos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - João Morais
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Ângela Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Joana Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Ana Regueiras
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Ana L. Pereira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Viviana R. Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala, Sweden
| | - Bárbara Frazão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- IPMA-Portuguese Institute of Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisbon, Portugal
| | - Dina Gomes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cristiana Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Maria Sofia Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Sébastien Brûle
- Master 2 Biotechnologie, Université de Bretagne-Sud, BP 92116, 56000 Lorient/Vannes, France
| | - Silvia Faustino
- Laboratory of Algae Cultivation and Bioprospection, Federal Amapá University (UNIFAP), Rodovia JK, km 2, Macapá, Amapá Brazil
| | - Rosário Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- Health and Environment Research Centre, School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Martin Saker
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- Alpha Environmental Solutions, P.O. Box 37977, Dubai, United Arab Emirates
| | - Joana Osswald
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
| | - Vitor M. Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
43
|
Ribeiro T, Lemos F, Preto M, Azevedo J, Sousa ML, Leão PN, Campos A, Linder S, Vitorino R, Vasconcelos V, Urbatzka R. Cytotoxicity of portoamides in human cancer cells and analysis of the molecular mechanisms of action. PLoS One 2017; 12:e0188817. [PMID: 29216224 PMCID: PMC5720714 DOI: 10.1371/journal.pone.0188817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Portoamides are cyclic peptides produced and released by the cyanobacterial strain Phormidium sp. presumably to interfere with other organisms in their ecosystems ("allelopathy"). Portoamides were previously demonstrated to have an antiproliferative effect on human lung carcinoma cells, but the underlying mechanism of this activity has not been described. In the present work, the effects of portoamides on proliferation were examined in eight human cancer cell lines and two non-carcinogenic cell lines, and major differences in sensitivities were observed. To generate hypotheses with regard to molecular mechanisms of action, quantitative proteomics using 2D gel electrophoresis and MALDI-TOF/TOF were performed on the colon carcinoma cell line HT-29. The expression of proteins involved in energy metabolism (mitochondrial respiratory chain and pentose phosphate pathway) was found to be affected. The hypothesis of altered energy metabolism was tested in further experiments. Exposure to portoamides resulted in reduced cellular ATP content, likely due to decreased mitochondrial energy production. Mitochondrial hyperpolarization and reduced mitochondrial reductive capacity was observed in treated cells. Furthermore, alterations in the expression of peroxiredoxins (PRDX4, PRDX6) and components of proteasome subunits (PSB4, PSA6) were observed in portoamide-treated cells, but these alterations were not associated with detectable increases in oxidative stress. We conclude that the cytotoxic activity of portoamides is associated with disturbance of energy metabolism, and alterations in mitochondrial structure and function.
Collapse
Affiliation(s)
- Tiago Ribeiro
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Filipa Lemos
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Marco Preto
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Maria Lígia Sousa
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Pedro N. Leão
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
- FCUP, Faculty of Science, Department of Biology, University of Porto, Porto, Portugal
| | - Ralph Urbatzka
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, Porto, Portugal
- * E-mail:
| |
Collapse
|
44
|
Aiyar P, Schaeme D, García-Altares M, Carrasco Flores D, Dathe H, Hertweck C, Sasso S, Mittag M. Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells. Nat Commun 2017; 8:1756. [PMID: 29170415 PMCID: PMC5701020 DOI: 10.1038/s41467-017-01547-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022] Open
Abstract
Photosynthetic unicellular organisms, known as microalgae, are key contributors to carbon fixation on Earth. Their biotic interactions with other microbes shape aquatic microbial communities and influence the global photosynthetic capacity. So far, limited information is available on molecular factors that govern these interactions. We show that the bacterium Pseudomonas protegens strongly inhibits the growth and alters the morphology of the biflagellated green alga Chlamydomonas reinhardtii. This antagonistic effect is decreased in a bacterial mutant lacking orfamides, demonstrating that these secreted cyclic lipopeptides play an important role in the algal-bacterial interaction. Using an aequorin Ca2+-reporter assay, we show that orfamide A triggers an increase in cytosolic Ca2+ in C. reinhardtii and causes deflagellation of algal cells. These effects of orfamide A, which are specific to the algal class of Chlorophyceae and appear to target a Ca2+ channel in the plasma membrane, represent a novel biological activity for cyclic lipopeptides.
Collapse
Affiliation(s)
- Prasad Aiyar
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - Daniel Schaeme
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - María García-Altares
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11 a, 07745, Jena, Germany
| | - David Carrasco Flores
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - Hannes Dathe
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11 a, 07745, Jena, Germany
| | - Severin Sasso
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany.
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, Am Planetarium 1, 07743, Jena, Germany.
| |
Collapse
|
45
|
Wu Y, Tang J, Liu J, Graham B, Kerr PG, Chen H. Sustained High Nutrient Supply As an Allelopathic Trigger between Periphytic Biofilm and Microcystis aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9614-9623. [PMID: 28738143 DOI: 10.1021/acs.est.7b01027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Allelopathy among aquatic organisms, especially microorganisms, has received growing attention in recent years for its role in shaping interactions with bloom-forming algae. Many studies have shown that allelopathy occurs and increases under nutrient limiting conditions. However, to date there is no reported direct evidence to indicate that allelopathy occurs under the condition of constant high nutrient supply. Here we report the allelopathic action of periphytic biofilm on bloom-forming cyanobacteria (Microcystis aeruginosa), which was triggered by the stress of high nutrient conditions, and continues while nutrients are maintained at high levels (trophic state index at 159 and 171). The experimental evidence indicates that the electron transport from photosystem II (PS II) to photosystem I (PS I) in M. aeruginosa is interrupted by the identified allelochemicals, (9Z)-Octadec-9-enoic acid and (9Z)-Hexadec-9-enoic acid, leading to the failure of photosynthesis and the subsequent death of M. aeruginosa. Our findings indicate that the nutrient stress of constant high nutrient supply may be a newly recognized trigger causing allelopathy between microbial competitors, and therefore opening a new direction for the better management of ecological processes in cyanobacteria-dominated and hyper-eutrophic waters.
Collapse
Affiliation(s)
- Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
- College of Resource and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
| | - Bruce Graham
- School of Biomedical Sciences, Charles Sturt University , Boorooma St, Wagga Wagga, 2678, New South Wales, Australia
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University , Boorooma St, Wagga Wagga, 2678, New South Wales, Australia
| | - Hong Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
- College of Resource and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
46
|
Dias F, Antunes JT, Ribeiro T, Azevedo J, Vasconcelos V, Leão PN. Cyanobacterial Allelochemicals But Not Cyanobacterial Cells Markedly Reduce Microbial Community Diversity. Front Microbiol 2017; 8:1495. [PMID: 28848513 PMCID: PMC5550742 DOI: 10.3389/fmicb.2017.01495] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
The freshwater cyanobacterium Phormidium sp. LEGE 05292 produces allelochemicals, including the cyclic depsipeptides portoamides, that influence the growth of heterotrophic bacteria, cyanobacteria, and eukaryotic algae. Using 16S rRNA gene amplicon metagenomics, we show here that, under laboratory conditions, the mixture of metabolites exuded by Phormidium sp. LEGE 05292 markedly reduces the diversity of a natural planktonic microbial community. Exposure of the same community to the portoamides alone resulted in a similar outcome. In both cases, after 16 days, alpha-diversity estimates for the allelochemical-exposed communities were less than half of those for the control communities. Photosynthetic organisms, but also different heterotrophic-bacteria taxa were found to be negatively impacted by the allelochemicals. Intriguingly, when Phormidium sp. LEGE 05292 was co-cultured with the microbial community, the latter remained stable and closer to non-exposed than to allelochemical-exposed communities. Overall, our observations indicate that although under optimal growth conditions Phormidium sp. LEGE 05292 is able to synthesize potent allelochemicals that severely impact different microorganisms, its allelopathic effect is not pronounced when in contact with a complex microbial community. Therefore, under ecologically relevant conditions, the allelopathic behavior of this cyanobacterium may be regulated by nutrient availability or by interactions with the surrounding microbiota.
Collapse
Affiliation(s)
- Filipa Dias
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Jorge T Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of PortoPorto, Portugal
| | - Tiago Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of PortoPorto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of PortoPorto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| |
Collapse
|
47
|
Felpeto AB, Roy S, Vasconcelos VM. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. OIKOS 2017. [DOI: 10.1111/oik.04046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Shovonlal Roy
- CIIMAR, Univ. of Porto, Rua dos Bragas 289; PT-4050-123 Porto Portugal
| | - Vitor M. Vasconcelos
- Faculty of Sciences, Porto Univ., Porto, Portugal. - S. Roy, Dept of Geography and Environmental Science, Univ. of Reading; Reading UK
| |
Collapse
|
48
|
García-Espín L, Cantoral EA, Asencio AD, Aboal M. Microcystins and cyanophyte extracts inhibit or promote the photosynthesis of fluvial algae. Ecological and management implications. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:658-666. [PMID: 28382549 DOI: 10.1007/s10646-017-1798-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The ecological influence of cyanotoxins on aquatic biota remains unclear despite the numerous published references on toxicological and sanitary problems related with cyanophyte proliferation. The effects of microcystins and cyanophyte extracts on the photosynthesis of the algae that belong to two taxonomic groups, Rhodophyta and Bacillariophyta, were studied in an attempt to elucidate their role in the intraspecific competence and physiognomy of fluvial communities. The data showed that both cyanobacteria extracts and pure microcystin-LR affected the photosynthetic activity of all the tested organisms, diatoms (Fistulifera pelliculosa, Gomphonema parvulum, Nitzschia frustulum and Stephanodiscus minutulus) and red algae (Chroothece richteriana) at environmentally relevant concentrations. Effects varied with strains and time, and promoted or inhibited photosynthesis. The microcystins and the other compounds present in cyanobacteria extracts may explain the competence effects observed in nature, especially in calcareous environments where they predominate, and after disturbing events like heavy rains or floods, which may destroy cyanophyte mats and release toxic or inhibitory compounds in a seasonal scale pattern.
Collapse
Affiliation(s)
- Laura García-Espín
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, Murcia University, Murcia, E-30100, Spain
| | - Enrique A Cantoral
- Multidisciplinary Teaching and Research Unit, Faculty of Sciences, Juriquilla Campus, National Autonomous University of México, Querétaro, C. P. 76230, Mexico
| | - Antonia D Asencio
- Department of Applied Biology, Faculty of Experimental Sciences, Elche Campus, Miguel Hernández University, Elche, E-03202, Alicante, Spain.
| | - Marina Aboal
- Laboratory of Algology, Faculty of Biology, Espinardo Campus, Murcia University, Murcia, E-30100, Spain
| |
Collapse
|
49
|
Slattery M, Lesser MP. Allelopathy-mediated competition in microbial mats from Antarctic lakes. FEMS Microbiol Ecol 2017; 93:3003319. [PMID: 28334326 DOI: 10.1093/femsec/fix019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/15/2017] [Indexed: 11/14/2022] Open
Abstract
Microbial mats are vertically stratified communities that host a complex consortium of microorganisms, dominated by cyanobacteria, which compete for available nutrients and environmental niches, within these extreme habitats. The Antarctic Dry Valleys near McMurdo Sound include a series of lakes within the drainage basin that are bisected by glacial traverses. These lakes are traditionally independent, but recent increases in glacial melting have allowed two lakes (Chad and Hoare) to become connected by a meltwater stream. Microbial mats were collected from these lakes, and cultured under identical conditions at the McMurdo Station laboratory. Replicate pairings of the microbial mats exhibited consistent patterns of growth inhibition indicative of competitive dominance. Natural products were extracted from the microbial mats, and a disk diffusion assay was utilized to show that allelochemical compounds mediate competitive interactions. Both microscopy and 16S rRNA sequencing show that these mats contain significant populations of cyanobacteria known to produce allelochemicals. Two compounds were isolated from these microbial mats that might be important in the chemical ecology of these psychrophiles. In other disk:mat pairings, including extract versus mat of origin, the allelochemicals exhibited no effect. Taken together, these results indicate that Antarctic lake microbial mats can compete via allelopathy.
Collapse
Affiliation(s)
- Marc Slattery
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Michael P Lesser
- School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
50
|
Srivastava A, Singh VK, Patnaik S, Tripathi J, Singh P, Nath G, Asthana RK. Antimicrobial assay and genetic screening of selected freshwater Cyanobacteria and identification of a biomolecule dihydro-2H-pyran-2-one derivative. J Appl Microbiol 2017; 122:881-892. [PMID: 28004519 DOI: 10.1111/jam.13385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 11/24/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022]
Abstract
AIMS Explorations of freshwater Cyanobacteria as antimicrobial (bacteria, fungi and methicillin-resistant Staphylococcus aureus (MRSA) strains) drug resource using bioassay, NRPS (non-ribosomal polypeptide synthetase) and PKS (polyketide synthase) genes, as well as in silico approach. METHODS AND RESULTS We have bioassayed the extracts of Phormidium CCC727, Geitlerinema CCC728, Arthrospira CCC729, Leptolyngbya CCC732, Phormidium CCC730, Phormidium CCC731 against six pathogenic bacteria comprising Gram (+ve): S. aureus including seven clinical MRSA and Enterococcus faecalis, Gram (-ve): Escherichia coli, Salmonella Typhimurium, Klebsiella pneumoniae and Shigella boydii along with non-pathogenic Enterobacter aerogenes as well as fungal strains (Cryptococcus neoformans and Candida albicans, C. krusei, C. tropicalis and Aspergillus niger) exhibiting antimicrobial potential. The NRPS and PKS genes of the target strains were also amplified and sequenced. The putative protein structures were predicted using bioinformatics approach. CONCLUSION PKS gene expression indicated β keto-acyl synthase as one of the important active domains in the biomolecules related to antitumour and antifungal group. The simultaneous identification of the biomolecule (dihydro-2H-pyran-2-one derivative) was also inferred spectroscopically. SIGNIFICANCE AND IMPACT OF THE STUDY Freshwater Cyanobacteria are prolific producers of secondary metabolite(s) that may act as the antimicrobial drug resource in addition to their much explored marine counterpart.
Collapse
Affiliation(s)
- A Srivastava
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - V K Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S Patnaik
- Council of Scientific and Industrial Research - Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - J Tripathi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - P Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - G Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - R K Asthana
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|