1
|
Lenière AC, Upadhyay A, Follet J, O'Sullivan TP. Effect of urea and squaramide IMPDH inhibitors on C. parvum: in vitro trial design impacts the assessment of drug efficacy. Int J Parasitol Drugs Drug Resist 2025; 28:100592. [PMID: 40319744 PMCID: PMC12123366 DOI: 10.1016/j.ijpddr.2025.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 05/07/2025]
Abstract
The protozoan parasite Cryptosporidium is the etiological agent of cryptosporidiosis, a ubiquitous diarrheic disease affecting humans and animals. Treatment options are limited, highlighting an urgent need for novel therapeutics. Despite decades of research and a wide diversity of strategies to tackle parasite metabolic pathways, no completely effective drug has been identified to date. Within targeted parasite enzymatic and metabolic pathways, the synthesis of nucleotide mediated by the inosine 5'-monophosphate dehydrogenase (IMPDH) enzyme is the focus of significant research efforts. Based on our prior studies of bacterial IMPDH inhibitors, we report herein the development and characterisation of novel inhibitors targeting Cryptosporidium parvum IMPDH (CpIMPDH). Specifically, we synthesised heteroaryl-containing urea and squaramide analogues to evaluate their potential in vitro anti-Cryptosporidium activity. Initial screening identified nine active compounds with the most potent candidates achieving IC50 values as low as 2.2 μM. Subsequent time-course experiments revealed that the molecules effectively inhibit parasite invasion and early intracellular development but failed to tackle C. parvum growth when introduced at 30 h post infection. The present work introduces a new family of squaramide-derived IMPDH inhibitors and also interrogates the need to standardise commonly accepted protocols used for assessing anti-cryptosporidial drug activity.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F59000, Lille, France
| | - Amit Upadhyay
- School of Chemistry, University College Cork, Cork, T12 YN60, Ireland; School of Pharmacy, University College Cork, Cork, T12 YN60, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 YN60, Ireland
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F59000, Lille, France.
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, Cork, T12 YN60, Ireland; School of Pharmacy, University College Cork, Cork, T12 YN60, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
2
|
Advances in therapeutic and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta Trop 2022; 226:106273. [PMID: 34906550 DOI: 10.1016/j.actatropica.2021.106273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Cryptosporidium is known to be the second most common diarrheal pathogen in children, causing potentially fatal diarrhea and associated with long-term growth stunting and cognitive deficits. The only Food and Drug Administration-approved treatment for cryptosporidiosis is nitazoxanide, but this drug has not shown potentially effective results in susceptible hosts. Therefore, a safe and effective drug for cryptosporidiosis is urgently needed. Cryptosporidium genome sequencing analysis may help develop an effective drug, but both in vitro and in vivo approaches to drug evaluation are not fully standardized. On the other hand, the development of partial immunity after exposure suggests the possibility of a successful and effective vaccine, but protective surrogates are not precise. In this review, we present our current perspectives on novel cryptosporidiosis therapies, vaccine targets and efficacies, as well as potential mitigation plans, recommendations and perceived challenges.
Collapse
|
3
|
Lee S, Ku AF, Vippila MR, Wang Y, Zhang M, Wang X, Hedstrom L, Cuny GD. Mycophenolic anilides as broad specificity inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors. Bioorg Med Chem Lett 2020; 30:127543. [PMID: 32931912 DOI: 10.1016/j.bmcl.2020.127543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a potential target for microorganisms. However, identifying inhibitor design determinants for IMPDH orthologs continues to evolve. Herein, a series of mycophenolic anilide inhibitors of Cryptosporidium parvum and human IMPDHs are reported. Furthermore, molecular docking of 12 (e.g. SH-19; CpIMPDH Ki,app = 0.042 ± 0.015 µM, HsIMPDH2 Ki,app = 0.13 ± 0.05 µM) supports different binding modes with the two enzymes. For CpIMPDH the inhibitor extends into a pocket in an adjacent subunit. In contrast, docking suggests the inhibitor interacts with Ser276 in the NAD binding site in HsIMPDH2, as well as an adjacent pocket within the same subunit. These results provide further guidance for generating IMPDH inhibitors for enzymes found in an array of pathogenic microorganisms, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Angela F Ku
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA; Department of Chemistry, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Mohana Rao Vippila
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Yong Wang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA
| | - Minjia Zhang
- Departments of Biology, 415 South St., Waltham, MA 02454, USA
| | - Xingyou Wang
- Departments of Biology, 415 South St., Waltham, MA 02454, USA
| | - Lizbeth Hedstrom
- Departments of Biology, 415 South St., Waltham, MA 02454, USA; Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Health Building 2, Houston, TX 77204, USA.
| |
Collapse
|
4
|
Boothroyd JC. What a Difference 30 Years Makes! A Perspective on Changes in Research Methodologies Used to Study Toxoplasma gondii. Methods Mol Biol 2020; 2071:1-25. [PMID: 31758444 DOI: 10.1007/978-1-4939-9857-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a remarkable species with a rich cell, developmental, and population biology. It is also sometimes responsible for serious disease in animals and humans and the stages responsible for such disease are relatively easy to study in vitro or in laboratory animal models. As a result of all this, Toxoplasma has become the subject of intense investigation over the last several decades, becoming a model organism for the study of the phylum of which it is a member, Apicomplexa. This has led to an ever-growing number of investigators applying an ever-expanding set of techniques to dissecting how Toxoplasma "ticks" and how it interacts with its many hosts. In this perspective piece I first wind back the clock 30 years and then trace the extraordinary pace of methodologies that have propelled the field forward to where we are today. In keeping with the theme of this collection, I focus almost exclusively on the parasite, rather than host side of the equation. I finish with a few thoughts about where the field might be headed-though if we have learned anything, the only sure prediction is that the pace of technological advance will surely continue to accelerate and the future will give us still undreamed of methods for taking apart (and then putting back together) this amazing organism with all its intricate biology. We have so far surely just scratched the surface.
Collapse
Affiliation(s)
- John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Pawlowic MC, Somepalli M, Sateriale A, Herbert GT, Gibson AR, Cuny GD, Hedstrom L, Striepen B. Genetic ablation of purine salvage in Cryptosporidium parvum reveals nucleotide uptake from the host cell. Proc Natl Acad Sci U S A 2019; 116:21160-21165. [PMID: 31570573 PMCID: PMC6800313 DOI: 10.1073/pnas.1908239116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The apicomplexan parasite Cryptosporidium is a leading global cause of severe diarrheal disease and an important contributor to early-childhood mortality. Waterborne outbreaks occur frequently, even in countries with advanced water treatment capabilities, and there is currently no fully effective treatment. Nucleotide pathways are attractive targets for antimicrobial development, and several laboratories are designing inhibitors of these enzymes as potential treatment for Cryptosporidium infections. Here we take advantage of newly available molecular genetics for Cryptosporidium parvum to investigate nucleotide biosynthesis by directed gene ablation. Surprisingly, we found that the parasite tolerates the loss of classical targets including dihydrofolate reductase-thymidylate synthase (DHFR-TS) and inosine monophosphate dehydrogenase (IMPDH). We show that thymidine kinase provides a route to thymidine monophosphate in the absence of DHFR-TS. In contrast, only a single pathway has been identified for C. parvum purine nucleotide salvage. Nonetheless, multiple enzymes in the purine pathway, as well as the adenosine transporter, can be ablated. The resulting mutants are viable under normal conditions but are hypersensitive to inhibition of purine nucleotide synthesis in their host cell. Cryptosporidium might use as-yet undiscovered purine transporters and salvage enzymes; however, genetic and pharmacological experiments led us to conclude that Cryptosporidium imports purine nucleotides from the host cell. The potential for ATP uptake from the host has significant impact on our understanding of parasite energy metabolism given that Cryptosporidium lacks oxidative phosphorylation and glycolytic enzymes are not constitutively expressed throughout the parasite life cycle.
Collapse
Affiliation(s)
- Mattie C Pawlowic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Mastanbabu Somepalli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gillian T Herbert
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Alexis R Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, MA 02454
- Department of Chemistry, Brandeis University, Waltham, MA 02454
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602;
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
Mirhashemi ME, Noubary F, Chapman-Bonofiglio S, Tzipori S, Huggins GS, Widmer G. Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages. Parasit Vectors 2018. [PMID: 29530089 PMCID: PMC5848449 DOI: 10.1186/s13071-018-2754-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Human cryptosporidiosis is caused primarily by two species of apicomplexan protozoa, Cryptosporidium parvum and C. hominis. In cultured cell monolayers, the parasite undergoes two generations of asexual multiplication (merogony). However, the proportion of parasites completing the life-cycle is low and insufficient to sustain continuous propagation. Due to the intracellular location of meronts and later life-cycle stages, oocyst and sporozoites are the only forms of the parasite that can readily be isolated. Results Research on the replicating forms of Cryptosporidium parasites and their interaction with the host cell remains challenging. Based on an RNA-Seq analysis of monolayers of pig epithelial cells infected with C. parvum, here we report on the impact of merogony on the host’s gene regulation. Analysis of the transcriptome of infected and uninfected monolayers demonstrates a significant impact of the infection on host cell gene expression. A total of 813 genes were differentially expressed. Functional terms significantly altered in response to infection include phosphoprotein, RNA binding and acetylation. Upregulation of cell cycle pathways indicates an increase in mitosis. Notably absent from differentially enriched functional categories are stress- and apoptosis-related functions. The comparison of the combined host-parasite transcriptome reveals that C. parvum gene expression is less diverse than the host cell transcriptome and is highly enriched for genes encoding ribosomal functions, such as ribosomal proteins. Conclusions These results indicate that C. parvum infection significantly changes host biological functions and provide new insight into gene functions driving early C. parvum intracellular development. Electronic supplementary material The online version of this article (10.1186/s13071-018-2754-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marzieh Ezzaty Mirhashemi
- Clinical and Translational Institute, Sackler School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts, 02111, USA.,Cummings School of Veterinary Medicine at Tufts University, Building 20, 200 Westborough Avenue, North Grafton, Massachusetts, 01536, USA
| | - Farzad Noubary
- Clinical and Translational Institute, Sackler School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts, 02111, USA
| | - Susan Chapman-Bonofiglio
- Cummings School of Veterinary Medicine at Tufts University, Building 20, 200 Westborough Avenue, North Grafton, Massachusetts, 01536, USA
| | - Saul Tzipori
- Cummings School of Veterinary Medicine at Tufts University, Building 20, 200 Westborough Avenue, North Grafton, Massachusetts, 01536, USA
| | - Gordon S Huggins
- Clinical and Translational Institute, Sackler School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts, 02111, USA
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine at Tufts University, Building 20, 200 Westborough Avenue, North Grafton, Massachusetts, 01536, USA.
| |
Collapse
|
7
|
Li RJ, Wang YL, Wang QH, Huang WX, Wang J, Cheng MS. Binding mode of inhibitors and Cryptosporidium parvum IMP dehydrogenase: A combined ligand- and receptor-based study. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:421-438. [PMID: 25978645 DOI: 10.1080/1062936x.2015.1043341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A combined ligand- and target-based approach was used to analyse the interaction models of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase (CpIMPDH) with selective inhibitors. First, a ligand-based pharmacophore model was generated from 20 NAD(+) competitive CpIMPDH inhibitors with the HipHop module. The characteristic of the NAD(+) binding site of CpIMPDH was then described, and the binding modes of the representative inhibitors were studied by molecular docking. The combination of the pharmacophore model and the docking results allowed us to evaluate the pharmacophore features and structural information of the NAD(+) binding site of CpIMPDH. This research supports the proposal of an interaction model inside the NAD(+) binding site of CpIMPDH, consisting of four key interaction points: two hydrophobic-aromatic groups, a hydrophobic-aliphatic group and a hydrogen bond donor. This study also provides guidance for the design of more potent CpIMPDH inhibitors for the treatment of Cryptosporidium infections.
Collapse
Affiliation(s)
- R-J Li
- a Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education , Shenyang Pharmaceutical University , Shenyang , China
| | | | | | | | | | | |
Collapse
|
8
|
Ryan U, Hijjawi N. New developments in Cryptosporidium research. Int J Parasitol 2015; 45:367-73. [DOI: 10.1016/j.ijpara.2015.01.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/24/2022]
|
9
|
Djuika CF, Huerta-Cepas J, Przyborski JM, Deil S, Sanchez CP, Doerks T, Bork P, Lanzer M, Deponte M. Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites. MICROBIAL CELL 2015; 2:5-13. [PMID: 28357258 PMCID: PMC5361646 DOI: 10.15698/mic2015.01.182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer has emerged as a crucial driving force for the evolution of eukaryotes. This also includes Plasmodium falciparum and related economically and clinically relevant apicomplexan parasites, whose rather small genomes have been shaped not only by natural selection in different host populations but also by horizontal gene transfer following endosymbiosis. However, there is rather little reliable data on horizontal gene transfer between animal hosts or bacteria and apicomplexan parasites. Here we show that apicomplexan homologues of peroxiredoxin 5 (Prx5) have a prokaryotic ancestry and therefore represent a special subclass of Prx5 isoforms in eukaryotes. Using two different immunobiochemical approaches, we found that the P. falciparum Prx5 homologue is dually localized to the parasite plastid and cytosol. This dual localization is reflected by a modular Plasmodium-specific gene architecture consisting of two exons. Despite the plastid localization, our phylogenetic analyses contradict an acquisition by secondary endosymbiosis and support a gene fusion event following a horizontal prokaryote-to-eukaryote gene transfer in early apicomplexans. The results provide unexpected insights into the evolution of apicomplexan parasites as well as the molecular evolution of peroxiredoxins, an important family of ubiquitous, usually highly concentrated thiol-dependent hydroperoxidases that exert functions as detoxifying enzymes, redox sensors and chaperones.
Collapse
Affiliation(s)
- Carine F Djuika
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Jaime Huerta-Cepas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Jude M Przyborski
- Department of Parasitology, Philipps University, D-35043 Marburg, Germany
| | - Sophia Deil
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Cecilia P Sanchez
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Tobias Doerks
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | - Michael Lanzer
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Sun Z, Khan J, Makowska-Grzyska M, Zhang M, Cho JH, Suebsuwong C, Vo P, Gollapalli DR, Kim Y, Joachimiak A, Hedstrom L, Cuny GD. Synthesis, in vitro evaluation and cocrystal structure of 4-oxo-[1]benzopyrano[4,3-c]pyrazole Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase (CpIMPDH) inhibitors. J Med Chem 2014; 57:10544-50. [PMID: 25474504 PMCID: PMC4281095 DOI: 10.1021/jm501527z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Cryptosporidium inosine 5′-monophosphate
dehydrogenase (CpIMPDH) has emerged as a therapeutic
target for treating Cryptosporidium parasites because it catalyzes a critical step in guanine nucleotide
biosynthesis. A 4-oxo-[1]benzopyrano[4,3-c]pyrazole
derivative was identified as a moderately potent (IC50 =
1.5 μM) inhibitor of CpIMPDH. We report a SAR
study for this compound series resulting in 8k (IC50 = 20 ± 4 nM). In addition, an X-ray crystal structure
of CpIMPDH·IMP·8k is also
presented.
Collapse
Affiliation(s)
- Zhuming Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Science and Research Building 2, Room 549A, Houston, Texas 77204, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jefferies R, Yang R, Woh CK, Weldt T, Milech N, Estcourt A, Armstrong T, Hopkins R, Watt P, Reid S, Armson A, Ryan UM. Target validation of the inosine monophosphate dehydrogenase (IMPDH) gene in Cryptosporidium using Phylomer(®) peptides. Exp Parasitol 2014; 148:40-8. [PMID: 25447124 DOI: 10.1016/j.exppara.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/07/2014] [Indexed: 01/03/2023]
Abstract
Cryptosporidiosis, a gastroenteric disease characterised mainly by diarrheal illnesses in humans and mammals is caused by infection with the protozoan parasite Cryptosporidium. Treatment options for cryptosporidiosis are limited, with the current therapeutic nitazoxanide, only partly efficacious in immunocompetent individuals. The parasite lacks de novo purine synthesis, and is exclusively dependant on purine salvage from its host. Inhibition of the inosine 5' monophosphate dehydrogenase (IMPDH), a purine salvage enzyme that is essential for DNA synthesis, thereby offers a potential drug target against this parasite. In the present study, a yeast-two-hybrid system was used to identify Phylomer peptides within a library constructed from the genomes of 25 phylogenetically diverse bacteria that targeted the IMPDH of Cryptosporidium parvum (IMPcp) and Cryptosporidium hominis (IMPch). We identified 38 unique interacting Phylomers, of which, 12 were synthesised and screened against C. parvum in vitro. Two Phylomers exhibited significant growth inhibition (81.2-83.8% inhibition; P < 0.05), one of which consistently exhibited positive interactions with IMPcp and IMPch during primary and recapitulation yeast two-hybrid screening and did not interact with either of the human IMPDH proteins. The present study highlightsthe potential of Phylomer peptides as target validation tools for Cryptosporidium and other organisms and diseases because of their ability to bind with high affinity to target proteins and disrupt function.
Collapse
Affiliation(s)
- R Jefferies
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia; Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - R Yang
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - C K Woh
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia; Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - T Weldt
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - N Milech
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - A Estcourt
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - T Armstrong
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - R Hopkins
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - P Watt
- Phylogica, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia
| | - S Reid
- School of Population Health, The University of Queensland, Herston, Queensland, Australia
| | - A Armson
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia
| | - U M Ryan
- School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia.
| |
Collapse
|
12
|
Checkley W, White AC, Jaganath D, Arrowood MJ, Chalmers RM, Chen XM, Fayer R, Griffiths JK, Guerrant RL, Hedstrom L, Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Priest JW, Roos DS, Striepen B, Thompson RCA, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. THE LANCET. INFECTIOUS DISEASES 2014; 15:85-94. [PMID: 25278220 DOI: 10.1016/s1473-3099(14)70772-8] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryptosporidium spp are well recognised as causes of diarrhoeal disease during waterborne epidemics and in immunocompromised hosts. Studies have also drawn attention to an underestimated global burden and suggest major gaps in optimum diagnosis, treatment, and immunisation. Cryptosporidiosis is increasingly identified as an important cause of morbidity and mortality worldwide. Studies in low-resource settings and high-income countries have confirmed the importance of cryptosporidium as a cause of diarrhoea and childhood malnutrition. Diagnostic tests for cryptosporidium infection are suboptimum, necessitating specialised tests that are often insensitive. Antigen-detection and PCR improve sensitivity, and multiplexed antigen detection and molecular assays are underused. Therapy has some effect in healthy hosts and no proven efficacy in patients with AIDS. Use of cryptosporidium genomes has helped to identify promising therapeutic targets, and drugs are in development, but methods to assess the efficacy in vitro and in animals are not well standardised. Partial immunity after exposure suggests the potential for successful vaccines, and several are in development; however, surrogates of protection are not well defined. Improved methods for propagation and genetic manipulation of the organism would be significant advances.
Collapse
Affiliation(s)
- William Checkley
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - A Clinton White
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Devan Jaganath
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Rachel M Chalmers
- National Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, USA
| | - Ronald Fayer
- Environmental Microbial Food Safety Laboratory, USDA, Beltsville, MD, USA
| | - Jeffrey K Griffiths
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Lizbeth Hedstrom
- Department of Biology and Department of Chemistry, Brandeis University, Waltham, MA, USA
| | | | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Jan R Mead
- Department of Pediatrics, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Mark Miller
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Honorine D Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Wesley A Van Voorhis
- Allergy and Infectious Diseases Division, Departments of Medicine, Global Health, and Microbiology, University of Washington, Seattle, WA, USA
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
13
|
Bessoff K, Spangenberg T, Foderaro JE, Jumani RS, Ward GE, Huston CD. Identification of Cryptosporidium parvum active chemical series by Repurposing the open access malaria box. Antimicrob Agents Chemother 2014; 58:2731-9. [PMID: 24566188 PMCID: PMC3993250 DOI: 10.1128/aac.02641-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/20/2014] [Indexed: 01/19/2023] Open
Abstract
The apicomplexan parasites Cryptosporidium parvum and Cryptosporidium hominis are major etiologic agents of human cryptosporidiosis. The infection is typically self-limited in immunocompetent adults, but it can cause chronic fulminant diarrhea in immunocompromised patients and malnutrition and stunting in children. Nitazoxanide, the current standard of care for cryptosporidiosis, is only partially efficacious for children and is no more effective than a placebo for AIDS patients. Unfortunately, financial obstacles to drug discovery for diseases that disproportionately affect low-income countries and technical limitations associated with studies of Cryptosporidium biology impede the development of better drugs for treating cryptosporidiosis. Using a cell-based high-throughput screen, we queried the Medicines for Malaria Venture (MMV) Open Access Malaria Box for activity against C. parvum. We identified 3 novel chemical series derived from the quinolin-8-ol, allopurinol-based, and 2,4-diamino-quinazoline chemical scaffolds that exhibited submicromolar potency against C. parvum. Potency was conserved in a subset of compounds from each scaffold with varied physicochemical properties, and two of the scaffolds identified exhibit more rapid inhibition of C. parvum growth than nitazoxanide, making them excellent candidates for further development. The 2,4-diamino-quinazoline and allopurinol-based compounds were also potent growth inhibitors of the related apicomplexan parasite Toxoplasma gondii, and a good correlation was observed in the relative activities of the compounds in the allopurinol-based series against T. gondii and C. parvum. Taken together, these data illustrate the utility of the Open Access Malaria Box as a source of both potential leads for drug development and chemical probes to elucidate basic biological processes in C. parvum and other apicomplexan parasites.
Collapse
Affiliation(s)
- Kovi Bessoff
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | | - Jenna E. Foderaro
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Rajiv S. Jumani
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Christopher D. Huston
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
- Cell, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
14
|
Expression of the essential Kinase PfCDPK1 from Plasmodium falciparum in Toxoplasma gondii facilitates the discovery of novel antimalarial drugs. Antimicrob Agents Chemother 2014; 58:2598-607. [PMID: 24550330 DOI: 10.1128/aac.02261-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have previously shown that genetic disruption of Toxoplasma gondii calcium-dependent protein kinase 3 (TgCDPK3) affects calcium ionophore-induced egress. We examined whether Plasmodium falciparum CDPK1 (PfCDPK1), the closest homolog of TgCDPK3 in the malaria parasite P. falciparum, could complement a TgCDPK3 mutant strain. PfCDPK1 is essential and plays critical roles in merozoite development, motility, and secretion. We show that expression of PfCDPK1 in the TgCDPK3 mutant strain rescues the egress defect. This phenotypic complementation requires the localization of PfCDPK1 to the plasma membrane and kinase activity. Interestingly, PfCDPK1-expressing Toxoplasma becomes more sensitive to egress inhibition by purfalcamine, a potent inhibitor of PfCDPK1 with low activity against TgCDPK3. Based on this result, we tested eight small molecules previously determined to inhibit the kinase activity of recombinant PfCDPK1 for their abilities to inhibit ionophore-induced egress in the PfCDPK1-expressing strain. While two of these chemicals did not inhibit egress, we found that six drugs affected this process selectively in PfCDPK1-expressing Toxoplasma. Using mutant versions of PfCDPK1 and TgCDPK3, we show that the selectivities of dasatinib and PLX-4720 are regulated by the gatekeeper residue in the ATP binding site. Importantly, we have confirmed that the three most potent inhibitors of egress in the PfCDPK1-expressing strain effectively kill P. falciparum. Thus, we have established and validated a recombinant strain of Toxoplasma that can be used as a surrogate for the discovery and analysis of PfCDPK1-specific inhibitors that can be developed as antimalarials.
Collapse
|
15
|
Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother 2013; 58:1603-14. [PMID: 24366728 DOI: 10.1128/aac.02075-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cryptosporidium parasites are a major cause of diarrhea and malnutrition in the developing world, a frequent cause of waterborne disease in the developed world, and a potential bioterrorism agent. Currently, available treatment is limited, and Cryptosporidium drug discovery remains largely unsuccessful. As a result, the pharmacokinetic properties required for in vivo efficacy have not been established. We have been engaged in a Cryptosporidium drug discovery program targeting IMP dehydrogenase (CpIMPDH). Here, we report the activity of eight potent and selective inhibitors of CpIMPDH in the interleukin-12 (IL-12) knockout mouse model, which mimics acute human cryptosporidiosis. Two compounds displayed significant antiparasitic activity, validating CpIMPDH as a drug target. The best compound, P131 (250 mg/kg of body weight/day), performed equivalently to paromomycin (2,000 mg/kg/day) when administered in a single dose and better than paromomycin when administered in three daily doses. One compound, A110, appeared to promote Cryptosporidium infection. The pharmacokinetic, uptake, and permeability properties of the eight compounds were measured. P131 had the lowest systemic distribution but accumulated to high concentrations within intestinal cells. A110 had the highest systemic distribution. These observations suggest that systemic distribution is not required, and may be a liability, for in vivo antiparasitic activity. Intriguingly, A110 caused specific alterations in fecal microbiota that were not observed with P131 or vehicle alone. Such changes may explain how A110 promotes parasitemia. Collectively, these observations suggest a blueprint for the development of anticryptosporidial therapy.
Collapse
|
16
|
Gorla SK, Kavitha M, Zhang M, Chin JEW, Liu X, Striepen B, Makowska-Grzyska M, Kim Y, Joachimiak A, Hedstrom L, Cuny GD. Optimization of benzoxazole-based inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase. J Med Chem 2013; 56:4028-43. [PMID: 23668331 DOI: 10.1021/jm400241j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5'-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure-activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD(+). The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 μM) against a panel of four mammalian cells lines.
Collapse
Affiliation(s)
- Suresh Kumar Gorla
- Department of Biology, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Johnson CR, Gorla SK, Kavitha M, Zhang M, Liu X, Striepen B, Mead JR, Cuny GD, Hedstrom L. Phthalazinone inhibitors of inosine-5'-monophosphate dehydrogenase from Cryptosporidium parvum. Bioorg Med Chem Lett 2012; 23:1004-7. [PMID: 23324406 DOI: 10.1016/j.bmcl.2012.12.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 11/27/2022]
Abstract
Cryptosporidium parvum (Cp) is a potential biowarfare agent and major cause of diarrhea and malnutrition. This protozoan parasite relies on inosine 5'-monophosphate dehydrogenase (IMPDH) for the production of guanine nucleotides. A CpIMPDH-selective N-aryl-3,4-dihydro-3-methyl-4-oxo-1-phthalazineacetamide inhibitor was previously identified in a high throughput screening campaign. Herein we report a structure-activity relationship study for the phthalazinone-based series that resulted in the discovery of benzofuranamide analogs that exhibit low nanomolar inhibition of CpIMPDH. In addition, the antiparasitic activity of select analogs in a Toxoplasma gondii model of C. parvum infection is also presented.
Collapse
Affiliation(s)
- Corey R Johnson
- Department of Chemistry, Brandeis University, MS009, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gorla SK, Kavitha M, Zhang M, Liu X, Sharling L, Gollapalli DR, Striepen B, Hedstrom L, Cuny GD. Selective and potent urea inhibitors of cryptosporidium parvum inosine 5'-monophosphate dehydrogenase. J Med Chem 2012; 55:7759-71. [PMID: 22950983 DOI: 10.1021/jm3007917] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptosporidium parvum and related species are zoonotic intracellular parasites of the intestine. Cryptosporidium is a leading cause of diarrhea in small children around the world. Infection can cause severe pathology in children and immunocompromised patients. This waterborne parasite is resistant to common methods of water treatment and therefore a prominent threat to drinking and recreation water even in countries with strong water safety systems. The drugs currently used to combat these organisms are ineffective. Genomic analysis revealed that the parasite relies solely on inosine-5'-monophosphate dehydrogenase (IMPDH) for the biosynthesis of guanine nucleotides. Herein, we report a selective urea-based inhibitor of C. parvum IMPDH (CpIMPDH) identified by high-throughput screening. We performed a SAR study of these inhibitors with some analogues exhibiting high potency (IC(50) < 2 nM) against CpIMPDH, excellent selectivity >1000-fold versus human IMPDH type 2 and good stability in mouse liver microsomes. A subset of inhibitors also displayed potent antiparasitic activity in a Toxoplasma gondii model.
Collapse
Affiliation(s)
- Suresh Kumar Gorla
- Department of Biology, Brandeis University , 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Makowska-Grzyska M, Kim Y, Wu R, Wilton R, Gollapalli DR, Wang XK, Zhang R, Jedrzejczak R, Mack JC, Maltseva N, Mulligan R, Binkowski TA, Gornicki P, Kuhn ML, Anderson WF, Hedstrom L, Joachimiak A. Bacillus anthracis inosine 5'-monophosphate dehydrogenase in action: the first bacterial series of structures of phosphate ion-, substrate-, and product-bound complexes. Biochemistry 2012; 51:6148-63. [PMID: 22788966 DOI: 10.1021/bi300511w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Adomako-Ankomah Y, Wier GM, Boyle JP. Beyond the genome: recent advances in Toxoplasma gondii functional genomics. Parasite Immunol 2012; 34:80-9. [PMID: 21722143 DOI: 10.1111/j.1365-3024.2011.01312.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent years have witnessed an explosion in the amount of genomic information available for Toxoplasma gondii and other closely related pathogens. These data, many of which have been made publicly available prior to publication, have facilitated a wide variety of functional genomics studies. In this review, we provide a brief overview of existing database tools for querying the Toxoplasma genome and associated genome-wide data and review recent publications that have been facilitated by these data. Topics covered include strain comparisons and quantitative trait loci mapping, gene expression analyses during the cell cycle as well as during parasite differentiation, and proteomics.
Collapse
Affiliation(s)
- Y Adomako-Ankomah
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
22
|
Coleman BI, Gubbels MJ. A genetic screen to isolate Toxoplasma gondii host-cell egress mutants. J Vis Exp 2012:3807. [PMID: 22349295 DOI: 10.3791/3807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca(2+), a signal that is also critical for host cell invasion. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology, only recently has genetic mapping of mutations underlying the phenotypes become routine. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants with a temperature-sensitive egress phenotype. The challenge for egress screens is to separate egressed from non-egressed parasites, which is complicated by fast re-invasion and general stickiness of the parasites to host cells. A previously established egress screen was based on a cumbersome series of biotinylation steps to separate intracellular from extracellular parasites. This method also did not generate conditional mutants resulting in weak phenotypes. The method described here overcomes the strong attachment of egressing parasites by including a glycan competitor, dextran sulfate (DS), that prevents parasites from sticking to the host cell. Moreover, extracellular parasites are specifically killed off by pyrrolidine dithiocarbamate (PDTC), which leaves intracellular parasites unharmed. Therefore, with a new phenotypic screen to specifically isolate parasite mutants with defects in induced egress, the power of genetics can now be fully deployed to unravel the molecular mechanisms underlying host cell egress.
Collapse
|
23
|
Kirubakaran S, Gorla SK, Sharling L, Zhang M, Liu X, Ray SS, Macpherson IS, Striepen B, Hedstrom L, Cuny GD. Structure-activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH. Bioorg Med Chem Lett 2012; 22:1985-8. [PMID: 22310229 DOI: 10.1016/j.bmcl.2012.01.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput screen. Here we report a structure-activity relationship study of benzimidazole-based compounds that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent antiparasitic activity in vitro.
Collapse
Affiliation(s)
- Sivapriya Kirubakaran
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The state of research for AIDS-associated opportunistic infections and the importance of sustaining smaller research communities. EUKARYOTIC CELL 2011; 11:90-7. [PMID: 22158712 DOI: 10.1128/ec.05143-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Pace DA, Fang J, Cintron R, Docampo MD, Moreno SNJ. Overexpression of a cytosolic pyrophosphatase (TgPPase) reveals a regulatory role of PP(i) in glycolysis for Toxoplasma gondii. Biochem J 2011; 440:229-40. [PMID: 21831041 PMCID: PMC4874478 DOI: 10.1042/bj20110641] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PP(i) is a critical element of cellular metabolism as both an energy donor and as an allosteric regulator of several metabolic pathways. The apicomplexan parasite Toxoplasma gondii uses PP(i) in place of ATP as an energy donor in at least two reactions: the glycolytic PP(i)-dependent PFK (phosphofructokinase) and V-H(+)-PPase [vacuolar H(+)-translocating PPase (pyrophosphatase)]. In the present study, we report the cloning, expression and characterization of cytosolic TgPPase (T. gondii soluble PPase). Amino acid sequence alignment and phylogenetic analysis indicates that the gene encodes a family I soluble PPase. Overexpression of the enzyme in extracellular tachyzoites led to a 6-fold decrease in the cytosolic concentration of PP(i) relative to wild-type strain RH tachyzoites. Unexpectedly, this subsequent reduction in PP(i) was associated with a higher glycolytic flux in the overexpressing mutants, as evidenced by higher rates of proton and lactate extrusion. In addition to elevated glycolytic flux, TgPPase-overexpressing tachyzoites also possessed higher ATP concentrations relative to wild-type RH parasites. These results implicate PP(i) as having a significant regulatory role in glycolysis and, potentially, other downstream processes that regulate growth and cell division.
Collapse
Affiliation(s)
- Douglas A Pace
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
26
|
Hedstrom L, Liechti G, Goldberg JB, Gollapalli DR. The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Curr Med Chem 2011; 18:1909-18. [PMID: 21517780 DOI: 10.2174/092986711795590129] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/04/2011] [Indexed: 12/30/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first committed step of guanosine 5'-monophosphate (GMP) biosynthesis, and thus regulates the guanine nucleotide pool, which in turn governs proliferation. Human IMPDHs are validated targets for immunosuppressive, antiviral and anticancer drugs, but as yet microbial IMPDHs have not been exploited in antimicrobial chemotherapy. Selective inhibitors of IMPDH from Cryptosporidium parvum have recently been discovered that display anti-parasitic activity in cell culture models of infection. X-ray crystal structure and mutagenesis experiments identified the structural features that determine inhibitor susceptibility. These features are found in IMPDHs from a wide variety of pathogenic bacteria, including select agents and multiply drug resistant strains. A second generation inhibitor displays antibacterial activity against Helicobacter pylori, demonstrating the antibiotic potential of IMPDH inhibitors.
Collapse
Affiliation(s)
- L Hedstrom
- Brandeis University, Departments of Biology, Waltham, MA 02454-9110, USA.
| | | | | | | |
Collapse
|
27
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
28
|
Gollapalli DR, Macpherson IS, Liechti G, Gorla SK, Goldberg JB, Hedstrom L. Structural determinants of inhibitor selectivity in prokaryotic IMP dehydrogenases. ACTA ACUST UNITED AC 2011; 17:1084-91. [PMID: 21035731 DOI: 10.1016/j.chembiol.2010.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/26/2010] [Accepted: 07/20/2010] [Indexed: 10/18/2022]
Abstract
The protozoan parasite Cryptosporidium parvum is a major cause of gastrointestinal disease; no effective drug therapy exists to treat this infection. Curiously, C. parvum IMPDH (CpIMPDH) is most closely related to prokaryotic IMPDHs, suggesting that the parasite obtained its IMPDH gene via horizontal transfer. We previously identified inhibitors of CpIMPDH that do not inhibit human IMPDHs. Here, we show that these compounds also inhibit IMPDHs from Helicobacter pylori, Borrelia burgdorferi, and Streptococcus pyogenes, but not from Escherichia coli. Residues Ala165 and Tyr358 comprise a structural motif that defines susceptible enzymes. Importantly, a second-generation CpIMPDH inhibitor has bacteriocidal activity on H. pylori but not E. coli. We propose that CpIMPDH-targeted inhibitors can be developed into a new class of antibiotics that will spare some commensal bacteria.
Collapse
|
29
|
Jammallo L, Eidell K, Davis PH, Dufort FJ, Cronin C, Thirugnanam S, Chiles TC, Roos DS, Gubbels MJ. An insertional trap for conditional gene expression in Toxoplasma gondii: identification of TAF250 as an essential gene. Mol Biochem Parasitol 2011; 175:133-43. [PMID: 21035508 PMCID: PMC3053073 DOI: 10.1016/j.molbiopara.2010.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022]
Abstract
Toxoplasmosis is characterized by fast lytic replication cycles leading to severe tissue lesions. Successful host cell invasion is essential for pathogenesis. The division cycle of Toxoplasma gondii is characterized by an unusual cell cycle progression and a distinct internal budding mechanism. To identify essential genes involved in the lytic cycle we devised an insertional gene trapping strategy using the Tet-transactivator system. In essence, a random, active promoter is displaced with a tetracycline regulatable promoter, which if in an essential gene, will result in a conditionally lethal phenotype upon tetracycline addition. We isolated eight mutants with growth defects, two of which displayed modest invasion defects, one of which had an additional cell cycle defect. The trapped loci were identified using expression microarrays, exploiting the tetracycline dependent expression of the trapped genes. In mutant 3.3H6 we identified TCP-1, a component of the chaperonin protein folding machinery under the control of the Tet promoter. However, this gene was not critical for growth of mutant 3.3H6. Subsequently, we identified a suppressor gene encoding a protein with a hypothetical function by guided cosmid complementation. In mutant 4.3B13, we identified TAF250, an RNA polymerase II complex component, as the trapped, essential gene. Furthermore, by mapping the plasmid insertion boundaries we identified multiple genomic rearrangements, which hint at a potential replication dependent DNA repair mechanism. Furthermore, these rearrangements provide an explanation for inconsistent locus rescue results observed by molecular biological approaches. Taken together, we have added an approach to identify and study essential genes in Toxoplasma.
Collapse
Affiliation(s)
| | - Keith Eidell
- Department of Biology, Boston College, Chestnut Hill, MA
| | - Paul H. Davis
- Department of Biology and Penn Genomics Institute, University of Pennsylvania, Philadelphia, PA
| | - Fay J. Dufort
- Department of Biology, Boston College, Chestnut Hill, MA
| | | | | | | | - David S. Roos
- Department of Biology and Penn Genomics Institute, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
30
|
Usha V, Gurcha SS, Lovering AL, Lloyd AJ, Papaemmanouil A, Reynolds RC, Besra GS. Identification of novel diphenyl urea inhibitors of Mt-GuaB2 active against Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2011; 157:290-299. [PMID: 21081761 DOI: 10.1099/mic.0.042549-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In contrast with most bacteria, which harbour a single inosine monophosphate dehydrogenase (IMPDH) gene, the genomic sequence of Mycobacterium tuberculosis H37Rv predicts three genes encoding IMPDH: guaB1, guaB2 and guaB3. These three genes were cloned and expressed in Escherichia coli to evaluate functional IMPDH activity. Purified recombinant Mt-GuaB2, which uses inosine monophosphate as a substrate, was identified as the only active GuaB orthologue in M. tuberculosis and showed optimal activity at pH 8.5 and 37 °C. Mt-GuaB2 was inhibited significantly in vitro by a panel of diphenyl urea-based derivatives, which were also potent anti-mycobacterial agents against M. tuberculosis and Mycobacterium smegmatis, with MICs in the range of 0.2-0.5 μg ml(-1). When Mt-GuaB2 was overexpressed on a plasmid in trans in M. smegmatis, a diphenyl urea analogue showed a 16-fold increase in MIC. Interestingly, when Mt-GuaB orthologues (Mt-GuaB1 and 3) were also overexpressed on a plasmid in trans in M. smegmatis, they also conferred resistance, suggesting that although these Mt-GuaB orthologues were inactive in vitro, they presumably titrate the effect of the inhibitory properties of the active compounds in vivo.
Collapse
Affiliation(s)
- Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sudagar S Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew L Lovering
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adrian J Lloyd
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | - Athina Papaemmanouil
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert C Reynolds
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35255, USA
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
31
|
Sharling L, Liu X, Gollapalli DR, Maurya SK, Hedstrom L, Striepen B. A screening pipeline for antiparasitic agents targeting cryptosporidium inosine monophosphate dehydrogenase. PLoS Negl Trop Dis 2010; 4:e794. [PMID: 20706578 PMCID: PMC2919388 DOI: 10.1371/journal.pntd.0000794] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/14/2010] [Indexed: 11/30/2022] Open
Abstract
Background The protozoan parasite Cryptosporidium parvum is responsible for significant disease burden among children in developing countries. In addition Cryptosporidiosis can result in chronic and life-threatening enteritis in AIDS patients, and the currently available drugs lack efficacy in treating these severe conditions. The discovery and development of novel anti-cryptosporidial therapeutics has been hampered by the poor experimental tractability of this pathogen. While the genome sequencing effort has identified several intriguing new targets including a unique inosine monophosphate dehydrogenase (IMPDH), pursuing these targets and testing inhibitors has been frustratingly difficult. Methodology and Principal Findings Here we have developed a pipeline of tools to accelerate the in vivo screening of inhibitors of C. parvum IMPDH. We have genetically engineered the related parasite Toxoplasma gondii to serve as a model of C. parvum infection as the first screen. This assay provides crucial target validation and a large signal window that is currently not possible in assays involving C. parvum. To further develop compounds that pass this first filter, we established a fluorescence-based assay of host cell proliferation, and a C. parvum growth assay that utilizes automated high-content imaging analysis for enhanced throughput. Conclusions and Significance We have used these assays to evaluate C. parvum IMPDH inhibitors emerging from our ongoing medicinal chemistry effort and have identified a subset of 1,2,3-triazole ethers that exhibit excellent in vivo selectivity in the T. gondii model and improved anti-cryptosporidial activity. Persistent diarrhea is a leading cause of illness and death among impoverished children, and a growing share of this disease burden can be attributed to the parasite Cryptosporidium. There are no vaccines to prevent Cryptosporidium infection, and the treatment options are limited and unreliable. Critically, no effective treatment exists for children or adults suffering from AIDS. Cryptosporidium presents many technical obstacles for drug discovery; perhaps the most important roadblock is the difficulty of monitoring drug action. Here we have developed a set of methods to accelerate the drug discovery process for cryptosporidiosis. We exploit the opportunities for experimental manipulation in the related parasite Toxoplasma to genetically engineer a Cryptosporidium model. This new model parasite mirrors the metabolism of Cryptosporidium for a particularly promising drug target that supplies the building blocks for DNA and RNA. Drug effectiveness can be assayed through simple fluorescence measurements for many candidates. Using this assay as an initial filter, and adapting other assays to a high throughput format, we identify several novel chemical compounds that exhibit markedly improved anti-cryptosporidial activity and excellent selectivity.
Collapse
Affiliation(s)
- Lisa Sharling
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Xiaoping Liu
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Deviprasad R. Gollapalli
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Sushil K. Maurya
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, United States of America
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Detwiler JT, Criscione CD. An infectious topic in reticulate evolution: introgression and hybridization in animal parasites. Genes (Basel) 2010; 1:102-23. [PMID: 24710013 PMCID: PMC3960858 DOI: 10.3390/genes1010102] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 02/08/2023] Open
Abstract
Little attention has been given to the role that introgression and hybridization have played in the evolution of parasites. Most studies are host-centric and ask if the hybrid of a free-living species is more or less susceptible to parasite infection. Here we focus on what is known about how introgression and hybridization have influenced the evolution of protozoan and helminth parasites of animals. There are reports of genome or gene introgression from distantly related taxa into apicomplexans and filarial nematodes. Most common are genetic based reports of potential hybridization among congeneric taxa, but in several cases, more work is needed to definitively conclude current hybridization. In the medically important Trypanosoma it is clear that some clonal lineages are the product of past hybridization events. Similarly, strong evidence exists for current hybridization in human helminths such as Schistosoma and Ascaris. There remain topics that warrant further examination such as the potential hybrid origin of polyploid platyhelminths. Furthermore, little work has investigated the phenotype or fitness, and even less the epidemiological significance of hybrid parasites.
Collapse
Affiliation(s)
- Jillian T Detwiler
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
| | - Charles D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
33
|
Macpherson IS, Kirubakaran S, Gorla SK, Riera TV, D'Aquino JA, Zhang M, Cuny GD, Hedstrom L. The structural basis of Cryptosporidium -specific IMP dehydrogenase inhibitor selectivity. J Am Chem Soc 2010; 132:1230-1. [PMID: 20052976 DOI: 10.1021/ja909947a] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5'-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 10(3) selectivity for the parasite enzyme over human IMPDH2.
Collapse
Affiliation(s)
- Iain S Macpherson
- Departments of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rider SD, Zhu G. Cryptosporidium: genomic and biochemical features. Exp Parasitol 2010; 124:2-9. [PMID: 19187778 PMCID: PMC2819285 DOI: 10.1016/j.exppara.2008.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/24/2022]
Abstract
Recent progress in understanding the unique biochemistry of the two closely related human enteric pathogens Cryptosporidium parvum and Cryptosporidium hominis has been stimulated by the elucidation of the complete genome sequences for both pathogens. Much of the work that has occurred since that time has been focused on understanding the metabolic pathways encoded by the genome in hopes of providing increased understanding of the parasite biology, and in the identification of novel targets for pharmacological interventions. However, despite identifying the genes encoding enzymes that participate in many of the major metabolic pathways, only a hand full of proteins have actually been the subjects of detailed scrutiny. Thus, much of the biochemistry of these parasites remains a true mystery.
Collapse
Affiliation(s)
- Stanley Dean Rider
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Guan Zhu
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| |
Collapse
|
35
|
Li W, Zhang N, Liang X, Li J, Gong P, Yu X, Ma G, Ryan U, Zhang X. Transient transfection of Cryptosporidium parvum using green fluorescent protein (GFP) as a marker. Mol Biochem Parasitol 2009; 168:143-8. [DOI: 10.1016/j.molbiopara.2009.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 11/26/2022]
|
36
|
Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev 2009; 19:613-9. [PMID: 19897356 DOI: 10.1016/j.gde.2009.10.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 11/20/2022]
Abstract
Horizontal gene transfer (HGT) is known to have contributed to the content of eukaryotic genomes, but the direct effects of HGT on eukaryotic evolution are more obscure because many of the best supported cases involve a new gene replacing a functionally similar homologue. Here, several cases of HGT conferring a plausible adaptive advantage are reviewed to examine emerging trends in such transfer events. In particular, HGT seems to play an important role in adaptation to parasitism and pathogenesis, as well as to other specific environmental conditions such as anaerobiosis or nitrogen and iron limitation in marine environments. Most, but not all, of the functionally significant HGT to eukaryotes comes from bacteria, in part due to chance, but probably also because bacteria have greater metabolic diversity to offer.
Collapse
|
37
|
Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS. Cryptosporidium and cryptosporidiosis. ADVANCES IN PARASITOLOGY 2009; 59:77-158. [PMID: 16182865 DOI: 10.1016/s0065-308x(05)59002-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cryptosporidium is one of the most common enteric protozoan parasites of vertebrates with a wide host range that includes humans and domestic animals. It is a significant cause of diarrhoeal disease and an ubiquitous contaminant of water which serves as an excellent vehicle for transmission. A better understanding of the development and life cycle of Cryptosporidium, and new insights into its phylogenetic relationships, have illustrated the need to re-evaluate many aspects of the biology of Cryptosporidium. This has been reinforced by information obtained from the recent successful Cryptosporidium genome sequencing project, which has emphasised the uniqueness of this organism in terms of its parasite life style and evolutionary biology. This chapter provides an up to date review of the biology, biochemistry and host parasite relationships of Cryptosporidium.
Collapse
Affiliation(s)
- R C A Thompson
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Maurya SK, Gollapalli DR, Kirubakaran S, Zhang M, Johnson CR, Benjamin NN, Hedstrom L, Cuny GD. Triazole inhibitors of Cryptosporidium parvum inosine 5'-monophosphate dehydrogenase. J Med Chem 2009; 52:4623-30. [PMID: 19624136 PMCID: PMC2810100 DOI: 10.1021/jm900410u] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. This protozoan parasite cannot salvage guanine or guanosine and therefore relies on inosine 5'-monophosphate dehydrogenase (IMPDH) for biosynthesis of guanine nucleotides and hence for survival. Because C. parvum IMPDH is highly divergent from the host counterpart, selective inhibitors could potentially be used to treat cryptosporidiosis with minimal effects on its mammalian host. A series of 1,2,3-triazole containing ether CpIMPDH inhibitors are described. A structure-activity relationship study revealed that a small alkyl group on the alpha-position of the ether was required, with the (R)-enantiomer significantly more active than the (S)-enantiomer. Electron-withdrawing groups in the 3- and/or 4-positions of the pendent phenyl ring were best, and conversion of the quinoline containing inhibitors to quinoline-N-oxides retained inhibitory activity both in the presence and absence of bovine serum albumin. The 1,2,3-triazole CpIMPDH inhibitors provide new tools for elucidating the role of IMPDH in C. parvum and may serve as potential therapeutics for treating cryptosporidiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gregory D. Cuny
- Corresponding author. , Tel no.: 1-617-768-8640, Fax: 1-617-768-8606
| |
Collapse
|
39
|
Zarlenga DS, Gasbarre LC. From parasite genomes to one healthy world: Are we having fun yet? Vet Parasitol 2009; 163:235-49. [PMID: 19560277 DOI: 10.1016/j.vetpar.2009.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster was made available in March, 2000 and in the following year, working drafts of the human genome were generated with the completed sequence (92%) being released in 2003. Recent advancements and next-generation technologies have made sequencing common place and have infiltrated every aspect of biological research, including parasitology. To date, sequencing of 32 apicomplexa and 24 nematode genomes are either in progress or near completion, and over 600k nematode EST and 200k apicomplexa EST submissions fill the databases. However, the winds have shifted and efforts are now refocusing on how best to store, mine and apply these data to problem solving. Herein we tend not to summarize existing X-omics datasets or present new technological advances that promise future benefits. Rather, the information to follow condenses up-to-date-applications of existing technologies to problem solving as it relates to parasite research. Advancements in non-parasite systems are also presented with the proviso that applications to parasite research are in the making.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA, ARS, ANRI Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|
40
|
Affiliation(s)
- Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
41
|
Meissner M, Klaus K. What new cell biology findings could bring to therapeutics: is it time for a phenome-project in Toxoplasma gondii? Mem Inst Oswaldo Cruz 2009; 104:185-9. [DOI: 10.1590/s0074-02762009000200010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/03/2008] [Indexed: 12/27/2022] Open
|
42
|
Hyde JE. Fine targeting of purine salvage in Cryptosporidium parasites. Trends Parasitol 2008; 24:336-9. [DOI: 10.1016/j.pt.2008.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 12/30/2022]
|
43
|
Riera TV, Wang W, Josephine HR, Hedstrom L. A kinetic alignment of orthologous inosine-5'-monophosphate dehydrogenases. Biochemistry 2008; 47:8689-96. [PMID: 18642884 PMCID: PMC2646883 DOI: 10.1021/bi800674a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
IMP dehydrogenase (IMPDH) catalyzes two very different chemical transformations, a dehydrogenase reaction and a hydrolysis reaction. The enzyme toggles between the open conformation required for the dehydrogenase reaction and the closed conformation of the hydrolase reaction by moving a mobile flap into the NAD site. Despite these multiple functional constraints, the residues of the flap and NAD site are highly diverged, and the equilibrium between open and closed conformations (Kc) varies widely. In order to understand how differences in the dynamic properties of the flap influence the catalytic cycle, we have delineated the kinetic mechanism of IMPDH from the pathogenic protozoan parasite Cryptosporidium parvum (CpIMPDH), which was obtained from a bacterial source through horizontal gene transfer, and its host counterpart, human IMPDH type 2 (hIMPDH2). Interestingly, the intrinsic binding energy of NAD+ differentially distributes across the dinucleotide binding sites of these two enzymes as well as in the previously characterized IMPDH from Tritrichomonas foetus (TfIMPDH). Both the dehydrogenase and hydrolase reactions display significant differences in the host and parasite enzymes, in keeping with the phylogenetic and structural divergence of their active sites. Despite large differences in Kc, the catalytic power of both the dehydrogenase and hydrolase conformations are similar in CpIMPDH and TfIMPDH. This observation suggests that the closure of the flap simply sets the stage for catalysis rather than plays a more active role in the chemical transformation. This work provides the essential mechanistic framework for drug discovery.
Collapse
Affiliation(s)
- Thomas V Riera
- Departments of Biochemistry and Chemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
44
|
Huang J, Gogarten JP. Concerted gene recruitment in early plant evolution. Genome Biol 2008; 9:R109. [PMID: 18611267 PMCID: PMC2530860 DOI: 10.1186/gb-2008-9-7-r109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/24/2008] [Accepted: 07/08/2008] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. RESULTS Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. Ten of these genes are rarely found in cyanobacteria or have additional plastid-derived homologs in plants. These genes most likely provided new functions, often essential for plant growth and development, to the ancestral plant. Many remaining genes may represent replacements of endogenous homologs with a similar function. Furthermore, over 78% of the anciently acquired genes are related to the biogenesis and functionality of plastids, the defining character of plants. CONCLUSION Our data suggest that, although ancient horizontal gene transfer events did occur in eukaryotic evolution, the number of acquired genes does not predict the role of horizontal gene transfer in the adaptation of the recipient organism. Our data also show that multiple independently acquired genes are able to generate and optimize key evolutionary novelties in major eukaryotic groups. In light of these findings, we propose and discuss a general mechanism of horizontal gene transfer in the macroevolution of eukaryotes.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
45
|
Gubbels MJ, Lehmann M, Muthalagi M, Jerome ME, Brooks CF, Szatanek T, Flynn J, Parrot B, Radke J, Striepen B, White MW. Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma gondii. PLoS Pathog 2008; 4:e36. [PMID: 18282098 PMCID: PMC2242837 DOI: 10.1371/journal.ppat.0040036] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/07/2008] [Indexed: 11/18/2022] Open
Abstract
Apicomplexa are obligate intracellular pathogens that have fine-tuned their proliferative strategies to match a large variety of host cells. A critical aspect of this adaptation is a flexible cell cycle that remains poorly understood at the mechanistic level. Here we describe a forward genetic dissection of the apicomplexan cell cycle using the Toxoplasma model. By high-throughput screening, we have isolated 165 temperature sensitive parasite growth mutants. Phenotypic analysis of these mutants suggests regulated progression through the parasite cell cycle with defined phases and checkpoints. These analyses also highlight the critical importance of the peculiar intranuclear spindle as the physical hub of cell cycle regulation. To link these phenotypes to parasite genes, we have developed a robust complementation system based on a genomic cosmid library. Using this approach, we have so far complemented 22 temperature sensitive mutants and identified 18 candidate loci, eight of which were independently confirmed using a set of sequenced and arrayed cosmids. For three of these loci we have identified the mutant allele. The genes identified include regulators of spindle formation, nuclear trafficking, and protein degradation. The genetic approach described here should be widely applicable to numerous essential aspects of parasite biology.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Margaret Lehmann
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Mani Muthalagi
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Maria E Jerome
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Carrie F Brooks
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Tomasz Szatanek
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Jayme Flynn
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Ben Parrot
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Josh Radke
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (BS); (MWW)
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- * To whom correspondence should be addressed. E-mail: (BS); (MWW)
| |
Collapse
|
46
|
Behnke MS, Radke JB, Smith AT, Sullivan WJ, White MW. The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol Microbiol 2008; 68:1502-18. [PMID: 18433450 PMCID: PMC2440561 DOI: 10.1111/j.1365-2958.2008.06249.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2008] [Indexed: 11/28/2022]
Abstract
Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis-elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii, we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite- and bradyzoite-specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis-acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite-specific NTPase during bradyzoite development were fine mapped to a 6-8 bp resolution and these minimal cis-elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel-shift experiments show that mapped cis-elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a 'poised' chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation.
Collapse
Affiliation(s)
- Michael S Behnke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Josh B Radke
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| | - Aaron T Smith
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - William J Sullivan
- Department Pharmacology and Toxicology, Indiana University School of MedicineIndianapolis, IN 46202, USA
| | - Michael W White
- Department of Veterinary Molecular Biology, Montana State University BozemanMT 59717, USA
| |
Collapse
|
47
|
Chin Lee SH, Jefferies R, Watt P, Hopkins R, Sotzik F, Reid S, Armson A, Boxell A, Ryan U. In vitro analysis of the TAT protein transduction domain as a drug delivery vehicle in protozoan parasites. Exp Parasitol 2008; 118:303-7. [DOI: 10.1016/j.exppara.2007.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/20/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
48
|
Dzierszinski FS, Hunter CA. Advances in the use of genetically engineered parasites to study immunity to Toxoplasma gondii. Parasite Immunol 2008; 30:235-44. [PMID: 18194347 DOI: 10.1111/j.1365-3024.2007.01016.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studying in vivo biology and the host immune response to Toxoplasma gondii has yielded many insights into the pathogenesis of this parasitic organism. It is recognized that this infection in immune competent hosts elicits a strong Th1-type response, which is characterized by the generation of parasite-specific CD4(+) and CD8(+) T cells that produce IFN-gamma and provide protective immunity. One of the problems associated with studying resistance to Toxoplasma has been the lack of reagents to track parasite-specific T cell responses with a high degree of specificity. To overcome this difficulty, it is possible to use a combination of transgenic parasites that are engineered to express well-characterized heterologous reporters or antigens, and T cell hybridomas or naïve T cells that express a T cell receptor specific for the processed peptide. These approaches have provided new insights into parasite dissemination, antigen presentation, as well as immune regulation.
Collapse
Affiliation(s)
- F S Dzierszinski
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Canada.
| | | |
Collapse
|
49
|
Transfection of the protozoan parasite Perkinsus marinus. Mol Biochem Parasitol 2008; 157:44-53. [DOI: 10.1016/j.molbiopara.2007.09.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/13/2007] [Accepted: 09/27/2007] [Indexed: 11/22/2022]
|
50
|
Umejiego NN, Gollapalli D, Sharling L, Volftsun A, Lu J, Benjamin NN, Stroupe AH, Riera TV, Striepen B, Hedstrom L. Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. CHEMISTRY & BIOLOGY 2008; 15:70-7. [PMID: 18215774 PMCID: PMC2441818 DOI: 10.1016/j.chembiol.2007.12.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 11/28/2022]
Abstract
Cryptosporidium parvum is an important human pathogen and potential bioterrorism agent. No vaccines exist against C. parvum, the drugs currently approved to treat cryptosporidiosis are ineffective, and drug discovery is challenging because the parasite cannot be maintained continuously in cell culture. Mining the sequence of the C. parvum genome has revealed that the only route to guanine nucleotides is via inosine-5'-monophosphate dehydrogenase (IMPDH). Moreover, phylogenetic analysis suggests that the IMPDH gene was obtained from bacteria by lateral gene transfer. Here we exploit the unexpected evolutionary divergence of parasite and host enzymes by designing a high-throughput screen to target the most diverged portion of the IMPDH active site. We have identified four parasite-selective IMPDH inhibitors that display antiparasitic activity with greater potency than paromomycin, the current gold standard for anticryptosporidial activity.
Collapse
Affiliation(s)
- Nwakaso N. Umejiego
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, 500 D.W. Brooks Drive, University of Georgia, Athens, GA 30602 USA
| | - Deviprasad Gollapalli
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
| | - Lisa Sharling
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, 500 D.W. Brooks Drive, University of Georgia, Athens, GA 30602 USA
| | - Anna Volftsun
- Department of Chemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
| | - Jennifer Lu
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
| | - Nicole N. Benjamin
- Department of Chemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
| | - Adam H. Stroupe
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, 500 D.W. Brooks Drive, University of Georgia, Athens, GA 30602 USA
| | - Thomas V. Riera
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, 500 D.W. Brooks Drive, University of Georgia, Athens, GA 30602 USA
| | - Lizbeth Hedstrom
- Department of Biochemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
- Department of Chemistry, Brandeis University, 415 South St., Waltham MA 02454 USA
| |
Collapse
|