1
|
Mensah IK, Gowher H. Signaling Pathways Governing Cardiomyocyte Differentiation. Genes (Basel) 2024; 15:798. [PMID: 38927734 PMCID: PMC11202427 DOI: 10.3390/genes15060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyocytes are the largest cell type that make up the heart and confer beating activity to the heart. The proper differentiation of cardiomyocytes relies on the efficient transmission and perception of differentiation cues from several signaling pathways that influence cardiomyocyte-specific gene expression programs. Signaling pathways also mediate intercellular communications to promote proper cardiomyocyte differentiation. We have reviewed the major signaling pathways involved in cardiomyocyte differentiation, including the BMP, Notch, sonic hedgehog, Hippo, and Wnt signaling pathways. Additionally, we highlight the differences between different cardiomyocyte cell lines and the use of these signaling pathways in the differentiation of cardiomyocytes from stem cells. Finally, we conclude by discussing open questions and current gaps in knowledge about the in vitro differentiation of cardiomyocytes and propose new avenues of research to fill those gaps.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Kolahdouzmohammadi M, Kolahdouz-Mohammadi R, Tabatabaei SA, Franco B, Totonchi M. Revisiting the Role of Autophagy in Cardiac Differentiation: A Comprehensive Review of Interplay with Other Signaling Pathways. Genes (Basel) 2023; 14:1328. [PMID: 37510233 PMCID: PMC10378789 DOI: 10.3390/genes14071328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Autophagy is a critical biological process in which cytoplasmic components are sequestered in autophagosomes and degraded in lysosomes. This highly conserved pathway controls intracellular recycling and is required for cellular homeostasis, as well as the correct functioning of a variety of cellular differentiation programs, including cardiomyocyte differentiation. By decreasing oxidative stress and promoting energy balance, autophagy is triggered during differentiation to carry out essential cellular remodeling, such as protein turnover and lysosomal degradation of organelles. When it comes to controlling cardiac differentiation, the crosstalk between autophagy and other signaling networks such as fibroblast growth factor (FGF), Wnt, Notch, and bone morphogenetic proteins (BMPs) is essential, yet the interaction between autophagy and epigenetic controls remains poorly understood. Numerous studies have shown that modulating autophagy and precisely regulating it can improve cardiac differentiation, which can serve as a viable strategy for generating mature cardiac cells. These findings suggest that autophagy should be studied further during cardiac differentiation. The purpose of this review article is not only to discuss the relationship between autophagy and other signaling pathways that are active during the differentiation of cardiomyocytes but also to highlight the importance of manipulating autophagy to produce fully mature cardiomyocytes, which is a tough challenge.
Collapse
Affiliation(s)
- Mina Kolahdouzmohammadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), 80138 Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131 Naples, Italy
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
4
|
Xiao Q, Wang L, Zhang J, Zhong X, Guo Z, Yu J, Ma Y, Wu H. Activation of Wnt/β-Catenin Signaling Involves 660 nm Laser Radiation on Epithelium and Modulates Lipid Metabolism. Biomolecules 2022; 12:1389. [PMID: 36291598 PMCID: PMC9599573 DOI: 10.3390/biom12101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Research has proven that light treatment, specifically red light radiation, can provide more clinical benefits to human health. Our investigation was firstly conducted to characterize the tissue morphology of mouse breast post 660 nm laser radiation with low power and long-term exposure. RNA sequencing results revealed that light exposure with a higher intervention dosage could cause a number of differentially expressed genes compared with a low intervention dosage. Gene ontology analysis, protein-protein interaction network analysis, and gene set enrichment analysis results suggested that 660 nm light exposure can activate more transcription-related pathways in HC11 breast epithelial cells, and these pathways may involve modulating critical gene expression. To consider the critical role of the Wnt/T-catenin pathway in light-induced modulation, we hypothesized that this pathway might play a major role in response to 660 nm light exposure. To validate our hypothesis, we conducted qRT-PCR, immunofluorescence staining, and Western blot assays, and relative results corroborated that laser radiation could promote expression levels of β-catenin and relative phosphorylation. Significant changes in metabolites and pathway analysis revealed that 660 nm laser could affect nucleotide metabolism by regulating purine metabolism. These findings suggest that the Wnt/β-catenin pathway may be the major sensor for 660 nm laser radiation, and it may be helpful to rescue drawbacks or side effects of 660 nm light exposure through relative interventional agents.
Collapse
Affiliation(s)
- Qiyang Xiao
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| | - Lijing Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Juling Zhang
- Center for Faculty Development, South China Normal University, Guangzhou 510631, China
| | - Xinyu Zhong
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhou Guo
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Jiahao Yu
- Shandong Zhongbaokang Medical Implements Co., Ltd., Zibo 255000, China
| | - Yuanyuan Ma
- School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Haigang Wu
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| |
Collapse
|
5
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
6
|
Yan W, Li Y, Li G, Yin L, Zhang H, Yan S. Differentiation of Adipose Tissue-Derived Stem Cells into Cardiomyocytes: An Overview. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cardiovascular diseases, including congenital and acquired cardiovascular diseases, impose a severe burden on healthcare systems worldwide. Although bone marrow-derived stem cells (BMSCs) therapy can be an effective therapeutic strategy for the heart disease, relatively low abundance,
difficult accessibility, and small tissue volume hinder the clinical usefulness. Adipose tissue-derived stem cells (ADSCs) show similar potential with BMSCs to differentiate into lineages and tissues, such as smooth muscle cells, endothelial cells, and adipocytes, with attractiveness of obtaining
adipose tissue easily and repeatedly, and a simple separation procedure. We briefly summarize the current understanding of the cardiomyocytes differentiated from ADSCs
Collapse
Affiliation(s)
- Wenju Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| | - Yan Li
- Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| | - Gaiqin Li
- Department of Gastroenterology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Luhua Yin
- Department of Vasculocardiology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Huanyi Zhang
- Department of Vasculocardiology, Taian City Central Hospital, Taian, Shandong, 271000, China
| | - Suhua Yan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
7
|
Soma Y, Morita Y, Kishino Y, Kanazawa H, Fukuda K, Tohyama S. The Present State and Future Perspectives of Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells. Front Cardiovasc Med 2021; 8:774389. [PMID: 34957258 PMCID: PMC8692665 DOI: 10.3389/fcvm.2021.774389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
The number of patients with heart failure (HF) is increasing with aging in our society worldwide. Patients with HF who are resistant to medication and device therapy are candidates for heart transplantation (HT). However, the shortage of donor hearts is a serious issue. As an alternative to HT, cardiac regenerative therapy using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, is expected to be realized. Differentiation of hPSCs into cardiomyocytes (CMs) is facilitated by mimicking normal heart development. To prevent tumorigenesis after transplantation, it is important to eliminate non-CMs, including residual hPSCs, and select only CMs. Among many CM selection systems, metabolic selection based on the differences in metabolism between CMs and non-CMs is favorable in terms of cost and efficacy. Large-scale culture systems have been developed because a large number of hPSC-derived CMs (hPSC-CMs) are required for transplantation in clinical settings. In large animal models, hPSC-CMs transplanted into the myocardium improved cardiac function in a myocardial infarction model. Although post-transplantation arrhythmia and immune rejection remain problems, their mechanisms and solutions are under investigation. In this manner, the problems of cardiac regenerative therapy are being solved individually. Thus, cardiac regenerative therapy with hPSC-CMs is expected to become a safe and effective treatment for HF in the near future. In this review, we describe previous studies related to hPSC-CMs and discuss the future perspectives of cardiac regenerative therapy using hPSC-CMs.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
9
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
10
|
Yang H, Shao N, Holmström A, Zhao X, Chour T, Chen H, Itzhaki I, Wu H, Ameen M, Cunningham NJ, Tu C, Zhao MT, Tarantal AF, Abilez OJ, Wu JC. Transcriptome analysis of non human primate-induced pluripotent stem cell-derived cardiomyocytes in 2D monolayer culture vs. 3D engineered heart tissue. Cardiovasc Res 2021; 117:2125-2136. [PMID: 33002105 PMCID: PMC8318103 DOI: 10.1093/cvr/cvaa281] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Stem cell therapy has shown promise for treating myocardial infarction via re-muscularization and paracrine signalling in both small and large animals. Non-human primates (NHPs), such as rhesus macaques (Macaca mulatta), are primarily utilized in preclinical trials due to their similarity to humans, both genetically and physiologically. Currently, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are delivered into the infarcted myocardium by either direct cell injection or an engineered tissue patch. Although both approaches have advantages in terms of sample preparation, cell-host interaction, and engraftment, how the iPSC-CMs respond to ischaemic conditions in the infarcted heart under these two different delivery approaches remains unclear. Here, we aim to gain a better understanding of the effects of hypoxia on iPSC-CMs at the transcriptome level. METHODS AND RESULTS NHP iPSC-CMs in both monolayer culture (2D) and engineered heart tissue (EHT) (3D) format were exposed to hypoxic conditions to serve as surrogates of direct cell injection and tissue implantation in vivo, respectively. Outcomes were compared at the transcriptome level. We found the 3D EHT model was more sensitive to ischaemic conditions and similar to the native in vivo myocardium in terms of cell-extracellular matrix/cell-cell interactions, energy metabolism, and paracrine signalling. CONCLUSION By exposing NHP iPSC-CMs to different culture conditions, transcriptome profiling improves our understanding of the mechanism of ischaemic injury.
Collapse
Affiliation(s)
- Huaxiao Yang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Department of Biomedical Engineering, University of North Texas, 390 N. Elm Street K240B, Denton, TX 76207-7102, USA
| | - Ningyi Shao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alexandra Holmström
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Xin Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Tony Chour
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodong Chen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ilanit Itzhaki
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Haodi Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Nathan J Cunningham
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Ming-Tao Zhao
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Alice F Tarantal
- Department of Pediatrics, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- Department Cell Biology and Human Anatomy, School of Medicine, One Shields Avenue, Davis, CA 95616-8542, USA
- California National Primate Research Center, UC Davis, One Shields Avenue, Davis, CA 95616-8542, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Division of Cardiology, Department of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive G1120B, Stanford, CA 94305-5454, USA
| |
Collapse
|
11
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
12
|
Deal KK, Rosebrock JC, Eeds AM, DeKeyser JML, Musser MA, Ireland SJ, May-Zhang AA, Buehler DP, Southard-Smith EM. Sox10-cre BAC transgenes reveal temporal restriction of mesenchymal cranial neural crest and identify glandular Sox10 expression. Dev Biol 2020; 471:119-137. [PMID: 33316258 DOI: 10.1016/j.ydbio.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer C Rosebrock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela M Eeds
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jean-Marc L DeKeyser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Northwestern University, Dept. of Pharmacology, USA
| | - Melissa A Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aaron A May-Zhang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
13
|
Effects of DMSO on the Pluripotency of Cultured Mouse Embryonic Stem Cells (mESCs). Stem Cells Int 2020; 2020:8835353. [PMID: 33123203 PMCID: PMC7584961 DOI: 10.1155/2020/8835353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
DMSO is a commonly used solvent in biological studies, as it is an amphipathic molecule soluble in both aqueous and organic media. For that reason, it is the vehicle of choice for several water-insoluble substances used in research. At the molecular and cellular level, DMSO is a hydrogen-bound disrupter, an intercellular electrical uncoupler, and a cryoprotectant, among other properties. Importantly, DMSO often has overlooked side effects. In stem cell research, the literature is scarce, but there are reports on the effect of DMSO in human embryoid body differentiation and on human pluripotent stem cell priming towards differentiation, via modulation of cell cycle. However, in mouse embryonic stem cell (mESC) culture, there is almost no available information. Taking into consideration the almost ubiquitous use of DMSO in experiments involving mESCs, we aimed to understand the effect of very low doses of DMSO (0.0001%-0.2%), usually used to introduce pharmacological inhibitors/modulators, in mESCs cultured in two different media (2i and FBS-based media). Our results show that in the E14Tg2a mESC line used in this study, even the smallest concentration of DMSO had minor effects on the total number of cells in serum-cultured mESCs. However, these effects could not be explained by alterations in cell cycle or apoptosis. Furthermore, DMSO did not affect pluripotency or differentiation potential. All things considered, and although control experiments should be carried out in each cell line that is used, it is reasonable to conclude that DMSO at the concentrations used here has a minimal effect on this particular mESC line.
Collapse
|
14
|
Liu X, Yang Y, Wang X, Guo X, Lu C, Kang J, Wang G. MiR-184 directly targets Wnt3 in cardiac mesoderm differentiation of embryonic stem cells. Stem Cells 2020; 38:1568-1577. [PMID: 32997855 DOI: 10.1002/stem.3282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022]
Abstract
Embryonic stem (ES) cells have the property of self-renewal and multi-directional differentiation, and provide an ideal model for studying early embryo development in vitro. Wnt3, as Wnt family member 3, plays a vital role during ES cell differentiation. However, the exact regulatory mechanism of Wnt3 remains to be elucidated. MicroRNAs can directly regulate gene expression at the post-transcriptional level and play critical function in cell fate determination. Here, we found the expression level of miR-184 decreased when ES cells differentiated into cardiac mesoderm then increased during the process as differentiated into cardiomyocytes, which negatively correlated with the expression of Wnt3. Overexpression of miR-184 during the process of ES cell differentiation into cardiac mesoderm repressed cardiac mesoderm differentiation and cardiomyocyte formation. Bioinformatics prediction and mechanism studies showed that miR-184 directly bound to the 3'UTR region of Wnt3 and inhibited the expression level of Wnt3. Consistently, knockdown of Wnt3 mimicked the effects of miR-184-overexpression on ES cell differentiation into cardiac mesoderm, whereas overexpression of Wnt3 rescued the inhibition effects of miR-184 overexpression on ES cell differentiation. These findings demonstrated that miR-184 is a direct regulator of Wnt3 during the differentiation process of ES cells, further enriched the epigenetic regulatory network of ES cell differentiation into cardiac mesoderm and cardiomyocytes.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xing Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Hao S, Fan Q, Bai Y, Fang H, Zhou J, Fukuda T, Gu J, Li M, Li W. Core Fucosylation of Intestinal Epithelial Cells Protects Against Salmonella Typhi Infection via Up-Regulating the Biological Antagonism of Intestinal Microbiota. Front Microbiol 2020; 11:1097. [PMID: 32528455 PMCID: PMC7266941 DOI: 10.3389/fmicb.2020.01097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The fucosylated carbohydrate moieties on intestinal epithelial cells (IECs) are involved in the creation of an environmental niche for commensal and pathogenic bacteria. Core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is the major fucosylation pattern on the N-glycans of the surface glycoproteins on IECs, however, the role of IECs core fucosylation during infection remains unclear. This study was conducted to investigate the interaction between IECs core fucosylation and gut microbiota, and the effects of this interaction on protecting Salmonella enterica subsp. enterica serovar Typhi (S. Typhi) infection. Firstly, the Fut8+/+ and Fut8+/– mice were infected with S. Typhi. The level of IECs core fucosylation and protein expression of intestinal mucosa were then detected by LCA blot and Western blot, respectively. The gut microbiota of Fut8+/+ and Fut8+/– mice before and after S. Typhi infection was assessed by 16S rRNA sequencing. Our results showed that core fucosylation was ubiquitous expressed on the intestinal mucosa of mice and had significant effects on their gut microbiota. Fut8+/– mice was more susceptive to S. Typhi infection than Fut8+/+ mice. Interestingly, infection of S. Typhi upregulated the core fucosylation level of IECs and increased the abundances of beneficial microorganisms such as Lactobacillus and Akkermansia spp. Further in vitro and in vivo studies demonstrated that Wnt/β-catenin signaling pathway mediated the elevation of IECs core fucosylation level upon infection of S. Typhi. Taken together, our data in this study revealed that the IECs core fucosylation plays an important role in protecting against S. Typhi infection via up-regulating the biological antagonism of intestinal microbiota.
Collapse
Affiliation(s)
- Sijia Hao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingjie Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yaqiang Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Fang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaorui Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Jung SE, Choi JW, Moon H, Oh S, Lim S, Lee S, Kim SW, Hwang KC. Small G protein signaling modulator 3 (SGSM3) knockdown attenuates apoptosis and cardiogenic differentiation in rat mesenchymal stem cells exposed to hypoxia. PLoS One 2020; 15:e0231272. [PMID: 32271805 PMCID: PMC7145021 DOI: 10.1371/journal.pone.0231272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) may be important in cell death and survival due to cell-to-cell communication-independent mechanisms. In our previous study, we found that small G protein signaling modulator 3 (SGSM3), a partner of Cx43, contributes to myocardial infarction (MI) in rat hearts. Based on these previous results, we hypothesized that SGSM3 could also play a role in bone marrow-derived rat mesenchymal stem cells (MSCs), which differentiate into cardiomyocytes and/or cells with comparable phenotypes under low oxygen conditions. Cx43 and Cx43-related factor expression profiles were compared between normoxic and hypoxic conditions according to exposure time, and Sgsm3 gene knockdown (KD) using siRNA transfection was performed to validate the interaction between SGSM3 and Cx43 and to determine the roles of SGSM3 in rat MSCs. We identified that SGSM3 interacts with Cx43 in MSCs under different oxygen conditions and that Sgsm3 knockdown inhibits apoptosis and cardiomyocyte differentiation under hypoxic stress. SGSM3/Sgsm3 probably has an effect on MSC survival and thus therapeutic potential in diseased hearts, but SGSM3 may worsen the development of MSC-based therapeutic approaches in regenerative medicine. This study was performed to help us better understand the mechanisms involved in the therapeutic efficacy of MSCs, as well as provide data that could be used pharmacologically.
Collapse
Affiliation(s)
- Seung Eun Jung
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Sena Oh
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, Republic of Korea
- International St. Mary’s Hospital, Catholic Kwandong University, Incheon Metropolitan City, Republic of Korea
| |
Collapse
|
17
|
Lin CM, Fang WJ, Wang BW, Pan CM, Chua SK, Hou SW, Shyu KG. (-)-Epigallocatechin Gallate Promotes MicroRNA 145 Expression against Myocardial Hypoxic Injury through Dab2/Wnt3a/β-catenin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:341-356. [DOI: 10.1142/s0192415x20500172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
MicroRNA 145 (miR-145) is a critical modulator of cardiovascular diseases. The downregulation of myocardial miR-145 is followed by an increase in disabled-2 (Dab2) expression in cardiomyocytes. (-)-epigallocatechin gallate (EGCG) is a flavonoid that has been evaluated extensively due to its diverse pharmacological properties including anti-inflammatory effects. The aim of this study was to investigate the cardioprotective effects of EGCG under hypoxia-induced stress in vitro and in vivo. The hypoxic insult led to the suppression of miR-145 expression in cultured rat cardiomyocytes in a concentration-dependent manner. Western blotting and real-time PCR were performed. In rat myocardial infarction study, in situ hybridization, and immunofluorescent analyses were adopted. The western blot and real-time PCR data revealed that hypoxic stress with 2.5% O2 suppressed the expression of miR-145 and Wnt3a/[Formula: see text]-catenin in cultured rat cardiomyocytes but augmented Dab2. Treatment with EGCG attenuated Dab2 expression, but increased Wnt3a and [Formula: see text]-catenin in hypoxic cultured cardiomyocytes. Following in vivo myocardial infarction (MI) study, the data revealed the myocardial infarct area reduced by 48.5%, 44.6%, and 48.5% in EGCG (50[Formula: see text]mg/kg) or miR-145 dominant or Dab2 siRNA groups after myocardial infarction for 28 days, respectively. This study demonstrated that EGCG increased miR-145, Wnt3a, and [Formula: see text]-catenin expression but attenuated Dab2 expression. Moreover, EGCG ameliorated myocardial ischemia in vivo. The novel suppressive effect was mediated through the miR-145 and Dab2/Wnt3a/[Formula: see text]-catenin pathways.
Collapse
Affiliation(s)
- Chiu-Mei Lin
- Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, Fu Jen Catholic University, Taipei City, Taiwan
- Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City, Taiwan
| | - Wei-Jen Fang
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Bao-Wei Wang
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chun-Ming Pan
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Su-Kiat Chua
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, Fu Jen Catholic University, Taipei City, Taiwan
| | - Sheng-Wen Hou
- Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, Fu Jen Catholic University, Taipei City, Taiwan
| | - Kou-Gi Shyu
- Department of Emergency Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Hwang WY, Marquez J, Khokha MK. Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis. Front Physiol 2019; 10:953. [PMID: 31417417 PMCID: PMC6682594 DOI: 10.3389/fphys.2019.00953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Frog model organisms have been appreciated for their utility in exploring physiological phenomena for nearly a century. Now, a vibrant community of biologists that utilize this model organism has poised Xenopus to serve as a high throughput vertebrate organism to model patient-driven genetic diseases. This has facilitated the investigation of effects of patient mutations on specific organs and signaling pathways. This approach promises a rapid investigation into novel mechanisms that disrupt normal organ morphology and function. Considering that many disease states are still interrogated in vitro to determine relevant biological processes for further study, the prospect of interrogating genetic disease in Xenopus in vivo is an attractive alternative. This model may more closely capture important aspects of the pathology under investigation such as cellular micro environments and local forces relevant to a specific organ's development and homeostasis. This review aims to highlight recent methodological advances that allow investigation of genetic disease in organ-specific contexts in Xenopus as well as provide examples of how these methods have led to the identification of novel mechanisms and pathways important for understanding human disease.
Collapse
Affiliation(s)
| | | | - Mustafa K. Khokha
- Department of Pediatrics and Genetics, The Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
19
|
Giannakou A, Sicko RJ, Kay DM, Zhang W, Romitti PA, Caggana M, Shaw GM, Jelliffe-Pawlowski LL, Mills JL. Copy number variants in hypoplastic right heart syndrome. Am J Med Genet A 2018; 176:2760-2767. [DOI: 10.1002/ajmg.a.40527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/23/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Andreas Giannakou
- Division of Intramural Population Health Research, Department of Health and Human Services; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda Maryland
| | - Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health; Albany New York
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health; Albany New York
| | - Wei Zhang
- Division of Intramural Population Health Research, Department of Health and Human Services; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda Maryland
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health; The University of Iowa; Iowa City Iowa
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health; Albany New York
| | - Gary M. Shaw
- Department of Pediatrics; Stanford University School of Medicine; Stanford California
| | | | - James L. Mills
- Division of Intramural Population Health Research, Department of Health and Human Services; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda Maryland
| |
Collapse
|
20
|
Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018; 9:201. [PMID: 30053890 PMCID: PMC6062943 DOI: 10.1186/s13287-018-0947-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of global morbidity and mortality. Heart failure remains a major contributor to this mortality. Despite major therapeutic advances over the past decades, a better understanding of molecular and cellular mechanisms of CVD as well as improved therapeutic strategies for the management or treatment of heart failure are increasingly needed. Loss of myocardium is a major driver of heart failure. An attractive approach that appears to provide promising results in reducing cardiac degeneration is stem cell therapy (SCT). In this review, we describe different types of stem cells, including embryonic and adult stem cells, and we provide a detailed discussion of the properties of induced pluripotent stem cells (iPSCs). We also present and critically discuss the key methods used for converting somatic cells to pluripotent cells and iPSCs to cardiomyocytes (CMs), along with their advantages and limitations. Integrating and non-integrating reprogramming methods as well as characterization of iPSCs and iPSC-derived CMs are discussed. Furthermore, we critically present various methods of differentiating iPSCs to CMs. The value of iPSC-CMs in regenerative medicine as well as myocardial disease modeling and cardiac regeneration are emphasized.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, “Attikon” Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christopher Rao
- Department of Surgery, Queen Elizabeth Hospital, Woolwich, London, UK
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hassan Dehaini
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
22
|
Nanotechnology-Based Cardiac Targeting and Direct Cardiac Reprogramming: The Betrothed. Stem Cells Int 2017; 2017:4940397. [PMID: 29375623 PMCID: PMC5742458 DOI: 10.1155/2017/4940397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases represent the first cause of morbidity in Western countries, and chronic heart failure features a significant health care burden in developed countries. Efforts in the attempt of finding new possible strategies for the treatment of CHF yielded several approaches based on the use of stem cells. The discovery of direct cardiac reprogramming has unveiled a new approach to heart regeneration, allowing, at least in principle, the conversion of one differentiated cell type into another without proceeding through a pluripotent intermediate. First developed for cancer treatment, nanotechnology-based approaches have opened new perspectives in many fields of medical research, including cardiovascular research. Nanotechnology could allow the delivery of molecules with specific biological activity at a sustained and controlled rate in heart tissue, in a cell-specific manner. Potentially, all the mediators and structural molecules involved in the fibrotic process could be selectively targeted by nanocarriers, but to date, only few experiences have been made in cardiac research. This review highlights the most prominent concepts that characterize both the field of cardiac reprogramming and a nanomedicine-based approach to cardiovascular diseases, hypothesizing a possible synergy between these two very promising fields of research in the treatment of heart failure.
Collapse
|
23
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
24
|
Song XW, Yuan QN, Tang Y, Cao M, Shen YF, Zeng ZY, Lei CH, Li S, Zhao XX, Yang YJ. Conditionally targeted deletion of PSEN1 leads to diastolic heart dysfunction. J Cell Physiol 2017; 233:1548-1557. [PMID: 28617969 DOI: 10.1002/jcp.26057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/14/2017] [Indexed: 11/07/2022]
Abstract
Recently, PSEN1 has been reported to have mutations in dilated cardiomyopathy pedigrees. However, the function and mechanism of PSEN1 in cardiomyopathy remains unresolved. Here, we established four types of genetically modified mice to determine the function of PSEN1 in cardiac development and pathology. PSEN1 null mutation resulted in perinatal death, retardation of heart growth, ventricular dilatation, septum defects, and valvular thickening. PSEN1 knockout in adults led to decreased muscle fibers, widened sarcomere Z lines and reduced lengths of sarcomeres in cardiomyocytes. Cardiovascular loss of function of PSEN1 induced by Sm22a-Cre or Myh6-Cre/ER/tamoxifen also resulted in severe ultrastructural abnormalities, such as relaxed gap junctions between neighboring cardiomyocytes. Functionally, cardiovascular deletion of PSEN1 caused spontaneous mortality from birth to adulthood and led to diastolic heart dysfunction, including decreased volume of the left ventricle at the end-systolic and end-diastolic stages. Additionally, in a myocardial ischemia model, deletion of PSEN1 in the cardiovascular system first protected mice by inducing adaptive hypertrophy but ultimately resulted in severe heart failure. Furthermore, a collection of genes was abnormally expressed in the hearts of cardiac-specific PSEN1 knockout mice. They were enriched in cell proliferation, calcium regulation, and so on. Taken together, dynamic regulation and abnormal function of PSEN1 underlie the pathogenesis of cardiovascular diseases due to ultrastructural abnormality of cardiomyocytes.
Collapse
MESH Headings
- Animals
- Diastole
- Gene Deletion
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Mice, Knockout
- Myocardial Ischemia/genetics
- Myocardial Ischemia/metabolism
- Myocardial Ischemia/pathology
- Myocardial Ischemia/physiopathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Phenotype
- Presenilin-1/deficiency
- Presenilin-1/genetics
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Xiao-Wei Song
- Department of Biophysics, Second Military Medical University, Shanghai, China
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Qing-Ning Yuan
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Ying Tang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Mi Cao
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Ya-Feng Shen
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Zeng
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Chang-Hai Lei
- Department of Biophysics, Second Military Medical University, Shanghai, China
| | - SongHua Li
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Yong-Ji Yang
- Department of Biophysics, Second Military Medical University, Shanghai, China
| |
Collapse
|
25
|
Chai H, Yan Z, Huang K, Jiang Y, Zhang L. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect. Mol Cell Biochem 2017; 439:171-187. [PMID: 28822034 DOI: 10.1007/s11010-017-3146-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.
Collapse
Affiliation(s)
- Hui Chai
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Zhaoyuan Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Ke Huang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | | | - Lin Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China.
| |
Collapse
|
26
|
Shi X, Li W, Liu H, Yin D, Zhao J. β-Cyclodextrin induces the differentiation of resident cardiac stem cells to cardiomyocytes through autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1425-1434. [DOI: 10.1016/j.bbamcr.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/13/2022]
|
27
|
Gregoire S, Li G, Sturzu AC, Schwartz RJ, Wu SM. YY1 Expression Is Sufficient for the Maintenance of Cardiac Progenitor Cell State. Stem Cells 2017; 35:1913-1923. [PMID: 28580685 DOI: 10.1002/stem.2646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/22/2017] [Accepted: 04/17/2017] [Indexed: 01/19/2023]
Abstract
During cardiac development, DNA binding transcription factors and epigenetic modifiers regulate gene expression in cardiac progenitor cells (CPCs). We have previously shown that Yin Yang 1 (YY1) is essential for the commitment of mesodermal precursors into CPCs. However, the role of YY1 in the maintenance of CPC phenotype and their differentiation into cardiomyocytes is unknown. In this study, we found, by genome-wide transcriptional profiling and phenotypic assays, that YY1 overexpression prevents cardiomyogenic differentiation and maintains the proliferative capacity of CPCs. We show further that the ability of YY1 to regulate CPC phenotype is associated with its ability to modulate histone modifications specifically at a developmentally critical enhancer of Nkx2-5 and other key cardiac transcription factor such as Tbx5. Specifically, YY1 overexpression helps to maintain markers of gene activation such as the acetylation of histone H3 at lysine 9 (H3K9Ac) and lysine 27 (H3K27Ac) as well as trimethylation at lysine 4 (H3K4Me3) at the Nkx2-5 cardiac enhancer. Furthermore, transcription factors associated proteins such as PoIII, p300, and Brg1 are also enriched at the Nkx2-5 enhancer with YY1 overexpression. The biological activities of YY1 in CPCs appear to be cell autonomous, based coculture assays in differentiating embryonic stem cells. Altogether, these results demonstrate that YY1 overexpression is sufficient to maintain a CPC phenotype through its ability to sustain the presence of activating epigenetic/chromatin marks at key cardiac enhancers. Stem Cells 2017;35:1913-1923.
Collapse
Affiliation(s)
- Serge Gregoire
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Guang Li
- Cardiovascular Institute, Institute of Stem Cell and Regenerative Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony C Sturzu
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert J Schwartz
- Texas Heart Institute and Center for Molecular Medicine and Experimental Therapeutics, University of Houston, Houston, Texas, USA
| | - Sean M Wu
- Cardiovascular Institute, Institute of Stem Cell and Regenerative Biology, Stanford University School of Medicine, Stanford, California, USA.,Division of Cardiovascular Medicine, Department of Medicine, Institute of Stem Cell and Regenerative Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
28
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
29
|
Wang X, Zhu Y, Sun C, Wang T, Shen Y, Cai W, Sun J, Chi L, Wang H, Song N, Niu C, Shen J, Cong W, Zhu Z, Xuan Y, Li X, Jin L. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts. Front Pharmacol 2017; 8:32. [PMID: 28217097 PMCID: PMC5289949 DOI: 10.3389/fphar.2017.00032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yuting Zhu
- Haining Hospital of Traditional Chinese Medicine Haining, China
| | - Congcong Sun
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Tao Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yingjie Shen
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Wanhui Cai
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Jia Sun
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Lisha Chi
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang, China
| | - Chao Niu
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Jiayi Shen
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Weitao Cong
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zhongxin Zhu
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yuanhu Xuan
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Litai Jin
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|
30
|
Xu Y, Wang Q, Li D, Wu Z, Li D, Lu K, Zhao Y, Sun Y. Protective effect of lithium chloride against hypoglycemia-induced apoptosis in neuronal PC12 cell. Neuroscience 2016; 330:100-108. [PMID: 27241942 DOI: 10.1016/j.neuroscience.2016.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
Abstract
Hypoglycemia is defined by an arbitrary plasma glucose level lower than 3.9mmol/L and is a most common and feared adverse effect of treatment of diabetes mellitus. Emerging evidences demonstrated that hypoglycemia could induce enhanced apoptosis. Lithium chloride (LiCl), a FDA approved drug clinically used for treatment of bipolar disorders, is recently proven having neuroprotection against various stresses in the cellular and animal models of neural disorders. Here, we have established a hypoglycemia model in vitro and assessed the neuroprotective efficacy of LiCl against hypoglycemia-induced apoptosis and the underlying cellular and molecular mechanisms. Our studies showed that LiCl protects against hypoglycemia-induced neurotoxicity in vitro. Exposure to hypoglycemia results in enhanced apoptosis and the underlying cellular and molecular mechanisms involved inhibition of the canonical Wnt signaling pathway by decreasing wnt3a levels, β-catenin levels and increasing GSK-3β levels, which was confirmed by the use of Wnt-specific activator LiCl. Hypoglycemia-induced apoptosis were significantly reversed by LiCl, leading to increased cell survival. LiCl also alters the expression/levels of the Wnt pathway genes/proteins, which were reduced due to exposed to hypoglycemia. Overall, our results conclude that LiCl provides neuroprotection against hypoglycemia-induced apoptosis via activation of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Central Hospital of Tai'an, Taishan Medical College, Tai'an, Shandong Province, China
| | - Dongsheng Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Yongning Sun
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
31
|
Li W, Liu H, Liu P, Yin D, Zhang S, Zhao J. Sphingosylphosphorylcholine promotes the differentiation of resident Sca-1 positive cardiac stem cells to cardiomyocytes through lipid raft/JNK/STAT3 and β-catenin signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1579-88. [DOI: 10.1016/j.bbamcr.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
|
32
|
Abstract
Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target.
Collapse
|
33
|
MiR218 Modulates Wnt Signaling in Mouse Cardiac Stem Cells by Promoting Proliferation and Inhibiting Differentiation through a Positive Feedback Loop. Sci Rep 2016; 6:20968. [PMID: 26860887 PMCID: PMC4748271 DOI: 10.1038/srep20968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/14/2016] [Indexed: 12/31/2022] Open
Abstract
MiRNA expression was determined in both proliferating and differentiated cardiac stem cells (CSCs) through a comprehensive miRNA microarray analysis. We selected miR218 for functional follow-up studies to examine its significance in CSCs. First, we observed that the expression of miR218 was altered in CSCs during differentiation into cardiomyocytes, and transfection of an miR218 mimic or miR218 inhibitor affected the myocardial differentiation of CSCs. Furthermore, we observed that a negative regulator of Wnt signaling, sFRP2, was a direct target of miR218, and the protein levels of sFRP2 were increased in cells transfected with the synthetic miR218 inhibitor. In contrast, transfection with the miR218 mimic decreased the expression of sFRP2 and potentiated Wnt signaling. The subsequent down-regulation of sFRP2 by shRNA potentiated Wnt signaling, contributing to a gene expression program that is important for CSC proliferation and cardiac differentiation. Specifically, canonical Wnt signaling induced miR218 transcription. Thus, miR218 and Wnt signaling were coupled through a feed-forward positive feedback loop, forming a biological regulatory circuit. Together, these results provide the first evidence that miR218 plays an important role in CSC proliferation and differentiation through the canonical Wnt signaling pathway.
Collapse
|
34
|
Martherus R, Jain R, Takagi K, Mendsaikhan U, Turdi S, Osinska H, James JF, Kramer K, Purevjav E, Towbin JA. Accelerated cardiac remodeling in desmoplakin transgenic mice in response to endurance exercise is associated with perturbed Wnt/β-catenin signaling. Am J Physiol Heart Circ Physiol 2016; 310:H174-H187. [PMID: 26545710 PMCID: PMC4796627 DOI: 10.1152/ajpheart.00295.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/02/2015] [Indexed: 12/13/2022]
Abstract
Arrhythmogenic ventricular cardiomyopathy (AVC) is a frequent underlying cause for arrhythmias and sudden cardiac death especially during intense exercise. The mechanisms involved remain largely unknown. The purpose of this study was to investigate how chronic endurance exercise contributes to desmoplakin (DSP) mutation-induced AVC pathogenesis. Transgenic mice with overexpression of desmoplakin, wild-type (Tg-DSP(WT)), or the R2834H mutant (Tg-DSP(R2834H)) along with control nontransgenic (NTg) littermates were kept sedentary or exposed to a daily running regimen for 12 wk. Cardiac function and morphology were analyzed using echocardiography, electrocardiography, histology, immunohistochemistry, RNA, and protein analysis. At baseline, 4-wk-old mice from all groups displayed normal cardiac function. When subjected to exercise, all mice retained normal cardiac function and left ventricular morphology; however, Tg-DSP(R2834H) mutants displayed right ventricular (RV) dilation and wall thinning, unlike NTg and Tg-DSP(WT). The Tg-DSP(R2834H) hearts demonstrated focal fat infiltrations in RV and cytoplasmic aggregations consisting of desmoplakin, plakoglobin, and connexin 43. These aggregates coincided with disruption of the intercalated disks, intermediate filaments, and microtubules. Although Tg-DSP(R2834H) mice already displayed high levels of p-GSK3-β(Ser9) and p-AKT1(Ser473) under sedentary conditions, decrease of nuclear GSK3-β and AKT1 levels with reduced p-GSK3-β(Ser9), p-AKT1(Ser473), and p-AKT1(Ser308) and loss of nuclear junctional plakoglobin was apparent after exercise. In contrast, Tg-DSP(WT) showed upregulation of p-AKT1(Ser473), p-AKT1(Ser308), and p-GSK3-β(Ser9) in response to exercise. Our data suggest that endurance exercise accelerates AVC pathogenesis in Tg-DSP(R2834H) mice and this event is associated with perturbed AKT1 and GSK3-β signaling. Our study suggests a potential mechanism-based approach to exercise management in patients with AVC.
Collapse
Affiliation(s)
- Ruben Martherus
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rahul Jain
- Department of Cardiology, Indiana University, Indianapolis, Indiana; and
| | - Ken Takagi
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Jikei University, Tokyo, Japan
| | - Uzmee Mendsaikhan
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Subat Turdi
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hanna Osinska
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeanne F James
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kristen Kramer
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Enkhsaikhan Purevjav
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey A Towbin
- Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio;
| |
Collapse
|
35
|
Lozano-Velasco E, Hernández-Torres F, Daimi H, Serra SA, Herraiz A, Hove-Madsen L, Aránega A, Franco D. Pitx2 impairs calcium handling in a dose-dependent manner by modulating Wnt signalling. Cardiovasc Res 2016; 109:55-66. [PMID: 26243430 DOI: 10.1093/cvr/cvv207] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/16/2015] [Indexed: 01/02/2023] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common type of arrhythmia in humans, yet the genetic cause of AF remains elusive. Genome-wide association studies (GWASs) have reported risk variants in four distinct genetic loci, and more recently, a meta-GWAS has further implicated six new loci in AF. However, the functional role of these AF GWAS-related genes in AF and their inter-relationship remain elusive. METHODS AND RESULTS To get further insights into the molecular mechanisms driven by Pitx2, calcium handling and novel AF GWAS-associated gene expression were analysed in two distinct Pitx2 loss-of-function models with distinct basal electrophysiological defects; a novel Pitx2 conditional mouse line, Sox2CrePitx2, and our previously reported atrial-specific NppaCrePitx2 line. Molecular analyses of the left atrial appendage in NppaCrePitx2(+/-) and NppaCrePitx2(-/-) adult mice demonstrate that AF GWAS-associated genes such as Zfhx3, Kcnn3, and Wnt8a are severely impaired but not Cav1, Synpo2l, nor Prrx1. In addition, multiple calcium-handling genes such as Atp2a2, Casq2, and Plb are severely altered in atrial-specific NppaCrePitx2 mice in a dose-dependent manner. Functional assessment of calcium homeostasis further underscores these findings. In addition, multiple AF-related microRNAs are also impaired. In vitro over-expression of Wnt8, but not Zfhx3, impairs calcium handling and modulates microRNA expression signature identified in Pitx2 loss-of-function models. CONCLUSION Our data demonstrate a dose-dependent relation between Pitx2 expression and the expression of AF susceptibility genes, calcium handling, and microRNAs and identify a complex regulatory network orchestrated by Pitx2 with large impact on atrial arrhythmogenesis susceptibility.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | - Houria Daimi
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Selma A Serra
- Cardiac Rhythm and Contraction Group, Cardiovascular Research Centre CSIC-ICCC and IIB Sant Pau, Barcelona, Spain
| | - Adela Herraiz
- Cardiac Rhythm and Contraction Group, Cardiovascular Research Centre CSIC-ICCC and IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, Cardiovascular Research Centre CSIC-ICCC and IIB Sant Pau, Barcelona, Spain
| | - Amelia Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| |
Collapse
|
36
|
Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep 2015; 13:720-30. [PMID: 26648540 PMCID: PMC4686056 DOI: 10.3892/mmr.2015.4586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 09/24/2015] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent stem cells derived from early stage embryos. It remains unclear whether inhibiting the Wnt/β‑catenin signaling pathway using dickkopf Wnt signaling pathway inhibitor 1 (DKK1) impacts on the differentiation potential of mouse ESCs in vitro and in vivo. In the present study, immunohistochemical staining was used to measure the expression of markers of the three germ layers in ESCs and teratomas derived from ESCs. The expression of markers for the Wnt/β‑catenin signaling pathway were detected by reverse transcription‑polymerase chain reaction (RT‑qPCR). Immunohistochemistry and western blotting indicated that the expression levels of octamer‑binding transcription factor 4 in the DKK1‑treated ESC group were significantly greater compared with the control ESCs. Reduced expression levels of NeuroD and bone morphogenetic protein 4 were observed in the DKK1‑treated ESCs and teratomas derived from DKK1‑treated ESCs compared with the control group. Increased expression levels of SOX17 were observed in the DKK1‑treated ESCs compared with the control group. RT‑qPCR indicated that β‑catenin expression was significantly reduced in DKK1‑treated ESCs and teratomas derived from DKK1‑treated ESCs compared with the control groups. Western blotting indicated no alterations in the expression of GSK‑3β, however, the levels of phosphorylated‑GSK‑3β were significantly greater in the DKK1 treatment groups, while cyclin D1 and c‑Myc expression levels were significantly reduced in the DKK1 treatment groups compared with the control groups. These results suggest that inhibiting Wnt signaling in ESCs using DKK1 may promote mouse ESCs to differentiate into endoderm in vitro and in vivo, and suppress the tumorigenicity of ESCs.
Collapse
Affiliation(s)
- Liping Ou
- Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liaoqiong Fang
- Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hejing Tang
- Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hai Qiao
- Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaomei Zhang
- Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhibiao Wang
- Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
37
|
Blaber EA, Finkelstein H, Dvorochkin N, Sato KY, Yousuf R, Burns BP, Globus RK, Almeida EAC. Microgravity Reduces the Differentiation and Regenerative Potential of Embryonic Stem Cells. Stem Cells Dev 2015; 24:2605-21. [PMID: 26414276 PMCID: PMC4652210 DOI: 10.1089/scd.2015.0218] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue differentiation. We found that exposure to microgravity for 15 days inhibits mESC differentiation and expression of terminal germ layer lineage markers in EBs. Additionally, microgravity-unloaded EBs retained stem cell self-renewal markers, suggesting that mechanical loading at Earth's gravity is required for normal differentiation of mESCs. Finally, cells recovered from microgravity-unloaded EBs and then cultured at Earth's gravity showed greater stemness, differentiating more readily into contractile cardiomyocyte colonies. These results indicate that mechanical unloading of stem cells in microgravity inhibits their differentiation and preserves stemness, possibly providing a cellular mechanistic basis for the inhibition of tissue regeneration in space and in disuse conditions on earth.
Collapse
Affiliation(s)
- Elizabeth A Blaber
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California.,2 School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, Australia
| | - Hayley Finkelstein
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Natalya Dvorochkin
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Kevin Y Sato
- 3 FILMSS Wyle, Space Biology, NASA Ames Research Center , Moffett Field, California
| | - Rukhsana Yousuf
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Brendan P Burns
- 2 School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, Australia .,4 Australian Centre for Astrobiology, University of New South Wales , Sydney, Australia
| | - Ruth K Globus
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Eduardo A C Almeida
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| |
Collapse
|
38
|
Adutwum-Ofosu KK, Magnani D, Theil T, Price DJ, Fotaki V. The molecular and cellular signatures of the mouse eminentia thalami support its role as a signalling centre in the developing forebrain. Brain Struct Funct 2015; 221:3709-27. [PMID: 26459142 PMCID: PMC5009181 DOI: 10.1007/s00429-015-1127-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
The mammalian eminentia thalami (EmT) (or thalamic eminence) is an embryonic forebrain structure of unknown function. Here, we examined the molecular and cellular properties of the mouse EmT. We first studied mRNA expression of signalling molecules and found that the EmT is a structure, rich in expression of secreted factors, with Wnts being the most abundantly detected. We then examined whether EmT tissue could induce cell fate changes when grafted ectopically. For this, we transplanted EmT tissue from a tau-GFP mouse to the ventral telencephalon of a wild type host, a telencephalic region where Wnt signalling is not normally active but which we showed in culture experiments is competent to respond to Wnts. We observed that the EmT was able to induce in adjacent ventral telencephalic cells ectopic expression of Lef1, a transcriptional activator and a target gene of the Wnt/β-catenin pathway. These Lef1-positive;GFP-negative cells expressed the telencephalic marker Foxg1 but not Ascl1, which is normally expressed by ventral telencephalic cells. These results suggest that the EmT has the capacity to activate Wnt/β-catenin signalling in the ventral telencephalon and to suppress ventral telencephalic gene expression. Altogether, our data support a role of the EmT as a signalling centre in the developing mouse forebrain.
Collapse
Affiliation(s)
- Kevin Kofi Adutwum-Ofosu
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Department of Anatomy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dario Magnani
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Thomas Theil
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Vassiliki Fotaki
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
39
|
He S, Lu Y, Liu X, Huang X, Keller ET, Qian CN, Zhang J. Wnt3a: functions and implications in cancer. CHINESE JOURNAL OF CANCER 2015; 34:554-62. [PMID: 26369691 PMCID: PMC4593336 DOI: 10.1186/s40880-015-0052-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
Wnt3a, one of Wnt family members, plays key roles in regulating pleiotropic cellular functions, including self-renewal, proliferation, differentiation, and motility. Accumulating evidence has suggested that Wnt3a promotes or suppresses tumor progression via the canonical Wnt signaling pathway depending on cancer type. In addition, the roles of Wnt3a signaling can be inhibited by multiple proteins or chemicals. Herein, we summarize the latest findings on Wnt3a as an important therapeutic target in cancer.
Collapse
Affiliation(s)
- Sha He
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Yi Lu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xin Huang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 51006, P.R. China.
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China. .,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
40
|
Choi SC, Choi JH, Cui LH, Seo HR, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Mixl1 and Flk1 Are Key Players of Wnt/TGF-β Signaling During DMSO-Induced Mesodermal Specification in P19 cells. J Cell Physiol 2015; 230:1807-21. [PMID: 25521758 DOI: 10.1002/jcp.24892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/09/2014] [Indexed: 01/03/2023]
Abstract
Dimethyl sulfoxide (DMSO) is widely used to induce multilineage differentiation of embryonic and adult progenitor cells. To date, little is known about the mechanisms underlying DMSO-induced mesodermal specification. In this study, we investigated the signaling pathways and lineage-determining genes involved in DMSO-induced mesodermal specification in P19 cells. Wnt/β-catenin and TGF-β superfamily signaling pathways such as BMP, TGF-β and GDF1 signaling were significantly activated during DMSO-induced mesodermal specification. In contrast, Nodal/Cripto signaling pathway molecules, required for endoderm specification, were severely downregulated. DMSO significantly upregulated the expression of cardiac mesoderm markers but inhibited the expression of endodermal and hematopoietic lineage markers. Among the DMSO-activated cell lineage markers, the expression of Mixl1 and Flk1 was dramatically upregulated at both the transcript and protein levels, and the populations of Mixl1+, Flk1+ and Mixl1+/Flk1+ cells also increased significantly. DMSO modulated cell cycle molecules and induced cell apoptosis, resulting in significant cell death during EB formation of P19 cells. An inhibitor of Flk1, SU5416 significantly blocked expressions of TGF-β superfamily members, mesodermal cell lineage markers and cell cycle molecules but it did not affect Wnt molecules. These results demonstrate that Mixl1 and Flk1 play roles as key downstream or interacting effectors of Wnt/TGF-β signaling pathway during DMSO-induced mesodermal specification in P19 cells.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:377-92. [PMID: 25813860 DOI: 10.1089/ten.teb.2014.0662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies.
Collapse
Affiliation(s)
- Abhirath Parikh
- 1 Lonza Walkersville, Inc. , Lonza Group, Walkersville, Maryland
| | - Jincheng Wu
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts
| | - Robert M Blanton
- 3 Division of Cardiology, Molecular Cardiology Research Institute , Tufts Medical Center, Tufts School of Medicine, Boston, Massachusetts
| | - Emmanuel S Tzanakakis
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts.,4 Tufts Clinical and Translational Science Institute (CTSI) , Boston, Massachusetts
| |
Collapse
|
42
|
Farouz Y, Chen Y, Terzic A, Menasché P. Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation. Stem Cells 2015; 33:1021-35. [DOI: 10.1002/stem.1929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Yohan Farouz
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
| | - Yong Chen
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
| | | | - Philippe Menasché
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Department of Cardiovascular Surgery; Paris France
| |
Collapse
|
43
|
Impact of umbilical cord blood-derived mesenchymal stem cells on cardiovascular research. BIOMED RESEARCH INTERNATIONAL 2015; 2015:975302. [PMID: 25861654 PMCID: PMC4377460 DOI: 10.1155/2015/975302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/11/2015] [Indexed: 01/06/2023]
Abstract
Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB). In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs) on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.
Collapse
|
44
|
Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci 2015; 16:4043-67. [PMID: 25689424 PMCID: PMC4346943 DOI: 10.3390/ijms16024043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.
Collapse
Affiliation(s)
- Stepanka Skalova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Tereza Svadlakova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Wasay Mohiuddin Shaikh Qureshi
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Kapil Dev
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Jaroslav Mokry
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| |
Collapse
|
45
|
Choi SC, Lee H, Choi JH, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS One 2015; 10:e0117410. [PMID: 25629977 PMCID: PMC4309530 DOI: 10.1371/journal.pone.0117410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 01/11/2023] Open
Abstract
Little is known about the mechanisms underlying the effects of Cyclosporin A (CsA) on the fate of stem cells, including cardiomyogenic differentiation. Therefore, we investigated the effects and the molecular mechanisms behind the actions of CsA on cell lineage determination of P19 cells. CsA induced cardiomyocyte-specific differentiation of P19 cells, with the highest efficiency at a concentration of 0.32 μM during embryoid body (EB) formation via activation of the Wnt signaling pathway molecules, Wnt3a, Wnt5a, and Wnt8a, and the cardiac mesoderm markers, Mixl1, Mesp1, and Mesp2. Interestingly, cotreatment of P19 cells with CsA plus dimethyl sulfoxide (DMSO) during EB formation significantly increases cardiac differentiation. In contrast, mRNA expression levels of hematopoietic and endothelial lineage markers, including Flk1 and Er71, were severely reduced in CsA-treated P19 cells. Furthermore, expression of Flk1 protein and the percentage of Flk1+ cells were severely reduced in 0.32 μM CsA-treated P19 cells compared to control cells. CsA significantly modulated mRNA expression levels of the cell cycle molecules, p53 and Cyclins D1, D2, and E2 in P19 cells during EB formation. Moreover, CsA significantly increased cell death and reduced cell number in P19 cells during EB formation. These results demonstrate that CsA induces cardiac differentiation but inhibits hemato-endothelial differentiation via activation of the Wnt signaling pathway, followed by modulation of cell lineage-determining genes in P19 cells during EB formation.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyunjoo Lee
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Ji-Hyun Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyung-Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jae-Hyoung Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Soon-Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Cheol-Woong Yu
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
46
|
Gentzel M, Schille C, Rauschenberger V, Schambony A. Distinct functionality of dishevelled isoforms on Ca2+/calmodulin-dependent protein kinase 2 (CamKII) in Xenopus gastrulation. Mol Biol Cell 2015; 26:966-77. [PMID: 25568338 PMCID: PMC4342031 DOI: 10.1091/mbc.e14-06-1089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CamKII is a novel binding partner of Arrb2/Dvl2 protein complexes and is required for convergent extension movements in Xenopus. CamKII physically and functionally interacts with Dvl2, whereas CamKII activity is antagonistically modulated by Dvl1 and Dvl3. Wnt ligands trigger the activation of a variety of β-catenin–dependent and β-catenin–independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled–β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled–β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelled–β-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling.
Collapse
Affiliation(s)
- Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Verena Rauschenberger
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
47
|
Cambier L, Plate M, Sucov HM, Pashmforoush M. Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3. Development 2014; 141:2959-71. [PMID: 25053429 DOI: 10.1242/dev.103416] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A complex regulatory network of morphogens and transcription factors is essential for normal cardiac development. Nkx2-5 is among the earliest known markers of cardiac mesoderm that is central to the regulatory pathways mediating second heart field (SHF) development. Here, we have examined the specific requirements for Nkx2-5 in the SHF progenitors. We show that Nkx2-5 potentiates Wnt signaling by regulating the expression of the R-spondin3 (Rspo3) gene during cardiogenesis. R-spondins are secreted factors and potent Wnt agonists that in part regulate stem cell proliferation. Our data show that Rspo3 is markedly downregulated in Nkx2-5 mutants and that Rspo3 expression is regulated by Nkx2-5. Conditional inactivation of Rspo3 in the Isl1 lineage resulted in embryonic lethality secondary to impaired development of SHF. More importantly, we find that Wnt signaling is significantly attenuated in Nkx2-5 mutants and that enhancing Wnt/β-catenin signaling by pharmacological treatment or by transgenic expression of Rspo3 rescues the SHF defects in the conditional Nkx2-5(+/-) mutants. We have identified a previously unrecognized genetic link between Nkx2-5 and Wnt signaling that supports continued cardiac growth and proliferation during development. Identification of Rspo3 in cardiac development provides a new paradigm in temporal regulation of Wnt signaling by cardiac-specific transcription factors.
Collapse
Affiliation(s)
- Linda Cambier
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Markus Plate
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Henry M Sucov
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Mohammad Pashmforoush
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| |
Collapse
|
48
|
Jia Z, Wang J, Wang W, Tian Y, XiangWei W, Chen P, Ma K, Zhou C. Autophagy eliminates cytoplasmic β-catenin and NICD to promote the cardiac differentiation of P19CL6 cells. Cell Signal 2014; 26:2299-305. [PMID: 25101857 DOI: 10.1016/j.cellsig.2014.07.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/11/2014] [Accepted: 07/28/2014] [Indexed: 01/07/2023]
Abstract
Autophagy plays important roles in adipogenesis and neuron development. However, how autophagy contributes to cardiac development is not well understood. The main aim of our study was to determine the association between autophagy and myocardial differentiation and its roles in this process. Using a well-established in vitro cardiomyocyte differentiation system, P19CL6 cells, we found that autophagy occurred from the early stage of cardiac differentiation. Blocking autophagy by knocking-down of autophagy-related gene Atg7 or Atg5 inhibited the cardiac differentiation of P19CL6 cells. Further investigation demonstrated that LC3 and P62 could form a complex with β-catenin and NICD, respectively, and promoted the degradation of β-catenin and NICD. Enhancing autophagy promoted the formation of complex, whereas blocking autophagy attenuated the degradation of β-catenin and NICD. Taken together, autophagy could facilitate P19CL6 cells to complete the cardiac differentiation process through blocking Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China
| | - Jiaji Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China
| | - Yuyao Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China
| | - Wenshu XiangWei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China
| | - Kangtao Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, Beijing 100191, PR China.
| |
Collapse
|
49
|
Sa S, Wong L, McCloskey KE. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access 2014; 3:150-61. [PMID: 25126479 PMCID: PMC4120929 DOI: 10.1089/biores.2014.0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cardiomyocytes (CMs) differentiated from human embryonic stem cells (hESCs) are a promising and potentially unlimited cell source for myocardial repair and regeneration. Recently, multiple methodologies-primarily based on the optimization of growth factors-have been described for efficient cardiac differentiation of hESCs. However, the role of extracellular matrix (ECM) signaling in CM differentiation has not yet been explored fully. This study examined the role of ECM signaling in the efficient generation of CMs from both H7 and H9 ESCs. The hESCs were differentiated on ECM substrates composed of a range of fibronectin (FN) and laminin (LN) ratios and gelatin and evaluated by the fluorescence activated cell scanning (FACS) analysis on day 14. Of the ECM substrates examined, the 70:30 FN:LN reproducibly generated the greatest numbers of CMs from both hESC lines. Moreover, the LN receptor integrin β4 (ITGB4) and FN receptor integrin β5 (ITGB5) genes, jointly with increased phosphorylated focal adhension kinase and phosphorylated extracellular signal-regulated kinases (p-ERKs), were up-regulated over 13-fold in H7 and H9 cultured on 70:30 FN:LN compared with gelatin. Blocking studies confirmed the role of all these molecules in CM specification, suggesting that the 70:30 FN:LN ECM promotes highly efficient differentiation of CMs through the integrin-mediated MEK/ERK signaling pathway. Lastly, the data suggest that FN:LN-induced signaling utilizes direct cell-to-cell signaling from distinct ITGB4(+) and ITGB5(+) cells.
Collapse
Affiliation(s)
- Silin Sa
- Graduate Group in Biological Engineering & Small-Scale Technologies, University of California, Merced, California
| | - Lian Wong
- Graduate Group in Biological Engineering & Small-Scale Technologies, University of California, Merced, California
| | - Kara E. McCloskey
- Graduate Group in Biological Engineering & Small-Scale Technologies, University of California, Merced, California
- School of Engineering, University of California, Merced, California
| |
Collapse
|
50
|
Xie BS, He XX, Ai ZL, Yao SK. Involvement of β-catenin in matrine-induced autophagy and apoptosis in WB-F344 cells. Mol Med Rep 2014; 9:2547-2553. [PMID: 24718323 DOI: 10.3892/mmr.2014.2107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/28/2014] [Indexed: 02/05/2023] Open
Abstract
Matrine, one of the main components extracted from Sophora flavescens, has exhibited pharmacological effects on the differentiation in rat liver oval cells. However, its function and mechanism have not yet been fully elucidated. To further investigate them, an in vitro model was established using a rat liver oval cell line called WB-F344 and treated with matrine. Initially, a significant increase in the number of monodansylcadaverine-positive cells and in the levels of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, which is a specific marker for detecting autophagy, was observed in matrine-treated cells. This indicated that autophagy was stimulated by matrine, which was further confirmed by transmission electron microscopy. Additionally, the apoptotic oval cells were easily detected under matrine treatment using an Annexin-V-fluorescein isothiocyanate/propidium iodide assay, indicating that autophagy and apoptosis were synchronously induced by matrine. A decrease in B-cell lymphoma (Bcl-2) mRNA expression, but an increase in Bcl2-associated X protein (Bax) mRNA expression were observed in matrine-treated cells, which led to an upregulation of the Bax/Bcl-2 ratio, a molecular marker for determining the extent of apoptosis. Next, the molecular mechanism of matrine-induced autophagy and apoptosis was analyzed in WB-F344 cells. β-catenin degradation was downregulated by matrine and rapamycin, a foregone chemical agonist of autophagy, whereas it was upregulated by 3-methyladenine, a specific inhibitor of autophagy. Additionally, β-catenin activation induced an increase in LC3-II levels and reversed the Bax/Bcl-2 mRNA ratio under matrine treatment, whereas inhibition of β-catenin by RNA interference induced a decrease of the LC3-II amount and of the Bax/Bcl-2 mRNA ratio. Finally, matrine treatment attenuated p53; however, with little or no change in LC3-II levels, but a decrease in β-catenin levels occurred in WB-F344 cells upon treatment with pifithrin-α, a chemical inhibitor of p53, revealing that p53, interfering with β-catenin, may not be involved in matrine-induced autophagy in WB-F344 cells. These results demonstrate that β-catenin is involved in matrine-induced autophagy and apoptosis in WB-F344 cells, while β-catenin is negatively regulated by autophagy and positively by p53, indicating that β-catenin may be involved in the crosstalk between autophagy and apoptosis in WB-F344 cells.
Collapse
Affiliation(s)
- Bu-Shan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xing-Xing He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Zheng-Lin Ai
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Shu-Kun Yao
- Department of Gastroenterology, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|