1
|
Fu Y, Rui X, Zhu S, Guo C, Li H, Pan Z, Wu X, He W. Research status of regenerative difficulties after central nervous system injury. Regen Ther 2025; 29:493-498. [PMID: 40390864 PMCID: PMC12088777 DOI: 10.1016/j.reth.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/21/2025] Open
Abstract
Multiple studies have shown that permanent functional disabilities caused after nerve damage are mainly due to the limited ability of damaged neurons in the central nervous system (CNS) to regenerate axons and re-establish functional connections. Most axons in the CNS of adult mammals cannot reactivate their intrinsic growth program after injury, making axonal regeneration difficult when damaged. This article provides a systematic review of the response processes following CNS injury and the factors affecting repair and regeneration, focusing on the molecular mechanisms that regulate the regeneration of damaged axons, in hopes of offering new insights for the repair of CNS injuries.
Collapse
Affiliation(s)
- Yunxia Fu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xi Rui
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Shumin Zhu
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Chenqu Guo
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Haoyang Li
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhenhao Pan
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Xuanhao Wu
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Wenpeng He
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Fiore NT, Willcox KF, Grieco AR, Dayani D, Zuberi YA, Heijnen CJ, Grace PM. Autoreactive IgG levels and Fc receptor γ subunit upregulation drive mechanical allodynia after nerve constriction or crush injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644748. [PMID: 40196481 PMCID: PMC11974762 DOI: 10.1101/2025.03.22.644748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
B cells contribute to the development of pain after sciatic nerve chronic constriction injury (CCI) via binding of immunoglobulin G (IgG) to Fc gamma receptors (FcγRs) in the lumbar dorsal root ganglia (DRG) and spinal cord. Yet the contribution of B cells to pain after different types of peripheral nerve injury is uncertain. Using male and female mice, we demonstrate a divergent role for B cell-IgG-FcγR signaling underlying mechanical allodynia between CCI, nerve crush (NC), spared nerve injury (SNI), and spinal nerve ligation (SNL). Depletion (monoclonal anti-CD20) or genetic deletion (muMT mice) of B cells prevented development of allodynia following NC and CCI, but not SNI or SNL. In apparent contradiction, circulating levels of autoreactive IgG and circulating immune complexes were increased in all models, though more prominent following NC and CCI. Passive transfer of IgG from SNI donor mice induced allodynia in CCI muMT recipient mice, demonstrating that IgG secreted after SNI is pronociceptive. To investigate why pronociceptive IgG did not contribute to mechanical allodynia after SNI, we evaluated levels of the Fc receptor γ subunit. SNI or SNL did not increase γ subunit levels in the DRG and spinal cord, whereas CCI and NC did, in agreement with B cell-dependent allodynia in these models. Together, the results suggest that traumatic peripheral nerve injury drives secretion of autoreactive IgG from B cells. However, levels of cognate FcγRs are increased following sciatic nerve constriction and crush, but not transection, to differentially regulate pain through the B cell-IgG-FcγR axis.
Collapse
Affiliation(s)
- Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Anamaria R. Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University; Houston, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center; Houston, USA
| |
Collapse
|
3
|
Xia Y, Cai M, Zhou Y, Yao Y, Jiang M, Gu D, Yao D. Immune Cell Biology in Peripheral Nervous System Injury. Neurorehabil Neural Repair 2025; 39:230-240. [PMID: 39744962 DOI: 10.1177/15459683241304325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BACKGROUND The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells. OBJECTIVES This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS. RESULTS During peripheral nerve injury, macrophages infiltrate the site under the induction of various cytokines, primarily accumulating at the dorsal root ganglia (DRG) and the nerve distal to the injury site, with only a small number detected at the nerve proximal to the injury site. The phenotype of macrophages during injury remains controversial, but recent single-cell sequencing analyses may provide new insights. In peripheral nervous system injury, macrophages participate in Wallerian degeneration as well as in the reconstruction of nerve bridges and angiogenesis during axonal regeneration. Neutrophils appear early in the injury process and are primarily present at the injury site and the distal segment. After peripheral nervous system injury, immature neutrophils from the peripheral blood play a major role. Although lymphocytes constitute only a small fraction compared to macrophages and neutrophils after peripheral nervous system injury, they still play important roles, including Treg cells, B cells, and NK cells. A large number of immune cells accumulate at the injury site, contributing not only to Wallerian degeneration but also to axonal regeneration. CONCLUSION In conclusion, this paper summarizes current knowledge regarding the mechanisms of immune cell infiltration after PNS injury, providing new insights for future research on the role of immune cells in peripheral nerve injury.
Collapse
Affiliation(s)
- Yiming Xia
- Medical School of Nantong University, Nantong, Jiangsu, P.R. China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yiyue Zhou
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Yi Yao
- School of Public Health, Nantong University, Nantong, Jiangsu, P.R. China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| | - Dengbing Yao
- Medical School of Nantong University, Nantong, Jiangsu, P.R. China
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P.R. China
| |
Collapse
|
4
|
John RK, Vogel SP, Zia S, Lee KV, Nguyen AT, Torres-Espin A, Fenrich KK, Ng C, Schmidt EKA, Vavrek R, Raposo PJF, Smith K, Fouad K, Plemel JR. Reawakening inflammation in the chronically injured spinal cord using lipopolysaccharide induces diverse microglial states. J Neuroinflammation 2025; 22:56. [PMID: 40022205 PMCID: PMC11871772 DOI: 10.1186/s12974-025-03379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Rehabilitative training is an effective method to promote recovery following spinal cord injury (SCI), with lower training efficacy observed in the chronic stage. The increased training efficacy during the subacute period is associated with a shift towards a more adaptive or proreparative state induced by the SCI. A potential link is SCI-induced inflammation, which is elevated in the subacute period, and, as injection of lipopolysaccharide (LPS) alongside training improves recovery in chronic SCI, suggesting LPS could reopen a window of plasticity late after injury. Microglia may play a role in LPS-mediated plasticity as they react to LPS and are implicated in facilitating recovery following SCI. However, it is unknown how microglia change in response to LPS following SCI to promote neuroplasticity. MAIN BODY Here we used single-cell RNA sequencing to examine microglial responses in subacute and chronic SCI with and without an LPS injection. We show that subacute SCI is characterized by a disease-associated microglial (DAM) signature, while chronic SCI is highly heterogeneous, with both injury-induced and homeostatic states. DAM states exhibit predicted metabolic pathway activity and neuronal interactions that are associated with potential mediators of plasticity. With LPS injection, microglia shifted away from the homeostatic signature to a primed, translation-associated state and increased DAM in degenerated tracts caudal to the injury. CONCLUSION Microglial states following an inflammatory stimulus in chronic injury incompletely recapitulate the subacute injury environment, showing both overlapping and distinct microglial signatures across time and with LPS injection. Our results contribute to an understanding of how microglia and LPS-induced neuroinflammation contribute to plasticity following SCI.
Collapse
Affiliation(s)
- Rebecca K John
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Sadie P Vogel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kelly V Lee
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Antoinette T Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Carmen Ng
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Emma K A Schmidt
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Pamela J F Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Keira Smith
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada.
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
5
|
Cui Y, Chu Q, Jin X, Li Y, Guo K, Zhang G, Zhao Z, Zhang J. Inhibition of KIF5b-mediated Nav1.8 transport by ropivacaine contributes to axonal regeneration following sciatic nerve injury in rats. Neuropharmacology 2024; 261:110169. [PMID: 39332671 DOI: 10.1016/j.neuropharm.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Peripheral nerve injury (PNI), typically caused by traumatic accidents or medical events, is currently one of the most common diseases that leads to limb disability. After PNI, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated at the lesion site. Our earlier study suggested that ropivacaine promotes axon regrowth by regulating Nav1.8-mediated macrophage signaling. Nevertheless, the mechanism of ropivacaine in regulation of Nav1.8 expression remains incompletely understood. Kinesin family 5b (KIF5b) was reported to mediate the Nav1.8 axonal transport from dorsal root ganglia (DRGs) to lesion site. Herein, we investigated whether ropivacaine promotes axon regeneration through inhibition of KIF5b-mediated Nav1.8 transport. Reduced levels of KIF5b and Nav1.8 in DRGs coincide with their increase at the lesion site. Nav1.8 mRNA was significantly increased at the lesion site but not in DRGs. Surprisingly, ropivacaine reversed the alterations of Nav1.8 and KIF5b protein expression without affecting Nav1.8 mRNA level. Due to KIF5b overexpression in DRGs, Nav1.8 protein level was significantly decreased in DRGs and increased at the lesion site. We also found KIF5b overexpression significantly impaired behavioral functions, reduced the recovery index of compound muscle action potential (CMAP) amplitude, inhibited axonal regrowth, slowed M1 macrophage infiltration and shift to M2 phenotype, and delayed myelin debris clearance. Notably, all aforementioned results caused by KIF5b overexpression were alleviated by ropivacaine. Furthermore, we demonstrated that inhibition of Nav1.8 transport by A-803467 produced mitigating effects on the impairment of regenerative capacity induced by KIF5b overexpression similar to ropivacaine. These results suggest that ropivacaine promotes axonal regeneration at least partially by inhibiting KIF5b-mediated Nav1.8 forward transport.
Collapse
Affiliation(s)
- Yongchen Cui
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjun Chu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yong Li
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiyuan Guo
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Bae SH, Park HR, Lim H, Kim HY, Cheon T, Jung J, Hyun YM. The functional and biological effects of systemic dexamethasone on mice with facial nerve crushing injury. Head Neck 2024; 46:2945-2954. [PMID: 38924195 DOI: 10.1002/hed.27855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Corticosteroid therapy is commonly recommended for acute facial nerve weakness; however, its effectiveness in treating traumatic nerve injuries remains controversial. This study investigated the functional recovery and cellular effects of systemic dexamethasone administration after facial nerve injury. METHODS C57BL/6 mice were assigned to two groups by intraperitoneal injection: the phosphate-buffered saline group and the dexamethasone group. Facial nerve crush injury was induced, followed by the functional grading of recovery. Cellular effects were investigated using transmission electron microscopy, flow cytometry, immunofluorescence, and intravital imaging. RESULTS Macrophage infiltration into the facial nerves was significantly inhibited by systemic dexamethasone administration. However, dexamethasone group slightly delayed the functional recovery of the facial nerve compared to the PBS group. In addition, the morphological changes in the nerve were not significantly different between the two groups at 14 days post-injury. Macrophage migration analysis in the intravital imaging also showed no difference between groups. CONCLUSIONS In summary, systemic dexamethasone successfully inhibited leukocyte infiltration; however, functional recovery was delayed compared to the PBS control group. Clinically, these findings indicate that more evidence and research are required to use steroid pulse therapy for the treatment of traumatic facial nerve injuries.
Collapse
Affiliation(s)
- Seong Hoon Bae
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunseo Lim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Yeol Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Taeuk Cheon
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinsei Jung
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
7
|
Balog BM, Niemi JP, Disabato T, Hashim F, Zigmond RE. CXCR2 mediated trafficking of neutrophils and neutrophil extracellular traps are required for myelin clearance after a peripheral nerve injury. Exp Neurol 2024; 382:114985. [PMID: 39368532 PMCID: PMC11526632 DOI: 10.1016/j.expneurol.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Neutrophils are a vital part of the innate immune system. Many of their functions eliminate bacteria & viruses, like neutrophil extracellular traps (NETs), which trap bacteria, enhancing macrophage phagocytosis. It was surprising when it was demonstrated that neutrophils are a part of Wallerian degeneration, a process that is essential for nerve regeneration after a nerve injury. It is not known what signals attract neutrophils into the nerve and how they aid Wallerian degeneration. Neutrophils accumulate in the distal nerve within one day after an injury and are found in the nerve from one to three days. We demonstrate that CXCR2 mediates the trafficking of neutrophils into the distal nerve, and without CXCR2 Wallerian degeneration, as indicated by luxol fast blue staining, was reduced seven days after a sciatic nerve crush or transection injury. NETs were detected in the distal nerve after a sciatic nerve transection. NET formation has been shown to require protein arginine deiminase 4 (PAD4), which citrullinates histone 3. Inhibiting PAD4 reduced NET formation significantly in the distal nerve at two days and myelin clearance at seven days indicating that NETs aid myelin clearance. These results demonstrate another function for NETs other than clearing pathogens. Neutrophils have been detected after injuries to the central nervous system and diseases in humans and animal models. Our results demonstrate neutrophils aid myelin clearance, suggesting a role for their presence in central nervous system injuries and diseases.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Thomas Disabato
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Faye Hashim
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
8
|
Yue Y, Wang J, Tian J. Glycyrrhizic acid promote remyelination after peripheral nerve injury by reducing NF-κB activation. Neurosci Lett 2024; 843:138009. [PMID: 39396548 DOI: 10.1016/j.neulet.2024.138009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Peripheral nerve injury (PNI) causes motor and sensory defects, has strong impact on life quality and still has no effective therapy. Glycyrrhizic acid (GA) is one of the most widely used in traditional Chinese prescriptions and as a flavoring additive in the food industry; the aims of the study were to investigate the effects of GA during sciatic nerve regeneration in a mouse model of sciatic nerve crush injury. METHODS We established peripheral nerve crush model and investigated the effects of GA. We further studied the potential mechanism of action of GA by Western blotting, fluorescence immunohistochemistry, and PCR analysis. RESULTS GA improves the sensory and motor functions of crushed nerve by preventing Schwann cell loss, axonal loss and promoting remyelination of sciatic nerve. Affected by GA, the inflammatory response in the distal part of the sciatic nerve was reduced. Finally, the neuroprotective properties of GA may be regulated by the nuclear factor (NF)-κB pathway. CONCLUSIONS Our data suggest that GA can effectively alleviate PNI, and the mechanism involves mediating inflammatory response by suppressing NF-κB pathway activation. Thus, GA may represent a potential therapeutic intervention for nerve crush injury.
Collapse
Affiliation(s)
- Yuan Yue
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China; The First People's Hospital of Jiande, Hangzhou 311600, Zhejiang Province, PR China
| | - Jing Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
9
|
Lempicki MD, Gray JA, Abuna G, Murata RM, Divanovic S, McNamara CA, Meher AK. BAFF neutralization impairs the autoantibody-mediated clearance of dead adipocytes and aggravates obesity-induced insulin resistance. Front Immunol 2024; 15:1436900. [PMID: 39185417 PMCID: PMC11341376 DOI: 10.3389/fimmu.2024.1436900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
B cell-activating factor (BAFF) is a critical TNF-family cytokine that regulates homeostasis and peripheral tolerance of B2 cells. BAFF overproduction promotes autoantibody generation and autoimmune diseases. During obesity, BAFF is predominantly produced by white adipose tissue (WAT), and IgG autoantibodies against adipocytes are identified in the WAT of obese humans. However, it remains to be determined if the autoantibodies formed during obesity affect WAT remodeling and systemic insulin resistance. Here, we show that IgG autoantibodies are generated in high-fat diet (HFD)-induced obese mice that bind to apoptotic adipocytes and promote their phagocytosis by macrophages. Next, using murine models of obesity in which the gonadal WAT undergoes remodeling, we found that BAFF neutralization depleted IgG autoantibodies, increased the number of dead adipocytes, and exacerbated WAT inflammation and insulin resistance. RNA sequencing of the stromal vascular fraction from the WAT revealed decreased expression of immunoglobulin light-chain and heavy-chain variable genes suggesting a decreased repertoire of B cells after BAFF neutralization. Further, the B cell activation and the phagocytosis pathways were impaired in the WAT of BAFF-neutralized mice. In vitro, plasma IgG fractions from BAFF-neutralized mice reduced the phagocytic clearance of apoptotic adipocytes. Altogether, our study suggests that IgG autoantibodies developed during obesity, at least in part, dampens exacerbated WAT inflammation and systemic insulin resistance.
Collapse
Affiliation(s)
- Melissa D. Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jake A. Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Abuna
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro M. Murata
- School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Senad Divanovic
- Department of Pediatrics University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Coleen A. McNamara
- Cardiovascular Research Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
10
|
Talsma AD, Niemi JP, Zigmond RE. Neither injury induced macrophages within the nerve, nor the environment created by Wallerian degeneration is necessary for enhanced in vivo axon regeneration after peripheral nerve injury. J Neuroinflammation 2024; 21:134. [PMID: 38802868 PMCID: PMC11131297 DOI: 10.1186/s12974-024-03132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.
Collapse
Affiliation(s)
- Aaron D Talsma
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA.
| |
Collapse
|
11
|
Wu C, Pan Y, Wang L, Liu M, Tu P, Chen S, Shi L, Yan D, Ma Y, Guo Y. Inhibition of HDAC6 promotes microvascular endothelial cells to phagocytize myelin debris and reduces inflammatory response to accelerate the repair of spinal cord injury. CNS Neurosci Ther 2024; 30:e14439. [PMID: 37641882 PMCID: PMC10916453 DOI: 10.1111/cns.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS To identify an effective strategy for promoting microvascular endothelial cells (MECs) to phagocytize myelin debris and reduce secretion of inflammatory factors following spinal cord injury (SCI). METHODS We established a coculture model of myelin debris and vascular-like structures. The efficiency with which MECs phagocytize myelin debris under different conditions was examined via ELISA, flow cytometry, and immunofluorescence. Tubastatin-A was used to interfere with the coculture model. The anti-inflammatory effects of Tubastatin-A were observed by HE staining, flow cytometry, immunofluorescence, and ELISA. RESULTS MECs phagocytized myelin debris via IgM opsonization, and phagocytosis promoted the secretion of inflammatory factors, whereas IgG-opsonized myelin debris had no effect on inflammatory factors. Application of the HDAC6 inhibitor Tubastatin-A increased the IgG levels and decreased the IgM levels by regulating the proliferation and differentiation of B cells. Tubastatin-A exerted a regulatory effect on the HDAC6-mediated autophagy-lysosome pathway, promoting MECs to phagocytize myelin debris, reducing the secretion of inflammatory factors, and accelerating the repair of SCI. CONCLUSIONS Inhibition of HDAC6 to regulate the immune-inflammatory response and promote MECs to phagocytize myelin debris may represent a novel strategy in the treatment of SCI.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic DiseasesNanjing University of Chinese MedicineNanjingChina
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Pengcheng Tu
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Danqing Yan
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| | - Yong Ma
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
- School of Chinese Medicine, School of Integrated Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yang Guo
- Department of Traumatology and OrthopedicsAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & OrthopedicsNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
12
|
Gupta DP, Bhusal A, Rahman MH, Kim JH, Choe Y, Jang J, Jung HJ, Kim UK, Park JS, Maeng LS, Suk K, Song GJ. EBP50 is a key molecule for the Schwann cell-axon interaction in peripheral nerves. Prog Neurobiol 2023; 231:102544. [PMID: 37940033 DOI: 10.1016/j.pneurobio.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Peripheral nerve injury disrupts the Schwann cell-axon interaction and the cellular communication between them. The peripheral nervous system has immense potential for regeneration extensively due to the innate plastic potential of Schwann cells (SCs) that allows SCs to interact with the injured axons and exert specific repair functions essential for peripheral nerve regeneration. In this study, we show that EBP50 is essential for the repair function of SCs and regeneration following nerve injury. The increased expression of EBP50 in the injured sciatic nerve of control mice suggested a significant role in regeneration. The ablation of EBP50 in mice resulted in delayed nerve repair, recovery of behavioral function, and remyelination following nerve injury. EBP50 deficiency led to deficits in SC functions, including proliferation, migration, cytoskeleton dynamics, and axon interactions. The adeno-associated virus (AAV)-mediated local expression of EBP50 improved SCs migration, functional recovery, and remyelination. ErbB2-related proteins were not differentially expressed in EBP50-deficient sciatic nerves following injury. EBP50 binds and stabilizes ErbB2 and activates the repair functions to promote regeneration. Thus, we identified EBP50 as a potent SC protein that can enhance the regeneration and functional recovery driven by NRG1-ErbB2 signaling, as well as a novel regeneration modulator capable of potential therapeutic effects.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Lee-So Maeng
- Department of Hospital Pathology, Incheon St. Mary's Hospital College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
13
|
Cui Y, Wang X, Xu Y, Cao Y, Luo G, Zhao Z, Zhang J. Ropivacaine Promotes Axon Regeneration by Regulating Nav1.8-mediated Macrophage Signaling after Sciatic Nerve Injury in Rats. Anesthesiology 2023; 139:782-800. [PMID: 37669448 PMCID: PMC10723771 DOI: 10.1097/aln.0000000000004761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/08/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Continuous nerve block with ropivacaine is commonly performed after repair surgery for traumatic peripheral nerve injuries. After peripheral nerve injury, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated and contributes to macrophage inflammation. This study investigated whether ropivacaine promotes peripheral nerve regeneration through Nav1.8-mediated macrophage signaling. METHODS A sciatic nerve transection-repair (SNT) model was established in adult Sprague-Dawley rats of both sexes. The rats received 0.2% ropivacaine or 10 μM Nav1.8-selective inhibitor A-803467 around the injured site or near the sacrum for 3 days. Nerve regeneration was evaluated using behavioral, electrophysiologic, and morphological examinations. Moreover, myelin debris removal, macrophage phenotype, Nav1.8 expression, and neuropeptide expression were assessed using immunostaining, enzyme-linked immunosorbent assay, and Western blotting. RESULTS Compared to the SNT-plus-vehicle group, the sensory, motor, and sensory-motor coordination functions of the two ropivacaine groups were significantly improved. Electrophysiologic (mean ± SD: recovery index of amplitude, vehicle 0.43 ± 0.17 vs. ropivacaine 0.83 ± 0.25, n = 11, P < 0.001) and histological analysis collectively indicated that ropivacaine significantly promoted axonal regrowth (percentage of neurofilament 200 [NF-200]-positive area: vehicle 19.88 ± 2.81 vs. ropivacaine 31.07 ± 2.62, n = 6, P < 0.001). The authors also found that, compared to the SNT-plus-vehicle group, the SNT-plus-ropivacaine group showed faster clearance of myelin debris, accompanied by significantly increased macrophage infiltration and transition from the M1 to M2 phenotype. Moreover, ropivacaine significantly attenuated Nav1.8 upregulation at 9 days after sciatic nerve transection (vehicle 4.12 ± 0.30-fold vs. ropivacaine 2.75 ± 0.36-fold, n = 5, P < 0.001), which coincided with the increased expression of chemokine ligand 2 and substance P. Similar changes were observed when using the selective Nav1.8 channel inhibitor A-803467. CONCLUSIONS Continuous nerve block with ropivacaine promotes the structural and functional recovery of injured sciatic nerves, possibly by regulating Nav1.8-mediated macrophage signaling. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yongchen Cui
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Cao
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Luo
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Wasman Smail S, Ziyad Abdulqadir S, Omar Khudhur Z, Elia Ishaq S, Faqiyazdin Ahmed A, Ghayour MB, Abdolmaleki A. IL-33 promotes sciatic nerve regeneration in mice by modulating macrophage polarization. Int Immunopharmacol 2023; 123:110711. [PMID: 37531832 DOI: 10.1016/j.intimp.2023.110711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Despite the innate regenerative capacity of peripheral nerves, regeneration after a severe injury is insufficient, and sensorimotor recovery is incomplete. As a result, finding alternative methods for improving regeneration and sensorimotor recovery is essential. In this regard, we investigated the effect of IL-33 treatment as a chemokine with neuroprotective properties. IL-33 can facilitate tissue healing by potentiating the type 2 immune response and polarizing macrophages toward the pro-healing M2 phenotype. However, its effects on nerve regeneration remain unclear. Therefore, this research aimed to evaluate the neuroprotective effects of IL-33 on sciatic nerve injury in male C57BL/6 mice. After crushing the left sciatic nerve, the animals were given 10, 25, or 50 µg/kg IL-33 intraperitoneally for seven days. The sensorimotor recovery was then assessed eight weeks after surgery. In addition, immunohistochemistry, ELISA, and real-time PCR were used to assess macrophage polarization, cytokine secretion, and neurotrophic factor expression in the injured nerves. IL-33 at 50 and 25 µg/kg doses could significantly accelerate nerve regeneration and improve sensorimotor recovery when compared to 10 µg/kg IL-33 and control groups. Furthermore, at 50 and 25 µg/kg doses, IL-33 polarized macrophages toward an M2 phenotype and reduced proinflammatory cytokines at the injury site. It also increased the mRNA expression of NGF, VEGF, and BDNF. These findings suggest that a seven-day IL-33 treatment had neuroprotective effects in a mouse sciatic nerve crush model, most likely by inducing macrophage polarization toward M2 and regulating inflammatory microenvironments.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University - Erbil, Kurdistan Region, Iraq.
| | - Sonia Elia Ishaq
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | | | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
15
|
Liptan G. The widespread myofascial pain of fibromyalgia is sympathetically maintained and immune mediated. J Bodyw Mov Ther 2023; 35:394-399. [PMID: 37330799 DOI: 10.1016/j.jbmt.2023.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The recent demonstration of antibody-induced passive transfer of pain hypersensitivity from fibromyalgia (FM) subjects to mice brings renewed focus to the role of the immune system in generating FM pain. However, this data must be interpreted in the context of known myofascial pathology in FM, which includes impaired muscle relaxation and elevated intramuscular pressure. In addition, FM fascial biopsies demonstrate elevated inflammatory and oxidative stress markers and increased endomysial collagen deposition. This article proposes a unifying hypothesis for FM pain generation that connects known muscle and fascia abnormalities with the newly discovered role of antibodies. FM is characterized by persistent sympathetic nervous system hyperactivity which results in both pathologic muscle tension and an impaired tissue healing response. Although autoantibodies play a key role in normal tissue healing, sympathetic nervous system hyperactivity impairs the resolution of inflammation, and promotes autoimmunity and excessive autoantibody production. These autoantibodies can then bind with myofascial-derived antigen to create immune complexes, which are known to trigger neuronal hyperexcitability in the dorsal root ganglion. These hyperexcited sensory neurons activate the surrounding satellite glial cells and spinal microglia leading to pain hypersensitivity and central sensitization. Although immune system modulation may become an important treatment tool in FM, direct manual treatments that lessen myofascial inflammation and tension must not be neglected. Myofascial release therapy significantly reduces FM pain, with residual benefits even after the conclusion of treatment. Self-myofascial release techniques and gentle stretching programs also ease fibromyalgia pain, as do trigger point injections and dry-needling.
Collapse
|
16
|
Zheng B, He Y, Yin S, Zhu X, Zhao Q, Yang H, Wang Z, Zhu R, Cheng L. Unresolved Excess Accumulation of Myelin-Derived Cholesterol Contributes to Scar Formation after Spinal Cord Injury. RESEARCH (WASHINGTON, D.C.) 2023; 6:0135. [PMID: 37223476 PMCID: PMC10202378 DOI: 10.34133/research.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Spinal cord injury triggers complex pathological cascades, resulting in destructive tissue damage and incomplete tissue repair. Scar formation is generally considered a barrier for regeneration in the central nervous system. However, the intrinsic mechanism of scar formation after spinal cord injury has not been fully elucidated. Here, we report that excess cholesterol accumulates in phagocytes and is inefficiently removed from spinal cord lesions in young adult mice. Interestingly, we observed that excessive cholesterol also accumulates in injured peripheral nerves but is subsequently removed by reverse cholesterol transport. Meanwhile, preventing reverse cholesterol transport leads to macrophage accumulation and fibrosis in injured peripheral nerves. Furthermore, the neonatal mouse spinal cord lesions are devoid of myelin-derived lipids and can heal without excess cholesterol accumulation. We found that transplantation of myelin into neonatal lesions disrupts healing with excessive cholesterol accumulation, persistent macrophage activation, and fibrosis. Myelin internalization suppresses macrophage apoptosis mediated by CD5L expression, indicating that myelin-derived cholesterol plays a critical role in impaired wound healing. Taken together, our data suggest that the central nervous system lacks an efficient approach for cholesterol clearance, resulting in excessive accumulation of myelin-derived cholesterol, thereby inducing scar formation after injury.
Collapse
Affiliation(s)
- Bolin Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Yijing He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Xu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Science and Technology,
Tongji University, Shanghai 200092, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Science and Technology,
Tongji University, Shanghai 200092, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine,
Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research,
Tongji University, Shanghai 200092, China
| |
Collapse
|
17
|
Abstract
ABSTRACT Peripheral nerve injury is a common injury disease. Understanding of the mechanisms of periphery nerve repair and regeneration after injury is an essential prerequisite for treating related diseases. Although the biological mechanisms of peripheral nerve injury and regeneration have been studied comprehensively, the clinical treatment methods are still limited. The bottlenecks of the treatments are the shortage of donor nerves and the limited surgical precision. Apart from the knowledge regarding the fundamental characteristics and physical processes of peripheral nerve injury, numerous studies have found that Schwann cells, growth factors, and extracellular matrix are main factors affecting the repair and regeneration process of injured nerves. At present, the therapeutical methods of the disease include microsurgery, autologous nerve transplantation, allograft nerve transplantation and tissue engineering technology. Tissue engineering technology, which combines seed cells, neurotrophic factors, and scaffold materials together, is promising for treating the patients with long-gapped and large nerve damage. With the development of neuron science and technology, the treatment of peripheral nerve injury diseases will continue being improved.
Collapse
|
18
|
Li X, Zhang T, Li C, Xu W, Guan Y, Li X, Cheng H, Chen S, Yang B, Liu Y, Ren Z, Song X, Jia Z, Wang Y, Tang J. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury. Glia 2023; 71:758-774. [PMID: 36484493 DOI: 10.1002/glia.24309] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD. To verify this hypothesis, we used a rat model of sciatic nerve transection and provided ES at the distal stump of the injured nerve. The injured nerve was then evaluated after 1, 4, 7, 14 and 21 days post injury (dpi). The results showed that ES significantly promoted the degeneration and clearance of axons and myelin, and the dedifferentiation of Schwann cells. It upregulated the expression of BDNF and NGF and increased the number of monocytes and macrophages. Through transcriptome sequencing, we systematically investigated the effect of ES on the molecular processes involved in WD at 4 dpi. Evaluation of nerves bridged using silicone tubing after transection showed that ES accelerated early axonal and vascular regeneration while delaying gastrocnemius atrophy. These results demonstrate that ES promotes nerve regeneration by accelerating WD and upregulating the expression of neurotrophic factors.
Collapse
Affiliation(s)
- Xiangling Li
- The School of Medicine, Jinzhou Medical University, Jinzhou, China.,Department of Orthopedics, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Xiaoya Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Haofeng Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Boyao Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Yuli Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Zhiqi Ren
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Xiangyu Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Hebei North University, Zhangjiakou, China
| | - Zhibo Jia
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,School of Medicine, Hebei North University, Zhangjiakou, China
| | - Yu Wang
- Department of Orthopedics, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jinshu Tang
- Department of Orthopedics, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
19
|
García-García ÓD, Weiss T, Chato-Astrain J, Raimondo S, Carriel V. Staining Methods for Normal and Regenerative Myelin in the Nervous System. Methods Mol Biol 2023; 2566:187-203. [PMID: 36152252 DOI: 10.1007/978-1-0716-2675-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histochemical and fluorescence-based techniques enable the specific identification of myelin by bright-field or fluorescence microscopy. In this chapter, we describe four histological methods for the evaluation of myelin on peripheral nerve tissue sections. The first method combines the Luxol fast blue (LFB) technique with a modified Picrosirius staining contrasted with Harris hematoxylin, called MCOLL. This method simultaneously stains myelin, collagen fibers, and cell nuclei, thus giving an integrated overview of the histology, collagen network, and myelin content of the tissue in paraffin-embedded or cryosectioned samples. Secondly, we describe the osmium tetroxide method, which provides a permanent positive reaction for myelin as well as other lipids present in the tissue. The third method is the immunofluorescence-based detection of myelin proteins that allows to combine information about their expression status with other proteins of interest. Finally, the FluoroMyelin™ stains enable a fast detection of the myelin content that can be easily implemented in immunofluorescence staining panels for cryosectioned tissues. Together, this chapter provides a variety of methods to accurately identify myelin in different experimental approaches.
Collapse
Affiliation(s)
- Óscar D García-García
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jesús Chato-Astrain
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Stefania Raimondo
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
| | - Víctor Carriel
- Department of Histology (Tissue Engineering Group), Faculty of Medicine, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain.
| |
Collapse
|
20
|
Shelestak J, Irfan M, DeSilva TM. Remyelinating strategies: What can be learned from normal brain development. Curr Opin Pharmacol 2022; 67:102290. [PMID: 36195009 DOI: 10.1016/j.coph.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). Immunomodulatory therapies are effective in reducing relapses, however, there is no remedy for progressive disease emphasizing the need for regenerative strategies. Chronic demyelination causes axonal injury and loss which is a key component of neurodegeneration and permanent disability in MS. New oligodendrocyte progenitor cells (OPCs) proliferate in response to inflammatory demyelination representing the potential for remyelination to protect axons and preserve neuronal function. The majority of remyelinating therapies have targeted intrinsic signaling processes in oligodendrocytes to promote differentiation or utilized methods for transplantation of oligodendrocytes. Here, we discuss specific roles of microglia in contributing to normal myelin development and the significance of these functions for remyelinating strategies.
Collapse
Affiliation(s)
- John Shelestak
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve University, Cleveland, OH, USA
| | - Muhammad Irfan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve University, Cleveland, OH, USA
| | - Tara M DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Pike SC, Welsh N, Linzey M, Gilli F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front Mol Neurosci 2022; 15:1019799. [PMID: 36311024 PMCID: PMC9606571 DOI: 10.3389/fnmol.2022.1019799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.
Collapse
Affiliation(s)
- Steven C. Pike
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Nora Welsh
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Michael Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, United States
- *Correspondence: Francesca Gilli,
| |
Collapse
|
22
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
23
|
Capuz A, Karnoub MA, Osien S, Rose M, Mériaux C, Fournier I, Devos D, Vanden Abeele F, Rodet F, Cizkova D, Salzet M. The Antibody Dependant Neurite Outgrowth Modulation Response Involvement in Spinal Cord Injury. Front Immunol 2022; 13:882830. [PMID: 35784350 PMCID: PMC9245426 DOI: 10.3389/fimmu.2022.882830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) represents a major medical challenge. At present, there is still no cure to treat it efficiently and enable functional recovery below the injury site. Previously, we demonstrated that inflammation determines the fate of the physiopathology. To decipher the molecular mechanisms involved in this process, we performed a meta-analysis of our spatio-temporal proteomic studies in the time course of SCI. This highlighted the presence of IgG isotypes in both spinal cord explants and their secretomes. These IgGs were detected in the spinal cord even if no SCI occurred. However, during the time course following SCI, abundance of IgG1 and IgG2 subclasses (a, b, c) varied according to the spatial repartition. IgG1 was clearly mostly abundant at 12 h, and a switch to IgG2a was observed after 24 h. This IgG stayed predominant 3, 7, and 10 days after SCI. A protein related to IgM as well as a variable heavy chain were only detected 12 h after lesion. Interestingly, treatment with RhoA inhibitor influenced the abundance of the various IgG isotypes and a preferential switch to IgG2c was observed. By data reuse of rat dorsal root ganglion (DRG) neurons RNAseq datasets and RT-PCR experiments performed on cDNA from DRG sensory neurons ND7/23 and N27 dopaminergic neural cell lines, we confirmed expression of immunoglobulin heavy and light chains (constant and variable) encoding genes in neurons. We then identified CD16 and CD32b as their specific receptors in sensory neuron cell line ND7/23 and their activation regulated neurites outgrowth. These results suggest that during SCI, neuronal IgG isotypes are released to modulate neurites outgrowth. Therefore, we propose a new view of the SCI response involving an antibody dependent neurite outgrowth modulation (ADNM) which could be a precursor to the neuroinflammatory response in pathological conditions.
Collapse
Affiliation(s)
- Alice Capuz
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Mélodie-Anne Karnoub
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Sylvain Osien
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Mélanie Rose
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Céline Mériaux
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Isabelle Fournier
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
| | - David Devos
- Université de Lille, Inserm U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, Lille, France
| | - Fabien Vanden Abeele
- Université de Lille, Inserm U1003, Laboratory of Cell Physiology, Villeneuve d’Ascq, France
| | - Franck Rodet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Dasa Cizkova
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
- *Correspondence: Michel Salzet, ; Dasa Cizkova,
| | - Michel Salzet
- Université de Lille, Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
- Institut Universitaire de France, Paris, France
- *Correspondence: Michel Salzet, ; Dasa Cizkova,
| |
Collapse
|
24
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
25
|
Lee HJ, Remacle AG, Hullugundi SK, Dolkas J, Leung JB, Chernov AV, Yaksh TL, Strongin AY, Shubayev VI. Sex-Specific B Cell and Anti-Myelin Autoantibody Response After Peripheral Nerve Injury. Front Cell Neurosci 2022; 16:835800. [PMID: 35496906 PMCID: PMC9050049 DOI: 10.3389/fncel.2022.835800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy holds promise as a non-addictive treatment of refractory chronic pain states. Increasingly, sex is recognized to impact immune regulation of pain states, including mechanical allodynia (pain from non-painful stimulation) that follows peripheral nerve trauma. This study aims to assess the role of B cells in sex-specific responses to peripheral nerve trauma. Using a rat model of sciatic nerve chronic constriction injury (CCI), we analyzed sex differences in (i) the release of the immunodominant neural epitopes of myelin basic protein (MBP); (ii) the levels of serum immunoglobulin M (IgM)/immunoglobulin G (IgG) autoantibodies against the MBP epitopes; (iii) endoneurial B cell/CD20 levels; and (iv) mechanical sensitivity behavior after B cell/CD20 targeting with intravenous (IV) Rituximab (RTX) and control, IV immunoglobulin (IVIG), therapy. The persistent MBP epitope release in CCI nerves of both sexes was accompanied by the serum anti-MBP IgM autoantibody in female CCI rats alone. IV RTX therapy during CD20-reactive cell infiltration of nerves of both sexes reduced mechanical allodynia in females but not in males. IVIG and vehicle treatments had no effect in either sex. These findings provide strong evidence for sexual dimorphism in B-cell function after peripheral nervous system (PNS) trauma and autoimmune pathogenesis of neuropathic pain, potentially amenable to immunotherapeutic intervention, particularly in females. A myelin-targeted serum autoantibody may serve as a biomarker of such painful states. This insight into the biological basis of sex-specific response to neuraxial injury will help personalize regenerative and analgesic therapies.
Collapse
Affiliation(s)
- Hee Jong Lee
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- Department of Anesthesiology & Pain Medicine, Hanyang University, Seoul, South Korea
| | - Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Swathi K. Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
| | - Jake B. Leung
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, United States
- VA San Diego Healthcare System, La Jolla, CA, United States
- *Correspondence: Veronica I. Shubayev,
| |
Collapse
|
26
|
Stewart A, Glaser E, Bailey WM, Gensel J. Immunoglobulin G is Increased in the Injured Spinal Cord in a Sex and Age Dependent Manner. J Neurotrauma 2022; 39:1090-1098. [PMID: 35373588 PMCID: PMC9347383 DOI: 10.1089/neu.2022.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
There are limited studies examining age and sex as biological variables in the pathophysiology of spinal cord injury (SCI). The use of older animals and sex-balanced groups in SCI models is increasingly prioritized to better match clinical demographics. Including older animals in SCI studies is technically challenging, and outcomes are unpredictable with respect to biological and treatment responses. Incidental discoveries that are unrelated to the question under investigation often emerge while including age and sex as biological variables. When probing tissue homogenates on Western blots of 4- and 14-month-old (MO) mice, we identified a sex- and age-dependent increase in immunoglobulin G (IgG) within the spinal cords of older, 14-MO mice acutely after SCI, with females having more IgG compared with males. We further probed to determine whether differences in hemorrhage exist between sexes or ages by evaluating hemoglobin within spinal homogenates. Differences in hemoglobin between sexes and ages were not consistently observed. Because IgG was elevated in an age- and sex-dependent manner without of evidence of differences in hemorrhage, our findings point to potential pre-existing differences in IgG within mouse plasma in an age- and sex-dependent manner. This report has identified age- and sex-dependent differences in infiltrating IgG into the injured spinal cord environment that may affect injury and recovery processes. Our findings highlight that systemic contributions to SCI can be sex- and age-dependent and illustrate the value of reporting incidental discoveries.
Collapse
Affiliation(s)
- Andrew Stewart
- University of Kentucky, Physiology, 741 S. Limestone Street, BBSRB B483, Lexington, Kentucky, United States, 40536-0509,
| | - Ethan Glaser
- University of Kentucky, Physiology, Lexington, Kentucky, United States,
| | - William M Bailey
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Physiology, Lexington, Kentucky, United States
| | - John Gensel
- University of Kentucky, Physiology, 741 S. Limestone Street, B436 BBSRB, Lexington, Kentucky, United States, 40536-0509
| |
Collapse
|
27
|
Klein D, Groh J, Yuan X, Berve K, Stassart R, Fledrich R, Martini R. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A. Glia 2022; 70:1100-1116. [PMID: 35188681 DOI: 10.1002/glia.24158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Berve
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Ruth Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Juanez K, Ghose P. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis elegans Neurons. Front Cell Dev Biol 2022; 10:825124. [PMID: 35237604 PMCID: PMC8882910 DOI: 10.3389/fcell.2022.825124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans. We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Collapse
|
29
|
Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD. Central nervous system regeneration. Cell 2022; 185:77-94. [PMID: 34995518 PMCID: PMC10896592 DOI: 10.1016/j.cell.2021.10.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Neurons of the mammalian central nervous system fail to regenerate. Substantial progress has been made toward identifying the cellular and molecular mechanisms that underlie regenerative failure and how altering those pathways can promote cell survival and/or axon regeneration. Here, we summarize those findings while comparing the regenerative process in the central versus the peripheral nervous system. We also highlight studies that advance our understanding of the mechanisms underlying neural degeneration in response to injury, as many of these mechanisms represent primary targets for restoring functional neural circuits.
Collapse
Affiliation(s)
| | - John L Hunyara
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natalie R Hamilton
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Zhao XF, Huffman LD, Hafner H, Athaiya M, Finneran MC, Kalinski AL, Kohen R, Flynn C, Passino R, Johnson CN, Kohrman D, Kawaguchi R, Yang LJS, Twiss JL, Geschwind DH, Corfas G, Giger RJ. The injured sciatic nerve atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration. eLife 2022; 11:80881. [PMID: 36515985 PMCID: PMC9829412 DOI: 10.7554/elife.80881] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Upon trauma, the adult murine peripheral nervous system (PNS) displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single-cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1 day, 3 days, and 7 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac with a high glycolytic flux dominate the early injury response and rapidly give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve barrier, proliferation of endoneurial and perineurial stromal cells, and entry of opsonizing serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, in which Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for neural tissue regeneration, reveals location- specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Matthew C Finneran
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
| | - Corey Flynn
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - David Kohrman
- Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Lynda JS Yang
- Department of Neurosurgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South CarolinaColumbiaUnited States
| | - Daniel H Geschwind
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Department of Human Genetics,David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States,Institute of Precision Health, University of California, Los AngelesLos AngelesUnited States
| | - Gabriel Corfas
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Kresge Hearing Institute, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States,Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States,Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
31
|
Sheng X, Zhao J, Li M, Xu Y, Zhou Y, Xu J, He R, Lu H, Wu T, Duan C, Cao Y, Hu J. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Accelerate Functional Recovery After Spinal Cord Injury by Promoting the Phagocytosis of Macrophages to Clean Myelin Debris. Front Cell Dev Biol 2021; 9:772205. [PMID: 34820385 PMCID: PMC8606563 DOI: 10.3389/fcell.2021.772205] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Macrophage phagocytosis contributes predominantly to processing central nervous system (CNS) debris and further facilitates neurological function restoration after CNS injury. The aims of this study were to evaluate the effect of bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BMSC-Exos) on the phagocytic capability of macrophages to clear myelin debris and to investigate the underlying molecular mechanism during the spinal cord injury (SCI) process. This work reveals that monocyte-derived macrophages (MDMs) infiltrating into the SCI site could efficiently engulf myelin debris and process phagocytic material. However, the phagocytic ability of macrophages to clear tissue debris is compromised after SCI. The administration of BMSC-Exos as an approach for SCI treatment could rescue macrophage normal function by improving the phagocytic capability of myelin debris internalization, which is beneficial for SCI repair, as evidenced by better axon regrowth and increased hindlimb locomotor functional recovery in a rodent model. Examination of macrophage treatment with BMSC-Exos revealed that BMSC-Exos could promote the capacity of macrophages to phagocytose myelin debris in vitro and could create a regenerative microenvironment for axon regrowth. In addition, we confirmed that BMSC-Exo treatment resulted in improved phagocytosis of engulfed myelin debris by promoting the expression of macrophage receptor with collagenous structure (MARCO) in macrophages. The inhibition of MARCO with PolyG (a MARCO antagonist) impaired the effect of BMSC-Exos on the phagocytic capacity of macrophages and resulted in compromised myelin clearance at the lesion site, leading to further tissue damage and impaired functional healing after SCI. In conclusion, these data indicated that targeting the phagocytic ability of macrophages may have therapeutic potential for the improvement in functional healing after SCI. The administration of BMSC-Exos as a cell-free immune therapy strategy has wide application prospects for SCI treatment.
Collapse
Affiliation(s)
- Xiaolong Sheng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Hunan Children's Hospital, Changsha, China
| | - Yan Xu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhou
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, Institute of Pain Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Watanabe J. Teaching Neuroimmunology to Undergraduate Students: Resource for Full Course or Modular Implementation. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2021; 19:A163-A184. [PMID: 34552435 PMCID: PMC8437358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 06/13/2023]
Abstract
This paper describes a course I designed to teach neuroimmunology to undergraduate students. In this course I incorporated many active learning strategies to help make it a student-centered class, where they developed communication skills, while reading and analyzing primary literature articles. As the field of neuroimmunology is relatively new, most textbooks in the field approached the subject from the perspective of neurology and autoimmune diseases. Therefore, I used reading, analysis, and student-led presentation of primary papers in the classroom to not only develop critical thinking and application of the scientific method, but also oral communication skills. Other activities such as writing New York Times-style articles and literature review papers were employed to develop written communications skills. The goal of this article is to provide a reference tool for instructors trained in neuroscience to deploy an entire course on neuroimmunology or select a module or a single paper to incorporate into their existing course to offer students a taste for neuroimmunology.
Collapse
|
33
|
Hui TK, Lai XS, Dong X, Jing H, Liu Z, Fei E, Chen WB, Wang S, Ren D, Zou S, Wu HT, Pan BX. Ablation of Lrp4 in Schwann Cells Promotes Peripheral Nerve Regeneration in Mice. BIOLOGY 2021; 10:biology10060452. [PMID: 34063992 PMCID: PMC8223976 DOI: 10.3390/biology10060452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor-related protein 4 (Lrp4) is a critical protein involved in the Agrin-Lrp4-MuSK signaling pathway that drives the clustering of acetylcholine receptors (AChRs) at the neuromuscular junction (NMJ). Many studies have shown that Lrp4 also functions in kidney development, bone formation, nervous system development, etc. However, whether Lrp4 participates in nerve regeneration in mammals remains unknown. Herein, we show that Lrp4 is expressed in SCs and that conditional knockout (cKO) of Lrp4 in SCs promotes peripheral nerve regeneration. In Lrp4 cKO mice, the demyelination of SCs was accelerated, and the proliferation of SCs was increased in the injured nerve. Furthermore, we identified that two myelination-related genes, Krox-20 and Mpz, were downregulated more dramatically in the cKO group than in the control group. Our results elucidate a novel role of Lrp4 in peripheral nerve regeneration and thereby provide a potential therapeutic target for peripheral nerve recovery.
Collapse
Affiliation(s)
- Tian-Kun Hui
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Xin-Sheng Lai
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Xia Dong
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Hongyang Jing
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Ziyang Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Wen-Bing Chen
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Shunqi Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Dongyan Ren
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
| | - Suqi Zou
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Correspondence: (S.Z.); (H.-T.W.); (B.-X.P.)
| | - Hai-Tao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
- Correspondence: (S.Z.); (H.-T.W.); (B.-X.P.)
| | - Bing-Xing Pan
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (T.-K.H.); (X.-S.L.); (H.J.); (Z.L.); (E.F.); (W.-B.C.); (S.W.); (D.R.)
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Correspondence: (S.Z.); (H.-T.W.); (B.-X.P.)
| |
Collapse
|
34
|
Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem 2021; 158:621-639. [PMID: 33608912 DOI: 10.1111/jnc.15327] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
There is growing evidence that excessive microglial phagocytosis of neurons and synapses contributes to multiple brain pathologies. RNA-seq and genome-wide association (GWAS) studies have linked multiple phagocytic genes to neurodegenerative diseases, and knock-out of phagocytic genes has been found to protect against neurodegeneration in animal models, suggesting that excessive microglial phagocytosis contributes to neurodegeneration. Here, we review recent evidence that microglial phagocytosis of live neurons and synapses causes neurodegeneration in animal models of Alzheimer's disease and other tauopathies, Parkinson's disease, frontotemporal dementias, multiple sclerosis, retinal degeneration and neurodegeneration induced by ischaemia, infection or ageing. We also review factors regulating microglial phagocytosis of neurons, including: nucleotides, frackalkine, phosphatidylserine, calreticulin, UDP, CD47, sialylation, complement, galectin-3, Apolipoprotein E, phagocytic receptors, Siglec receptors, cytokines, microglial epigenetics and expression profile. Some of these factors may be potential treatment targets to prevent neurodegeneration mediated by excessive microglial phagocytosis of live neurons and synapses.
Collapse
Affiliation(s)
- Claire A Butler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alma S Popescu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Fissel JA, Farah MH. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve. J Neuroinflammation 2021; 18:71. [PMID: 33722254 PMCID: PMC7962400 DOI: 10.1186/s12974-021-02121-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer’s disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Lacagnina MJ, Heijnen CJ, Watkins LR, Grace PM. Autoimmune regulation of chronic pain. Pain Rep 2021; 6:e905. [PMID: 33981931 PMCID: PMC8108590 DOI: 10.1097/pr9.0000000000000905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic pain is an unpleasant and debilitating condition that is often poorly managed by existing therapeutics. Reciprocal interactions between the nervous system and the immune system have been recognized as playing an essential role in the initiation and maintenance of pain. In this review, we discuss how neuroimmune signaling can contribute to peripheral and central sensitization and promote chronic pain through various autoimmune mechanisms. These pathogenic autoimmune mechanisms involve the production and release of autoreactive antibodies from B cells. Autoantibodies-ie, antibodies that recognize self-antigens-have been identified as potential molecules that can modulate the function of nociceptive neurons and thereby induce persistent pain. Autoantibodies can influence neuronal excitability by activating the complement pathway; by directly signaling at sensory neurons expressing Fc gamma receptors, the receptors for the Fc fragment of immunoglobulin G immune complexes; or by binding and disrupting ion channels expressed by nociceptors. Using examples primarily from rheumatoid arthritis, complex regional pain syndrome, and channelopathies from potassium channel complex autoimmunity, we suggest that autoantibody signaling at the central nervous system has therapeutic implications for designing novel disease-modifying treatments for chronic pain.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Beutgen VM, Pfeiffer N, Grus FH. Serological Levels of Anti-clathrin Antibodies Are Decreased in Patients With Pseudoexfoliation Glaucoma. Front Immunol 2021; 12:616421. [PMID: 33679756 PMCID: PMC7933590 DOI: 10.3389/fimmu.2021.616421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence for immunologic contribution to glaucoma pathophysiology is steadily increasing in ophthalmic research. Particularly, an altered abundance of circulating autoantibodies to ocular antigens is frequently observed. Here, we report an analysis of autoantibody abundancies to selected antigens in sera of open-angle glaucoma patients, subdivided into normal-tension glaucoma (N = 31), primary open-angle glaucoma (N = 43) and pseudoexfoliation glaucoma (N = 45), vs. a non-glaucomatous control group (N = 46). Serum samples were analyzed by protein microarray, including 38 antigens. Differences in antibody levels were assessed by ANOVA. Five serological antibodies showed significantly altered levels among the four groups (P < 0.05), which can be used to cluster the subjects in groups consisting mainly of PEXG or POAG/NTG samples. Among the altered autoantibodies, anti-Clathrin antibodies were identified as most important subgroup predictors, enhancing prospective glaucoma subtype prediction. As a second aim, we wanted to gain further insights into the characteristics of previously identified glaucoma-related antigens and their role in glaucoma pathogenesis. To this end, we used the bioinformatics toolset of Metascape to construct protein-protein interaction networks and GO enrichment analysis. Glaucoma-related antigens were significantly enriched in 13 biological processes, including mRNA metabolism, protein folding, blood coagulation and apoptosis, proposing a link of glaucoma-associated pathways to changes in the autoantibody repertoire. In conclusion, our study provides new aspects of the involvement of natural autoimmunity in glaucoma pathomechanisms and promotes advanced opportunities toward new diagnostic approaches.
Collapse
Affiliation(s)
- Vanessa M Beutgen
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To review new evidence on links between poststroke dementia and inflammation. RECENT FINDINGS Although there are still no treatments for poststroke dementia, recent evidence has improved our understanding that stroke increases the risk of incident dementia and worsens cognitive trajectory for at least a decade afterwards. Within approximately the first year dementia onset is associated with stroke severity and location, whereas later absolute risk is associated with more traditional dementia risk factors, such as age and imaging findings. The molecular mechanisms that underlie increased risk of incident dementia in stroke survivors remain unproven; however new data in both human and animal studies suggests links between cognitive decline and inflammation. These point to a model where chronic brain inflammation, provoked by inefficient clearance of myelin debris and a prolonged innate and adaptive immune response, causes poststroke dementia. These localized immune events in the brain may themselves be influenced by the peripheral immune state at key times after stroke. SUMMARY This review recaps clinical evidence on poststroke dementia, new mechanistic links between the chronic inflammatory response to stroke and poststroke dementia, and proposes a model of immune-mediated neurodegeneration after stroke.
Collapse
|
39
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
40
|
Berchtold D, Priller J, Meisel C, Meisel A. Interaction of microglia with infiltrating immune cells in the different phases of stroke. Brain Pathol 2020; 30:1208-1218. [PMID: 33058417 PMCID: PMC8018083 DOI: 10.1111/bpa.12911] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke, in association with its complications, is one of the leading causes of mortality and morbidity worldwide. Cerebral ischemia triggers an inflammatory response in the brain that is controlled by the activation of resident microglia as well as the infiltration of peripheral myeloid and lymphoid cells into the brain parenchyma. This inflammation has been shown to have both beneficial and detrimental effects on stroke outcome. The focus of this review lies on the functions of myeloid cells and their interaction with infiltrating lymphocytes in different phases of stroke. A detailed and time-specific understanding of the contribution of different immune cell subsets during the course of cerebral ischemia is crucial to specifically promote beneficial and inhibit detrimental effects of inflammation on stroke outcome.
Collapse
Affiliation(s)
- Daniel Berchtold
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and DZNE, Charité - Universitätsmedizin Berlin, Berlin, Germany.,UK DRI, University of Edinburgh, Edinburgh, UK
| | - Christian Meisel
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
41
|
Won SY, Kwon S, Jeong HS, Chung KW, Choi B, Chang JW, Lee JE. Fibulin 5, a human Wharton's jelly-derived mesenchymal stem cells-secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin-RAC1 signaling axis. Stem Cells 2020; 38:1578-1593. [PMID: 33107705 PMCID: PMC7756588 DOI: 10.1002/stem.3287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 04/25/2023]
Abstract
In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Soojin Kwon
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Hui Su Jeong
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| |
Collapse
|
42
|
Fissel JA, Farah MH. Macrophage-specific deletion of BACE1 does not enhance macrophage recruitment to the injured peripheral nerve. J Neuroimmunol 2020; 349:577423. [PMID: 33074142 DOI: 10.1016/j.jneuroim.2020.577423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
Following peripheral nerve injury, macrophages are recruited to the injury site from circulation to clear cellular debris. Injured β-secretase 1 (BACE1) knockout mice have enhanced macrophage recruitment and debris clearance, which may be due to BACE1 activity in macrophages or the hypomyelination observed in BACE1 knockout mice. To assess if BACE1 expression by macrophages mediates enhanced macrophage recruitment we utilized mice with macrophage specific deletion of BACE1 and saw no increase in macrophage recruitment following injury. This study suggests that expression of BACE1 by macrophages may not be essential for increased recruitment observed previously in global BACE1 KO mice.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed H Farah
- Department of Neurology at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
43
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
44
|
Li WW, Yang Y, Shi XY, Guo TZ, Guang Q, Kingery WS, Herzenberg LA, Clark JD. Germinal center formation, immunoglobulin production and hindlimb nociceptive sensitization after tibia fracture. Brain Behav Immun 2020; 88:725-734. [PMID: 32413559 PMCID: PMC7416484 DOI: 10.1016/j.bbi.2020.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that Complex Regional Pain Syndrome (CRPS) is in part a post-traumatic autoimmune disease mediated by an adaptive immune response after limb injuries. We previously observed in a murine tibial fracture model of CRPS that pain-related behaviors were dependent upon adaptive immune mechanisms including the neuropeptide-dependent production of IgM for 5 months after injury. However, the time course of induction of this immune response and the demonstration of germinal center formation in lymphoid organs has not been evaluated. Using the murine fracture model, we employed behavioral tests of nociceptive sensitization and limb dysfunction, serum passive transfer techniques, western blot analysis of IgM accumulation, fluorescence-activated cell sorting (FACS) of lymphoid tissues and immunohistochemistry to follow the temporal activation of the adaptive immune response over the first 3 weeks after fracture. We observed that: 1) IgM protein levels in the skin of the fractured mice were elevated at 3 weeks post fracture, but not at earlier time points, 2) serum from fracture mice at 3 weeks, but not 1 and 2 weeks post fracture, had pro-nociceptive effects when passively transferred to fractured muMT mice lacking B cells, 3) fracture induced popliteal lymphadenopathy occurred ipsilateral to fracture beginning at 1 week and peaking at 3 weeks post fracture, 4) a germinal center reaction was detected by FACS analysis in the popliteal lymph nodes from injured limbs by 3 weeks post fracture but not in other lymphoid tissues, 5) germinal center formation was characterized by the induction of T follicular helper cells (Tfh) and germinal center B cells in the popliteal lymph nodes of the injured but not contralateral limbs, and 6) fracture mice treated with the Tfh signaling inhibitor FK506 had impaired germinal center reactions, reduced IgM levels, reduced nociceptive sensitization, and no pronociceptive serum effects after administration to fractured muMT mice. Collectively these data demonstrate that tibia fracture induces an adaptive autoimmune response characterized by popliteal lymph node germinal center formation and Tfh cell dependent B cell activation, resulting in nociceptive sensitization within 3 weeks.
Collapse
Affiliation(s)
- Wen-Wu Li
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Yang Yang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94304, United States.
| | - Xiao-you Shi
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Tian-Zhi Guo
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Veterans Affairs Institute for Research, 3801 Miranda Ave., Palo Alto, California 94304
| | - Qin Guang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Wade S. Kingery
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Veterans Affairs Institute for Research, 3801 Miranda Ave., Palo Alto, California 94304
| | - Leonore A. Herzenberg
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - J. David Clark
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| |
Collapse
|
45
|
Root-Bernstein R. Synergistic Activation of Toll-Like and NOD Receptors by Complementary Antigens as Facilitators of Autoimmune Disease: Review, Model and Novel Predictions. Int J Mol Sci 2020; 21:ijms21134645. [PMID: 32629865 PMCID: PMC7369971 DOI: 10.3390/ijms21134645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022] Open
Abstract
Persistent activation of toll-like receptors (TLR) and nucleotide-binding oligomerization domain-containing proteins (NOD) in the innate immune system is one necessary driver of autoimmune disease (AD), but its mechanism remains obscure. This study compares and contrasts TLR and NOD activation profiles for four AD (autoimmune myocarditis, myasthenia gravis, multiple sclerosis and rheumatoid arthritis) and their animal models. The failure of current AD theories to explain the disparate TLR/NOD profiles in AD is reviewed and a novel model is presented that explains innate immune support of persistent chronic inflammation in terms of unique combinations of complementary AD-specific antigens stimulating synergistic TLRs and/or NODs. The potential explanatory power of the model is explored through testable, novel predictions concerning TLR- and NOD-related AD animal models and therapies.
Collapse
|
46
|
Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Transection is Driven by Cellular Intravitreal Sciatic Nerve Grafts. Cells 2020; 9:cells9061335. [PMID: 32471105 PMCID: PMC7349876 DOI: 10.3390/cells9061335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurotrophic factors (NTF) secreted by Schwann cells in a sciatic nerve (SN) graft promote retinal ganglion cell (RGC) axon regeneration after either transplantation into the vitreous body of the eye or anastomosis to the distal stump of a transected optic nerve. In this study, we investigated the neuroprotective and growth stimulatory properties of SN grafts in which Schwann cells had been killed (acellular SN grafts, ASN) or remained intact (cellular SN grafts, CSN). We report that both intravitreal (ivit) implanted and optic nerve anastomosed CSN promote RGC survival and when simultaneously placed in both sites, they exert additive RGC neuroprotection. CSN and ASN were rich in myelin-associated glycoprotein (MAG) and axon growth-inhibitory ligand common to both the central nervous system (CNS) and peripheral nervous system (PNS) myelin. The penetration of the few RGC axons regenerating into an ASN at an optic nerve transection (ONT) site is limited into the proximal perilesion area, but is increased >2-fold after ivit CSN implantation and increased 5-fold into a CSN optic nerve graft after ivit CSN implantation, potentiated by growth disinhibition through the regulated intramembranous proteolysis (RIP) of p75NTR (the signalling trans-membrane moiety of the nogo-66 trimeric receptor that binds MAG and associated suppression of RhoGTP). Mϋller cells/astrocytes become reactive after all treatments and maximally after simultaneous ivit and optic nerve CSN/ASN grafting. We conclude that simultaneous ivit CSN plus optic nerve CSN support promotes significant RGC survival and axon regeneration into CSN optic nerve grafts, despite being rich in axon growth inhibitory molecules. RGC axon regeneration is probably facilitated through RIP of p75NTR, which blinds axons to myelin-derived axon growth-inhibitory ligands present in optic nerve grafts.
Collapse
|
47
|
Wu M, Downie LE, Grover LM, Moakes RJA, Rauz S, Logan A, Jiao H, Hill LJ, Chinnery HR. The neuroregenerative effects of topical decorin on the injured mouse cornea. J Neuroinflammation 2020; 17:142. [PMID: 32366307 PMCID: PMC7199348 DOI: 10.1186/s12974-020-01812-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background The cornea is innervated with a rich supply of sensory nerves that play important roles in ocular surface health. Any injury or pathology of the corneal nerves increases the risk of dry eye disease and infection. This study aims to evaluate the therapeutic potential of topical decorin to improve corneal nerve regeneration in a mouse model of sterile epithelial abrasion injury. Methods Bilateral central corneal epithelial abrasions (2-mm, Alger Brush) were performed on young C57BL/6 J mice to remove the corneal sensory nerves. Decorin, or vehicle, was applied topically, three times per day for 1 week or every 2 h for 6 h. Spectral-domain optical coherence tomography was performed to measure the abrasion area and corneal thickness. Wholemount immunofluorescence staining was used to assess sensory nerve regeneration (β-tubulin III) and immune cell density (CD45, Iba1, CD11c). To investigate the specific role of dendritic cells (DCs), Cx3cr1gfp/gfp mice, which spontaneously lack resident corneal epithelial DCs, were also investigated. The effect of prophylactic topical administration of recombinant human decorin (applied prior to the abrasion) was also investigated. Nerve tracing (NeuronJ software) was performed to compare recovery of basal nerve axons and superficial nerve terminals in the central and peripheral cornea. Results At 6 h after injury, topical decorin application was associated with greater intraepithelial DC recruitment but no change in re-epithelialisation or corneal thickness, compared to the vehicle control. One week after injury, sub-basal nerve plexus and superficial nerve terminal density were significantly higher in the central cornea in the decorin-treated eyes. The density of corneal stromal macrophages in the decorin-treated eyes and their contralateral eyes was significantly lower compared to saline-treated corneas. No significant improvement in corneal nerve regeneration was observed in Cx3cr1gfp/gfp mice treated with decorin. Conclusions Decorin promotes corneal epithelial nerve regeneration after injury. The neuroregenerative effect of topical decorin was associated with a higher corneal DC density during the acute phase, and fewer macrophages at the study endpoint. The corneal neuroregenerative effects of decorin were absent in mice lacking intraepithelial DCs. Together, these findings support a role for decorin in DC-mediated neuroregeneration following corneal abrasion injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard J A Moakes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, Birmingham and Midland Eye Centre, Birmingham, UK.,Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, 3053, Australia.
| |
Collapse
|
48
|
Protein Kinase Cα Promotes Proliferation and Migration of Schwann Cells by Activating ERK Signaling Pathway. Neuroscience 2020; 433:94-107. [PMID: 32171817 DOI: 10.1016/j.neuroscience.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
Abstract
Wallerian degeneration (WD) and axon regeneration generally take place following peripheral nerve injury (PNI). Schwann cells (SCs) and macrophages play major role in WD. SCs, acting as repair cells and primary signal mediators, dedifferentiate and proliferate to remove the debris, form Büngner's bands and secrete trophic factors during these processes. However, the underlying mechanisms remain poorly understood. Here, we found that protein kinase Cα (PKCα), a serine/threonine kinase, expressed in SCs was significantly up-regulated after PNI. Activating PKCα with phorbol 12-myristate 13-acetate (PMA), a phorbol ester binds and activates PKCα) promoted SCs proliferation and migration. While, silence of PKCα by siRNAs inhibited these processes. PD184352, an inhibitor of MEK1, reversed the effect induced by PMA on SCs. Mechanism studies revealed that PKCα functioned through activating the ERK signaling pathway. Furthermore, PKCα also exhibited a neuroprotective role by upregulating the expression of neurotrophic factors in SCs. To sum up, this study offers novel insights for clarifying our understanding of the involvement of PKCα in the mechanism of peripheral nerve degeneration as well as regeneration.
Collapse
|
49
|
Wang Y, Li B, Xu H, Du S, Liu T, Ren J, Zhang J, Zhang H, Liu Y, Lu L. Growth and elongation of axons through mechanical tension mediated by fluorescent-magnetic bifunctional Fe 3O 4·Rhodamine 6G@PDA superparticles. J Nanobiotechnology 2020; 18:64. [PMID: 32334582 PMCID: PMC7183675 DOI: 10.1186/s12951-020-00621-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background The primary strategy to repair peripheral nerve injuries is to bridge the lesions by promoting axon regeneration. Thus, the ability to direct and manipulate neuronal cell axon regeneration has been one of the top priorities in the field of neuroscience. A recent innovative approach for remotely guiding neuronal regeneration is to incorporate magnetic nanoparticles (MNPs) into cells and transfer the resulting MNP-loaded cells into a magnetically sensitive environment to respond to an external magnetic field. To realize this intention, the synthesis and preparation of ideal MNPs is an important challenge to overcome. Results In this study, we designed and prepared novel fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G@polydopamine superparticles (FMSPs) as neural regeneration therapeutics. With the help of their excellent biocompatibility and ability to interact with neural cells, our in-house fabricated FMSPs can be endocytosed into cells, transported along the axons, and then aggregated in the growth cones. As a result, the mechanical forces generated by FMSPs can promote the growth and elongation of axons and stimulate gene expression associated with neuron growth under external magnetic fields. Conclusions Our work demonstrates that FMSPs can be used as a novel stimulator to promote noninvasive neural regeneration through cell magnetic actuation.![]()
Collapse
Affiliation(s)
- Yang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Binxi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Hao Xu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Shulin Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Ting Liu
- Departments of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jingyan Ren
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jiayi Zhang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
50
|
Bombeiro AL, Lima BHDM, Bonfanti AP, Oliveira ALRD. Improved mouse sciatic nerve regeneration following lymphocyte cell therapy. Mol Immunol 2020; 121:81-91. [PMID: 32172028 DOI: 10.1016/j.molimm.2020.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Abstract
Traumatic injury to the peripheral nervous system (PNS) is the most common cause of acquired nerve damage and impairs the quality of life of patients. The success of nerve regeneration depends on distal stump degeneration, tissue clearance and remodeling, processes in which the immune system participates. We previously reported improved motor recovery in sciatic nerve crush mice following adoptive transfer of lymphocytes, which migrated to the lesion site. However, lymphocyte activity and the nerve tissue response remain unexplored. Thus, in the present study, we evaluated sciatic nerve regeneration and T cell polarization in lymphocyte recipient mice. Splenic lymphocytes were isolated from mice 14 days after sciatic nerve crush and transferred to axotomized animals three days postinjury. Immediate lymphocyte migration to the crushed nerve was confirmed by in vivo imaging. Phenotyping of T helper (Th) cells by flow cytometry revealed an increased frequency of the proinflammatory Th1 and Th17 cell subsets in recipient mice at 7 days and showed that the frequency of these cells remained unchanged for up to 21 days. Moreover, nerve regeneration was improved upon cell therapy, as shown by sustained immunolabeling of axons, Schwann cells, growth-associated protein 43 and BDNF from 14 to 28 days after lesion. Macrophage and IgG immunolabeling were also higher in cell-transferred mice at 14 and 21 days following nerve crush. Functionally, we observed better sensory recovery in the lymphocyte-treated group. Overall, our data demonstrate that enhanced inflammation early after nerve injury has beneficial effects for the regenerative process, improving tissue clearance and axonal regrowth towards the target organs.
Collapse
Affiliation(s)
- André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | - Bruno Henrique de Melo Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil.
| | | |
Collapse
|