1
|
Liu C, Xia S, Wang B, Li J, Wang X, Ren Y, Zhou X. Osteopontin promotes tumor microenvironment remodeling and therapy resistance. Cancer Lett 2025; 617:217618. [PMID: 40058726 DOI: 10.1016/j.canlet.2025.217618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Osteopontin (OPN) is a multifunctional secretory protein which can be expressed and secreted by a variety of tumor cells and immune cells. Tumor microenvironment remodeling provides favorable conditions for tumor progression, immune escape and therapy resistance. As a bridge molecule in crosstalk between tumor cells and tumor microenvironment, OPN can not only come from tumor cells to regulate the functions of various immune cells, promoting the formation of immunosuppressive environment, but also can be secreted by immune cells to act on tumor cells, leading to tumor progression, thus constructing a positive feedback regulatory network. Here, we summarize the molecular structure, source and receptor of OPN, and clarify the mechanism of OPN on tumor-associated macrophages, dendritic cells, myeloid-derived suppressor cells, tumor progression and therapy resistance to comprehensively understand the great potential of OPN as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
- Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Shunjin Xia
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jiayong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xuyan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
2
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
3
|
Yang L, Zhu Z, Zheng Y, Yang J, Liu Y, Shen T, Li M, He H, Huang H, Dai W. RAB6A functions as a critical modulator of the stem-like subsets in cholangiocarcinoma. Mol Carcinog 2023; 62:1460-1473. [PMID: 37278569 DOI: 10.1002/mc.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
RAB6A is a member of RAB GTPase family and plays an important role in the targeted transport of neurotrophic receptors and inflammatory cytokines. RAB6A-mediated secretory pathway is involved in many physiological and pathological processes. Defects in RAB6A-mediated secretory pathway may lead to the development of many diseases, including cancer. However, its role in cholangiocarcinoma (CCA) has not yet been revealed. We explored the regulatory role of RAB6A in the stem-like subsets of CCA. We showed that RAB6A knockdown (KD) impedes cancer stem cells (CSCs) properties and epithelial-mesenchymal transition in vitro and that suppression of RAB6A inhibits tumor growth in vivo. We screened target cargos of RAB6A in CCA cells and identified a extracellular matrix component as the target cargo. RAB6A binds directly to OPN, and RAB6A KD suppressed OPN secretion and inhibited the interaction between OPN and αV integrin receptor. Moreover, RAB6A KD inhibited the AKT signaling pathway, which is a downstream effector of the integrin receptor signaling. In addition, shRNA targeting OPN blocked endogenous expression of OPN and consequently weakened CSCs properties in RAB6A-formed spheres. Similarly, inhibitor of AKT signaling, MK2206 also impedes oncogenic function of RAB6A in the stem-like subsets of CCA cells. In conclusion, our findings showed that RAB6A sustains CSCs phenotype maintenance by modulating the secretion of OPN and consequentially activating the downstream AKT signaling pathway. Targeting the RAB6A/OPN axis may be an effective strategy for CCA therapy.
Collapse
Affiliation(s)
- Liangfang Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiwen Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Yang
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingyun Shen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
von Glehn F, Pochet N, Thapa B, Raheja R, Mazzola MA, Jangi S, Beynon V, Huang J, Farias AS, Paul A, Santos LMB, Gandhi R, Murugaiyan G, Weiner HL, Baecher-Allan CM. Defective Induction of IL-27-Mediated Immunoregulation by Myeloid DCs in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24098000. [PMID: 37175706 PMCID: PMC10179146 DOI: 10.3390/ijms24098000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023] Open
Abstract
The purpose of this study was to examine whether myeloid dendritic cells (mDCs) from patients with multiple sclerosis (MS) and healthy controls (HCs) become similarly tolerogenic when exposed to IL-27 as this may represent a potential mechanism of autoimmune dysregulation. Our study focused on natural mDCs that were isolated from HCs and MS patient peripheral blood mononuclear cells (PBMCs). After a 24-h treatment with IL-27 ± lipopolysaccharide (LPS), the mDCs were either harvested to identify IL-27-regulated gene expression or co-cultured with naive T-cells to measure how the treated DC affected T-cell proliferation and cytokine secretion. mDCs isolated from HCs but not untreated MS patients became functionally tolerogenic after IL-27 treatment. Although IL-27 induced both HC and untreated MS mDCs to produce similar amounts of IL-10, the tolerogenic HC mDCs expressed PD-L2, IDO1, and SOCS1, while the non-tolerogenic untreated MS mDCs expressed IDO1 and IL-6R. Cytokine and RNA analyses identified two signature blocks: the first identified genes associated with mDC tolerizing responses to IL-27, while the second was associated with the presence of MS. In contrast to mDCs from untreated MS patients, mDCs from HCs and IFNb-treated MS patients became tolerogenic in response to IL-27. The genes differentially expressed in the different donor IL-27-treated mDCs may contain targets that regulate mDC tolerogenic responses.
Collapse
Affiliation(s)
- Felipe von Glehn
- Neuroimmunology Unit-Department of Genetics, Microbiology and Immunology-Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bibek Thapa
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Mazzola
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sushrut Jangi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa Beynon
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junning Huang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro S Farias
- Neuroimmunology Unit-Department of Genetics, Microbiology and Immunology-Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonilda M B Santos
- Neuroimmunology Unit-Department of Genetics, Microbiology and Immunology-Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MS 02115, USA
| | - Clare M Baecher-Allan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
6
|
Kim D, Kim S, Kang MS, Yin Z, Min B. Cell type specific IL-27p28 (IL-30) deletion in mice uncovers an unexpected regulatory function of IL-30 in autoimmune inflammation. Sci Rep 2023; 13:1812. [PMID: 36725904 PMCID: PMC9892501 DOI: 10.1038/s41598-023-27413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023] Open
Abstract
IL-27 is an IL-12 family cytokine with immune regulatory properties, capable of modulating inflammatory responses, including autoimmunity. While extensive studies investigated the major target cells of IL-27 mediating its functions, the source of IL-27 especially during tissue specific autoimmune inflammation has not formally been examined. IL-27p28 subunit, also known as IL-30, was initially discovered as an IL-27-specific subunit, and it has thus been deemed as a surrogate marker to denote IL-27 expression. However, IL-30 can be secreted independently of Ebi3, a subunit that forms bioactive IL-27 with IL-30. Moreover, IL-30 itself may act as a negative regulator antagonizing IL-27. In this study, we exploited various cell type specific IL-30-deficient mouse models and examined the source of IL-30 in a T cell mediated autoimmune neuroinflammation. We found that IL-30 expressed by infiltrating and CNS resident APC subsets, infiltrating myeloid cells and microglia, is central in limiting the inflammation. However, dendritic cell-derived IL-30 was dispensable for the disease development. Unexpectedly, in cell type specific IL-30 deficient mice that develop severe EAE, IL-30 expression in the remaining wild-type APC subsets is disproportionately increased, suggesting that increased endogenous IL-30 production may be involved in the severe pathogenesis. In support, systemic recombinant IL-30 administration exacerbates EAE severity. Our results demonstrate that dysregulated endogenous IL-30 expression may interfere with immune regulatory functions of IL-27, promoting encephalitogenic inflammation in vivo.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myung-Su Kang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Maślanka T. Effect of IL-27, Teriflunomide and Retinoic Acid and Their Combinations on CD4 + T Regulatory T Cells-An In Vitro Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238471. [PMID: 36500570 PMCID: PMC9739213 DOI: 10.3390/molecules27238471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
The principal goal of the study was to verify the concept of pharmacological induction of Foxp3+CD25+CD4+ T regulatory (Treg) cells which will additionally be characterized by a highly suppressive phenotype, i.e., by extensive CD25 and CD39 expression and IL-10 and TGF-β production. Stimulated and unstimulated murine lymphocytes were exposed to IL-27, teriflunomide (TER), and all trans retinoic acid (ATRA) alone and to their combinations. The study demonstrated that: (a) IL-27 alone induced CD39 expression on Treg cells and the generation of Tr1 cells; (b) TER alone induced Foxp3-expressing CD4+ T cells and up-regulated density of CD25 on these cells; TER also induced the ability of Treg cells to TGF-β production; (c) ATRA alone induced CD39 expression on Treg cells. The experiments revealed a strong superadditive effect between IL-27 and ATRA with respect to increasing CD39 expression on Treg cells. Moreover, IL-27 and ATRA in combination, but not alone, induced the ability of Treg cells to IL-10 production. However, the combination of IL-27, TER, and ATRA did not induce the generation of Treg cell subset with all described above features. This was due to the fact that TER abolished all listed above desired effects induced by IL-27 alone, ATRA alone, and their combination. IL-27 alone, ATRA alone, and their combination affected TER-induced effects to a lesser extent. Therefore, it can be concluded that in the aspect of pharmacological induction of Treg cells with a highly suppressive phenotype, the triple combination treatment with TER, IL-27, and ATRA does not provide any benefits over TER alone or dual combination including IL-27 and ATRA.
Collapse
Affiliation(s)
- Tomasz Maślanka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Simoes DCM, Paschalidis N, Kourepini E, Panoutsakopoulou V. An integrin axis induces IFN-β production in plasmacytoid dendritic cells. J Biophys Biochem Cytol 2022; 221:213363. [PMID: 35878016 PMCID: PMC9354318 DOI: 10.1083/jcb.202102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
Type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) has been mainly studied in the context of Toll-like receptor (TLR) activation. In the current report, we reveal that, in the absence of TLR activation, the integrin-binding SLAYGLR motif of secreted osteopontin (sOpn) induces IFN-β production in murine pDCs. This process is mediated by α4β1 integrin, indicating that integrin triggering may act as a subtle danger signal leading to IFN-β induction. The SLAYGLR-mediated α4 integrin/IFN-β axis is MyD88 independent and operates via a PI3K/mTOR/IRF3 pathway. Consequently, SLAYGLR-treated pDCs produce increased levels of type I IFNs following TLR stimulation. Intratumoral administration of SLAYGLR induces accumulation of IFN-β-expressing pDCs and efficiently suppresses melanoma tumor growth. In this process, pDCs are crucial. Finally, SLAYGLR enhances pDC development from bone marrow progenitors. These findings open new questions on the roles of sOpn and integrin α4 during homeostasis and inflammation. The newly identified integrin/IFN-β axis may be implicated in a wide array of immune responses.
Collapse
Affiliation(s)
- Davina Camargo Madeira Simoes
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Kourepini
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
9
|
Xiong P, Liu T, Huang H, Yuan Y, Zhang W, Fu L, Chen Y. IL-27 overexpression alleviates inflammatory response in allergic asthma by inhibiting Th9 differentiation and regulating Th1/Th2 balance. Immunopharmacol Immunotoxicol 2022; 44:712-718. [PMID: 35695698 DOI: 10.1080/08923973.2022.2077755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the effect of IL-27 on Th9 differentiation and Th1/Th2 balance. METHODS C57BL/6 (B6) mice were treated with ovalbumin to establish an allergic asthma (AA) model and subjected to IL-27 overexpression (OV) and empty vector (EV). Hematoxylin-eosin (HE) staining was performed to observe lung tissue inflammation. Flow cytometry was carried out to evaluate the percentage of Th9, Th1, and Th2 cells. The expression of IL-27, IL-27R, IL-9, T-bet, IFN-γ, and IgE was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Western blot was conducted to observe the expression of pSTAT-1 and pSTAT-3. RESULTS Compared with the Model group, the number of Th1 cells in the Model + OV group increased significantly (p < .05), while those of Th9 and Th2 cells decreased significantly (p < .05). The expression of IL-27, IL-27R, and IFN-γ in blood serum was increased (p < .05), and that of IL-9 and IgE was significantly decreased in the Model + OV group compared to the Model (p < .05). Western blot revealed that Model + OV exhibited lower expression of pSTAT-3 than that in the Model and Model + EV groups (p < .05), while pSTAT-1 expression was significantly increased (p < .05). Inflammatory infiltration in the Model + OV group was significantly reduced, and there was no significant difference between the Model and Model + EV groups. CONCLUSIONS IL-27 OV inhibits Th9 differentiation and regulates the imbalance of Th1/Th2, thereby alleviating inflammatory response in AA. The findings suggest that IL-27 OV may be a potential strategy for clinical treatment of AA.
Collapse
Affiliation(s)
- Peng Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tonglin Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yi Yuan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wendi Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lina Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yu Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
10
|
Dong Y, Jain RW, Lozinski BM, D'Mello C, Visser F, Ghorbani S, Zandee S, Brown DI, Prat A, Xue M, Yong VW. Single-cell and spatial RNA sequencing identify perturbators of microglial functions with aging. NATURE AGING 2022; 2:508-525. [PMID: 37118444 DOI: 10.1038/s43587-022-00205-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 03/11/2022] [Indexed: 04/30/2023]
Abstract
Microglia are the immune sentinels of the central nervous system with protective roles such as the removal of neurotoxic oxidized phosphatidylcholines (OxPCs). As aging alters microglial function and elevates neurological disability in diseases such as multiple sclerosis, defining aging-associated factors that cause microglia to lose their custodial properties or even become injurious can help to restore their homeostasis. We used single-cell and spatial RNA sequencing in the spinal cord of young (6-week-old) and middle-aged (52-week-old) mice to determine aging-driven microglial reprogramming at homeostasis or after OxPC injury. We identified numerous aging-associated microglial transcripts including osteopontin elevated in OxPC-treated 52-week-old mice, which correlated with greater neurodegeneration. Osteopontin delivery into the spinal cords of 6-week-old mice worsened OxPC lesions, while its knockdown in 52-week-old lesions attenuated microglial inflammation and axon loss. Thus, elevation of osteopontin and other transcripts in aging disorders including multiple sclerosis perturbs microglial functions contributing to aging-associated neurodegeneration.
Collapse
Affiliation(s)
- Yifei Dong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Rajiv W Jain
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Brian M Lozinski
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Charlotte D'Mello
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Frank Visser
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie Zandee
- Neuroimmunology Unit, The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Dennis I Brown
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Alexandre Prat
- Neuroimmunology Unit, The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Mengzhou Xue
- Departments of Cerebrovascular Diseases and Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Ding M, Fei Y, Zhu J, Ma J, Zhu G, Zhen N, Zhu J, Mao S, Sun F, Wang F, Pan Q. IL-27 Improves Adoptive CD8 + T Cells Antitumor Activity via Enhancing Cells Survival and Memory T Cells Differentiation. Cancer Sci 2022; 113:2258-2271. [PMID: 35441753 PMCID: PMC9277268 DOI: 10.1111/cas.15374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
IL-27 is an anti-inflammatory cytokine that triggers enhanced antitumor immunity, particularly cytotoxic T lymphocyte responses. In the present study, we sought to develop IL-27 into a therapeutic adjutant for adoptive T-cell therapy using our well-established models. We have found that IL-27 directly improved the survival status and cytotoxicity of adoptive OT-1 CD8+ T cells in vitro and in vivo. Meanwhile, IL-27 treatment programs memory T cells differentiation in CD8+ T cells, characterized by up regulation of genes associated with T cell memory differentiation (T-bet, Eomes, Blimp1 and Ly6C). Additionally, we engineered the adoptive OT-1 CD8+ T cells to deliver IL-27. In mice, the established tumors treated with OT-1 CD8+ T-IL-27 were completely rejected, which demonstrated that IL-27 delivered via tumor antigen-specific T cells enhance adoptive T cells cancer immunity. To our knowledge, this is the first application of CD8+ T cells as a vehicle to deliver IL-27 to treat tumors. Thus, these studies demonstrate IL-27 is a feasible approach for enhancing CD8+ T cells anti-tumor immunity and can be used as a therapeutic adjutant for T cell adoptive transfer to treat cancer.
Collapse
Affiliation(s)
- Miao Ding
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Fei
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiaotong University affiliated Sixth People's Hospital
| | - Jianmin Zhu
- Key Laboratory of Pediatric Hematology and Oncology, Shanghai Children's Medical Center, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Ma
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Zhen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabei Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siwei Mao
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| |
Collapse
|
12
|
Valencia JC, Erwin-Cohen RA, Clavijo PE, Allen C, Sanford ME, Day CP, Hess MM, Johnson M, Yin J, Fenimore JM, Bettencourt IA, Tsuneyama K, Romero ME, Klarmann KD, Jiang P, Bae HR, McVicar DW, Merlino G, Edmondson EF, Anandasabapathy N, Young HA. Myeloid-Derived Suppressive Cell Expansion Promotes Melanoma Growth and Autoimmunity by Inhibiting CD40/IL27 Regulation in Macrophages. Cancer Res 2021; 81:5977-5990. [PMID: 34642183 PMCID: PMC8639618 DOI: 10.1158/0008-5472.can-21-1148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
The relationship between cancer and autoimmunity is complex. However, the incidence of solid tumors such as melanoma has increased significantly among patients with previous or newly diagnosed systemic autoimmune disease (AID). At the same time, immune checkpoint blockade (ICB) therapy of cancer induces de novo autoinflammation and exacerbates underlying AID, even without evident antitumor responses. Recently, systemic lupus erythematosus (SLE) activity was found to drive myeloid-derived suppressor cell (MDSC) formation in patients, a known barrier to healthy immune surveillance and successful cancer immunotherapy. Cross-talk between MDSCs and macrophages generally drives immune suppressive activity in the tumor microenvironment. However, it remains unclear how peripheral pregenerated MDSC under chronic inflammatory conditions modulates global macrophage immune functions and the impact it could have on existing tumors and underlying lupus nephritis. Here we show that pathogenic expansion of SLE-generated MDSCs by melanoma drives global macrophage polarization and simultaneously impacts the severity of lupus nephritis and tumor progression in SLE-prone mice. Molecular and functional data showed that MDSCs interact with autoimmune macrophages and inhibit cell surface expression of CD40 and the production of IL27. Moreover, low CD40/IL27 signaling in tumors correlated with high tumor-associated macrophage infiltration and ICB therapy resistance both in murine and human melanoma exhibiting active IFNγ signatures. These results suggest that preventing global macrophage reprogramming induced by MDSC-mediated inhibition of CD40/IL27 signaling provides a precision melanoma immunotherapy strategy, supporting an original and advantageous approach to treat solid tumors within established autoimmune landscapes. SIGNIFICANCE: Myeloid-derived suppressor cells induce macrophage reprogramming by suppressing CD40/IL27 signaling to drive melanoma progression, simultaneously affecting underlying autoimmune disease and facilitating resistance to immunotherapy within preexisting autoimmune landscapes.
Collapse
Affiliation(s)
- Julio C Valencia
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland.
| | | | - Paul E Clavijo
- Head and Neck Surgery Branch, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland
| | - Clint Allen
- Head and Neck Surgery Branch, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland
| | | | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, CCR, NCI, Bethesda, Maryland
| | - Megan M Hess
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Morgan Johnson
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Jie Yin
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - John M Fenimore
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | | | | | | | | | - Peng Jiang
- Cancer Data Science laboratory, CCR, NCI, Bethesda, Maryland
| | - Heekyong R Bae
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Daniel W McVicar
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, CCR, NCI, Bethesda, Maryland
| | | | | | - Howard A Young
- Laboratory of Cancer Immunometabolism, CCR, NCI, Frederick Maryland
| |
Collapse
|
13
|
Lou H, Wu LQ, Wang H, Wei RL, Cheng JW. The Potential Role of Osteopontin in the Pathogenesis of Graves' Ophthalmopathy. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34546326 PMCID: PMC8458783 DOI: 10.1167/iovs.62.12.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study is to evaluate the expression of osteopontin (OPN) and its relationship with relative cytokines in patients with Graves’ ophthalmopathy (GO), and to observe the effect of OPN on orbital fibroblasts (OFs) proliferation, migration, and the expression of relative cytokines, as well as the signaling pathways involved in its effect. Methods The orbital adipose connective tissue was obtained from 24 patients with GO (12 cases of active GO, and 12 cases of inactive GO) and 12 healthy controls. OFs were isolated from orbital tissues obtained from patients with active GO who were undergoing orbital decompression surgery. Quantitative PCR and Western blot were performed to detect RNA and protein expression. The proliferation and cell migration rates of OFs were measured by methylthiazol tetrazolium (MTT) and the cell scratch test. Signaling pathway inhibitors, such as OPN monoclonal antibody 1A12, ERK1/2 inhibitor PD98059, and PI3K inhibitor LY294002, were applied to determine the involved pathways. Results The mRNA and protein levels of OPN were increased in orbital adipose connective tissue from patients with active GO than those from patients with inactive GO (2.83-fold increase, P < 0.001; 1.91-fold increase, P < 0.05). The OPN mRNA level was positively correlated with CD40 ligand (CD40L) and hyaluronan synthases 2 (HAS2) mRNA in patients with GO. OPN promoted proliferation and migration rate of OFs and induced vascular endothelial growth factor (VEGF) and collagen I mRNA expression, and the effects were inhibited by 1A12 or LY294002. Conclusions OPN in orbital adipose connective tissues were significantly increase in active GO, and there were significant correlations of OPN with CD40L and HAS2 mRNA levels in patients with GO. OPN promoted proliferation and migration of OFs and induced VEGF and collagen I mRNA expression in OFs through PI3K/Akt signaling pathway. This suggested a role for OPN in the pathogenesis of GO through the activation of OFs.
Collapse
Affiliation(s)
- Heng Lou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Lian-Qun Wu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, China
| | - Rui-Li Wei
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, China
| | - Jin-Wei Cheng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
14
|
Sun H, Wu Y, Zhang Y, Ni B. IL-10-Producing ILCs: Molecular Mechanisms and Disease Relevance. Front Immunol 2021; 12:650200. [PMID: 33859642 PMCID: PMC8042445 DOI: 10.3389/fimmu.2021.650200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are mainly composed of natural killer (NK) cells and helper-like lymphoid cells, which play a vital role in maintaining tissue homeostasis, enhancing adaptive immunity and regulating tissue inflammation. Alteration of the distribution and function of ILCs subgroups are closely related to the pathogenesis of inflammatory diseases and cancers. Interleukin-10 (IL-10) is a highly pleiotropic cytokine, and can be secreted by several cell types, among of which ILCs are recently verified to be a key source of IL-10. So far, the stable production of IL-10 can only be observed in certain NK subsets and ILC2s. Though the regulatory mechanisms for ILCs to produce IL-10 are pivotal for understanding ILCs and potential intervenes of diseases, which however is largely unknown yet. The published studies show that ILCs do not share exactly the same mechanisms for IL-10 production with helper T cells. In this review, the molecular mechanisms regulating IL-10 production in NK cells and ILC2s are discussed in details for the first time, and the role of IL-10-producing ILCs in diseases such as infections, allergies, and cancers are summarized.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Liu JQ, Zhu J, Hu A, Zhang A, Yang C, Yu J, Ghoshal K, Basu S, Bai XF. Is AAV-delivered IL-27 a potential immunotherapeutic for cancer? Am J Cancer Res 2020; 10:3565-3574. [PMID: 33294255 PMCID: PMC7716159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023] Open
Abstract
Cytokines are one of the first immunotherapeutics utilized in trials of human cancers with significant success. However, due to their significant toxicity and often lack of efficacy, cytokines have given their spotlight to other cancer immunotherapeutics such as immune checkpoint inhibitors. Nevertheless, only a subset of cancer patients respond to checkpoint inhibitors. Therefore, developing a novel cytokine-based immunotherapy is still necessary. Among an array of cytokine candidates, IL-27 is a unique one that exhibits clear anti-tumor activity with low toxicity. Systemically delivered IL-27 by adeno-associated virus (AAV-IL-27) is very well tolerized by mice and exhibits potent anti-tumor activity in a variety of tumor models. AAV-IL-27 exerts its anti-tumor activity through directly stimulation of immune effector cells and systemic depletion of Tregs, and is particularly suitable for delivery in combination with checkpoint inhibitors or vaccines. Additionally, AAV-IL-27 can also be delivered locally to tumors to exert its unique actions. In this review, we summarize the evidence that support these points and propose AAV-delivered IL-27 as a potential immunotherapeutic for cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Jianmin Zhu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Aiyan Hu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Alaina Zhang
- College of Medicine and Life Sciences, University of ToledoToledo, Ohio, USA
| | - Chunbaixue Yang
- University of North Carolina Eshelman School of PharmacyChapel Hill, NC, USA
| | - Jianyu Yu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Kalpana Ghoshal
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Sujit Basu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| |
Collapse
|
16
|
Casella G, Rasouli J, Thome R, Descamps HC, Vattikonda A, Ishikawa L, Boehm A, Hwang D, Zhang W, Xiao D, Park J, Zhang GX, Alvarez JI, Rostami A, Ciric B. Interferon-γ/Interleukin-27 Axis Induces Programmed Death Ligand 1 Expression in Monocyte-Derived Dendritic Cells and Restores Immune Tolerance in Central Nervous System Autoimmunity. Front Immunol 2020; 11:576752. [PMID: 33193372 PMCID: PMC7649367 DOI: 10.3389/fimmu.2020.576752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
Antigen (Ag)-specific tolerance induction by intravenous (i. v.) injection of high-dose auto-Ags has been explored for therapy of autoimmune diseases, including multiple sclerosis (MS). It is thought that the advantage of such Ag-specific therapy over non-specific immunomodulatory treatments would be selective suppression of a pathogenic immune response without impairing systemic immunity, thus avoiding adverse effects of immunosuppression. Auto-Ag i.v. tolerance induction has been extensively studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and limited clinical trials demonstrated that it is safe and beneficial to a subset of MS patients. Nonetheless, the mechanisms of i.v. tolerance induction are incompletely understood, hampering the development of better approaches and their clinical application. Here, we describe a pathway whereby auto-Ag i.v. injected into mice with ongoing clinical EAE induces interferon-gamma (IFN-γ) secretion by auto-Ag-specific CD4+ T cells, triggering interleukin (IL)-27 production by conventional dendritic cells type 1 (cDC1). IL-27 then, via signal transducer and activator of transcription 3 activation, induces programmed death ligand 1 (PD-L1) expression by monocyte-derived dendritic cells (moDCs) in the central nervous system of mice with EAE. PD-L1 interaction with programmed cell death protein 1 on pathogenic CD4+ T cells leads to their apoptosis/anergy, resulting in disease amelioration. These findings identify a key role of the IFN-γ/IL-27/PD-L1 axis, involving T cells/cDC1/moDCs in the induction of i.v. tolerance.
Collapse
Affiliation(s)
- Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Javad Rasouli
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Asrita Vattikonda
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Larissa Ishikawa
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Boehm
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Hwang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Weifeng Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Dan Xiao
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jeongho Park
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.,College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, South Korea
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jorge I Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Montes de Oca M, de Labastida Rivera F, Winterford C, Frame TCM, Ng SS, Amante FH, Edwards CL, Bukali L, Wang Y, Uzonna JE, Kuns RD, Zhang P, Kabat A, Klein Geltink RI, Pearce EJ, Hill GR, Engwerda CR. IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathog 2020; 16:e1008994. [PMID: 33049000 PMCID: PMC7584222 DOI: 10.1371/journal.ppat.1008994] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/23/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammation is critical for controlling pathogens, but also responsible for symptoms of infectious diseases. IL-27 is an important regulator of inflammation and can limit development of IFNγ-producing Tbet+ CD4+ T (Th1) cells. IL-27 is thought to do this by stimulating IL-10 production by CD4+ T cells, but the underlying mechanisms of these immunoregulatory pathways are not clear. Here we studied the role of IL-27 signalling in experimental visceral leishmaniasis (VL) caused by infection of C57BL/6 mice with the human pathogen Leishmania donovani. We found IL-27 signalling was critical for the development of IL-10-producing Th1 (Tr1) cells during infection. Furthermore, in the absence of IL-27 signalling, there was improved control of parasite growth, but accelerated splenic pathology characterised by the loss of marginal zone macrophages. Critically, we discovered that IL-27 signalling limited glycolysis in Th1 cells during infection that in turn attenuated inflammation. Furthermore, the modulation of glycolysis in the absence of IL-27 signalling restricted tissue pathology without compromising anti-parasitic immunity. Together, these findings identify a novel mechanism by which IL-27 mediates immune regulation during disease by regulating cellular metabolism. Infectious diseases like visceral leishmaniasis caused by the protozoan parasites Leishmania donovani and L. infantum are associated with an inflammatory response generated by the host. This is needed to control parasite growth, but also contributes to the symptoms of disease. Consequently, these inflammatory responses need to be tightly regulated. Although we now recognize many of the cells and molecules involved in controlling inflammation, the underlying mechanisms mediating immune regulation are unclear. CD4+ T cells are critical drivers of inflammatory responses during infections and as they progress from a naïve to activated state, the metabolic pathways they use have to change to meet the new energy demands required to proliferate and produce effector molecules. In this study, we discovered that the inflammatory CD4+ T cells needed to control L. donovani infection switch from relying on mitochondrial oxidative pathways to glycolysis. Critically, we found the cytokine IL-27 limited glycolysis in these inflammatory CD4+ T cells, and in the absence of IL-27 signaling pathways, these cells expanded more rapidly to better control parasite growth, but also caused increased tissue damage in the spleen. However, pharmacological dampening of glycolysis in inflammatory CD4+ T cells in L. donovani-infected mice lacking IL-27 signaling pathways limited tissue damage without affecting their improved anti-parasitic activity. Together, these results demonstrate that the pathogenic activity of inflammatory CD4+ T cells can be modulated by altering their cellular metabolism.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fabian de Labastida Rivera
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Clay Winterford
- QIMR Berghofer Histology Facility, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Teija C. M. Frame
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chelsea L. Edwards
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Luzia Bukali
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yulin Wang
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jude E. Uzonna
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachel D. Kuns
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ping Zhang
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Agnieszka Kabat
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Edward J. Pearce
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Washington, United States of America
| | - Christian R. Engwerda
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
18
|
Del Prete A, Scutera S, Sozzani S, Musso T. Role of osteopontin in dendritic cell shaping of immune responses. Cytokine Growth Factor Rev 2019; 50:19-28. [PMID: 31126876 DOI: 10.1016/j.cytogfr.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Osteopontin (OPN) is a pleiotropic cytokine produced both by immune and non-immune cells and active on different cellular targets. OPN production has been associated with several pathological conditions, including autoimmune diseases (e.g. lupus, multiple sclerosis and rheumatoid arthritis) and cancer. Emerging evidence suggests that the role of OPN has been underestimated, as it seems to be working at multiple levels of immune regulation, such as the shaping of T cell effector responses, the regulation of the tumor microenvironment, and the functional interaction with mesenchymal stromal cells. In this context, dendritic cells (DCs) play a crucial role being both an important source and a cellular target for OPN action. DC family is composed by several cell subsets endowed with specific immune functions. OPN exerts its biological functions through multiple receptors and is produced in different intracellular and secreted forms. OPN production by DC subsets is emerging as a crucial mechanism of regulation in normal and pathological conditions and starts to be exploited as a therapeutic target. This review will focus on the role of DC-derived OPN in shaping immune response and on the complex role of this cytokines in the regulation in immune response.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Humanitas Clinical and Research Center-IRCCS Rozzano-Milano, Italy
| | - Sara Scutera
- Microbiology section, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Tiziana Musso
- Microbiology section, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| |
Collapse
|
19
|
Švajger U, Rožman P. Induction of Tolerogenic Dendritic Cells by Endogenous Biomolecules: An Update. Front Immunol 2018; 9:2482. [PMID: 30416505 PMCID: PMC6212600 DOI: 10.3389/fimmu.2018.02482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The importance of microenvironment on dendritic cell (DC) function and development has been strongly established during the last two decades. Although DCs with general tolerogenic characteristics have been isolated and defined as a particular sub-population, it is predominantly their unequivocal biological plasticity, which allows for unparalleled responsiveness to environmental ques and shaping of their tolerogenic characteristics when interacting with tolerance-inducing biomolecules. Dendritic cells carry receptors for a great number of endogenous factors, which, after ligation, can importantly influence the development of their activation state. For this there is ample evidence merely by observation of DC characteristics isolated from various anatomical niches, e.g., the greater immunosuppressive potential of DCs isolated from intestine compared to conventional blood DCs. Endogenous biomolecules present in these environments most likely play a major role as a determinant of their phenotype and function. In this review, we will concisely summarize in what way various, tolerance-inducing endogenous factors influence DC biology, the development of their particular tolerogenic state and their subsequent actions in context of immune response inhibition and induction of regulatory T cells.
Collapse
Affiliation(s)
- Urban Švajger
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Rožman
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
20
|
Zhu J, Liu JQ, Liu Z, Wu L, Shi M, Zhang J, Davis JP, Bai XF. Interleukin-27 Gene Therapy Prevents the Development of Autoimmune Encephalomyelitis but Fails to Attenuate Established Inflammation due to the Expansion of CD11b +Gr-1 + Myeloid Cells. Front Immunol 2018; 9:873. [PMID: 29740452 PMCID: PMC5928207 DOI: 10.3389/fimmu.2018.00873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Interleukin-27 (IL-27) and its subunit P28 (also known as IL-30) have been shown to inhibit autoimmunity and have been suggested as potential immunotherapeutic for autoimmune diseases such as multiple sclerosis (MS). However, the potential of IL-27 and IL-30 as immunotherapeutic, and their mechanisms of action have not been fully understood. In this study, we evaluated the efficacy of adeno-associated viral vector (AAV)-delivered IL-27 (AAV-IL-27) and IL-30 (AAV-IL-30) in a murine model of MS. We found that one single administration of AAV-IL-27, but not AAV-IL-30 completely blocked the development of experimental autoimmune encephalomyelitis (EAE). AAV-IL-27 administration reduced the frequencies of Th17, Treg, and GM-CSF-producing CD4+ T cells and induced T cell expression of IFN-γ, IL-10, and PD-L1. However, experiments involving IL-10-deficient mice and PD-1 blockade revealed that AAV-IL-27-induced IL-10 and PD-L1 expression were not required for the prevention of EAE development. Surprisingly, neither AAV-IL-27 nor AAV-IL-30 treatment inhibited EAE development and Th17 responses when given at disease onset. We found that mice with established EAE had significant expansion of CD11b+Gr-1+ cells, and AAV-IL-27 treatment further expanded these cells and induced their expression of Th17-promoting cytokines such as IL-6. Adoptive transfer of AAV-IL-27-expanded CD11b+Gr-1+ cells enhanced EAE development. Thus, expansion of CD11b+Gr-1+ cells provides an explanation for the resistance to IL-27 therapy in mice with established disease.
Collapse
MESH Headings
- Animals
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- Dependovirus/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Humans
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-27/administration & dosage
- Interleukin-27/genetics
- Interleukin-27/immunology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/therapy
- Myeloid Cells/immunology
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, Interleukin
- Treatment Outcome
Collapse
Affiliation(s)
- Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Lisha Wu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Min Shi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianchao Zhang
- Department of Physiology, Ohio State University, Columbus, OH, United States
| | - Jonathan P. Davis
- Department of Physiology, Ohio State University, Columbus, OH, United States
| | - Xue-Feng Bai
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Rožman P, Švajger U. The tolerogenic role of IFN-γ. Cytokine Growth Factor Rev 2018; 41:40-53. [PMID: 29655565 DOI: 10.1016/j.cytogfr.2018.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Due to its extremely pleiotropic nature, the complex effects of IFN-γ exerted both on immune and non-immune cell types still remain only partially understood. The longstanding view of IFN-γ as being a predominantly inflammatory cytokine is constantly challenged by increasing demonstrations of its direct or indirect regulatory roles. Interferon-γ can exert tolerogenic effects on both innate and adaptive immune cell types, promoting tolerance of various antigen-presenting cells, and augmenting function and differentiation of regulatory T cells, respectively. Its capacity to induce IDO-competence is not limited to immune cells but extends to other cell types such as mesenchymal stem cells, epithelial cells, and tumors. The pro-inflammatory role of IFN-γ in tumor immune surveillance can backfire by directly inducing inhibitory molecule expression, such as PDL-1, on tumor cells. With increasing knowledge regarding the role of different helper T cell subsets in certain autoimmune diseases, the once contradictory observations of disease attenuation by IFN-γ can now be explained by its opposing interplay with other effector cytokines, particularly IL-17. The paradoxically immunosuppressive role of IFN-γ is also becoming evident in the transplantation setting, and graft-versus-host-disease. In the present review, we will discuss the latest findings that help to elucidate this dual role of IFN-γ at a cellular level, and in various pathophysiological states.
Collapse
Affiliation(s)
- Primož Rožman
- Blood Transfusion Centre of Slovenia, Department for Diagnostic Services, Šlajmerjeva 6, 1000, Ljubljana, Slovenia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia, Department for Diagnostic Services, Šlajmerjeva 6, 1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer. Cytokine Growth Factor Rev 2018; 39:46-61. [PMID: 29373197 DOI: 10.1016/j.cytogfr.2018.01.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/24/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is considered as one of the most lethal types of cancer due to its poor prognosis and lack of effective therapeutic approaches. Although many studies have been done on pancreatic cancer, the current treatment methods did not exhibit successful results. Hence, novel strategies are needed for treatment of pancreatic cancer. The microenvironment of pancreatic cancer contains many factors such as inflammatory cytokines and tumor associated macrophages (TAMs), which influence the tumor's status. These factors can be upregulated and consequently lead to exacerbation of tumor progression. Understanding the role of pro- and anti-inflammatory cytokines and the function of TAMs in the pancreatic cancer microenvironment might lead to development and improvement of novel strategies in the diagnosis and treatment of pancreatic cancer and may result in promising treatments for this type of cancer.
Collapse
Affiliation(s)
- Saeed Farajzadeh Valilou
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nicola Silvestris
- Medical Oncology Unit and Scientific Directorate, National Cancer Institute IRCCS "Giovanni Paolo II", Bari, Italy; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Bari, Italy
| | - Antonella Argentiero
- Medical Oncology Unit, National Cancer Institute IRCCS "Giovanni Paolo II", Bari, Italy; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Bari, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
23
|
Alissafi T, Kourepini E, Simoes DCM, Paschalidis N, Aggelakopoulou M, Sparwasser T, Boon L, Hammad H, Lambrecht BN, Panoutsakopoulou V. Osteopontin Promotes Protective Antigenic Tolerance against Experimental Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2018; 200:1270-1282. [PMID: 29330321 DOI: 10.4049/jimmunol.1701345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
In the context of inflammation, osteopontin (Opn) is known to promote effector responses, facilitating a proinflammatory environment; however, its role during antigenic tolerance induction is unknown. Using a mouse model of asthma, we investigated the role of Opn during antigenic tolerance induction and its effects on associated regulatory cellular populations prior to disease initiation. Our experiments demonstrate that Opn drives protective antigenic tolerance by inducing accumulation of IFN-β-producing plasmacytoid dendritic cells, as well as regulatory T cells, in mediastinal lymph nodes. We also show that, in the absence of TLR triggers, recombinant Opn, and particularly its SLAYGLR motif, directly induces IFN-β expression in Ag-primed plasmacytoid dendritic cells, which renders them extra protective against induction of allergic airway disease upon transfer into recipient mice. Lastly, we show that blockade of type I IFNR prevents antigenic tolerance induction against experimental allergic asthma. Overall, we unveil a new role for Opn in setting up a tolerogenic milieu boosting antigenic tolerance induction, thus leading to prevention of allergic airway inflammation. Our results provide insight for the future design of immunotherapies against allergic asthma.
Collapse
Affiliation(s)
- Themis Alissafi
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.,VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Evangelia Kourepini
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Davina C M Simoes
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Aggelakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany, a Joint Venture between the Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany and the Hannover Medical School, 30625 Hannover, Germany; and
| | - Louis Boon
- Bioceros BV, 3584 CM Utrecht, the Netherlands
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
24
|
Thomé R, Moore JN, Mari ER, Rasouli J, Hwang D, Yoshimura S, Ciric B, Zhang GX, Rostami AM. Induction of Peripheral Tolerance in Ongoing Autoimmune Inflammation Requires Interleukin 27 Signaling in Dendritic Cells. Front Immunol 2017; 8:1392. [PMID: 29163476 PMCID: PMC5663690 DOI: 10.3389/fimmu.2017.01392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023] Open
Abstract
Peripheral tolerance to autoantigens is induced via suppression of self-reactive lymphocytes, stimulation of tolerogenic dendritic cells (DCs) and regulatory T (Treg) cells. Interleukin (IL)-27 induces tolerogenic DCs and Treg cells; however, it is not known whether IL-27 is important for tolerance induction. We immunized wild-type (WT) and IL-27 receptor (WSX-1) knockout mice with MOG35–55 for induction of experimental autoimmune encephalomyelitis and intravenously (i.v.) injected them with MOG35–55 after onset of disease to induce i.v. tolerance. i.v. administration of MOG35–55 reduced disease severity in WT mice, but was ineffective in Wsx−/− mice. IL-27 signaling in DCs was important for tolerance induction, whereas its signaling in T cells was not. Further mechanistic studies showed that IL-27-dependent tolerance relied on cooperation of distinct subsets of spleen DCs with the ability to induce T cell-derived IL-10 and IFN-γ. Overall, our data show that IL-27 is a key cytokine in antigen-induced peripheral tolerance and may provide basis for improvement of antigen-specific tolerance approaches in multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jason N Moore
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Elisabeth R Mari
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Javad Rasouli
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Hwang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Satoshi Yoshimura
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Neurology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Bogoljub Ciric
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Guang-Xian Zhang
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abdolmohamad M Rostami
- Department of Neurology, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Kim EY, Moudgil KD. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine 2017; 98:87-96. [PMID: 28438552 PMCID: PMC5581685 DOI: 10.1016/j.cyto.2017.04.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022]
Abstract
Pro-inflammatory cytokines promote autoimmune inflammation and tissue damage, while anti-inflammatory cytokines help resolve inflammation and facilitate tissue repair. Over the past few decades, this general feature of cytokine-mediated events has offered a broad framework to comprehend the pathogenesis of autoimmune and other immune-mediated diseases, and to successfully develop therapeutic approaches for diseases such as rheumatoid arthritis (RA). Anti-tumor necrosis factor-α (TNF-α) therapy is a testimony in support of this endeavor. However, many patients with RA fail to respond to this or other biologics, and some patients may suffer unexpected aggravation of arthritic inflammation or other autoimmune effects. These observations combined with rapid advancements in immunology in regard to newer cytokines and T cell subsets have enforced a re-evaluation of the perceived pathogenic attribute of the pro-inflammatory cytokines. Studies conducted by others and us in experimental models of arthritis involving direct administration of IFN-γ or TNF-α; in vivo neutralization of the cytokine; the use of animals deficient in the cytokine or its receptor; and the impact of the cytokine or anti-cytokine therapy on defined T cell subsets have revealed paradoxical anti-inflammatory and immunoregulatory attributes of these two cytokines. Similar studies in other models of autoimmunity as well as limited studies in arthritis patients have also unveiled the disease-protective effects of these pro-inflammatory cytokines. A major mechanism in this regard is the altered balance between the pathogenic T helper 17 (Th17) and protective T regulatory (Treg) cells in favor of the latter. However, it is essential to consider that this aspect of the pro-inflammatory cytokines is context-dependent such that the dose and timing of intervention, the experimental model of the disease under study, and the differences in individual responsiveness can influence the final outcomes. Nevertheless, the realization that pro-inflammatory cytokines can also be immunoregulatory offers a new perspective in fully understanding the pathogenesis of autoimmune diseases and in designing better therapies for controlling them.
Collapse
Affiliation(s)
- Eugene Y Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Washington State University, Spokane, WA, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
26
|
de Siqueira Patriota LL, Procópio TF, de Santana Brito J, Sebag V, de Oliveira APS, de Araújo Soares AK, Moreira LR, de Albuquerque Lima T, Soares T, da Silva TD, Paiva PMG, de Lorena VMB, de Melo CML, de Albuquerque LP, Napoleão TH. Microgramma vacciniifolia (Polypodiaceae) fronds contain a multifunctional lectin with immunomodulatory properties on human cells. Int J Biol Macromol 2017; 103:36-46. [DOI: 10.1016/j.ijbiomac.2017.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
|
27
|
Vigne S, Chalmin F, Duc D, Clottu AS, Apetoh L, Lobaccaro JMA, Christen I, Zhang J, Pot C. IL-27-Induced Type 1 Regulatory T-Cells Produce Oxysterols that Constrain IL-10 Production. Front Immunol 2017; 8:1184. [PMID: 28993775 PMCID: PMC5622150 DOI: 10.3389/fimmu.2017.01184] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
The behaviors of lymphocytes, including CD4+ T helper cells, are controlled on many levels by internal metabolic properties. Lipid metabolites have recently been ascribed a novel function as immune response modulators and perturbation of steroids pathways modulates inflammation and potentially promotes a variety of diseases. However, the impact of lipid metabolism on autoimmune disease development and lymphocyte biology is still largely unraveled. In this line, oxysterols, oxidized forms of cholesterol, have pleiotropic roles on the immune response aside from their involvements in lipid metabolism. The oxysterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC) regulate antiviral immunity and immune cell chemotaxis. However, their physiological effects on adaptive immune response in particular on various subset CD4+ T lymphocytes are largely unknown. Here, we assessed oxysterol levels in subset of CD4+ T cells and demonstrated that 25-OHC and transcript levels of its synthesizing enzyme, cholesterol 25-hydroxylase, were specifically increased in IL-27-induced type 1 regulatory T (TR1) cells. We further showed that 25-OHC acts as a negative regulator of TR1 cells in particular of IL-10 secretion via liver X receptor signaling. Not only do these findings unravel molecular mechanisms accounting for IL-27 signaling but also they highlight oxysterols as pro-inflammatory mediators that dampens regulatory T cell responses and thus unleash a pro-inflammatory response.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Fanny Chalmin
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Donovan Duc
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Aurélie S Clottu
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Lionel Apetoh
- Faculté de Médecine, University of Bourgogne, INSERM U866, Centre Georges François Leclerc, Dijon, France
| | - Jean-Marc A Lobaccaro
- GReD, Université Clermont Auvergne, CNRS, INSERM, CRNH Auvergne, Clermont-Ferrand, France
| | - Isabelle Christen
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Juan Zhang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Liu Z, Wu L, Zhu J, Zhu X, Zhu J, Liu JQ, Zhang J, Davis JP, Varikuti S, Satoskar AR, Zhou J, Li MS, Bai XF. Interleukin-27 signalling induces stem cell antigen-1 expression in T lymphocytes in vivo. Immunology 2017; 152:638-647. [PMID: 28758191 DOI: 10.1111/imm.12805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Stem cell antigen-1 (Sca-1/Ly6A/E) is a cell surface glycoprotein that is often used as a biomarker for stem cells and cell stemness. However, it is not clear what factors can directly induce the expression of Sca-1/Ly6A/E in T lymphocytes in vivo, and if induction of Sca-1 is associated with T cell stemness. In this study, we show that interleukin-27 (IL-27), a member of the IL-12 family of cytokines, directly induces Sca-1 expression in T cells in vivo. We found that mice-deficient for IL-27 (either P28 or EBI3) or its signalling (IL-27Rα) had profound reduction of Sca-1 expression in naive (CD62L+ CD44- ), memory (CD62L+ CD44+ ) and effector (CD62L- CD44+ ) T cells. In contrast, in vivo delivery of IL-27 using adeno-associated viral vectors strongly induced the expression of Sca-1 in naive and memory/effector T-cell populations in an IL-27 receptor- or signal transducer and activator of transcription 1-dependent manner. Interestingly, IL-27-induced Sca-1+ T cells do not express or up-regulate classic stem cell-associated genes such as Nanog, Oct4, Sox2 and Ctnnb1. However, IL-27-induced Sca-1+ T cells had increased expression of effector/memory-associated transcription factor T-bet, Eomes and Blimp1. Hence, IL-27 signalling directly induces the expression of Sca-1/Ly6A/E expression in T cells. Direct expansion of Sca-1+ CD62L+ CD44- T memory stem cells may explain why IL-27 enhances T-cell memory.
Collapse
Affiliation(s)
- Zhihao Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Lisha Wu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jing Zhu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xiaotong Zhu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jianmin Zhu
- Paediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jianchao Zhang
- Department of Physiology, Ohio State University, Columbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology, Ohio State University, Columbus, OH, USA
| | - Sanjay Varikuti
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Abhay R Satoskar
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Paediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Xu X, Huang H, Wang Q, Cai M, Qian Y, Han Y, Wang X, Gao Y, Yuan M, Xu L, Yao C, Xiao L, Shi B. IFN-γ-producing Th1-like regulatory T cells may limit acute cellular renal allograft rejection: Paradoxical post-transplantation effects of IFN-γ. Immunobiology 2017; 222:280-290. [DOI: 10.1016/j.imbio.2016.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 09/17/2016] [Indexed: 01/12/2023]
|
30
|
Interleukin-27 inhibits malignant behaviors of pancreatic cancer cells by targeting M2 polarized tumor associated macrophages. Cytokine 2017; 89:194-200. [DOI: 10.1016/j.cyto.2015.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/20/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022]
|
31
|
Pereira TA, Syn WK, Pereira FEL, Lambertucci JR, Secor WE, Diehl AM. Serum osteopontin is a biomarker of severe fibrosis and portal hypertension in human and murine schistosomiasis mansoni. Int J Parasitol 2016; 46:829-832. [PMID: 27729270 PMCID: PMC5584370 DOI: 10.1016/j.ijpara.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022]
Abstract
Schistosomiasis is a major cause of fibrosis and portal hypertension. The reason 4-10% of infected subjects develops hepatosplenic schistosomiasis remains unclear. Chronically infected male CBA/J mice reproduce the dichotomic forms of human schistosomiasis. Most mice (80%) develop moderate splenomegaly syndrome (similar to hepatointestinal disease in humans) and 20% present severe hypersplenomegaly syndrome (analogous to human hepatosplenic disease). We demonstrated that the profibrogenic molecule osteopontin discriminates between mice with severe and mild disease and could be a novel morbidity biomarker in murine and human schistosomiasis. Failure to downregulate osteopontin during the chronic phase may explain why hepatosplenic subjects develop severe fibrosis.
Collapse
Affiliation(s)
- Thiago Almeida Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA; Departamento de Clínica Médica, Laboratório de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Immunopathogesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wing-Kin Syn
- Liver Regeneration and Repair Research Group, Institute of Hepatology, Foundation for Liver Research, London, UK; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC, USA; Section of Gastroenterology, Ralph H Johnson Veteran Affairs Medical Center, Charleston, SC, USA
| | - Fausto E L Pereira
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - José Roberto Lambertucci
- Departamento de Clínica Médica, Laboratório de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
32
|
Moravej A, Karimi MH, Geramizadeh B, Azarpira N, Zarnani AH, Yaghobi R, Khosravi M, Kalani M, Gharesi-Fard B. Mesenchymal Stem Cells Upregulate the Expression of PD-L1 But Not VDR in Dendritic Cells. Immunol Invest 2016; 46:80-96. [PMID: 27736253 DOI: 10.1080/08820139.2016.1225757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) show immunomodulatory functions. But the exact mechanism underlying these activities of MSCs is still not completely understood. There have been a few studies which have assessed the effects of these cells on dendritic cells (DCs) function. Given the importance of programmed cell death receptor-1 (PD-L1) and vitamin D receptor (VDR) expression in induction of tolerance in DCs, we were encouraged to investigate if one of the immunomodulatory functions of MSCs could be inducing upregulation of PD-L1 and VDR on DCs or not. METHODS DCs were co-cultured with MSCs or treated with them in transwell plates in the presence or absence of Lipopolysaccharide (LPS). Expression of PD-L1 and VDR mRNA and proteins in treated DCs were assessed by Real-time PCR and Western blot techniques. Furthermore, treated DCs were co-cultured with allogeneic T-cells, and T-cell proliferation and cytokine secretions in co-culture supernatants were assessed. RESULTS The results showed that PD-L1 but not VDR expression is significantly upregulated in the DCs co-cultured with MSCs. Furthermore, cell-to-cell contact and also presence of maturation inducers like LPS is necessary for this function. Moreover, our results indicated that MSCs could induce tolerogenic DCs (TolDCs) which could decrease the secretion of IL-2 by T-cells and inhibit T-cell proliferation as well as increase secretion of IL-10. CONCLUSIONS Overall, our results show that MSCs may have several suppressive effects on immune responses by induction of TolDCs expressing more PD-L1 immunomodulatory molecule and change the cytokines profile of DCs and T-cells.
Collapse
Affiliation(s)
- Ali Moravej
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran.,b Noncommunicable Diseases Research Centre , Fasa University of Medical Sciences , Fasa , Iran
| | - Mohammad-Hossein Karimi
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bita Geramizadeh
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Negar Azarpira
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Amir-Hasan Zarnani
- c Nanobiotechnology Research Center , Avicenna Research Institute, ACECR , Tehran , Iran.,d Immunology Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Ramin Yaghobi
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Khosravi
- a Transplant Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mehdi Kalani
- e Alborzi Clinical Microbiology Research Center, Nemazee Hospital , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Behrouz Gharesi-Fard
- f Department of Immunology, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
33
|
Mindur JE, Valenzuela RM, Yadav SK, Boppana S, Dhib-Jalbut S, Ito K. IL-27: a potential biomarker for responders to glatiramer acetate therapy. J Neuroimmunol 2016; 304:21-28. [PMID: 27449853 DOI: 10.1016/j.jneuroim.2016.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Glatiramer acetate (GA) is an FDA-approved efficacious drug for the treatment of relapsing-remitting multiple sclerosis (RRMS). However, this treatment is not effective for all RRMS patients. Therefore, it is important to identify reliable biomarkers that can predict a beneficial clinical response to GA therapy. Since an increase in IL-27 has been demonstrated to suppress autoimmune and allergic diseases of inflammatory origin, we examined the effect of GA on the production of IL-27. We observed that IL-27 production in PBMCs cultured with GA was heterogeneous amongst MS patients and healthy donors (HD), and thus, defined these MS patients as either efficient, weak, or non-IL-27 producers. Interestingly, GA could induce the expression of the IL-27p28 subunit more efficiently than the IL-27 EBI3 subunit, and the production of IL-27 depended on MHC class II binding by GA. In addition, we found that GA could augment Toll-like receptor (TLR)-mediated IL-27 production. Importantly, serum production of IL-27 and IL-10 was significantly increased at 6months during GA therapy in clinical responders to GA, but not in GA non-responders. Altogether, our data suggest that GA-induced IL-27 may represent a therapeutic mechanism of GA-mediated immunomodulation and that GA-mediated IL-27 production in PBMCs is worth exploring as a biomarker to screen for GA responders prior to the initiation of GA treatment.
Collapse
Affiliation(s)
- John E Mindur
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Reuben M Valenzuela
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Sudhir K Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Sridhar Boppana
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
34
|
Zhu X, Liu Z, Liu JQ, Zhu J, Zhang J, Davis JP, Chu J, Yu J, Zhou J, Li MS, Bai XF. Systemic delivery of IL-27 by an adeno-associated viral vector inhibits T cell-mediated colitis and induces multiple inhibitory pathways in T cells. J Leukoc Biol 2016; 100:403-11. [PMID: 27106672 DOI: 10.1189/jlb.3a1215-540r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
IL-27 is a heterodimeric cytokine that is composed of two subunits, i.e., EBV-induced gene 3 and IL-27p28 (also known as IL-30). Although the role of endogenous IL-27 in the pathogenesis of autoimmune colitis, an experimental model of human inflammatory bowel disease, remains controversial, IL-27 local delivery has been shown to inhibit autoimmune colitis. IL-30 has been shown to inhibit Th1 and Th17 responses and is considered a potential therapeutic for certain autoimmune diseases. In this study, we have compared the therapeutic efficacy of adeno-associated viral vector-delivered IL-27 and IL-30 in a murine model of autoimmune colitis. We found that 1 single administration of adeno-associated viral vector-delivered IL-27, but not adeno-associated viral vector-delivered IL-30, nearly completely inhibited autoimmune colitis. Adeno-associated viral vector-delivered IL-27 administration inhibited Th17 responses and induced T cell expression of IL-10, programmed death ligand 1, and stem cell antigen 1. Intriguingly, adeno-associated viral vector-delivered IL-27 treatment enhanced Th1 responses and inhibited regulatory T cell responses. Experiments involving the adoptive transfer of IL-10-deficient T cells revealed that adeno-associated viral vector-delivered IL-27-induced IL-10 production was insufficient to mediate inhibition of autoimmune colitis, whereas anti-programmed death 1 antibody treatment resulted in the breaking of adeno-associated viral vector-delivered IL-27-induced T cell tolerance. Thus, systemic delivery of IL-27 inhibits Th17 responses and induces multiple inhibitory pathways, including programmed death ligand 1 in T cells, and adeno-associated viral vector-delivered IL-27, but not IL-30, may have a therapeutic potential for the treatment of human inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA; Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianchao Zhang
- Department of Physiology, Ohio State University, Columbus, Ohio, USA; and
| | - Jonathan P Davis
- Department of Physiology, Ohio State University, Columbus, Ohio, USA; and
| | - Jianhong Chu
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China;
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA; Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China;
| |
Collapse
|
35
|
Furusawa JI, Mizoguchi I, Chiba Y, Hisada M, Kobayashi F, Yoshida H, Nakae S, Tsuchida A, Matsumoto T, Ema H, Mizuguchi J, Yoshimoto T. Promotion of Expansion and Differentiation of Hematopoietic Stem Cells by Interleukin-27 into Myeloid Progenitors to Control Infection in Emergency Myelopoiesis. PLoS Pathog 2016; 12:e1005507. [PMID: 26991425 PMCID: PMC4798290 DOI: 10.1371/journal.ppat.1005507] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Emergency myelopoiesis is inflammation-induced hematopoiesis to replenish myeloid cells in the periphery, which is critical to control the infection with pathogens. Previously, pro-inflammatory cytokines such as interferon (IFN)-α and IFN-γ were demonstrated to play a critical role in the expansion of hematopoietic stem cells (HSCs) and myeloid progenitors, leading to production of mature myeloid cells, although their inhibitory effects on hematopoiesis were also reported. Therefore, the molecular mechanism of emergency myelopoiesis during infection remains incompletely understood. Here, we clarify that one of the interleukin (IL)-6/IL-12 family cytokines, IL-27, plays an important role in the emergency myelopoiesis. Among various types of hematopoietic cells in bone marrow, IL-27 predominantly and continuously promoted the expansion of only Lineage−Sca-1+c-Kit+ (LSK) cells, especially long-term repopulating HSCs and myeloid-restricted progenitor cells with long-term repopulating activity, and the differentiation into myeloid progenitors in synergy with stem cell factor. These progenitors expressed myeloid transcription factors such as Spi1, Gfi1, and Cebpa/b through activation of signal transducer and activator of transcription 1 and 3, and had enhanced potential to differentiate into migratory dendritic cells (DCs), neutrophils, and mast cells, and less so into macrophages, and basophils, but not into plasmacytoid DCs, conventional DCs, T cells, and B cells. Among various cytokines, IL-27 in synergy with the stem cell factor had the strongest ability to augment the expansion of LSK cells and their differentiation into myeloid progenitors retaining the LSK phenotype over a long period of time. The experiments using mice deficient for one of IL-27 receptor subunits, WSX-1, and IFN-γ revealed that the blood stage of malaria infection enhanced IL-27 expression through IFN-γ production, and the IL-27 then promoted the expansion of LSK cells, differentiating and mobilizing them into spleen, resulting in enhanced production of neutrophils to control the infection. Thus, IL-27 is one of the limited unique cytokines directly acting on HSCs to promote differentiation into myeloid progenitors during emergency myelopoiesis. Emergency myelopoiesis is inflammation-induced hematopoiesis that is critical for controlling infection with pathogens, but the molecular mechanism remains incompletely understood. Here, we clarify that one of the interleukin (IL)-6/IL-12 family cytokines, IL-27, plays an important role in emergency myelopoiesis. Among various types of hematopoietic cells in bone marrow, IL-27 predominantly and continuously promoted expansion of only Lineage−Sca-1+c-Kit+ (LSK) cells, especially long-term repopulating hematopoietic stem cells, and differentiation into myeloid progenitors in synergy with stem cell factor. These progenitors expressed myeloid transcription factors such as Spi1, Gfi1, and Cebpa/b through activation of signal transducer and activator of transcription 1 and 3, and had enhanced potential to differentiate into neutrophils, but not into plasmacytoid dendritic cells. Among various cytokines, IL-27 in synergy with stem cell factor had the strongest ability to augment the expansion of LSK cells and their differentiation into myeloid progenitors. The blood stage of malaria infection was revealed to enhance IL-27 expression through interferon-γ production, and IL-27 then promoted the expansion of LSK cells, differentiating and mobilizing them into the spleen, resulting in enhanced production of neutrophils to control the infection. Thus, IL-27 is one of the limited unique cytokines directly acting on hematopoietic stem cells to promote differentiation into myeloid progenitors during emergency myelopoiesis.
Collapse
Affiliation(s)
- Jun-ichi Furusawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yukino Chiba
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Masayuki Hisada
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Infectious Diseases, Kyorin University of Medicine, Tokyo, Japan
| | - Hiroki Yoshida
- Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan
| | | | - Hideo Ema
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Tokyo, Japan
| | | | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
36
|
Li MS, Liu Z, Liu JQ, Zhu X, Liu Z, Bai XF. The Yin and Yang aspects of IL-27 in induction of cancer-specific T-cell responses and immunotherapy. Immunotherapy 2015; 7:191-200. [PMID: 25713993 DOI: 10.2217/imt.14.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidences from animal studies have indicated that both endogenous and exogenous IL-27, an IL-12 family of cytokine, can increase antitumor T-cell activities and inhibit tumor growth. IL-27 can modulate Treg responses, and program effector T cells into a unique T-effector stem cell (TSEC) phenotype, which enhances T-cell survival in the tumor microenvironment. However, animal studies also suggest that IL-27 induces molecular pathways such as IL-10, PD-L1 and CD39, which may downregulate tumor-specific T-cell responses. In this review paper, we will discuss the Yin and Yang aspects of IL-27 in the induction of tumor-specific T-cell responses, and the potential impacts of these functions of IL-27 in the design of cancer immunotherapy.
Collapse
Affiliation(s)
- Ming-Song Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
37
|
Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun 2015; 49:101-18. [PMID: 25944279 DOI: 10.1016/j.bbi.2015.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms underlying the target organ specific sexual dimorphism in the T lymphocyte-dependent immune/inflammatory response, and suggested a substantial role for the target organ in shaping the sexually dimorphic clinical outcome of EAE.
Collapse
|
38
|
Chong WP, van Panhuys N, Chen J, Silver PB, Jittayasothorn Y, Mattapallil MJ, Germain RN, Caspi RR. NK-DC crosstalk controls the autopathogenic Th17 response through an innate IFN-γ-IL-27 axis. J Exp Med 2015; 212:1739-52. [PMID: 26347474 PMCID: PMC4577839 DOI: 10.1084/jem.20141678] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 08/11/2015] [Indexed: 12/13/2022] Open
Abstract
IFN-γ is a pathogenic cytokine involved in inflammation. Paradoxically, its deficiency exacerbates experimental autoimmune encephalomyelitis, uveitis, and arthritis. Here, we demonstrate using IFN-γ(-/-) mice repleted with IFN-γ +/+: NK cells that innate production of IFN-γ from NK cells is necessary and sufficient to trigger an endogenous regulatory circuit that limits autoimmunity. After immunization, DCs recruited IFN-γ-producing NK cells to the draining lymph node and interacted with them in a CXCR3-dependent fashion. The interaction caused DCs to produce IL-27, which in turn enhanced IFN-γ production by NK cells, forming a self-amplifying positive feedback loop. IL-10, produced by the interacting cells themselves, was able to limit this process. The NK-DC-dependent IL-27 inhibited development of the adaptive pathogenic IL-17 response and induced IL-10-producing Tr1-like cells, which ameliorated disease in an IL-10-dependent manner. Our data reveal that an early NK-DC interaction controls the adaptive Th17 response and limits tissue-specific autoimmunity through an innate IFN-γ-IL-27 axis.
Collapse
Affiliation(s)
- Wai Po Chong
- Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas van Panhuys
- Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmical Center, Sun Yat-sen University, Guangzhou 510060, China Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Phyllis B Silver
- Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yingyos Jittayasothorn
- Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ronald N Germain
- Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
39
|
Oh K, Seo MW, Kim YW, Lee DS. Osteopontin Potentiates Pulmonary Inflammation and Fibrosis by Modulating IL-17/IFN-γ-secreting T-cell Ratios in Bleomycin-treated Mice. Immune Netw 2015; 15:142-9. [PMID: 26140046 PMCID: PMC4486777 DOI: 10.4110/in.2015.15.3.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
Lung fibrosis is a life-threatening disease caused by overt or insidious inflammatory responses. However, the mechanism of tissue injury-induced inflammation and subsequent fibrogenesis remains unclear. Recently, we and other groups reported that Th17 responses play a role in amplification of the inflammatory phase in a murine model induced by bleomycin (BLM). Osteopontin (OPN) is a cytokine and extracellular-matrix-associated signaling molecule. However, whether tissue injury causes inflammation and consequent fibrosis through OPN should be determined. In this study, we observed that BLM-induced lung inflammation and subsequent fibrosis was ameliorated in OPN-deficient mice. OPN was expressed ubiquitously in the lung parenchymal and bone-marrow-derived components and OPN from both components contributed to pathogenesis following BLM intratracheal instillation. Th17 differentiation of CD4+ αβ T cells and IL-17-producing γδ T cells was significantly reduced in OPN-deficient mice compared to WT mice. In addition, Th1 differentiation of CD4+ αβ T cells and the percentage of IFN-γ-producing γδ T cells increased. T helper cell differentiation in vitro revealed that OPN was preferentially upregulated in CD4+ T cells under Th17 differentiation conditions. OPN expressed in both parenchymal and bone marrow cell components and contributed to BLM-induced lung inflammation and fibrosis by affecting the ratio of pathogenic IL-17/protective IFN-γ T cells.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Myung Won Seo
- Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Young Whan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Dong-Sup Lee
- Laboratory of Immunology and Cancer Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| |
Collapse
|
40
|
Abstract
The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.
Collapse
|
41
|
Hoyt TR, Dobrinen E, Kochetkova I, Meissner N. B cells modulate systemic responses to Pneumocystis murina lung infection and protect on-demand hematopoiesis via T cell-independent innate mechanisms when type I interferon signaling is absent. Infect Immun 2015; 83:743-58. [PMID: 25452554 PMCID: PMC4294237 DOI: 10.1128/iai.02639-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
Abstract
HIV infection results in a complex immunodeficiency due to loss of CD4(+) T cells, impaired type I interferon (IFN) responses, and B cell dysfunctions causing susceptibility to opportunistic infections such as Pneumocystis murina pneumonia and unexplained comorbidities, including bone marrow dysfunctions. Type I IFNs and B cells critically contribute to immunity to Pneumocystis lung infection. We recently also identified B cells as supporters of on-demand hematopoiesis following Pneumocystis infection that would otherwise be hampered due to systemic immune effects initiated in the context of a defective type I IFN system. While studying the role of type I IFNs in immunity to Pneumocystis infection, we discovered that mice lacking both lymphocytes and type I IFN receptor (IFrag(-/-)) developed progressive bone marrow failure following infection, while lymphocyte-competent type I IFN receptor-deficient mice (IFNAR(-/-)) showed transient bone marrow depression and extramedullary hematopoiesis. Lymphocyte reconstitution of lymphocyte-deficient IFrag(-/-) mice pointed to B cells as a key player in bone marrow protection. Here we define how B cells protect on-demand hematopoiesis following Pneumocystis lung infection in our model. We demonstrate that adoptive transfer of B cells into IFrag(-/-) mice protects early hematopoietic progenitor activity during systemic responses to Pneumocystis infection, thus promoting replenishment of depleted bone marrow cells. This activity is independent of CD4(+) T cell help and B cell receptor specificity and does not require B cell migration to bone marrow. Furthermore, we show that B cells protect on-demand hematopoiesis in part by induction of interleukin-10 (IL-10)- and IL-27-mediated mechanisms. Thus, our data demonstrate an important immune modulatory role of B cells during Pneumocystis lung infection that complement the modulatory role of type I IFNs to prevent systemic complications.
Collapse
Affiliation(s)
- Teri R Hoyt
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Erin Dobrinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Irina Kochetkova
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
42
|
Yeaman MR, Filler SG, Chaili S, Barr K, Wang H, Kupferwasser D, Hennessey JP, Fu Y, Schmidt CS, Edwards JE, Xiong YQ, Ibrahim AS. Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. Proc Natl Acad Sci U S A 2014; 111:E5555-63. [PMID: 25489065 PMCID: PMC4280579 DOI: 10.1073/pnas.1415610111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus. This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Scott G Filler
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Siyang Chaili
- Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Kevin Barr
- St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Huiyuan Wang
- Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Deborah Kupferwasser
- Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | | | - Yue Fu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | | | - John E Edwards
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Yan Q Xiong
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Ashraf S Ibrahim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| |
Collapse
|
43
|
Munyaka P, Rabbi MF, Pavlov VA, Tracey KJ, Khafipour E, Ghia JE. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 2014; 9:e109272. [PMID: 25295619 PMCID: PMC4190311 DOI: 10.1371/journal.pone.0109272] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/01/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway (CAP) is based on vagus nerve (VN) activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR) signaling. Inflammatory bowel disease (IBD) patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs) and sequential CD4+/CD25-T cell activation in the context of experimental colitis. METHODS The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP)-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined. RESULTS McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. CONCLUSIONS Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.
Collapse
Affiliation(s)
- Peris Munyaka
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
| | - Mohammad F. Rabbi
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
| | - Valentin A. Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J. Tracey
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ehsan Khafipour
- University of Manitoba, Department of Animal Sciences, Winnipeg, Manitoba, Canada
| | - Jean-Eric Ghia
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
- University of Manitoba, Inflammatory Bowel Disease Clinical and Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
44
|
Cellular factors targeting APCs to modulate adaptive T cell immunity. J Immunol Res 2014; 2014:750374. [PMID: 25126585 PMCID: PMC4122108 DOI: 10.1155/2014/750374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/08/2014] [Indexed: 12/24/2022] Open
Abstract
The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity.
Collapse
|
45
|
Li JJ, Li HY, Gu F. Diagnostic significance of serum osteopontin level for pancreatic cancer: a meta-analysis. Genet Test Mol Biomarkers 2014; 18:580-6. [PMID: 24950303 DOI: 10.1089/gtmb.2014.0102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This meta-analysis aimed to identify the significance of serum osteopontin (OPN) level for the diagnosis of pancreatic cancer (PC). METHODS Through searching the following electronic databases-the Cochrane Library Database (Issue 12, 2013), Web of Science (1945-2013), PubMed (1966-2013), CINAHL (1982-2013), EMBASE (1980-2013), and the Chinese Biomedical Database (CBM) (1982-2013)-related articles were determined without any language restrictions. The STATA statistical software (version 12.0; Stata Corporation, College Station, TX) was chosen to deal with statistical data. Standard mean difference (SMD) and its corresponding 95% confidence interval (95% CI) was calculated. Eleven clinical case-control studies, which recruited 491 PC patients and 481 healthy controls, were selected for statistical analysis. RESULTS Combined SMD of OPN suggested that the serum OPN level in PC patients was significantly higher than that in healthy controls (SMD=3.58, 95% CI=2.42-4.74, p<0.001). Ethnicity stratified analysis indicated a higher serum OPN level in PC patients compared with control subjects among both Caucasians and Asians (Caucasians: SMD=2.62, 95% CI=1.33-3.91, p<0.001; Asians: SMD=4.54, 95% CI=2.80-6.27, p<0.001; respectively). CONCLUSION The main finding of our meta-analysis revealed that an elevated serum OPN level may be used as a promising diagnostic tool for early identification of PC.
Collapse
Affiliation(s)
- Jian-Jun Li
- 1 Department of Radiotherapy, The First Affiliated Hospital, China Medical University , Shenyang, People's Republic of China
| | | | | |
Collapse
|
46
|
Fert I, Cagnard N, Glatigny S, Letourneur F, Jacques S, Smith JA, Colbert RA, Taurog JD, Chiocchia G, Araujo LM, Breban M. Reverse interferon signature is characteristic of antigen-presenting cells in human and rat spondyloarthritis. Arthritis Rheumatol 2014; 66:841-51. [PMID: 24757137 DOI: 10.1002/art.38318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE In HLA-B27-transgenic rats, the development of a disorder that mimics spondyloarthritis (SpA) is highly correlated with dendritic cell (DC) dysfunction. The present study was undertaken to analyze the underlying mechanisms of this via transcriptome analysis. METHODS Transcriptome analysis of ex vivo-purified splenic CD103+CD4+ DCs from B27-transgenic rats and control rats was performed. Transcriptional changes in selected genes were confirmed by quantitative reverse transcriptase-polymerase chain reaction. A meta-analysis of our rat data and published data on gene expression in macrophages from ankylosing spondylitis (AS) patients was further performed. RESULTS Interferon (IFN) signaling was the most significantly affected pathway in DCs from B27-transgenic rats; the majority of genes connected to IFN were underexpressed in B27-transgenic rats as compared to controls. This pattern was already present at disease onset, persisted over time, and was conserved in 2 disease-prone B27-transgenic rat lines. In DCs from B27-transgenic rats, we further found an up-regulation of suppressor of cytokine signaling 3 (which may account for reverse IFN signaling) and a down-regulation of interleukin-27 (a cytokine that opposes Th17 differentiation and promotes Treg cells). The meta-analysis of data on conventional DCs from rats and data on monocyte-derived macrophages from humans revealed 7 IFN-regulated genes that were negatively regulated in both human and rat SpA (i.e., IRF1, STAT1, CXCL9, CXCL10, IFIT3, DDX60, and EPSTI1). CONCLUSION Our results suggest that expression of HLA-B27 leads to a defect in IFNγ signaling in antigen-presenting cells in both B27-transgenic rats and SpA patients, which may result in Th17 expansion and Treg cell alteration (as shown in B27-transgenic rats) and contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Ingrid Fert
- Université Paris-Descartes, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Institut Cochin, and INSERM U1016, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu FDM, Kenngott EE, Schröter MF, Kühl A, Jennrich S, Watzlawick R, Hoffmann U, Wolff T, Norley S, Scheffold A, Stumhofer JS, Saris CJM, Schwab JM, Hunter CA, Debes GF, Hamann A. Timed action of IL-27 protects from immunopathology while preserving defense in influenza. PLoS Pathog 2014; 10:e1004110. [PMID: 24809349 PMCID: PMC4014457 DOI: 10.1371/journal.ppat.1004110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 03/26/2014] [Indexed: 12/20/2022] Open
Abstract
Infection with influenza virus can result in massive pulmonary infiltration and potentially fatal immunopathology. Understanding the endogenous mechanisms that control immunopathology could provide a key to novel adjunct therapies for this disease. Here we show that the cytokine IL-27 plays a crucial role in protection from exaggerated inflammation during influenza virus infection. Using Il-27ra−/− mice, IL-27 was found to limit immunopathology, neutrophil accumulation, and dampened TH1 or TH17 responses via IL-10–dependent and -independent pathways. Accordingly, the absence of IL-27 signals resulted in a more severe disease course and in diminished survival without impacting viral loads. Consistent with the delayed expression of endogenous Il-27p28 during influenza, systemic treatment with recombinant IL-27 starting at the peak of virus load resulted in a major amelioration of lung pathology, strongly reduced leukocyte infiltration and improved survival without affecting viral clearance. In contrast, early application of IL-27 impaired virus clearance and worsened disease. These findings demonstrate the importance of IL-27 for the physiological control of immunopathology and the potential value of well-timed IL-27 application to treat life-threatening inflammation during lung infection. Annual epidemics of influenza result in 3 to 5 million cases of severe illness and approximately 300,000 deaths around the world. Although most patients infected with normal circulating influenza A viruses recover from the illness, complications arise during infections with highly pathogenic strains of the virus, resulting in increased mortality associated with severe immunopathology and acute respiratory distress. Previous studies suggested a major contribution of the vigorous immune response to lung damage. How the immune system constrains the negative impact of inflammation might therefore be of significant importance for future therapies. Our study in a mouse model of influenza shows that the cytokine IL-27 plays a crucial role in survival by protecting against lung damage. Its actions include regulation of innate (neutrophil influx) and adaptive (inflammatory cytokine production of T cells) arms of immunity during the acute respiratory infection. The data also suggest a therapeutic potential of IL-27, as mice treated with recombinant cytokine at later stages of infection exhibited decreased immunopathology and showed improved survival. The findings uncover an important role of IL-27 in limiting the collateral damages of anti-viral immunity and provide initial evidence that these mechanisms might be exploited for the management of severe immunopathology after infection.
Collapse
Affiliation(s)
- Francesca Diane M. Liu
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elisabeth E. Kenngott
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Micha F. Schröter
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Kühl
- Research Center ImmunoSciences (RCIS), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Jennrich
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ralf Watzlawick
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Alexander Scheffold
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jason S. Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Christiaan J. M. Saris
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, California, United States of America
| | - Jan M. Schwab
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gudrun F. Debes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alf Hamann
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
48
|
Retraction. Effects of osteopontin on expression of IL-6 and IL-8 inflammatory factors in human knee osteoarthritis chondrocytes. Cell Biochem Biophys 2014; 70:703. [PMID: 24728945 DOI: 10.1007/s12013-014-9880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Affiliation(s)
- Lawrence Steinman
- Departments of Pediatrics, Neurology and Neurological Sciences, Stanford University, Stanford, California 94305;
| |
Collapse
|
50
|
Pedreño M, Morell M, Robledo G, Souza-Moreira L, Forte-Lago I, Caro M, O'Valle F, Ganea D, Gonzalez-Rey E. Adrenomedullin protects from experimental autoimmune encephalomyelitis at multiple levels. Brain Behav Immun 2014; 37:152-63. [PMID: 24321213 PMCID: PMC3951662 DOI: 10.1016/j.bbi.2013.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
Adrenomedullin is a neuropeptide known for its cardiovascular activities and anti-inflammatory effects. Here, we investigated the effect of adrenomedullin in a model of experimental autoimmune encephalomyelitis (EAE) that mirrors chronic progressive multiple sclerosis. A short-term systemic treatment with adrenomedullin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord and the subsequent demyelination and axonal damage. This effect was exerted at multiple levels affecting both early and late events of the disease. Adrenomedullin decreased the presence/activation of encephalitogenic Th1 and Th17 cells and down-regulated several inflammatory mediators in peripheral lymphoid organs and central nervous system. Noteworthy, adrenomedullin inhibited the production by encephalitogenic cells of osteopontin and of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF), two critical cytokines in the development of EAE. At the same time, adrenomedullin increased the number of IL-10-producing regulatory T cells with suppressive effects on the progression of EAE. Furthermore, adrenomedullin generated dendritic cells with a semi-mature phenotype that impaired encephalitogenic responses in vitro and in vivo. Finally, adrenomedullin regulated glial activity and favored an active program of neuroprotection/regeneration. Therefore, the use of adrenomedullin emerges as a novel multimodal therapeutic approach to treat chronic progressive multiple sclerosis.
Collapse
Affiliation(s)
- Marta Pedreño
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Maria Morell
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Gema Robledo
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | | | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Francisco O'Valle
- Dept. Pathological Anatomy, Granada University School of Medicine, Granada, Spain
| | - Doina Ganea
- Dept. Immunology and Microbiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain.
| |
Collapse
|