1
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Cayo Biobank Research Unit, Gurven MD, Higham JP, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Montague MJ, Roberson J, Ng KS, Platt ML, Schneider-Crease IA, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. PLoS Genet 2025; 21:e1011667. [PMID: 40402999 DOI: 10.1371/journal.pgen.1011667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/27/2025] [Indexed: 05/24/2025] Open
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, development, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies is currently lacking. To address this gap, we optimized the Targeted Methylation Sequencing protocol (TMS)-which profiles ~4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ~USD 80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agreement between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean = 77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methylation patterns are strongly recapitulated using data generated from TMS versus other technologies. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
Affiliation(s)
- Amy Longtin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Baptiste Sadoughi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Rachel M Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah F Brosnan
- Departments of Psychology & Philosophy, Neuroscience Institute, Center for Behavioral Neuroscience, and the Language Research Center, Georgia State University, Atlanta, GeorgiaUnited States of America
| | - Kenneth Buetow
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Michael D Gurven
- Department of Anthropology, University of California, Santa Barbara, California, United States of America
| | - James P Higham
- Department of Anthropology, New York University, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yi-Ting Huang
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, California, United States of America
| | - Thomas S Kraft
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Malaysian Indigenous Studies (CMIS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Amanda D Melin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jamie Roberson
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kee-Seong Ng
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - India A Schneider-Crease
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Jonathan Stieglitz
- Department of Social and Behavioral Sciences, Toulouse School of Economics, Institute for Advanced Study in Toulouse, Université Toulouse Capitole, Toulouse, France
| | - Benjamin C Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
- Institute of Human Origins, Arizona State University, Tempe, Arizona, United States of America
| | - Vivek V Venkataraman
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Angela Jones
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alexander G Bick
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Zhang X, Hu C, Chen T, Li P, Tan Y, Ren C, Wang Y, Jiang X, Ma B, Yin J, Huang Y, Liu L, Li H, Luo P. DNA methylation regulates growth traits by influencing metabolic pathways in Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2025; 26:511. [PMID: 40394505 PMCID: PMC12093746 DOI: 10.1186/s12864-025-11688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND DNA methylation is a critical epigenetic modification that dynamically regulates gene expression associated with economic traits. Pacific white shrimp (Litopenaeus vannamei) is one of the most important aquatic species for culturing, and growth trait is one of the most important economic traits for its production. However, research on DNA methylation regulation of growth traits is still at an early stage. This study explored DNA methylome dynamics and their associations with the regulatory mechanism behind growth traits using full-subfamily individuals with discrepant growth performance. RESULTS The DNA methylation-related genes in L. vannamei were identified, and the expression of DNA methylation genes showed significantly higher levels in the slow growth (SG) group compared to the fast-growing (FG) individuals. The Whole Genome Bisulfite Sequencing (WGBS) analysis revealed that the methylation levels in the muscles of shrimp were notably decreased in SG individuals compared to FG individuals. A total of 532 differentially methylated promoters and 2,067 differentially methylated regions were identified. Through integrative analysis of DNA methylation and transcriptomic data from SG and FG group shrimp, a total of 47 genes were screened out with differential methylation levels (DMGs) and expression levels (DEGs). Functional enrichment analysis revealed that the overlapping DEGs/DMGs were enriched mainly in metabolic pathways, starch and sucrose metabolism, linoleic acid metabolism, ascorbate and aldarate metabolism, pentose and glucuronate interconversions. CONCLUSIONS DNA methylation plays a role in the regulation of growth traits in L. vannamei. The level of DNA methylation was found to be negatively correlated with growth traits. Through comprehensive analysis, it was discovered that DNA methylation predominantly affects growth performance by up-regulating the expression of genes involved in metabolic pathways, such as glucose metabolism and amino acid metabolism in L. vannamei. This suggests a higher metabolism activity in SG individuals derived DNA methylation to cope with some unknown internal stress or environmental stress rather than being allocated for growth.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaoqun Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | - Yehui Tan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chunhua Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yanhong Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Yin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunyi Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Liu
- Yuehai Feed Group Co., Ltd, Zhanjiang, China
| | - Huo Li
- Guangdong Jinyang Biotechnology Co., Ltd, Maoming, China
| | - Peng Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (KLBBSA), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Zhang W, Zhang L, Jiang W, Yang H, Yang T, Zhao Y, Zhang Z, Ma Y. DNA methylation regulates somatic stress memory and mediates plasticity during acclimation to repeated sulfide stress in Urechis unicinctus. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137264. [PMID: 39842111 DOI: 10.1016/j.jhazmat.2025.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Stress memory is an adaptive mechanism that enables organisms to develop resilience in response to environmental changes. Among them, somatic stress memory is an important means for organisms to cope with contemporary repeated stress, and is accompanied by transcription memory. Sulfide is a common environmental pollutant; however, some organisms have adapted to survive in sulfur-rich environments. Urechis unicinctus is a sulfur-tolerant organism that enhances sulfide stress tolerance by establishing a somatic sulfide stress memory mechanism. However, the molecular mechanisms that regulate sulfide stress memory remain unclear. To explore whether epigenetics, which plays a role in the response of organisms to environmental stress, is involved in regulating somatic sulfide stress memory, we performed a combined analysis of DNA methylation and transcriptome data. We found that elevated levels of DNA methylation under repetitive sulfide stress regulated gene expression and resulted in enhanced sulfide stress tolerance in U. unicinctus, a phenomenon verified using DNA methylase inhibitors. Transcriptional memory can be induced in genes related to oxidative stress, regulation of autophagy, and maintenance of protein homeostasis by altering the level of DNA methylation to facilitate sulfide stress acclimation. Our results provide new insights into adaptive mechanisms to cope with environmental fluctuations.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongzheng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Jiang Y, Hu J, Li Y, Tang X, Peng X, Xie L, Song H, Zhou Z, Xu J. Comprehensive Genomic Analysis Reveals Novel Transposable Element-Derived MicroRNA Regulating Caste Differentiation in Honeybees. Mol Biol Evol 2025; 42:msaf074. [PMID: 40154540 PMCID: PMC12008770 DOI: 10.1093/molbev/msaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
The honeybee (Apis mellifera) is a highly social insect whose caste differentiation is regulated by epigenetic mechanisms, representing a classic example of phenotypic plasticity in social insects. Although the importance of transposable elements (TEs) in epigenetic research is well recognized, their specific role in honeybee caste differentiation has not been fully explored. This study reveals a novel regulatory mechanism where the microRNA (miRNA) ame-mir-3721-3p, derived from ApME (Apis miniature inverted-repeat TEs), suppresses DNA methyltransferase gene DNMT3, promoting queen-like development in honeybee larvae. Genome-wide analysis identified 43 ApME elements in Apis, with ApMETm15 being particularly abundant and species-specific. These elements gave rise to 6 miRNAs, including ame-mir-3721-3p which showed notable regulatory potential. Target gene prediction and luciferase reporter assays confirmed that ame-mir-3721-3p binds to and suppresses DNMT3 expression. Spatiotemporal expression analysis indicated that ame-mir-3721-3p is significantly upregulated during the critical L3 larval stage, exhibiting a similar expression pattern to DNMT3. Larval feeding experiments with agomir demonstrated that ame-mir-3721-3p suppresses DNMT3 expression and significantly impacts the expression of genes related to the juvenile hormone and ecdysone pathways. Further physiological evidence showed that when larvae were treated with agomir-3721 during the critical caste differentiation window (L3-L4 stage), the emerging adult bees exhibited increased body size, doubled ovarian area, and significantly higher frequency of ovary development, with significant upregulation of ovarian-specific marker genes. These findings provide direct evidence for ame-mir-3721-3p's role in promoting queen-like developmental trajectories during caste differentiation, uncovering a new regulatory pathway in honeybee development and offering insights into epigenetic mechanisms in social insects.
Collapse
Affiliation(s)
- Yan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Jingsong Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Yaohui Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xiangyou Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Xiaomei Peng
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Linxuan Xie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Huali Song
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
5
|
Liu R, Morselli M, Yampolsky LY, Peshkin L, Pellegrini M. Genome-wide DNA methylation patterns in Daphnia magna are not significantly associated with age. Epigenetics Chromatin 2025; 18:17. [PMID: 40170124 PMCID: PMC11963560 DOI: 10.1186/s13072-025-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND DNA methylation plays a crucial role in gene regulation and epigenetic inheritance across diverse organisms. Daphnia magna, a model organism in ecological and evolutionary research, has been widely used to study environmental responses, pharmaceutical toxicity, and developmental plasticity. However, its DNA methylation landscape and age-related epigenetic changes remain incompletely understood. RESULTS In this study, we characterized DNA methyltransferases (DNMTs) and mapped DNA methylation across the D. magna genome using whole-genome bisulfite sequencing. Our analysis identified three DNMTs: a highly expressed but nonfunctional de novo methyltransferase (DNMT3.1), alongside lowly expressed yet functional de novo methyltransferase (DNMT3.2) and maintenance methyltransferase (DNMT1). D. magna exhibits overall low DNA methylation, targeting primarily CpG dinucleotides. Methylation is sparse at promoters but elevated in the first exons downstream of transcription start sites, with these exons showing hypermethylation relative to adjacent introns. To examine age-associated DNA methylation changes, we analyzed D. magna individuals across multiple life stages. Our results showed no significant global differences in DNA methylation levels between young, mature, and old individuals, nor any age-related clustering in dimensionality reduction analyses. Attempts to construct an epigenetic clock using machine learning models did not yield accurate age predictions, likely due to the overall low DNA methylation levels and lack of robust age-associated methylation changes. CONCLUSIONS This study provides a comprehensive characterization of D. magna's DNA methylation landscape and DNMT enzymes, highlighting a distinct pattern of exon-biased CpG methylation. Contrary to prior studies, we found no strong evidence supporting age-associated epigenetic changes, suggesting that DNA methylation may have a limited role in aging in D. magna. These findings enhance our understanding of invertebrate epigenetics and emphasize the need for further research into the interplay between DNA methylation, environmental factors, and gene regulation in D. magna.
Collapse
Affiliation(s)
- Ruoshui Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90024, USA
| | - Marco Morselli
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Leonid Peshkin
- Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90024, USA.
| |
Collapse
|
6
|
Fang SJ, Shao SC, Ni MQ, Yang YN, Cui ZX. DNA Methylation Patterns Provide Insights into the Epigenetic Regulation of Intersex Formation in the Chinese Mitten Crab ( Eriocheir sinensis). Int J Mol Sci 2025; 26:3224. [PMID: 40244073 PMCID: PMC11989155 DOI: 10.3390/ijms26073224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
DNA methylation is a form of epigenetic regulation that plays an important role in regulating gene expression of organisms. However, the DNA methylation pattern of intersex crabs has not yet been clarified. In order to reveal the DNA methylation in intersex Eriocheir sinensis, this study investigated the genome-wide DNA methylation profiles of female, male, and intersex individuals. The similar results across samples showed that the levels of cytosine methylation in the CG context were significantly higher than that in the CHG and CHH contexts. The methylation levels in the promoter region were higher than those in other functional element regions. We screened 149 differentially methylated genes (DMGs) in the promoter region between female and intersex crabs and 110 DMGs between male and intersex crabs. Three core gene networks were found in a comparison group of female and intersex crabs that involved heat shock proteins, ribosomes, and metabolism pathways; two core gene networks were found in the comparison group of male and intersex crabs that involved ribosomes and metabolism pathways. The six confirmed genes of Hsc70, Hsp90, Rpl18, Acsl1, Yip2, and Rpl7 had lower methylation levels in the promoter region of intersex crabs than that of female and male crabs. However, six genes showed higher expression in intersex crabs than in female and male crabs. Our results reveal that DNA methylation is involved in the formation and maintenance of life activities of intersex crabs through the regulation of gene expression, enriching the DNA methylation library of the whole genome of E. sinensis and providing new insights for a better understanding of the epigenetic regulation of the formation of intersex E. sinensis.
Collapse
Affiliation(s)
- Shu-Jian Fang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shu-Cheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Meng-Qi Ni
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Ya-Nan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhao-Xia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
7
|
Mettrop L, Lipzen A, Vandecasteele C, Eché C, Labécot A, Barry K, Grigoriev IV, Piganeau G, Krasovec M. Low Mutation Rate and Atypical Mutation Spectrum in Prasinoderma coloniale: Insights From an Early Diverging Green Lineage. Genome Biol Evol 2025; 17:evaf026. [PMID: 40048667 PMCID: PMC11884799 DOI: 10.1093/gbe/evaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Mutations are the ultimate source of genetic diversity on which natural selection and genetic drift act, playing a crucial role in evolution and long-term adaptation. At the molecular level, the spontaneous mutation rate (µ), defined as the number of mutations per base per generation, thus determines the adaptive potential of a species. Through a mutation accumulation experiment, we estimate the mutation rate and spectrum in Prasinoderma coloniale, a phytoplankton species from an early-branching lineage within the Archaeplastida, characterized by an unusually high genomic guanine-cytosine (GC) content (69.8%). We find that P. coloniale has a very low total mutation rate of µ = 2.00 × 10-10. The insertion-deletion mutation rate is almost 5 times lesser than the single nucleotide mutation rate with µID = 3.40 × 10-11 and µSNM = 1.62 × 10-10. Prasinoderma coloniale also exhibits an atypical mutational spectrum: While essentially all other eukaryotes show a bias toward GC to AT mutations, no evidence of this AT-bias is observed in P. coloniale. Since cytosine methylation is known to be mutagenic, we hypothesized that this may result from an absence of C-methylation. Surprisingly, we found high levels of C-methylation (14% in 5mC, 25% in 5mCG contexts). Methylated cytosines did not show increased mutation rates compared with unmethylated ones, not supporting the prevailing notion that C-methylation universally leads to higher mutation rates. Overall, P. coloniale combines a GC-rich genome with a low mutation rate and original mutation spectrum, suggesting the almost universal AT-bias may not have been present in the ancestor of the green lineage.
Collapse
Affiliation(s)
- Lisa Mettrop
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, USA
| | - Celine Vandecasteele
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, Castanet-Tolosan, France
| | - Camille Eché
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, Castanet-Tolosan, France
| | - Anaïs Labécot
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Gwenaël Piganeau
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Marc Krasovec
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| |
Collapse
|
8
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Bousquet L, Fainsod S, Decelle J, Murik O, Chevalier F, Gallet B, Templin R, Schwab Y, Avrahami Y, Koplovitz G, Ku C, Frada MJ. Life cycle and morphogenetic differentiation in heteromorphic cell types of a cosmopolitan marine microalga. THE NEW PHYTOLOGIST 2025; 245:1969-1984. [PMID: 39721990 PMCID: PMC11798906 DOI: 10.1111/nph.20360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid. Here, we investigated the fate of decoupled cells during culture observations and we compared the transcriptome profiles and the cellular ultrastructure of the three life cycle cell types. We found that decoupled cells can revert to the calcified form in the absence of viral pressure, revealing the ability of G. huxleyi to modulate cell differentiation as a function of external conditions. Ultrastructural analyses showed distinct nuclear organization with variations in chromatin volume. Transcriptomic analyses revealed gene expression patterns specific to each life phase. These included multiple regulatory functions in chromatin remodeling, broader epigenetic mechanisms and life cycling, likely contributing to cell differentiation. Finally, analyses of available host-virus transcriptomes support life cycle transition during viral infection. This study provides cellular and molecular foundations for nuclear remodeling and cell differentiation in coccolithophores and the identification of gene markers for studying coccolithophore life cycles in natural populations.
Collapse
Affiliation(s)
- Laurie Bousquet
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Shai Fainsod
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Johan Decelle
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG‐LPCVGrenoble38054France
| | - Omer Murik
- Translation Genomics Lab and Medical Genetics InstituteShaare Zedek Medical CenterJerusalem93722Israel
| | - Fabien Chevalier
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG‐LPCVGrenoble38054France
| | - Benoit Gallet
- Université Grenoble Alpes, CNRS, CEA, IRIG‐IBSGrenoble38044France
| | - Rachel Templin
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelberg69117Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology LaboratoryHeidelberg69117Germany
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryHeidelberg69117Germany
| | - Yoav Avrahami
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Gil Koplovitz
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Miguel J. Frada
- Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalem9190401Israel
- The Interuniversity Institute for Marine Sciences in EilatP.O.B 469Eilat8810302Israel
| |
Collapse
|
10
|
Xu F, Chen H, Chen C, Liu J, Song Z, Ding C. Genome-wide DNA methylation analysis of Medicago sativa L. treated with plasma and plasma-activated water. iScience 2025; 28:111901. [PMID: 40051829 PMCID: PMC11883386 DOI: 10.1016/j.isci.2025.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
To explore the effects of plasma and plasma-activated water on whole-genome DNA methylation, in this study we used the Medicago sativa L. cultivar, as the experimental material, and mutant plants were obtained after treatment and screening. Changes in whole-genome DNA methylation in Medicago sativa L. were analyzed before and after mutagenesis using whole-genome bisulfite sequencing (WGBS) technology. We found that the percentage of methylated cytosines varied depending on the local sequence context (CG [dinucleotide context]), CHG and CHH (non-CG contexts, H is A [adenine] or T [thymine] or C [cytosine]) and external treatment. Differential methylated region (DMR) analysis revealed 41067 (CG), 5379 (CHG), and 257 (CHH) differentially methylated genes. This study quantitatively measured methylation levels, methylation sites, differentially methylated regions (DMRs), distribution of methylation in the genome, and methylation-related genes and pathways, for further investigations of the mechanism of plasma-induced mutagenesis.
Collapse
Affiliation(s)
- Fei Xu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Hao Chen
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Chan Chen
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Jiaqi Liu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Zhiqing Song
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| | - Changjiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- Discharge Plasma and Functional Materials Application Laboratory, Hohhot 010051, China
| |
Collapse
|
11
|
Kim DJ. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr Oncol 2025; 32:88. [PMID: 39996888 PMCID: PMC11854558 DOI: 10.3390/curroncol32020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Members of the DNA methyltransferase (DNMT) family have been recognized as major epigenetic regulators of altered gene expression during tumor development. They establish and maintain DNA methylation of the CpG island of promoter and non-CpG region of the genome. The abnormal methylation status of tumor suppressor genes (TSGs) has been associated with tumorigenesis, leading to genomic instability, improper gene silence, and immune evasion. DNMT1 helps preserve methylation patterns during DNA replication, whereas the DNMT3 family is responsible for de novo methylation, creating new methylation patterns. Altered DNA methylation significantly supports tumor growth by changing gene expression patterns. FDA-approved DNMT inhibitors reverse hypermethylation-induced gene repression and improve therapeutic outcomes for cancer. Recent studies indicate that combining DNMT inhibitors with chemotherapies and immunotherapies can have synergistic effects, especially in aggressive metastatic tumors. Improving the treatment schedules, increasing isoform specificity, reducing toxicity, and utilizing genome-wide analyses of CRISPR-based editing to create personalized epigenetic therapies tailored to individual patient needs are promising strategies for enhancing therapeutic outcomes. This review discusses the interaction between DNMT regulators and DNMT1, its binding partners, the connection between DNA methylation and tumors, how these processes contribute to tumor development, and DNMT inhibitors' advancements and pharmacological properties.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology & Cancer Biology, The University of Virginia, Charlottesville, VA 20908, USA
| |
Collapse
|
12
|
Huang KY, Feng YY, Du H, Ma CW, Xie D, Wan T, Feng XY, Dai XG, Yin TM, Wang XQ, Ran JH. DNA methylation dynamics in gymnosperm duplicate genes: implications for genome evolution and stress adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70006. [PMID: 39982811 DOI: 10.1111/tpj.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025]
Abstract
Duplicate genes are pivotal in driving evolutionary innovation, often exhibiting expression divergence that offers a system to investigate the role of DNA methylation in transcriptional regulation. However, previous studies have predominantly focused on angiosperms, leaving the methylation patterns in major lineages of land plants still unclear. This study explores DNA methylation evolution in duplicate genes across representative gymnosperm species with large genomes, spanning over 300 million years, using genomic, transcriptomic, and high-depth DNA methylomic data. We observed variations in DNA methylation levels along gene bodies, flanking regions, and methylation statuses of coding regions across different duplication types. Biased divergences in DNA methylation and gene expression frequently occurred between duplicate copies. Specifically, methylation divergences in the 2-kb downstream regions negatively correlated with gene expression. Both CG and CHG DNA methylation in gene bodies were positively correlated with gene length, suggesting these methylation types may function as an epigenomic buffer to mitigate the adverse impact of gene length on expression. Duplicate genes exhibiting both methylation and expression divergences were notably enriched in adaptation-related biological processes, suggesting that DNA methylation may aid adaptive evolution in gymnosperms by regulating stress response genes. Changes in expression levels correlated with switches in methylation status within coding regions of transposed duplicates. Specifically, depletion for CG methylation or enrichment for non-CG methylation significantly reduced the expression of translocated copies. This correlation suggests that DNA methylation may reduce genetic redundancy by silencing translocated copies. Our study highlights the significance of DNA methylation in plant genome evolution and stress adaptation.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Bioinformatics, School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 510650, China
| | - Hong Du
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Chang-Wang Ma
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Dan Xie
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiu-Yan Feng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiao-Gang Dai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tong-Ming Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Quan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Plant Diversity and Specialty Crops and Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Teng W, Xu C, Liu S, Yu H, Kong L, Li Q. DNA Methylation of Somatic Tissues in Oysters is Influenced by Sex and Heredity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:31. [PMID: 39808191 DOI: 10.1007/s10126-024-10409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025]
Abstract
The influence of sex and heredity on DNA methylation in the somatic tissues of mice has been well-documented, with similar hereditary effects reported in honeybees. However, the extent to which these factors affect DNA methylation in molluscan somatic tissues remains poorly understood. In this study, we investigated genomic DNA methylation patterns in the adductor muscle of two genetically distinct oyster strains using whole-genome bisulfite sequencing (WGBS). Our analysis identified significant differences in DNA methylation between sexes, with females exhibiting a global reduction compared to males. Furthermore, approximately half of the differentially methylated sites between the two parental strains were conserved in their offspring. Regions with differential methylation in parents typically exhibited intermediate methylation levels in the F1 progeny, whereas consistently methylated regions in parents maintained similar methylation levels in their progeny. These findings suggest that offspring DNA methylation is strongly influenced by parental methylation profiles, highlighting its potential role in sexual determination in oysters.
Collapse
Affiliation(s)
- Wen Teng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
14
|
Starcevic A, Figueredo RTA, Naldoni J, Corrêa LL, Okamura B, Adriano EA, Long PF. Long-read metagenomic sequencing negates inferred loss of cytosine methylation in Myxosporea (Cnidaria: Myxozoa). Gigascience 2025; 14:giaf014. [PMID: 40080648 PMCID: PMC11905887 DOI: 10.1093/gigascience/giaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Oxford-Nanopore PromethION sequencing is a PCR-free method that retains epigenetic markers and provides direct quantitative information about DNA methylation. Using this long-read sequencing technology, we successfully assembled 5 myxozoan genomes free from discernible host DNA contamination, surpassing previous studies in both quality and completeness. Genome assembly revealed DNA methylation patterns within myxozoan genomes, particularly in GC-rich regions within gene bodies. The findings not only refute the notion of myxozoans lacking DNA methylation capability but also offer a new perspective on gene regulation in these parasites. The high-quality genome assemblies lay a solid foundation for future research on myxozoans, including new strategies to control these commercially significant fish pathogens.
Collapse
Affiliation(s)
- Antonio Starcevic
- Laboratory for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb HR-10000, Croatia
| | - Rayline T A Figueredo
- Department of Animal Biology, Institute of Biology, University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Juliana Naldoni
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Lincoln L Corrêa
- Institute of Water Sciences and Technology, Federal University of Western Pará (UFOPA), Santarém, 68040-255, PA, Brazil
| | - Beth Okamura
- Life Sciences, Natural History Museum, London I SW7 5BD, United Kingdom
| | - Edson A Adriano
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Diadema, 09972-270, SP, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, United Kingdom
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
15
|
Ramírez D, Anaya-Romero M, Rodríguez ME, Arias-Pérez A, Mukiibi R, D’Cotta H, Robledo D, Rebordinos L. Insights into Solea senegalensis Reproduction Through Gonadal Tissue Methylation Analysis and Transcriptomic Integration. Biomolecules 2025; 15:54. [PMID: 39858448 PMCID: PMC11764300 DOI: 10.3390/biom15010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In S. senegalensis aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization capabilities in captive-bred males, hindering genetic improvement measures. This study analyzed the methylation patterns and transcriptomic profiles in gonadal tissue DNA from groups differing in rearing conditions and sexual maturity stages. RRBS (Reduced Representation Bisulfite Sequencing) was employed to detect notable methylation variations across groups, while RNA was extracted and sequenced for differential expression analysis. Our findings suggest that DNA methylation significantly regulates gene expression, acting as a mechanism that can both repress and enhance gene expression depending on the genomic context. The complexity of this epigenetic mechanism is evident from the varying levels of methylation and correlation rates observed in different CpGs neighboring specific genes linked to reproduction. Differential methylation comparisons revealed the highest number of differently methylated CpGs between maturation stages, followed by rearing conditions, and lastly between sexes. These findings underscore the crucial role of methylation in regulating gene expression and its potential role in sex differentiation, highlighting the complex interplay between epigenetic modifications and gene expression.
Collapse
Affiliation(s)
- Daniel Ramírez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Marco Anaya-Romero
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - María Esther Rodríguez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Alberto Arias-Pérez
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| | - Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH259RG, UK
| | - Helena D’Cotta
- UMR-Institut des Sciences de l’Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche, Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, 34295 Montpellier, France
| | - Diego Robledo
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH259RG, UK
| | - Laureana Rebordinos
- Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain; (D.R.); (A.A.-P.)
| |
Collapse
|
16
|
Yan T, Kuang L, Gao F, Chen J, Li L, Wu D. Differentiation of genome-wide DNA methylation between japonica and indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17218. [PMID: 39887541 DOI: 10.1111/tpj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
Rice (Oryza sativa L.) subspecies japonica and indica show distinct morphological and genetic differentiation. However, the differences in the genome-wide DNA methylation and its effects on gene expression and metabolic levels between japonica and indica rice remain unclear. In this study, we investigated the genome-wide DNA methylation, transcriptomes and metabolomes of 12 representative japonica and indica rice accessions, to reveal the differentiation between rice subspecies. We detected 83 327 differentially methylated regions (DMRs) and 14 903 DMR-associated genes between two subspecies. Indica rice showed significantly lower levels of the CG, CHG, and CHH methylation compared with japonica rice. Subsequently, we identified 5596 differentially expressed genes between the two subspecies, predominantly enriched in pathways related to carbohydrate and amino acid metabolism. By integrating DNA methylation with transcriptomic data, a significant correlation was established between methylation patterns and the expression level of key agronomic genes in rice. Furthermore, multi-omics analyses reveal that carbohydrate metabolism pathways, especially the tricarboxylic acid (TCA) cycle metabolites, are remarkable differentiation between rice subspecies. These results provide a foundation for future studies in rice domestication and genetic improvement.
Collapse
Affiliation(s)
- Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| |
Collapse
|
17
|
Cahn J, Lloyd JPB, Karemaker ID, Jansen PWTC, Pflueger J, Duncan O, Petereit J, Bogdanovic O, Millar AH, Vermeulen M, Lister R. Characterization of DNA methylation reader proteins in Arabidopsis thaliana. Genome Res 2024; 34:2229-2243. [PMID: 39632087 PMCID: PMC11694752 DOI: 10.1101/gr.279379.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
In plants, cytosine DNA methylation (mC) is largely associated with transcriptional repression of transposable elements, but it can also be found in the body of expressed genes, referred to as gene body methylation (gbM). gbM is correlated with ubiquitously expressed genes; however, its function, or absence thereof, is highly debated. The different outputs that mC can have raise questions as to how it is interpreted-or read-differently in these sequence and genomic contexts. To screen for potential mC-binding proteins, we performed an unbiased DNA affinity pull-down assay combined with quantitative mass spectrometry using methylated DNA probes for each DNA sequence context. All mC readers known to date preferentially bind to the methylated probes, along with a range of new mC-binding protein candidates. Functional characterization of these mC readers, focused on the MBD and SUVH families, was undertaken by ChIP-seq mapping of genome-wide binding sites, their protein interactors, and the impact of high-order mutations on transcriptomic and epigenomic profiles. Together, these results highlight specific context preferences for these proteins, and in particular the ability of MBD2 to bind predominantly to gbM. This comprehensive analysis of Arabidopsis mC readers emphasizes the complexity and interconnectivity between DNA methylation and chromatin remodeling processes in plants.
Collapse
Affiliation(s)
- Jonathan Cahn
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ino D Karemaker
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
| | - Pascal W T C Jansen
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
| | - Jahnvi Pflueger
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jakob Petereit
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Ozren Bogdanovic
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Michiel Vermeulen
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525 GA, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ryan Lister
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
- ARC Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
18
|
Tiedemann R, Hrit J, Du Q, Wiseman A, Eden H, Dickson B, Kong X, Chomiak A, Vaughan R, Tibben B, Hebert J, David Y, Zhou W, Baylin S, Jones P, Clark S, Rothbart S. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. Nucleic Acids Res 2024; 52:13733-13756. [PMID: 39607687 PMCID: PMC11662662 DOI: 10.1093/nar/gkae1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. The model posits that nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). However, the extent to which DNMT1 relies on ubiquitin signaling through UHRF1 in support of DNA methylation maintenance remains unclear. Here, with integrative epigenomic and biochemical analyses, we reveal that DNA methylation maintenance at low-density cytosine-guanine dinucleotides (CpGs) is particularly vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMDs), a methylation signature observed across human cancers. In contrast, UIM2 disruption completely abolishes the DNA methylation maintenance function of DNMT1 in a CpG density-independent manner. In the context of DNA methylation recovery following acute DNMT1 depletion, we further reveal a 'bookmarking' function for UHRF1 ubiquitin ligase activity in support of DNA re-methylation. Collectively, these studies show that DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process that is partially reliant on UHRF1 and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to PMD formation in cancers.
Collapse
Affiliation(s)
- Rochelle L Tiedemann
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Joel Hrit
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Qian Du
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | - Ashley K Wiseman
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Hope E Eden
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Xiangqian Kong
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Alison A Chomiak
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Robert M Vaughan
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Jakob M Hebert
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY, NY 10065, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, 3501 Civic Center Blvd, Philadelphia, PA19104, USA
| | - Stephen B Baylin
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N Broadway, Baltimore, MD, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan J Clark
- Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
- St. Vincent's Clinical School, University of New South Wales, 390 Victoria Street, Darlinghurst, NSW 2010, Australia
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
19
|
Yang Q, Chen L, Zhang M, Wang W, Zhang B, Zhou D, Sun Y. Activation characteristics of Ty3-retrotransposons after spaceflight and genetic stability of insertion sites in rice progeny. FRONTIERS IN PLANT SCIENCE 2024; 15:1452592. [PMID: 39687316 PMCID: PMC11646775 DOI: 10.3389/fpls.2024.1452592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Introduction The space environment is mutagenic and may induce genomic and phenotypic variations. Exploring the changes in transposon activity in the rice genome under space radiation is of great significance. Methods To analyze the activation characteristics of Ty3-retrotransposons and genetic stability of insertion sites in rice progeny after spaceflight, seeds of Nipponbare, DN416, and DN423 were exposed on board the SJ-10 recoverable satellite for 12.5 days. The differential methylation and transcription levels of Ty3-retrotransposons in the genome of Nipponbare's F0 generation after spaceflight, as well as the genetic stability of Ty3-retrotransposon insertion sites in DN416 and DN423 from F3 to F5 generations, was analyzed. Results The study found that the retrotransposons of ancient and young transposon families underwent demethylation from the tillering to heading stages of Nipponbare plants, which were F0 generation of space-exposed seeds, when the Nipponbare seeds were hit by single space high charge and energy (HZE) particles with LET ≥ 100 keV/μm. the transcription levels significantly increased in ancient transposon families (osr30, osr40, and rire10) and young transposon families (dagul, rn215-125, osr37, RLG_15, osr34, rire8, rire3, rire2, and hopi) (p ≤ 0.05) when LET > 100 keV/μm. Furthermore, the young Ty3-retrotransposons, which included the hopi, squiq, dasheng, rire2, rire3, rire8, osr34, rn_215-125, dagul, and RLG_15 families, underwent 1 to 8 transpositions in the F3 to F5 of DN416 and DN423 mutants, and some of these transposon insertion sites were stably inherited. Discussion The research holds great significance for understanding the activation characteristics of Ty3-retrotransposons in the rice genome induced by space radiation and the genetic characteristics of transposon insertion sites in its progeny.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Lishan Chen
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Meng Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Wei Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Dazhuang Zhou
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| |
Collapse
|
20
|
Santos DCD, Alves FHF, Veríssimo LF, Raquel HA, Volpini VL, Marques LADC, Martins-Pinge MC, Fernandes KBP, Andrade KC, Michelini LC, Pelosi GG. Enalapril induces muscle epigenetic changes and contributes to prevent a decline in running capacity in spontaneously hypertensive rats. Arch Gerontol Geriatr 2024; 129:105699. [PMID: 39581157 DOI: 10.1016/j.archger.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Drugs such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can improve muscle function and exercise capacity, as well as preventing, attenuating or reversing age-related losses in muscle mass, however, the exact mechanisms by which these drugs affect muscle cells, are not yet fully elucidated. Moreover, the potential epigenetic alterations induced in skeletal muscle tissue are also largely unexplored. The aim of this study was to evaluate if enalapril or losartan can change the physical performance and epigenetic profile of skeletal muscle in spontaneously hypertensive rats (SHRs). Male SHRs were treated with water, enalapril (10/mg/kg/day) or losartan (10/mg/kg/day) for 28 consecutive days and submitted to progressive testing on a treadmill. Body weight, perigonadal and retroperitoneal fat, mean arterial pressure, heart rate, running distance and global DNA methylation in the gastrocnemius and soleus muscles were evaluated. Enalapril reduced the rate of weight gain, as well as reducing retroperitoneal fat (p < 0.05) and MAP (p < 0.05) and avoiding the decline in running distance when compared to the other groups (p > 0.05), even 7 days after the end of treatment (p > 0.05). Moreover, enalapril increased global DNA methylation in gastrocnemius muscle cells (p < 0.01). No effects were observed in the losartan-treated group. Our data showed that enalapril prevented the decline in physical function in SHR, as well as reduced the rate of weight gain of the animals. In addition, the results showed, alterations in the global DNA methylation of skeletal muscle cells skeletal structures of the gastrocnemius muscle.
Collapse
Affiliation(s)
- Denis Carlos Dos Santos
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Fernando Henrique Ferrari Alves
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil; Institute of Science, Technology and Innovation - Federal University of Lavras, São Sebastião do Paraíso, MG, Brazil.
| | - Luiz Fernando Veríssimo
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Hiviny Ataides Raquel
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Vinicius Lucca Volpini
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo André da Costa Marques
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Karen Barros Parron Fernandes
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Londrina, Paraná, Brazil
| | - Karoliny Coelho Andrade
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Lisete Compagno Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gislaine Garcia Pelosi
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
21
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
22
|
Liu S, Huang X, Han J, Yao L, Li H, Xin G, Ho SH, Zhao J, Xing B. Genome-Wide Molecular Adaptation in Algal Primary Productivity Induced by Prolonged Exposure to Environmentally Realistic Concentration of Nanoplastics. ACS NANO 2024; 18:29820-29831. [PMID: 39425676 DOI: 10.1021/acsnano.4c09709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Little information is known about the long-term effects of nanoplastics (NPs) in aquatic environments, especially under environmental-related scenarios. Herein, three differently charged NPs (nPS, nPS-NH2, and nPS-COOH) were exposed at an environmentally realistic concentration (10 μg/L) for 100 days to explore the variation of primary productivity (i.e., algae) in aquatic ecosystems. Our results demonstrated that the algae adapted to all three types of NPs by enhancing the algal number (by 10.34-16.52%), chlorophyll a (by 11.28-17.65%), and carbon-fixing enzyme activity (by 49.19-68.33%), which were further confirmed by the exposure results from natural water culturing experiments. Based on the algal chloroplast number and biovolume at the individual level, only nPS caused algal differentiation into two heterogeneous subpopulations (54.92 vs 45.08%), while nPS-NH2 and nPS-COOH did not cause the differentiation of the algal population. Moreover, the molecular adaptation mechanisms of algae to NPs were unraveled by integrating epigenomics and transcriptomics. Mean methylation rates of algae on exposure to nPS, nPS-NH2, and nPS-COOH were significantly elevated. In addition, the direction of gene expression regulation via differentially methylated regions associated with genes when exposed to nPS-COOH was distinct from those of nPS and nPS-NH2. Our results highlight the importance of assessing the long-term ecotoxicity of NPs and provide useful information for understanding the effect of NPs on aquatic ecosystems.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jingheng Han
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Linjie Yao
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Huijun Li
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jian Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, P. R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
23
|
Lohmaneeratana K, Gutiérrez G, Thamchaipenet A, Wellinger RE. Phytoplasma DNA Enrichment from Sugarcane White Leaves for Shotgun Sequencing Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:3006. [PMID: 39519924 PMCID: PMC11548020 DOI: 10.3390/plants13213006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, poses a significant threat to sugarcane cultivation. An obligate parasite, phytoplasma is difficult to culture in laboratory conditions, making the isolation of its DNA from the massive amount of plant host DNA extremely challenging. Yet, the appropriate amount and quality of plant microbiome-derived DNA are key for high-quality DNA sequencing data. Here, a simple, cost-effective, alternative method for DNA isolation was applied using a guanidine-HCl-hydroxylated silica (GuHCl-Silica)-based method and microbiome DNA enrichment based on size-selective low-molecular-weight (LMW) DNA by PEG/NaCl precipitation. qPCR analysis revealed a significant enrichment of phytoplasma DNA in the LMW fraction. Additionally, the NEBNext Microbiome DNA enrichment kit was utilized to further enrich microbial DNA, demonstrating a remarkable increase in the relative abundance of phytoplasma DNA to host DNA. Shotgun sequencing of the isolated DNA gave high-quality data on the metagenome assembly genome (MAG) of Ca. Phytoplasma sacchari SCWL with completeness at 95.85 and 215× coverage. The results indicate that this combined approach of PEG/NaCl size selection and microbiome enrichment is effective for obtaining high-quality genomic data from phytoplasma, surpassing previous methods in efficiency and resource utilization. This low-cost method not only enhances the recovery of microbiome DNA from plant hosts but also provides a robust framework for studying plant pathogens in complex plant models.
Collapse
Affiliation(s)
- Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Ralf Erik Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
24
|
Hong Y, Wen Z, Qiao G, Tian T, Wen X. Single-Base Methylome Analysis of Sweet Cherry ( Prunus avium L.) on Dwarfing Rootstocks Reveals Epigenomic Differences Associated with Scion Dwarfing Conferred by Grafting. Int J Mol Sci 2024; 25:11100. [PMID: 39456883 PMCID: PMC11508414 DOI: 10.3390/ijms252011100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Plant grafting using dwarfing rootstocks is one of the important cultivation measures in the sweet cherry (Prunus avium) industry. In this work, we aimed to explore the effects of the dwarfing rootstock "Pd1" (Prunus tomentosa) on sweet cherry 'Shuguang2' scions by performing morphological observations using the paraffin slice technique, detecting GA (gibberellin) and IAA (auxin) contents using UPLC-QTRAP-MS (ultra-performance liquid chromatography coupled with a hybrid triple quadrupole-linear ion trap mass spectrometer), and implementing integration analyses of the epigenome and transcriptome using whole-genome bisulfite sequencing and transcriptome sequencing. Anatomical analysis indicated that the cell division ability of the SAM (shoot apical meristem) in dwarfing plants was reduced. Pd1 rootstock significantly decreased the levels of GAs and IAA in sweet cherry scions. Methylome analysis showed that the sweet cherry genome presented 15.2~18.6%, 59.88~61.55%, 28.09~33.78%, and 2.99~5.28% methylation at total C, CG, CHG, and CHH sites, respectively. Shoot tips from dwarfing plants exhibited a hypermethylated pattern mostly due to increased CHH methylation, while leaves exhibited a hypomethylated pattern. According to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, DMGs (differentially methylated genes) and DEGs (differentially expressed genes) were enriched in hormone-related GO terms and KEGG pathways. Global correlation analysis between methylation and transcription revealed that mCpG in the gene body region enhanced gene expression and mCHH in the region near the TSS (transcription start site) was positively correlated with gene expression. Next, we found some hormone-related genes and TFs with significant changes in methylation and transcription, including SAURs, ARF, GA2ox, ABS1, bZIP, MYB, and NAC. This study presents a methylome map of the sweet cherry genome, revealed widespread DNA methylation alterations in scions caused by dwarfing rootstock, and obtained abundant genes with methylation and transcription alterations that are potentially involved in rootstock-induced growth changes in sweet cherry scions. Our findings can lay a good basis for further epigenetic studies on sweet cherry dwarfing and provide valuable new insight into understanding rootstock-scion interactions.
Collapse
Affiliation(s)
| | | | | | | | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China; (Y.H.); (Z.W.); (G.Q.); (T.T.)
| |
Collapse
|
25
|
Luan M, Chen K, Zhao W, Tang M, Wang L, Liu S, Zhu L, Xie S. Selective Effect of DNA N6-Methyladenosine Modification on Transcriptional Genetic Variations in East Asian Samples. Int J Mol Sci 2024; 25:10400. [PMID: 39408729 PMCID: PMC11477068 DOI: 10.3390/ijms251910400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Genetic variations and DNA modification are two common dominant factors ubiquitous across the entire human genome and induce human disease, especially through static genetic variations in DNA or RNA that cause human genetic diseases. DNA N6-methyladenosine (6mA) methylation, as a new epigenetic modification mark, has been widely studied for regulatory biological processes in humans. However, the effect of DNA modification on dynamic transcriptional genetic variations from DNA to RNA has rarely been reported. Here, we identified DNA, RNA and transcriptional genetic variations from Illumina short-read sequencing data in East Asian samples (HX1 and AK1) and detected global DNA 6mA modification using single-molecule, real-time sequencing (SMRT) data. We decoded the effects of DNA 6mA modification on transcriptional genetic variations in East Asian samples and the results were extensively verified in the HeLa cell line. DNA 6mA modification had a stabilized distribution in the East Asian samples and the methylated genes were less likely to mutate than the non-methylated genes. For methylated genes, the 6mA density was positively correlated with the number of variations. DNA 6mA modification had a selective effect on transcriptional genetic variations from DNA to RNA, in which the dynamic transcriptional variations of heterozygous (0/1 to 0/1) and homozygous (1/1 to 1/1) were significantly affected by 6mA modification. The effect of DNA methylation on transcriptional genetic variations provides new insights into the influencing factors of DNA to RNA transcriptional regulation in the central doctrine of molecular biology.
Collapse
Affiliation(s)
- Meiwei Luan
- School of Basic Medicine, Harbin Medical University, Harbin 150081, China;
| | - Kaining Chen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China;
| | - Wenwen Zhao
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Minqiang Tang
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Lingxia Wang
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Shoubai Liu
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| | - Linan Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA;
| | - Shangqian Xie
- College of Forestry, Hainan University, Haikou 570228, China; (W.Z.); (M.T.); (L.W.); (S.L.)
| |
Collapse
|
26
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Gurven MD, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Roberson J, Ng KS, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612068. [PMID: 39314398 PMCID: PMC11419010 DOI: 10.1101/2024.09.09.612068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing protocol (TMS)-which profiles ∼4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ∼$80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples). In both cases, we found strong agreement between technologies (R² = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R² = 0.98). Finally, we applied our protocol to profile age-associated DNA methylation variation in two subsistence-level populations-the Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia-and found age-methylation patterns that were strikingly similar to those reported in high income cohorts, despite known differences in age-health relationships between lifestyle contexts. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
|
27
|
Wassing IE, Nishiyama A, Shikimachi R, Jia Q, Kikuchi A, Hiruta M, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is an evolutionarily conserved hemimethylated DNA sensor in eukaryotes. SCIENCE ADVANCES 2024; 10:eadp5753. [PMID: 39178260 PMCID: PMC11343034 DOI: 10.1126/sciadv.adp5753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
28
|
de Oliveira Cruz J, Luizon MR. Potential epigenetic markers of clinical diagnostics/therapeutic targets in preeclampsia. Epigenomics 2024; 16:1057-1060. [PMID: 39115080 PMCID: PMC11418293 DOI: 10.1080/17501911.2024.2383558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024] Open
Affiliation(s)
- Juliana de Oliveira Cruz
- Department of Biological Sciences, Santa Cruz State University, Ilhéus, Bahia, 45662-900, Brazil
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo Rizzatti Luizon
- Graduate Program of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais; Belo Horizonte, Minas Gerais, 31270-901, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
29
|
Sarkies P, Westoby J, Kilner RM, Mashoodh R. Gene body methylation evolves during the sustained loss of parental care in the burying beetle. Nat Commun 2024; 15:6606. [PMID: 39098855 PMCID: PMC11298552 DOI: 10.1038/s41467-024-50359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Epigenetic modifications, such as 5-methylcytosine (5mC), can sometimes be transmitted between generations, provoking speculation that epigenetic changes could play a role in adaptation and evolution. Here, we use experimental evolution to investigate how 5mC levels evolve in populations of biparental insect (Nicrophorus vespilloides) derived from a wild source population and maintained independently under different regimes of parental care in the lab. We show that 5mC levels in the transcribed regions of genes (gene bodies) diverge between populations that have been exposed to different levels of care for 30 generations. These changes in 5mC do not reflect changes in the levels of gene expression. However, the accumulation of 5mC within genes between populations is associated with reduced variability in gene expression within populations. Our results suggest that evolved change in 5mC could contribute to phenotypic evolution by influencing variability in gene expression in invertebrates.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Rahia Mashoodh
- Department of Zoology, University of Cambridge, Cambridge, UK.
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
30
|
Guynes K, Sarre LA, Carrillo-Baltodano AM, Davies BE, Xu L, Liang Y, Martín-Zamora FM, Hurd PJ, de Mendoza A, Martín-Durán JM. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol 2024; 25:204. [PMID: 39090757 PMCID: PMC11292947 DOI: 10.1186/s13059-024-03346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. RESULTS Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. CONCLUSIONS Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.
Collapse
Affiliation(s)
- Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Luke A Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Lan Xu
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Altos Labs, Cambridge, UK
| | - Paul J Hurd
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
31
|
Sarre LA, Kim IV, Ovchinnikov V, Olivetta M, Suga H, Dudin O, Sebé-Pedrós A, de Mendoza A. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. SCIENCE ADVANCES 2024; 10:eado6406. [PMID: 38996012 PMCID: PMC11244446 DOI: 10.1126/sciadv.ado6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.
Collapse
Affiliation(s)
- Luke A. Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Iana V. Kim
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vladimir Ovchinnikov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnau Sebé-Pedrós
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
Xie H, Li X, Sun Y, Lin L, Xu K, Lu H, Cheng B, Xue S, Cheng D, Qiang S. DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana. Int J Mol Sci 2024; 25:7478. [PMID: 39000585 PMCID: PMC11242178 DOI: 10.3390/ijms25137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plant flowering time is affected by endogenous and exogenous factors, but its variation patterns among different populations of a species has not been fully established. In this study, 27 Arabidopsis thaliana accessions were used to investigate the relationship between autonomous pathway gene methylation, gene expression and flowering time variation. DNA methylation analysis, RT-qPCR and transgenic verification showed that variation in the flowering time among the Arabidopsis populations ranged from 19 to 55 days and was significantly correlated with methylation of the coding regions of six upstream genes in the autonomous pathway, FLOWERING LOCUS VE (FVE), FLOWERING LOCUS Y (FY), FLOWERING LOCUS D (FLD), PEPPER (PEP), HISTONE DEACETYLASE 5 (HAD5) and Pre-mRNA Processing Protein 39-1 (PRP39-1), as well as their relative expression levels. The expression of FVE and FVE(CS) was modified separately through degenerate codon substitution of cytosine and led to earlier flowering of transgenic plants by 8 days and 25 days, respectively. An accurate determination of methylated sites in FVE and FVE(CS) among those transgenic plants and the recipient Col-0 verified the close relationship between the number of methylation sites, expression and flowering time. Our findings suggest that the methylation variation of these six key upstream transcription factors was associated with the gene expression level of the autonomous pathway and flowering time in Arabidopsis. The FVE(CS) and FVE genes in transgenic plants tended to be hypermethylated, which could be a protective mechanism for plants. However, modification of gene sequences through degenerate codon substitution to reduce cytosine can avoid hypermethylated transferred genes in transgenic plants. It may be possible to partially regulate the flowering of plants by modified trans-epigenetic technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sheng Qiang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (X.L.); (Y.S.); (L.L.); (K.X.); (H.L.); (B.C.); (S.X.); (D.C.)
| |
Collapse
|
33
|
Briffa A, Menon G, Movilla Miangolarra A, Howard M. Dissecting Mechanisms of Epigenetic Memory Through Computational Modeling. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:265-290. [PMID: 38424070 DOI: 10.1146/annurev-arplant-070523-041445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Understanding the mechanistic basis of epigenetic memory has proven to be a difficult task due to the underlying complexity of the systems involved in its establishment and maintenance. Here, we review the role of computational modeling in helping to unlock this complexity, allowing the dissection of intricate feedback dynamics. We focus on three forms of epigenetic memory encoded in gene regulatory networks, DNA methylation, and histone modifications and discuss the important advantages offered by plant systems in their dissection. We summarize the main modeling approaches involved and highlight the principal conceptual advances that the modeling has enabled through iterative cycles of predictive modeling and experiments. Lastly, we discuss remaining gaps in our understanding and how intertwined theory and experimental approaches might help in their resolution.
Collapse
Affiliation(s)
- Amy Briffa
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Govind Menon
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| | - Ander Movilla Miangolarra
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| |
Collapse
|
34
|
Zhang Z, Liu G, Zhou Z, Su Z, Gu X. Global level of methylation in the sea lamprey (jawless vertebrate) genome is intermediate between invertebrate and jawed vertebrate genomes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:391-397. [PMID: 38497317 DOI: 10.1002/jez.b.23250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
In eukaryotes, cytosine methylation is a primary heritable epigenetic modification of the genome that regulates many cellular processes. In invertebrate, methylated cytosine generally located on specific genomic elements (e.g., gene bodies and silenced repetitive elements) to show a "mosaic" pattern. While in jawed vertebrate (teleost and tetrapod), highly methylated cytosine located genome-wide but only absence at regulatory regions (e.g., promoter and enhancer). Many studies imply that the evolution of DNA methylation reprogramming may have helped the transition from invertebrates to jawed vertebrates, but the detail remains largely elusive. In this study, we used the whole-genome bisulfite-sequencing technology to investigate the genome-wide methylation in three tissues (heart, muscle, and sperm) from the sea lamprey, an extant agnathan (jawless) vertebrate. Strikingly, we found that the methylation level of the sea lamprey is very similar to that in sea urchin (a deuterostome) and sea squirt (a chordate) invertebrates. In sum, the global pattern in sea lamprey is intermediate methylation level (around 30%), that is higher than methylation level in the genomes of pre-bilaterians and protostomes (1%-10%), but lower than methylation level appeared in jawed vertebrates (around 70%, teleost and tetrapod). We anticipate that, in addition to genetic dynamics such as genome duplications, epigenetic dynamics such as global methylation reprograming was also orchestrated toward the emergence and evolution of vertebrates.
Collapse
Affiliation(s)
- Zhao Zhang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gangbiao Liu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhixi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Xun Gu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
35
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
36
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
37
|
Viña-Feás A, Temes-Rodríguez J, Vidal-Capón A, Novas S, Rodríguez-Castro J, Pequeño-Valtierra A, Pasantes JJ, Tubío JMC, Garcia-Souto D. Unravelling epigenetic mechanisms in Cerastoderma edule genome: a comparison of healthy and neoplastic cockles. Mol Genet Genomics 2024; 299:58. [PMID: 38789628 PMCID: PMC11126487 DOI: 10.1007/s00438-024-02148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.
Collapse
Affiliation(s)
- Alejandro Viña-Feás
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Temes-Rodríguez
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Samuel Novas
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jorge Rodríguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Pequeño-Valtierra
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Jose M C Tubío
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Department of Biological Sciences, School of Environment, Arts and Society, College of Arts, Sciences & Education (CASE), Florida International University, Miami, FL, USA.
| |
Collapse
|
38
|
Sala-Cholewa K, Tomasiak A, Nowak K, Piński A, Betekhtin A. DNA methylation analysis of floral parts revealed dynamic changes during the development of homostylous Fagopyrum tataricum and heterostylous F. esculentum flowers. BMC PLANT BIOLOGY 2024; 24:448. [PMID: 38783206 PMCID: PMC11112930 DOI: 10.1186/s12870-024-05162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Proper flower development is essential for plant reproduction, a crucial aspect of the plant life cycle. This process involves precisely coordinating transcription factors, enzymes, and epigenetic modifications. DNA methylation, a ubiquitous and heritable epigenetic mechanism, is pivotal in regulating gene expression and shaping chromatin structure. Fagopyrum esculentum demonstrates anti-hypertensive, anti-diabetic, anti-inflammatory, cardio-protective, hepato-protective, and neuroprotective properties. However, the heteromorphic heterostyly observed in F. esculentum poses a significant challenge in breeding efforts. F. tataricum has better resistance to high altitudes and harsh weather conditions such as drought, frost, UV-B radiation damage, and pests. Moreover, F. tataricum contains significantly higher levels of rutin and other phenolics, more flavonoids, and a balanced amino acid profile compared to common buckwheat, being recognised as functional food, rendering it an excellent candidate for functional food applications. RESULTS This study aimed to compare the DNA methylation profiles between the Pin and Thrum flower components of F. esculentum, with those of self-fertile species of F. tataricum, to understand the potential role of this epigenetic mechanism in Fagopyrum floral development. Notably, F. tataricum flowers are smaller than those of F. esculentum (Pin and Thrum morphs). The decline in DNA methylation levels in the developed open flower components, such as petals, stigmas and ovules, was consistent across both species, except for the ovule in the Thrum morph. Conversely, Pin and Tartary ovules exhibited a minor decrease in DNA methylation levels. The highest DNA methylation level was observed in Pin stigma from closed flowers, and the most significant decrease was in Pin stigma from open flowers. In opposition, the nectaries of open flowers exhibited higher levels of DNA methylation than those of closed flowers. The decrease in DNA methylation might correspond with the downregulation of genes encoding methyltransferases. CONCLUSIONS Reduced overall DNA methylation and the expression of genes associated with these epigenetic markers in fully opened flowers of both species may indicate that demethylation is necessary to activate the expression of genes involved in floral development.
Collapse
Affiliation(s)
- Katarzyna Sala-Cholewa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| | - Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Artur Piński
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, Katowice, 40-032, Poland.
| |
Collapse
|
39
|
Yang Z, Lu X, Wang N, Mei Z, Fan Y, Zhang M, Wang L, Sun Y, Chen X, Huang H, Meng Y, Liu M, Han M, Chen W, Zhang X, Yu X, Chen X, Wang S, Wang J, Zhao L, Guo L, Peng F, Feng K, Gao W, Ye W. GhVIM28, a negative regulator identified from VIM family genes, positively responds to salt stress in cotton. BMC PLANT BIOLOGY 2024; 24:432. [PMID: 38773389 PMCID: PMC11107009 DOI: 10.1186/s12870-024-05156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.
Collapse
Affiliation(s)
- Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Zhengding Mei
- Hunan Institute of Cotton Science, Changde, Hunan, 415101, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yuping Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xiao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xinrui Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xin Yu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, Hunan, 415101, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China.
| |
Collapse
|
40
|
Sarwar MS, Ramirez CN, Kuo HCD, Chou P, Wu R, Sargsyan D, Yang Y, Shannar A, Peter RM, Yin R, Wang Y, Su X, Kong AN. Triterpenoid ursolic acid regulates the environmental carcinogen benzo[a]pyrene-driven epigenetic and metabolic alterations in SKH-1 hairless mice for skin cancer interception. Carcinogenesis 2024; 45:288-299. [PMID: 38466106 PMCID: PMC11102768 DOI: 10.1093/carcin/bgae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 03/12/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.
Collapse
Affiliation(s)
- Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina N Ramirez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Yadav S, Yadava YK, Meena S, Kalwan G, Bharadwaj C, Paul V, Kansal R, Gaikwad K, Jain PK. Novel insights into drought-induced regulation of ribosomal genes through DNA methylation in chickpea. Int J Biol Macromol 2024; 266:131380. [PMID: 38580022 DOI: 10.1016/j.ijbiomac.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Modifications within the epigenome of an organism in response to external environmental conditions allow it to withstand the hostile stress factors. Drought in chickpea is a severely limiting abiotic stress factor which is known to cause huge yield loss. To analyse the methylome of chickpea in response to drought stress conditions and how it affects gene expression, we performed whole-genome bisulfite sequencing (WGBS) and RNA-seq of two chickpea genotypes which contrast for drought tolerance. It was observed that the mCHH was most variable under drought stress and the drought tolerant (DT) genotype exhibited substantial genome-wide hypomethylation as compared to the drought sensitive (DS) genotype. Specifically, there was substantial difference in gene expression and methylation for the ribosomal genes for the tolerant and sensitive genotypes. The differential expression of these genes was in complete agreement with earlier reported transcriptomes in chickpea. Many of these genes were hypomethylated (q < 0.01) and downregulated under drought stress (p < 0.01) in the sensitive genotype. The gene RPS6 (ribosomal protein small subunit) was found to be downregulated and hypomethylated in the drought sensitive genotype which could possibly lead to reduced ribosomal biosynthesis. This study provides novel insights into regulation of drought-responsive genes in chickpea.
Collapse
Affiliation(s)
- Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Yashwant K Yadava
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Shashi Meena
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gopal Kalwan
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vijay Paul
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
42
|
Shan S, Gitzendanner MA, Boatwright JL, Spoelhof JP, Ethridge CL, Ji L, Liu X, Soltis PS, Schmitz RJ, Soltis DE. Genome-wide DNA methylation dynamics following recent polyploidy in the allotetraploid Tragopogon miscellus (Asteraceae). THE NEW PHYTOLOGIST 2024; 242:1363-1376. [PMID: 38450804 DOI: 10.1111/nph.19655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024]
Abstract
Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.
Collapse
Affiliation(s)
- Shengchen Shan
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, 29634, USA
| | - Jonathan P Spoelhof
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Bioinformatics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
43
|
Wang C, Lei W, Du L, Xu Y, Lou Y, Peng M, Gao D. Genome-wide DNA methylation changes in Oryzias melastigma embryos exposed to the water accommodated fraction of crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116325. [PMID: 38653019 DOI: 10.1016/j.ecoenv.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The water accommodated fraction (WAF) of crude oil exerts considerable impacts on marine fish during embryonic stage. Clarifying changes in epigenetic modifications is helpful for understanding the molecular mechanism underlying the toxicity of embryonic WAF exposure. The aim of this study was to explore genome-wide DNA methylation changes in Oryzias melastigma embryos after exposure to the nominal total petroleum hydrocarbon concentration of 500 μg/L in WAF for 7 days. Whole-genome bisulfite sequencing revealed that 8.47 % and 8.46 % of all the genomic C sites were methylated in the control and WAF-exposed groups, respectively. Among the three sequence contexts, methylated CG site had the largest number in both the two groups. The sequence preferences of nearby methylated cytosines were consistent between the two groups. A total of 4798 differentially methylated regions (DMRs) were identified in the promoter region. Furthermore, Gene Ontology analysis revealed that DMR-related genes were enriched mainly for functions related to development and nervous system. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathways enriched in DMR-related genes were related to nervous system and endocrine system. These novel findings provide comprehensive insights into the genome-wide DNA methylation landscape of O. melastigma following embryonic WAF exposure, shedding light on the epigenetic regulatory mechanisms underlying WAF-induced toxicity.
Collapse
Affiliation(s)
- Chenshi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China; State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
| | - Wei Lei
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China.
| | - Lichao Du
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yiran Xu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yingbin Lou
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, China
| | - Mo Peng
- Jiangsu Environmental Monitoring Center, Nanjing, China
| | - Dongxu Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
44
|
Sun Y, Wang X, Di Y, Li J, Li K, Wei H, Zhang F, Su Z. Systematic Analysis of DNA Demethylase Gene Families in Foxtail Millet ( Setaria italica L.) and Their Expression Variations after Abiotic Stresses. Int J Mol Sci 2024; 25:4464. [PMID: 38674049 PMCID: PMC11050331 DOI: 10.3390/ijms25084464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. DNA demethylase (DNA-deMTase) genes have been identified in some plant species; however, there are no reports on the identification and analysis of DNA-deMTase genes in Foxtail millet (Setaria italica L.). In this study, seven DNA-deMTases were identified in S. italica. These DNA-deMTase genes were divided into four subfamilies (DML5, DML4, DML3, and ROS1) by phylogenetic and gene structure analysis. Further analysis shows that the physical and chemical properties of these DNA-deMTases proteins are similar, contain the typical conserved domains of ENCO3c and are located in the nucleus. Furthermore, multiple cis-acting elements were observed in DNA-deMTases, including light responsiveness, phytohormone responsiveness, stress responsiveness, and elements related to plant growth and development. The DNA-deMTase genes are expressed in all tissues detected with certain tissue specificity. Then, we investigated the abundance of DNA-deMTase transcripts under abiotic stresses (cold, drought, salt, ABA, and MeJA). The results showed that different genes of DNA-deMTases were involved in the regulation of different abiotic stresses. In total, our findings will provide a basis for the roles of DNA-deMTase in response to abiotic stress.
Collapse
Affiliation(s)
- Yingying Sun
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Xin Wang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Yunfei Di
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Jinxiu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Keyu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Huanhuan Wei
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Fan Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Zhenxia Su
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| |
Collapse
|
45
|
Madakashira BP, Magnani E, Ranjan S, Sadler KC. DNA hypomethylation activates Cdk4/6 and Atr to induce DNA replication and cell cycle arrest to constrain liver outgrowth in zebrafish. Nucleic Acids Res 2024; 52:3069-3087. [PMID: 38321933 PMCID: PMC11014291 DOI: 10.1093/nar/gkae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.
Collapse
|
46
|
Yuditskiy K, Bezdvornykh I, Kazantseva A, Kanapin A, Samsonova A. BSXplorer: analytical framework for exploratory analysis of BS-seq data. BMC Bioinformatics 2024; 25:96. [PMID: 38438881 PMCID: PMC10913661 DOI: 10.1186/s12859-024-05722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Bisulfite sequencing detects and quantifies DNA methylation patterns, contributing to our understanding of gene expression regulation, genome stability maintenance, conservation of epigenetic mechanisms across divergent taxa, epigenetic inheritance and, eventually, phenotypic variation. Graphical representation of methylation data is crucial in exploring epigenetic regulation on a genome-wide scale in both plants and animals. This is especially relevant for non-model organisms with poorly annotated genomes and/or organisms where genome sequences are not yet assembled on chromosome level. Despite being a technology of choice to profile DNA methylation for many years now there are surprisingly few lightweight and robust standalone tools available for efficient graphical analysis of data in non-model systems. This significantly limits evolutionary studies and agrigenomics research. BSXplorer is a tool specifically developed to fill this gap and assist researchers in explorative data analysis and in visualising and interpreting bisulfite sequencing data more easily. RESULTS BSXplorer provides in-depth graphical analysis of sequencing data encompassing (a) profiling of methylation levels in metagenes or in user-defined regions using line plots and heatmaps, generation of summary statistics charts, (b) enabling comparative analyses of methylation patterns across experimental samples, methylation contexts and species, and (c) identification of modules sharing similar methylation signatures at functional genomic elements. The tool processes methylation data quickly and offers API and CLI capabilities, along with the ability to create high-quality figures suitable for publication. CONCLUSIONS BSXplorer facilitates efficient methylation data mining, contrasting and visualization, making it an easy-to-use package that is highly useful for epigenetic research.
Collapse
Affiliation(s)
- Konstantin Yuditskiy
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004
| | - Igor Bezdvornykh
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004
| | - Anastasiya Kazantseva
- Laboratory of Neurocognitive Genomics, Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, Ufa, Russia, 450076
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia, 199004.
| |
Collapse
|
47
|
Angeloni A, Fissette S, Kaya D, Hammond JM, Gamaarachchi H, Deveson IW, Klose RJ, Li W, Zhang X, Bogdanovic O. Extensive DNA methylome rearrangement during early lamprey embryogenesis. Nat Commun 2024; 15:1977. [PMID: 38438347 PMCID: PMC10912607 DOI: 10.1038/s41467-024-46085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
DNA methylation (5mC) is a repressive gene regulatory mark widespread in vertebrate genomes, yet the developmental dynamics in which 5mC patterns are established vary across species. While mammals undergo two rounds of global 5mC erasure, teleosts, for example, exhibit localized maternal-to-paternal 5mC remodeling. Here, we studied 5mC dynamics during the embryonic development of sea lamprey, a jawless vertebrate which occupies a critical phylogenetic position as the sister group of the jawed vertebrates. We employed 5mC quantification in lamprey embryos and tissues, and discovered large-scale maternal-to-paternal epigenome remodeling that affects ~30% of the embryonic genome and is predominantly associated with partially methylated domains. We further demonstrate that sequences eliminated during programmed genome rearrangement (PGR), are hypermethylated in sperm prior to the onset of PGR. Our study thus unveils important insights into the evolutionary origins of vertebrate 5mC reprogramming, and how this process might participate in diverse developmental strategies.
Collapse
Affiliation(s)
- Allegra Angeloni
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Skye Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Deniz Kaya
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jillian M Hammond
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
| | - Hasindu Gamaarachchi
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ira W Deveson
- Genomics Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Xiaotian Zhang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, USA
- University of Texas Health Science Center, Houston, TX, USA
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
48
|
Miltiadous A, Callahan DL, Dujon AM, Buchanan KL, Rollins LA. Maternally derived avian corticosterone affects offspring genome-wide DNA methylation in a passerine species. Mol Ecol 2024; 33:e17283. [PMID: 38288572 DOI: 10.1111/mec.17283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2023] [Indexed: 03/07/2024]
Abstract
Avian embryos develop in an egg composition which reflects both maternal condition and the recent environment of their mother. In birds, yolk corticosterone (CORT) influences development by impacting pre- and postnatal growth, as well as nestling stress responses and development. One possible mechanism through which maternal CORT may affect offspring development is via changes to offspring DNA methylation. We sought to investigate this, for the first time in birds, by quantifying the impact of manipulations to maternal CORT on offspring DNA methylation. We non-invasively manipulated plasma CORT concentrations of egg-laying female zebra finches (Taeniopygia castanotis) with an acute dose of CORT administered around the time of ovulation and collected their eggs. We then assessed DNA methylation in the resulting embryonic tissue and in their associated vitelline membrane blood vessels, during early development (5 days after lay), using two established methods - liquid chromatography-mass spectrometry (LC-MS) and methylation-sensitive amplification fragment length polymorphism (MS-AFLP). LC-MS analysis showed that global DNA methylation was lower in embryos from CORT-treated mothers, compared to control embryos. In contrast, blood vessel DNA from eggs from CORT-treated mothers showed global methylation increases, compared to control samples. There was a higher proportion of global DNA methylation in the embryonic DNA of second clutches, compared to first clutches. Locus-specific analyses using MS-AFLP did not reveal a treatment effect. Our results indicate that an acute elevation of maternal CORT around ovulation impacts DNA methylation patterns in their offspring. This could provide a mechanistic understanding of how a mother's experience can affect her offspring's phenotype.
Collapse
Affiliation(s)
- Anna Miltiadous
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Damien L Callahan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Lee A Rollins
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Roelfs KU, Känel A, Twyman RM, Prüfer D, Schulze Gronover C. Epigenetic variation in early and late flowering plants of the rubber-producing Russian dandelion Taraxacum koksaghyz provides insights into the regulation of flowering time. Sci Rep 2024; 14:4283. [PMID: 38383610 PMCID: PMC10881582 DOI: 10.1038/s41598-024-54862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
The Russian dandelion (Taraxacum koksaghyz) grows in temperate zones and produces large amounts of poly(cis-1,4-isoprene) in its roots, making it an attractive alternative source of natural rubber. Most T. koksaghyz plants require vernalization to trigger flower development, whereas early flowering varieties that have lost their vernalization dependence are more suitable for breeding and domestication. To provide insight into the regulation of flowering time in T. koksaghyz, we induced epigenetic variation by in vitro cultivation and applied epigenomic and transcriptomic analysis to the resulting early flowering plants and late flowering controls, allowing us to identify differences in methylation patterns and gene expression that correlated with flowering. This led to the identification of candidate genes homologous to vernalization and photoperiodism response genes in other plants, as well as epigenetic modifications that may contribute to the control of flower development. Some of the candidate genes were homologous to known floral regulators, including those that directly or indirectly regulate the major flowering control gene FT. Our atlas of genes can be used as a starting point to investigate mechanisms that control flowering time in T. koksaghyz in greater detail and to develop new breeding varieties that are more suited to domestication.
Collapse
Affiliation(s)
- Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
| | - Andrea Känel
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 48149, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | | |
Collapse
|
50
|
Tiedemann RL, Hrit J, Du Q, Wiseman AK, Eden HE, Dickson BM, Kong X, Chomiak AA, Vaughan RM, Hebert JM, David Y, Zhou W, Baylin SB, Jones PA, Clark SJ, Rothbart SB. UHRF1 ubiquitin ligase activity supports the maintenance of low-density CpG methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580169. [PMID: 38405904 PMCID: PMC10888769 DOI: 10.1101/2024.02.13.580169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.
Collapse
|