1
|
Montero-Herradón S, García-Ceca J, Zapata AG. Thymus Ontogeny and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:21-49. [PMID: 40067583 DOI: 10.1007/978-3-031-77921-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus is a primary lymphoid organ composed of a three-dimensional (3D) epithelial network that provides a specialized microenvironment for the phenotypical and functional maturation of lymphoid progenitors. The specification of the pharyngeal endoderm to thymus fate occurs during the early stages of thymic organogenesis, independent of the expression of the transcription factor Foxn1. However, Foxn1 governs the later organogenesis of thymus together with the colonizing lymphoid cells. In the present chapter, we will review recent evidence on the topic covered in our original chapter (Muñoz and Zapata 2019). It described the early development of thymus and its resemblance to the development of endoderm-derived epithelial organs based on tubulogenesis and branching morphogenesis as well as the molecules known to be involved in these processes.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology. Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute, Madrid, Spain.
| |
Collapse
|
2
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Fu Y, Zhang X, Wu H, Zhang P, Liu S, Guo T, Shan H, Liang Y, Chen H, Xie J, Duan Y. HOXA3 functions as the on-off switch to regulate the development of hESC-derived third pharyngeal pouch endoderm through EPHB2-mediated Wnt pathway. Front Immunol 2024; 14:1258074. [PMID: 38259452 PMCID: PMC10800530 DOI: 10.3389/fimmu.2023.1258074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives Normal commitment of the endoderm of the third pharyngeal pouch (3PP) is essential for the development and differentiation of the thymus. The aim of this study was to investigate the role of transcription factor HOXA3 in the development and differentiation of 3PP endoderm (3PPE) from human embryonic stem cells (hESCs). Methods The 3PPE was differentiated from hESC-derived definitive endoderm (DE) by mimicking developmental queues with Activin A, WNT3A, retinoic acid and BMP4. The function of 3PPE was assessed by further differentiating into functional thymic epithelial cells (TECs). The effect of HOXA3 inhibition on cells of 3PPE was subsequently investigated. Results A highly efficient approach for differentiating 3PPE cells was developed and these cells expressed 3PPE related genes HOXA3, SIX1, PAX9 as well as EpCAM. 3PPE cells had a strong potential to develop into TECs which expressed both cortical TEC markers K8 and CD205, and medullary TEC markers K5 and AIRE, and also promoted the development and maturation of T cells. More importantly, transcription factor HOXA3 not only regulated the differentiation of 3PPE, but also had a crucial role for the proliferation and migration of 3PPE cells. Our further investigation revealed that HOXA3 controlled the commitment and function of 3PPE through the regulation of Wnt signaling pathway by activating EPHB2. Conclusion Our results demonstrated that HOXA3 functioned as the on-off switch to regulate the development of hESC-derived 3PPE through EPHB2-mediated Wnt pathway, and our findings will provide new insights into studying the development of 3PP and thymic organ in vitro and in vivo.
Collapse
Affiliation(s)
- Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xueyan Zhang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pingping Zhang
- Department of Laboratory Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huanhuan Shan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Liang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Kameda Y. Cellular and molecular mechanisms of the organogenesis and development, and function of the mammalian parathyroid gland. Cell Tissue Res 2023; 393:425-442. [PMID: 37410127 DOI: 10.1007/s00441-023-03785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/12/2023] [Indexed: 07/07/2023]
Abstract
Serum calcium homeostasis is mainly regulated by parathormone (PTH) secreted by the parathyroid gland. Besides PTH and Gcm2, a master gene for parathyroid differentiation, many genes are expressed in the gland. Especially, calcium-sensing receptor (CaSR), vitamin D receptor (VDR), and Klotho function to prevent increased secretion of PTH and hyperplasia of the parathyroid gland under chronic hypocalcemia. Parathyroid-specific dual deletion of Klotho and CaSR induces a marked enlargement of the glandular size. The parathyroid develops from the third and fourth pharyngeal pouches except murine species in which the gland is derived from the third pouch only. The development of the murine parathyroid gland is categorized as follows: (1) formation and differentiation of the pharyngeal pouches, (2) appearance of parathyroid domain in the third pharyngeal pouch together with thymus domain, (3) migration of parathyroid primordium attached to the top of thymus, and (4) contact with the thyroid lobe and separation from the thymus. The transcription factors and signaling molecules involved in each of these developmental stages are elaborated. In addition, mesenchymal neural crest cells surrounding the pharyngeal pouches and parathyroid primordium and invading the parathyroid parenchyma participate in the development of the gland.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
5
|
Takenouchi H, Anno T, Harada A, Isobe H, Kimura Y, Kawasaki F, Kaku K, Tomoda K, Fujiwara H, Kaneto H. Ectopic PTH-producing parathyroid cyst inside the thymus: a case report. BMC Endocr Disord 2022; 22:327. [PMID: 36544116 PMCID: PMC9769032 DOI: 10.1186/s12902-022-01256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The hallmark of hyperparathyroidism is hypersecretion of parathyroid hormone (PTH) which results in hypercalcemia and hypophosphatemia. While hypercalcemia due to malignancy is often brought about by PTH-related protein in adults, PTH-producing tumors are quite rare in clinical practice. Additionally, from the point of embryology, it is very difficult to examine ectopic PTH-producing tissue such as ectopic parathyroid glands. Furthermore, clear histopathological criteria are not present. CASE PRESENTATION A 57-year-old woman was referred to our hospital for hypercalcemia. Her parathyroid hormone (PTH) level was elevated, but there were no enlarged parathyroid glands. Although 99mTc-MIBI confirmed a localized and slightly hyperfunctioning parathyroid tissue in the anterior mediastinum, it was not typical as hyperfunctioning parathyroid. We finally diagnosed her as ectopic PTH-producing cyst-like tumor with venous sampling of PTH. She underwent anterosuperior mediastinal ectopic PTH-producing cyst-like tumor resection. It is noted that intact-PTH concentration of the fluid in the cyst was very high (19,960,000 pg/mL). Based on histopathological findings, we finally diagnosed her as ectopic PTH-producing parathyroid cyst inside the thymus. After resection of anterosuperior mediastinal thymus including ectopic PTH-producing parathyroid cyst, calcium and intact-PTH levels were decreased, and this patient was discharged without any sequelae. CONCLUSIONS We should know the possibility of superior mediastinal ectopic PTH-producing parathyroid cyst inside the thymus among subjects with ectopic PTH-producing parathyroid glands. Particularly when the cyst is present in the superior mediastinum, it is necessary to do careful diagnosis based on not only positive but also negative findings in 99mTc-MIBI. It is noted that the patient's bloody fluid in the cyst contained 19,960,000 pg/mL of intact-PTH, and its overflow into blood stream resulted in hyperparathyroidism and hypercalcemia. Moreover, in such cases, the diagnosis is usually confirmed after through histological examination of ectopic PTH-producing parathyroid glands. We think that it is very meaningful to let clinicians know this case.
Collapse
Affiliation(s)
- Haruka Takenouchi
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan
| | - Takatoshi Anno
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan.
| | - Ayaka Harada
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan
| | - Hayato Isobe
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan
| | - Yukiko Kimura
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan
| | - Fumiko Kawasaki
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan
| | - Kohei Kaku
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan
| | - Koichi Tomoda
- Department of General Internal Medicine 1, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama, 700-8505, Japan
| | - Hideyo Fujiwara
- Department of Pathology, Kawasaki Medical School, Okayama, 700-8505, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
6
|
Wang X, Liang Y, Zhu Z, Li W, Shi B, Deng Y, Li C, Sha O. Fn1 Regulates the Third Pharyngeal Pouch Patterning and Morphogenesis. J Dent Res 2022; 101:1082-1091. [PMID: 35259939 DOI: 10.1177/00220345221078775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The parathyroid and thymus are derived from the common primordia, the third pharyngeal pouch. During their development, endodermal cells actively interact with surrounding mesenchymal cells, mainly derived from neural crest cells (NCCs). However, the mechanism by which NCCs regulate the development of the third pharyngeal pouch remains largely unknown. In this study, we showed that fibronectin 1 (Fn1), which is synthesized by NCCs, modulates the functions of NCCs in the third pharyngeal pouch patterning and in the morphogenesis of the thymus/parathyroid. Loss of Fn1 in NCCs leads to decreased Foxn1 expression in the presumptive thymus domain at E11.5. In the mutant, we detected upregulation of the Hedgehog signaling activity in the presumptive parathyroid domain and downregulation of Bmp4 in the presumptive thymus domain. Tbx1, a Hedgehog signaling target gene in endoderm development, was ectopically expanded to the presumptive mutant thymus domain at E11.5. Fgf10, an important gene regulating the proliferation of endoderm development, was downregulated in the mutant NCCs. At later organogenesis stages, derivatives of the third pharyngeal pouch endoderm of mutant embryos were abnormal, showing conditions such as hypoparathyroidism, hypoplastic thymus, and ectopic thymus and parathyroid. These data support that Fn1 plays an important role in NCCs by regulating the patterning of the third pharyngeal pouch and morphogenesis of the thymus/parathyroid.
Collapse
Affiliation(s)
- X Wang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Y Liang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - Z Zhu
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| | - W Li
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
| | - B Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Deng
- Department of Somatology, Shenzhen University General Hospital, Shenzhen, China
| | - C Li
- Department of Anatomy, Shantou University Medical College, Shantou, China
| | - O Sha
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen, China
- School of Dentistry, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022; 13:864777. [PMID: 35757725 PMCID: PMC9229346 DOI: 10.3389/fimmu.2022.864777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology & Genetics, The University of North Texas Health Sciences Center, Fort Worth, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:379-394. [PMID: 35301456 DOI: 10.1038/s41569-022-00678-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Molecular Medicine, Sapienza University, Rome, Italy. .,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
9
|
Broggini T, Piffko A, Hoffmann CJ, Ghori A, Harms C, Adams RH, Vajkoczy P, Czabanka M. Ephrin-B2-EphB4 communication mediates tumor-endothelial cell interactions during hematogenous spread to spinal bone in a melanoma metastasis model. Oncogene 2020; 39:7063-7075. [PMID: 32989254 DOI: 10.1038/s41388-020-01473-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
Metastases account for the majority of cancer deaths. Bone represents one of the most common sites of distant metastases, and spinal bone metastasis is the most common source of neurological morbidity in cancer patients. During metastatic seeding of cancer cells, endothelial-tumor cell interactions govern extravasation to the bone and potentially represent one of the first points of action for antimetastatic treatment. The ephrin-B2-EphB4 pathway controls cellular interactions by inducing repulsive or adhesive properties, depending on forward or reverse signaling. Here, we report that in an in vivo metastatic melanoma model, ephrin-B2-mediated activation of EphB4 induces tumor cell repulsion from bone endothelium, translating in reduced spinal bone metastatic loci and improved neurological function. Selective ephrin-B2 depletion in endothelial cells or EphB4 inhibition increases bone metastasis and shortens the time window to hind-limb locomotion deficit from spinal cord compression. EphB4 overexpression in melanoma cells ameliorates the metastatic phenotype and improves neurological outcome. Timely harvesting of bone tissue after tumor cell injection and intravital bone microscopy revealed less tumor cells attached to ephrin-B2-positive endothelial cells. These results suggest that ephrin-B2-EphB4 communication influences bone metastasis formation by altering melanoma cell repulsion/adhesion to bone endothelial cells, and represents a molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andras Piffko
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.
| |
Collapse
|
10
|
Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. Int J Mol Sci 2020; 21:ijms21165765. [PMID: 32796710 PMCID: PMC7460828 DOI: 10.3390/ijms21165765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, embryonic structures that rely on environmental cues from the surrounding mesenchyme for its development. Here, we review the most recent advances in our understanding of the molecular mechanisms involved in early thymic organogenesis at stages preceding the expression of the transcription factor Foxn1, the early marker of thymic epithelial cells identity. Foxn1-independent developmental stages, such as the specification of the pharyngeal endoderm, patterning of the pouches, and thymus fate commitment are discussed, with a special focus on epithelial–mesenchymal interactions.
Collapse
|
11
|
Coucha M, Barrett AC, Bailey J, Abdelghani M, Abdelsaid M. Increased Ephrin-B2 expression in pericytes contributes to retinal vascular death in rodents. Vascul Pharmacol 2020; 131:106761. [PMID: 32585189 PMCID: PMC11973836 DOI: 10.1016/j.vph.2020.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
AIMS Diabetes-induced retinal vascular cell death aggravates diabetic retinopathy (DR) to the proliferative stage and blindness. Pericytes play a crucial role in retinal capillaries survival, stability, and angiogenesis. Ephrin-B2 is a tyrosine kinase that regulates pericytes/endothelial cells communication during angiogenesis; yet, its role in DR is still unclear. We hypothesize that diabetes increases Ephrin-B2 signaling in pericytes, which contributes to inflammation and retinal vascular cell death. METHODS Selective inhibition of the Ephrin-B2 expression in the retinal pericytes was achieved using an intraocular injection of adeno-associated virus (AAV) with a specific pericyte promotor. Vascular death was determined by retinal trypsin digest. Pathological angiogenesis was assessed using the oxygen-induced retinopathy model in pericyte-Ephrin-B2 knockout mice, wild type, and wild type injected with AAV. Angiogenic properties, inflammatory, and apoptotic markers were measured in human retinal pericytes (HRP) grown under diabetic conditions. KEY FINDING Diabetes significantly increased the expression of Ephrin-B2, inflammatory, and apoptotic markers in the diabetic retinas and HRP. These effects were prevented by silencing Ephrin-B2 in HRP. Moreover, Ephrin-B2 silencing in retinal pericytes decreased pathological angiogenesis and acellular capillaries formation in diabetic retinas. SIGNIFICANCE Increased Ephrin-B2 expression in the pericytes contributed to diabetes-induced retinal inflammation and vascular death. These results identify pericytes-Ephrin-B2 as a therapeutic target for DR.
Collapse
Affiliation(s)
- Maha Coucha
- Department of Pharmaceutical Sciences, School of Pharmacy, South University, Savannah, GA, USA
| | - Amy C Barrett
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Joseph Bailey
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Maryam Abdelghani
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA
| | - Mohammed Abdelsaid
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA, USA.
| |
Collapse
|
12
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
13
|
Abstract
The parathyroid glands are essential for regulating calcium homeostasis in the body. The genetic programs that control parathyroid fate specification, morphogenesis, differentiation, and survival are only beginning to be delineated, but are all centered around a key transcription factor, GCM2. Mutations in the Gcm2 gene as well as in several other genes involved in parathyroid organogenesis have been found to cause parathyroid disorders in humans. Therefore, understanding the normal development of the parathyroid will provide insight into the origins of parathyroid disorders.
Collapse
Affiliation(s)
- Kristen Peissig
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Brian G Condie
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, Coverdell Building Suite 270, Athens, GA 30602, USA.
| |
Collapse
|
14
|
Montero-Herradón S, García-Ceca J, Zapata AG. EphB receptors, mainly EphB3, contribute to the proper development of cortical thymic epithelial cells. Organogenesis 2018; 13:192-211. [PMID: 29027839 DOI: 10.1080/15476278.2017.1389368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EphB and their ligands ephrin-B are an important family of protein tyrosine kinase receptors involved in thymocyte-thymic epithelial cell interactions known to be key for the maturation of both thymic cell components. In the present study, we have analyzed the maturation of cortical thymic epithelium in EphB-deficient thymuses evaluating the relative relevance of EphB2 and EphB3 in the process. Results support a relationship between the epithelial hypocellularity of mutant thymuses and altered development of thymocytes, lower proportions of cycling thymic epithelial cells and increased epithelial cell apoptosis. Together, these factors induce delayed development of mutant cortical TECs, defined by the expression of different cell markers, i.e. Ly51, CD205, MHCII, CD40 and β5t. Furthermore, although both EphB2 and EphB3 are necessary for cortical thymic epithelial maturation, the relevance of EphB3 is greater since EphB3-/- thymic cortex exhibits a more severe phenotype than that of EphB2-deficient thymuses.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- a Department of Cell Biology , Faculty of Biology, Complutense University of Madrid , Madrid , Spain
| | - Javier García-Ceca
- a Department of Cell Biology , Faculty of Biology, Complutense University of Madrid , Madrid , Spain
| | - Agustín G Zapata
- a Department of Cell Biology , Faculty of Biology, Complutense University of Madrid , Madrid , Spain
| |
Collapse
|
15
|
Intrathyroid cystic thyroglossal duct remnant and ectopic thymus: a fortuitous or development-related association? Surg Today 2018; 48:815-818. [PMID: 29460127 DOI: 10.1007/s00595-018-1638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
16
|
Elevated levels of Wnt signaling disrupt thymus morphogenesis and function. Sci Rep 2017; 7:785. [PMID: 28400578 PMCID: PMC5429746 DOI: 10.1038/s41598-017-00842-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
All vertebrates possess a thymus, whose epithelial microenvironment is essential for T cell development and maturation. Despite the importance of the thymus for cellular immune defense, many questions surrounding its morphogenesis remain unanswered. Here, we demonstrate that, in contrast to the situation in many other epithelial cell types, differentiation of thymic epithelial cells (TECs) proceeds normally in the absence of canonical Wnt signaling and the classical adhesion molecule E-cadherin. By contrast, TEC-intrinsic activation of β-catenin-dependent Wnt signaling blocks the morphogenesis of the thymus, and overexpression of a secreted Wnt ligand by TECs dominantly modifies the morphogenesis not only of the thymus, but also of the parathyroid and thyroid. These observations indicate that Wnt signaling activity in the thymus needs to be precisely controlled to support normal TEC differentiation, and suggest possible mechanisms underlying anatomical variations of the thymus, parathyroid and thyroid in humans.
Collapse
|
17
|
Friedl P, Mayor R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029199. [PMID: 28096261 DOI: 10.1101/cshperspect.a029199] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Introduction to Homeostatic Migration. Methods Mol Biol 2017. [PMID: 28349471 DOI: 10.1007/978-1-4939-6931-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immune cell development and function occur in specialized immunological tissues, the function of which requires active cell migration and interactions between hematopoietic cells and underlying networks of stromal cells. These cells provide a scaffold on which immune cell migrate, provide microenvironments for efficient antigen presentation, and provide signals required for immune cell recruitment and survival. Technical advances in imaging technologies including multiphoton microscopy and 3D tissue reconstructions are being combined with computational approaches to provide new insights into the process of cell migration and function in immunological tissues.
Collapse
|
19
|
Cheon YH, Kim JY, Baek JM, Ahn SJ, Jun HY, Erkhembaatar M, Kim MS, Lee MS, Oh J. WHI-131 Promotes Osteoblast Differentiation and Prevents Osteoclast Formation and Resorption in Mice. J Bone Miner Res 2016; 31:403-15. [PMID: 26255791 DOI: 10.1002/jbmr.2612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
The small molecule WHI-131 is a potent therapeutic agent with anti-inflammatory, antiallergic, and antileukemic potential. However, the regulatory effects of WHI-131 on osteoblast and osteoclast activity are unclear. We examined the effects of WHI-131 on osteoblast and osteoclast differentiation with respect to bone remodeling. The production of receptor activator of nuclear factor kappa-B ligand (RANKL) by osteoblasts in response to interleukin (IL)-1 or IL-6 stimulation decreased by 56.8% or 50.58%, respectively, in the presence of WHI-131. WHI-131 also abrogated the formation of mature osteoclasts induced by IL-1 or IL-6 stimulation. Moreover, WHI-131 treatment decreased RANKL-induced osteoclast differentiation of bone marrow-derived macrophages, and reduced the resorbing activity of mature osteoclasts. WHI-131 further decreased the mRNA and protein expression levels of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) by almost twofold, and significantly downregulated the mRNA expression of the following genes: tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), DC-STAMP, OC-STAMP, ATP6v0d2, and cathepsin K (CtsK) compared with the control group. WHI-131 further suppressed the phosphorylation of protein kinase B (Akt) and degradation of inhibitor of kappa B (IκB); Ca(2+) oscillation was also affected, and phosphorylation of the C-terminal Src kinase (c-Src)-Bruton agammaglobulinemia tyrosine kinase (Btk)-phospholipase C gamma 2 (PLCγ2) (c-Src-Btk-PLCg2 calcium signaling pathway) was inhibited following WHI-131 treatment. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway was activated by WHI-131, accompanied by phosphorylation of STAT3 Ser727 and dephosphorylation of STAT6. In osteoblasts, WHI-131 caused an approximately fourfold increase in alkaline phosphatase activity and Alizarin Red staining intensity. Treatment with WHI-131 increased the mRNA expression levels of genes related to osteoblast differentiation, and induced the phosphorylation of Akt, p38, and Smad1/5/8. Furthermore, 5-week-old ICR mice treated with WHI-131 exhibited antiresorbing effects in a lipopolysaccharide-induced calvaria bone loss model in vivo and increased bone-forming activity in a calvarial bone formation model. Therefore, the results of this study show that WHI-131 plays a dual role by inhibiting osteoclast differentiation and promoting osteoblast differentiation. Thus, WHI-131 could be a useful pharmacological agent to treat osteoporosis by promoting bone growth and inhibiting resorption.
Collapse
Affiliation(s)
- Yoon-Hee Cheon
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Korea
| | - Ju-Young Kim
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea
| | - Jong Min Baek
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Korea
| | - Sung-Jun Ahn
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Korea
| | - Hong Young Jun
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea
| | | | - Min Seuk Kim
- Department of Oral Physiology, School of Dentistry, Wonkwang University, Iksan, Korea
| | - Myeung Su Lee
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea.,Division of Rheumatology, Department of Internal Medicine, Wonkwang University, Iksan, Korea.,Institute for Skeletal Disease, Wonkwang University, Iksan, Korea
| | - Jaemin Oh
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan, Korea.,Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Korea.,Institute for Skeletal Disease, Wonkwang University, Iksan, Korea
| |
Collapse
|
20
|
Lewis AE, Hwa J, Wang R, Soriano P, Bush JO. Neural crest defects in ephrin-B2 mutant mice are non-autonomous and originate from defects in the vasculature. Dev Biol 2015; 406:186-95. [PMID: 26385750 DOI: 10.1016/j.ydbio.2015.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
Ephrin-B2, a member of the Eph/ephrin family of cell signaling molecules, has been implicated in the guidance of cranial and trunk neural crest cells (NCC) and development of the branchial arches(BA), but detailed examination in mice has been hindered by embryonic lethality of Efnb2 null loss of function due to a requirement in angiogenic remodeling. To elucidate the developmental roles for Efnb2, we generated a conditional rescue knock-in allele that allows rescue of ephrin-B2 specifically in the vascular endothelium (VE), but is otherwise ephrin-B2 deficient. Restoration of ephrin-B2 expression specifically to the VE completely circumvents angiogenic phenotypes, indicating that the requirement of ephrin-B2 in angiogenesis is limited to the VE. Surprisingly, we find that expression of ephrin-B2 specifically in the VE is also sufficient for normal NCC migration and that conversely, embryos in which ephrin-B2 is absent specifically from the VE exhibit NCC migration and survival defects. Disruption of vascular development independent of loss of ephrin-B2 function also leads to defects in NCC and BA development. Together, these data indicate that direct ephrin-B2 signaling to NCCs is not required for NCC guidance, which instead depends on proper organization of the embryonic vasculature.
Collapse
Affiliation(s)
- Ace E Lewis
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, CA 94143, United States
| | - Jennifer Hwa
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, United States
| | - Rong Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, United States
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY 10029, United States
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, CA 94143, United States.
| |
Collapse
|
21
|
Abstract
There is increasing evidence that in addition to having major roles in morphogenesis, in some tissues Eph receptor and ephrin signaling regulates the differentiation of cells. In one mode of deployment, cell contact dependent Eph-ephrin activation induces a distinct fate of cells at the interface of their expression domains, for example in early ascidian embryos and in the vertebrate hindbrain. In another mode, overlapping Eph receptor and ephrin expression underlies activation within a cell population, which promotes or inhibits cell differentiation in bone remodelling, neural progenitors and keratinocytes. Eph-ephrin activation also contributes to formation of the appropriate number of progenitor cells by increasing or decreasing cell proliferation. These multiple roles of Eph receptor and ephrin signaling may enable a coupling between morphogenesis and the differentiation and proliferation of cells.
Collapse
Key Words
- Eph receptor
- Eph receptor, Erythropoietin-producing hepatocellular carcinoma cell receptor
- FGF, Fibroblast growth factor
- IGF-1, Insulin-like growth factor-1
- JNK, c-Jun N-terminal kinase
- MAPK, Mitogen activated protein kinase
- NFAT, Nuclear factor of activated T-cells
- RGS3, Regulator of G-protein signaling 3
- STAT3, Signal transducer and activator of transcription 3
- TAZ, Tafazzin
- TCR, T cell receptor
- TEC, Thymic epithelial cell
- TGF, Transforming growth factor
- ZHX2, Zinc fingers and homeoboxes 2
- ascidian development
- bone
- cell proliferation
- differentiation
- ephrin
- ephrin, Eph receptor interacting protein
- hindbrain
- keratinocytes
- neural progenitors
- p120GAP, GTPase activating protein
- thymocytes
Collapse
Affiliation(s)
- David G Wilkinson
- a Division of Developmental Neurobiology; MRC National Institute for Medical Research ; London , UK
| |
Collapse
|
22
|
Choe CP, Crump JG. Dynamic epithelia of the developing vertebrate face. Curr Opin Genet Dev 2015; 32:66-72. [PMID: 25748249 DOI: 10.1016/j.gde.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
A segmental series of endoderm-derived pouch and ectoderm-derived cleft epithelia act as signaling centers in the developing face. Their precise morphogenesis is therefore essential for proper patterning of the vertebrate head. Intercellular adhesion and polarity are highly dynamic within developing facial epithelial cells, with signaling from the adjacent mesenchyme controlling both epithelial character and directional migration. Endodermal and ectodermal epithelia fuse to form the primary mouth and gill slits, which involves basement membrane dissolution, cell intercalations, and apoptosis, as well as undergo further morphogenesis to generate the middle ear cavity and glands of the neck. Recent studies of facial epithelia are revealing both core programs of epithelial morphogenesis and insights into the coordinated assembly of the vertebrate head.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
23
|
Fantauzzo KA, Soriano P. Receptor tyrosine kinase signaling: regulating neural crest development one phosphate at a time. Curr Top Dev Biol 2015; 111:135-82. [PMID: 25662260 PMCID: PMC4363133 DOI: 10.1016/bs.ctdb.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
24
|
Vieux-Rochas M, Mascrez B, Krumlauf R, Duboule D. Combined function of HoxA and HoxB clusters in neural crest cells. Dev Biol 2013; 382:293-301. [PMID: 23850771 DOI: 10.1016/j.ydbio.2013.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
The evolution of chordates was accompanied by critical anatomical innovations in craniofacial development, along with the emergence of neural crest cells. The potential of these cells to implement a craniofacial program in part depends upon the (non-)expression of Hox genes. For instance, the development of jaws requires the inhibition of Hox genes function in the first pharyngeal arch. In contrast, Hox gene products induce craniofacial structures in more caudal territories. To further investigate which Hox gene clusters are involved in this latter role, we generated HoxA;HoxB cluster double mutant animals in cranial neural crest cells. We observed the appearance of a supernumerary dentary-like bone with an endochondral ossification around a neo-Meckel's cartilage matrix and an attachment of neo-muscle demonstrating that HoxB genes enhance the phenotype induced by the deletion of the HoxA cluster alone. In addition, a cervical and hypertrophic thymus was associated with the supernumerary dentary-like bone, which may reflect its ancestral position near the filtrating system. Altogether these results show that the HoxA and HoxB clusters cooperated during evolution to lead to present craniofacial diversity.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- School of Life Sciences, Federal Institute of Technology (EPFL) Lausanne, Switzerland
| | | | | | | |
Collapse
|
25
|
Farley AM, Morris LX, Vroegindeweij E, Depreter MLG, Vaidya H, Stenhouse FH, Tomlinson SR, Anderson RA, Cupedo T, Cornelissen JJ, Blackburn CC. Dynamics of thymus organogenesis and colonization in early human development. Development 2013; 140:2015-26. [PMID: 23571219 PMCID: PMC3631974 DOI: 10.1242/dev.087320] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus is the central site of T-cell development and thus is of fundamental importance to the immune system, but little information exists regarding molecular regulation of thymus development in humans. Here we demonstrate, via spatial and temporal expression analyses, that the genetic mechanisms known to regulate mouse thymus organogenesis are conserved in humans. In addition, we provide molecular evidence that the human thymic epithelium derives solely from the third pharyngeal pouch, as in the mouse, in contrast to previous suggestions. Finally, we define the timing of onset of hematopoietic cell colonization and epithelial cell differentiation in the human thymic primordium, showing, unexpectedly, that the first colonizing hematopoietic cells are CD45(+)CD34(int/-). Collectively, our data provide essential information for translation of principles established in the mouse to the human, and are of particular relevance to development of improved strategies for enhancing immune reconstitution in patients.
Collapse
Affiliation(s)
- Alison M Farley
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, CRM Building, 5 Little France Drive, Edinburgh
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cejalvo T, Munoz JJ, Tobajas E, Fanlo L, Alfaro D, García-Ceca J, Zapata A. Ephrin-B-dependent thymic epithelial cell-thymocyte interactions are necessary for correct T cell differentiation and thymus histology organization: relevance for thymic cortex development. THE JOURNAL OF IMMUNOLOGY 2013; 190:2670-81. [PMID: 23408838 DOI: 10.4049/jimmunol.1201931] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previous analysis on the thymus of erythropoietin-producing hepatocyte kinases (Eph) B knockout mice and chimeras revealed that Eph-Eph receptor-interacting proteins (ephrins) are expressed both on T cells and thymic epithelial cells (TECs) and play a role in defining the thymus microenvironments. In the current study, we have used the Cre-LoxP system to selectively delete ephrin-B1 and/or ephrin-B2 in either thymocytes (EfnB1(thy/thy), EfnB2(thy/thy), and EfnB1(thy/thy)EfnB2(thy/thy) mice) or TECs (EfnB1(tec/tec), EfnB2(tec/tec), and EfnB1(tec/tec)EfnB2(tec/tec) mice) and determine the relevance of these Eph ligands in T cell differentiation and thymus histology. Our results indicate that ephrin-B1 and ephrin-B2 expressed on thymocytes play an autonomous role in T cell development and, expressed on TECs, their nonautonomous roles are partially overlapping. The effects of the lack of ephrin-B1 and/or ephrin-B2 on either thymocytes or TECs are more severe and specific on thymic epithelium, contribute to the cell intermingling necessary for thymus organization, and affect cortical TEC subpopulation phenotype and location. Moreover, ephrin-B1 and ephrin-B2 seem to be involved in the temporal appearance of distinct cortical TECs subsets defined by different Ly51 levels of expression on the ontogeny.
Collapse
Affiliation(s)
- Teresa Cejalvo
- Cytometry and Fluorescence Microscopy Center, Complutense University, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Ge Q, Zhao Y. Evolution of thymus organogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:85-90. [PMID: 22266420 DOI: 10.1016/j.dci.2012.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/06/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
The thymus is the primary organ for functional T lymphocyte development in jawed vertebrates. A new study in the jawless fish, lampreys, indicates the existence of a primitive thymus in these surviving representatives of the most ancient vertebrates, providing strong evidence of co-evolution of T cells and thymus. This review summarizes the wealth of data that have been generated towards understanding the evolution of the thymus in the vertebrates. Progress in identifying genetic networks and cellular mechanisms that control thymus organogenesis in mammals and their evolution in lower species may inspire the development of new strategies for medical interventions targeting faulty thymus functions.
Collapse
Affiliation(s)
- Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China.
| | | |
Collapse
|
28
|
Nilsson M, Fagman H. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr Top Dev Biol 2013; 106:123-70. [PMID: 24290349 DOI: 10.1016/b978-0-12-416021-7.00004-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid dysgenesis is the most common cause of congenital hypothyroidism that affects 1 in 3000 newborns. Although a number of pathogenetic mutations in thyroid developmental genes have been identified, the molecular mechanism of disease is unknown in most cases. This chapter summarizes the current knowledge of normal thyroid development and puts the different developmental stages in perspective, from the time of foregut endoderm patterning to the final shaping of pharyngeal anatomy, for understanding how specific malformations may arise. At the cellular level, we will also discuss fate determination of follicular and C-cell progenitors and their subsequent embryonic growth, migration, and differentiation as the different thyroid primordia evolve and merge to establish the final size and shape of the gland.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
29
|
Eph/ephrinB signalling is involved in the survival of thymic epithelial cells. Immunol Cell Biol 2012; 91:130-8. [PMID: 23146940 DOI: 10.1038/icb.2012.59] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The signals that determine the survival/death of the thymic epithelial cells (TECs) component during embryonic development of the thymus are largely unknown. In this study, we combine different in vivo and in vitro experimental approaches to define the role played by the tyrosine kinase receptors EphB2 and EphB3 and their ligands, ephrinsB, in the survival of embryonic and newborn (NB) TECs. Our results conclude that EphB2 and EphB3 are involved in the control of TEC survival and that the absence of these molecules causes increased apoptotic TEC proportions that result in decreased numbers of thymic cells and a smaller-sized gland. Furthermore, in vitro studies using either EphB2-Fc or ephrinB1-Fc fusion proteins demonstrate that the blockade of Eph/ephrinB signalling increases TEC apoptosis, whereas its activation rescues TECs from cell death. In these assays, both heterotypic thymocyte-TEC and homotypic TEC-TEC interactions are important for Eph/ephrinB-mediated TEC survival.
Collapse
|
30
|
Mendes-da-Cruz DA, Stimamiglio MA, Muñoz JJ, Alfaro D, Terra-Granado E, Garcia-Ceca J, Alonso-Colmenar LM, Savino W, Zapata AG. Developing T-cell migration: role of semaphorins and ephrins. FASEB J 2012; 26:4390-9. [PMID: 22815386 DOI: 10.1096/fj.11-202952] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell migration is a crucial event for normal T-cell development, and various ligand/receptor pairs have been implicated. Most of them, including chemokines and extracellular matrix proteins, have attractant properties on thymocytes. We discuss herein two further groups of ligand/receptor pairs, semaphorins/neuropilins and ephs/ephrins, which are constitutively expressed by thymocytes and thymic microenvironmental cells. Evidence shows that the corresponding interactions are relevant for developing T-cell migration, including the entry of bone marrow progenitor cells, migration of CD4/CD8-defined thymocyte subpopulations triggered by chemokines and/or extracellular matrix proteins, and thymocyte export. Conceptually, the data summarized here show that thymocyte migration results from a complex network of molecular interactions, which generate not only attraction, but also repulsion of migrating T-cell precursors.
Collapse
|
31
|
Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development 2011; 138:3865-78. [PMID: 21862553 DOI: 10.1242/dev.059998] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thymus is the primary organ responsible for generating functional T cells in vertebrates. Although T cell differentiation within the thymus has been an area of intense investigation, the study of thymus organogenesis has made slower progress. The past decade, however, has seen a renewed interest in thymus organogenesis, with the aim of understanding how the thymus develops to form a microenvironment that supports T cell maturation and regeneration. This has prompted modern revisits to classical experiments and has driven additional genetic approaches in mice. These studies are making significant progress in identifying the molecular and cellular mechanisms that control specification, early organogenesis and morphogenesis of the thymus.
Collapse
Affiliation(s)
- Julie Gordon
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
32
|
Luo H, Charpentier T, Wang X, Qi S, Han B, Wu T, Terra R, Lamarre A, Wu J. Efnb1 and Efnb2 proteins regulate thymocyte development, peripheral T cell differentiation, and antiviral immune responses and are essential for interleukin-6 (IL-6) signaling. J Biol Chem 2011; 286:41135-41152. [PMID: 21976681 DOI: 10.1074/jbc.m111.302596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin-producing hepatocellular kinases (Eph kinases) constitute the largest family of cell membrane receptor tyrosine kinases, and their ligand ephrins are also cell surface molecules. Because of promiscuous interaction between Ephs and ephrins, there is considerable redundancy in this system, reflecting the essential roles of these molecules in the biological system through evolution. In this study, both Efnb1 and Efnb2 were null-mutated in the T cell compartment of mice through loxP-mediated gene deletion. Mice with this double conditional mutation (double KO mice) showed reduced thymus and spleen size and cellularity. There was a significant decrease in the DN4, double positive, and single positive thymocyte subpopulations and mature CD4 and CD8 cells in the periphery. dKO thymocytes and peripheral T cells failed to compete with their WT counterparts in irradiated recipients, and the T cells showed compromised ability of homeostatic expansion. dKO naive T cells were inferior in differentiating into Th1 and Th17 effectors in vitro. The dKO mice showed diminished immune response against LCMV infection. Mechanistic studies revealed that IL-6 signaling in dKO T cells was compromised, in terms of abated induction of STAT3 phosphorylation upon IL-6 stimulation. This defect likely contributed to the observed in vitro and in vivo phenotype in dKO mice. This study revealed novel roles of Efnb1 and Efnb2 in T cell development and function.
Collapse
Affiliation(s)
- Hongyu Luo
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Tania Charpentier
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Xuehai Wang
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Shijie Qi
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Bing Han
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Tao Wu
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada; Institute of Cardiology, First Affiliated Hospital, Medical College, Zhejiang University, 310003 Hangzhou, China
| | - Rafik Terra
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada
| | - Alain Lamarre
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Jiangping Wu
- Laboratoire Immunologie, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada; Service Nephrologie, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Notre-Dame Hospital, Montreal, Quebec H2L 4M1, Canada.
| |
Collapse
|
33
|
Singh N, Trivedi CM, Lu M, Mullican SE, Lazar MA, Epstein JA. Histone deacetylase 3 regulates smooth muscle differentiation in neural crest cells and development of the cardiac outflow tract. Circ Res 2011; 109:1240-9. [PMID: 21959220 DOI: 10.1161/circresaha.111.255067] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE The development of the cardiac outflow tract (OFT) and great vessels is a complex process that involves coordinated regulation of multiple progenitor cell populations. Among these populations, neural crest cells make important contributions to OFT formation and aortic arch remodeling. Although numerous signaling pathways, including Notch, have been implicated in this process, the role of epigenetics in OFT development remains largely unexplored. OBJECTIVE Because histone deacetylases (Hdacs) play important roles in the epigenetic regulation of mammalian development, we have investigated the function of Hdac3, a class I Hdac, during cardiac neural crest development in mouse. METHODS AND RESULTS Using 2 neural crest drivers, Wnt1-Cre and Pax3(Cre), we show that loss of Hdac3 in neural crest results in perinatal lethality and cardiovascular abnormalities, including interrupted aortic arch type B, aortic arch hypoplasia, double-outlet right ventricle, and ventricular septal defect. Affected embryos are deficient in aortic arch artery smooth muscle during midgestation, despite intact neural crest cell migration and preserved development of other cardiac and truncal neural crest derivatives. The Hdac3-dependent block in smooth muscle differentiation is cell autonomous and is associated with downregulation of the Notch ligand Jagged1, a key driver of smooth muscle differentiation in the aortic arch arteries. CONCLUSIONS These results indicate that Hdac3 plays a critical and specific regulatory role in the neural crest-derived smooth muscle lineage and in formation of the OFT.
Collapse
Affiliation(s)
- Nikhil Singh
- Department of Cell and Developmental Biology, the Cardiovascular Institute, Pereleman School of Medicine at the University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Dzhagalov I, Phee H. How to find your way through the thymus: a practical guide for aspiring T cells. Cell Mol Life Sci 2011; 69:663-82. [PMID: 21842411 DOI: 10.1007/s00018-011-0791-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 01/16/2023]
Abstract
Thymocytes must complete an elaborate developmental program in the thymus to ultimately generate T cells that express functional but neither harmful nor useless TCRs. Each developmental step coincides with dynamic relocation of the thymocytes between anatomically discrete thymic microenvironments, suggesting that thymocytes' migration is tightly regulated by their developmental status. Chemokines produced by thymic stromal cells and chemokine receptors on the thymocytes play an indispensable role in guiding developing thymocytes into the different microenvironments. In addition to long-range migration, chemokines increase the thymocytes' motility, enhancing their interaction with stromal cells. During the past several years, much progress has been made to determine the various signals that guide thymocytes on their journey within the thymus. In this review, we summarize the progress in identifying chemokines and other chemoattractant signals that direct intrathymic migration. Furthermore, we discuss the recent advances of two-photon microscopy in determining dynamic motility and interaction behavior of thymocytes within distinct compartments to provide a better understanding of the relationship between thymocyte motility and development.
Collapse
Affiliation(s)
- Ivan Dzhagalov
- LSA, Room 479, Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
35
|
Krull CE. Neural crest cells and motor axons in avians: Common and distinct migratory molecules. Cell Adh Migr 2011; 4:631-4. [PMID: 20930560 DOI: 10.4161/cam.4.4.13594] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It has long been thought that the same molecules guide both trunk neural crest cells and motor axons as these cell types grow and extend to their target regions in developing embryos. There are common territories that are navigated by these cell types: both cells grow through the rostral portion of the somitic sclerotomes and avoid the caudal half of the sclerotomes. However, these cell types seem to use different molecules to guide them to their target regions. In this review, I will talk about the common and distinct methods of migration taken by trunk neural crest cells and motor axons as they grow and populate their target regions through chick embryos at the level of the trunk.
Collapse
Affiliation(s)
- Catherine E Krull
- University of Michigan, Biologic and Materials Sciences, Ann Arbor, MI, USA.
| |
Collapse
|