1
|
Easterling KA, Marshall AT, Pitino M, Walker WB, Cooper WR. Gene expression profiling of Cacopsylla pyricola (Hemiptera: Psyllidae) infected with Ca. Phytoplasma pyri (Acholeplasmatales: Acholeplasmataceae) reveals candidate effectors and mechanisms of infection. ENVIRONMENTAL ENTOMOLOGY 2024; 53:771-781. [PMID: 39235989 DOI: 10.1093/ee/nvae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Phytoplasmas can negatively or positively alter vector host fitness. "Candidatus Phytoplasma pyri," is the causal agent of pear decline in commercial pear (Pyrus communis L.; Rosales: Rosaceae) and peach yellow leafroll in peach [Prunus persica (L.); Rosaceae]. This plant pathogen is transmitted by several species of pear psyllids (Cacopsylla spp. Hemiptera: Psyllidae). We sought to explore the relationship between the pear decline phytoplasma and its US vector, Cacopsylla pyricola (Förster), at the molecular genetic level through transcriptomic analysis using RNA-sequencing methodology. We also focused on phytoplasma and insect effectors, which are secreted proteins that can modulate interactions within a pathosystem. In this study, we identified 30 differentially expressed genes, 14 candidate insect effector genes, and 8 Ca. Phytoplasma pyri candidate effectors. Two strains of Ca. Phytoplasma pyri were identified based on immunodominant membrane protein sequence analysis from C. pyricola collected in the Pacific Northwest agricultural region. Here, we present a first genetic look at the pear decline pathosystem and report gene candidates for further exploration of infection mechanisms and potential tools for integrated pest management.
Collapse
Affiliation(s)
| | - Adrian T Marshall
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| | - Marco Pitino
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| | - William B Walker
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| | - W Rodney Cooper
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, USA
| |
Collapse
|
2
|
Hrithik MTH, Ahmed S, Kim Y. Damage signal induced by Bacillus thuringiensis infection triggers immune responses via a DAMP molecule in lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104559. [PMID: 36181778 DOI: 10.1016/j.dci.2022.104559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Insect immunity defends the infection of an insect pathogenic bacterium, Bacillus thuringiensis (Bt). However, it was not clear on the recognition of Bt infection by the insect immune system. This study tested a physiological function of dorsal switch protein 1 (DSP1) in the Bt infection. DSP1 is classified into HMGB1-like damage-associated molecular pattern (DAMP) in insects. Upon Bt infection in a lepidopteran Spodoptera exigua, DSP1 was released from the nuclei of the midgut epithelium and activated immune responses. For this DSP1 release, a functional binding between Bt and its receptors on the midgut epithelium was required because any RNA interference (RNAi) treatments of Bt receptor (cadherin or ABCC) prevented the DSP1 release and became susceptible to the bacterial infection. The DSP1 release was required for the gene induction of Repat33, which is a member of response to pathogen gene family and its gene product mediated cellular and humoral immune responses against pathogen infection in S. exigua. The released DSP1 activated phospholipase A2 (PLA2) to produce eicosanoids, which induced the Repat33 expression because a hemocoelic injection of a recombinant DSP1 induced the Repat33 expression without Bt infection. However, any inhibition of PLA2 activity impaired the DAMP signaling between DSP1 and Repat33. DSP1 also up-regulated two other immune mediators, nitric oxide (NO) and a cytokine called plasmatocyte-spreading peptide (PSP). Either NO or PSP activated PLA2 to up-regulate Repat33 expression. These results suggest that Bt infection of the insect midgut generates a DAMP signal via DSP1 release, which turns on NO or the cytokine-PLA2-Repat33 immune signaling pathway.
Collapse
Affiliation(s)
| | - Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
3
|
Yokoi K, Furukawa S, Zhou R, Jouraku A, Bono H. Reference Genome Sequences of the Oriental Armyworm, Mythimna separata (Lepidoptera: Noctuidae). INSECTS 2022; 13:insects13121172. [PMID: 36555082 PMCID: PMC9853324 DOI: 10.3390/insects13121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 05/05/2023]
Abstract
Lepidopteran insects are an important group of animals, including those used as biochemical and physiological model species in the insect and silk industries as well as others that are major agricultural pests. Therefore, the genome sequences of several lepidopteran insects have been reported. The oriental armyworm, Mythimna separata, is an agricultural pest commonly used to study insect immune reactions and interactions with parasitoid wasps as hosts. To improve our understanding of these research topics, reference genome sequences were constructed in the present study. Using long-read and short-read sequence data, de novo assembly and polishing were performed and haplotigs were purged. Subsequently, gene predictions and functional annotations were performed. To search for orthologs of the Toll and Immune Deficiency (IMD) pathways and for C-type lectins, annotation data analysis, BLASTp, and Hummer scans were performed. The M. separata genome is 682 Mbp; its contig N50 was 2.7 Mbp, with 21,970 genes and 24,452 coding sites predicted. All orthologs of the core components of the Toll and IMD pathways and 105 C-type lectins were identified. These results suggest that the genome data were of sufficient quality for use as reference genome data and could contribute to promoting M. separata and lepidopteran research at the molecular and genome levels.
Collapse
Affiliation(s)
- Kakeru Yokoi
- Insect Design Technology Group, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-0901, Japan;
- Correspondence: ; Tel.: +81-29-838-6129
| | - Seiichi Furukawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Rui Zhou
- Degree Program in Agro-Bioresources Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Akiya Jouraku
- Insect Design Technology Group, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-0901, Japan;
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan;
- Laboratory of BioDX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan
| |
Collapse
|
4
|
Matsumoto H, Ochiai M, Imai E, Matsumura T, Hayakawa Y. Stress-derived reactive oxygen species enable hemocytes to release activator of growth blocking peptide (GBP) processing enzyme. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104225. [PMID: 33736983 DOI: 10.1016/j.jinsphys.2021.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Insect cytokine growth blocking peptide (GBP) is synthesized as an inactive precursor, termed proGBP, that is normally present in a significant concentration in the hemolymph of non-stressed animals (Hayakawa, 1990, 1991). Under stress conditions, proGBP is instantly processed to active GBP by a serine protease and this is thought to be an important initial step for insects to cope with stress-induced adverse effects via GBP-induced physiological changes. However, the detailed mechanism underlying proteolytic processing of hemolymph proGBP in insects under stress conditions remains unknown. Here we demonstrated that proGBP processing requires ROS-induced release of a proteinaceous factor from hemocytes that activates the inactive proGBP processing enzyme. The release of the activator protein from hemocytes is initiated by an elevation of the cytoplasmic Ca2+ concentration induced by ROS. Therefore, we concluded that stress-induced activation of proGBP requires ROS-dependent stimulation of an intracellular calcium signaling pathway in hemocytes, followed by release of the hemocyte proteinaceous factor that specifically activates the proGBP processing enzyme.
Collapse
Affiliation(s)
- Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Masanori Ochiai
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Erina Imai
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Takashi Matsumura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
5
|
Knorr DY, Hartung D, Schneider K, Hintz L, Pies HS, Heinrich R. Locust Hemolymph Conveys Erythropoietin-Like Cytoprotection via Activation of the Cytokine Receptor CRLF3. Front Physiol 2021; 12:648245. [PMID: 33897456 PMCID: PMC8063046 DOI: 10.3389/fphys.2021.648245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The cytokine receptor-like factor 3 (CRLF3) is an evolutionary conserved class 1 cytokine receptor present in all major eumetazoan groups. Endogenous CRLF3 ligands have not been identified and the physiological responses mediated by mammalian CRLF3 are poorly characterized. Insect CRLF3 is activated by erythropoietin (Epo) and several related molecules that protect mammalian neurons from stress-induced apoptosis. However, insects neither express Epo nor “classical” Epo receptor. Cell-protective effects of insect hemolymph have been described for several species. In this study, we explored the possibility that the endogenous CRLF3 ligand is contained in locust hemolymph. PCR analyses confirmed expression of crfl3-transcripts in neurons and hemocytes of Locusta migratoria and Tribolium castaneum. Survival of locust hemocytes in primary cultures was significantly increased by supplementation of culture medium with locust hemolymph serum. Locust primary neuron cultures were also protected by locust hemolymph, though preceding exposure to fetal bovine serum changed the hemolymph dose-dependency of neuroprotection. Direct comparison of 10% hemolymph serum with recombinant human Epo in its optimal neuroprotective concentration revealed equivalent anti-apoptotic effects on hypoxia-exposed locust neurons. The same concentration of locust hemolymph serum also protected hypoxia-exposed T. castaneum neurons. This indicates that the neuroprotective factor in locust hemolymph is sufficiently conserved in insects to allow activation of neuroprotective receptors in different species. Locust hemolymph-induced neuroprotection in both L. migratoria and T. castaneum was abolished after RNAi-mediated suppression of crlf3-expression. In summary, we report the presence of a conserved endogenous cytokine in locust hemolymph that activates CRLF3 and connected anti-apoptotic processes in hemocytes and neurons. Identification and characterization of the CRLF3 ligand will promote knowledge about cytokine evolution and may unravel cell-protective agents with potential clinical application.
Collapse
Affiliation(s)
- Debbra Y Knorr
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Denise Hartung
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Kristin Schneider
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luzia Hintz
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Hanna S Pies
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
7
|
Tonogawa U, Matsumura T, Ono M, Yoshiga T. Abnormal increases in reactive oxygen species in dying insects infected with nematodes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21758. [PMID: 33145828 DOI: 10.1002/arch.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Stress enhances the concentration of reactive oxygen species (ROS) in animal plasma. Increased ROS alter various physiological functions, such as development and the immune response, but excessive increases could be harmful. In this study, we tested the hypothesis that abnormally increased plasma ROS levels are associated with animal death. Injection of the nematode Caenorhabditis elegans into insect larvae caused high mortality in Galleria mellonella, and the plasma ROS concentration was four times higher than M9 buffer-injected larvae. There was no difference in plasma antioxidant activity after nematode injection. However, coinjecting nematodes with an antioxidant (ascorbic acid or N-acetylcysteine) suppressed increases in ROS concentrations by the nematodes and increases in the number of nematodes in the larvae, which increased G. mellonella survival. These results suggest that the abnormal elevation of ROS associated with the stress caused by nematode propagation is lethal for G. mellonella.
Collapse
Affiliation(s)
- Urara Tonogawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan
| | - Takashi Matsumura
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaya Ono
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Toyoshi Yoshiga
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Núñez AI, Esteve-Codina A, Gómez-Garrido J, Brustolin M, Talavera S, Berdugo M, Dabad M, Alioto T, Bensaid A, Busquets N. Alteration in the Culex pipiens transcriptome reveals diverse mechanisms of the mosquito immune system implicated upon Rift Valley fever phlebovirus exposure. PLoS Negl Trop Dis 2020; 14:e0008870. [PMID: 33301456 PMCID: PMC7755283 DOI: 10.1371/journal.pntd.0008870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/22/2020] [Accepted: 10/10/2020] [Indexed: 01/02/2023] Open
Abstract
Rift Valley fever phlebovirus (RVFV) causes an emerging zoonotic disease and is mainly transmitted by Culex and Aedes mosquitoes. While Aedes aegypti-dengue virus (DENV) is the most studied model, less is known about the genes involved in infection-responses in other mosquito-arboviruses pairing. The main objective was to investigate the molecular responses of Cx. pipiens to RVFV exposure focusing mainly on genes implicated in innate immune responses. Mosquitoes were fed with blood spiked with RVFV. The fully-engorged females were pooled at 3 different time points: 2 hours post-exposure (hpe), 3- and 14-days post-exposure (dpe). Pools of mosquitoes fed with non-infected blood were also collected for comparisons. Total RNA from each mosquito pool was subjected to RNA-seq analysis and a de novo transcriptome was constructed. A total of 451 differentially expressed genes (DEG) were identified. Most of the transcriptomic alterations were found at an early infection stage after RVFV exposure. Forty-eight DEG related to immune infection-response were characterized. Most of them were related with the RNAi system, Toll and IMD pathways, ubiquitination pathway and apoptosis. Our findings provide for the first time a comprehensive view on Cx. pipiens-RVFV interactions at the molecular level. The early depletion of RNAi pathway genes at the onset of the RVFV infection would allow viral replication in mosquitoes. While genes from the Toll and IMD immune pathways were altered in response to RVFV none of the DEG were related to the JAK/STAT pathway. The fact that most of the DEG involved in the Ubiquitin-proteasome pathway (UPP) or apoptosis were found at an early stage of infection would suggest that apoptosis plays a regulatory role in infected Cx. pipiens midguts. This study provides a number of target genes that could be used to identify new molecular targets for vector control.
Collapse
Affiliation(s)
- Ana I. Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marco Brustolin
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miguel Berdugo
- Instituto de Biología Evolutiva, Universitat Pompeu i Fabra-CSIC, Dr. Aigüader 88, Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu i Fabra (UPF), Barcelona, Catalonia, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
9
|
Meschi E, Léopold P, Delanoue R. An EGF-Responsive Neural Circuit Couples Insulin Secretion with Nutrition in Drosophila. Dev Cell 2019; 48:76-86.e5. [DOI: 10.1016/j.devcel.2018.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 01/17/2023]
|
10
|
Matsumura T, Nakano F, Matsumoto H, Uryu O, Hayakawa Y. Identification of a cytokine combination that protects insects from stress. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:19-30. [PMID: 29680289 DOI: 10.1016/j.ibmb.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Growth-blocking peptide (GBP) and stress-responsive peptide (SRP) are insect cytokines whose expression levels are elevated by various stressful conditions such as parasitization and high or low temperatures. Both GBP and SRP are synthesized as precursors and released into the hemolymph, where they are enzymatically processed to active peptides. Injection of active GBP or SRP into early last instar larvae elicits a reduction in feeding and consequent growth retardation in the armyworm Mythimna separata. Although such functions are thought to benefit insects under stressful conditions by affecting their physiologies and behaviors, the relationship between GBP and SRP remains elusive. Here we show that heat stress-induced reactive oxygen species (ROS) elevated hemolymph GBP, which activated SRP transcription and increased the SRP concentration in the hemolymph. Injection of both GBP and SRP elevated hemolymph antioxidant levels. We found that simultaneous increases in both active cytokines occurred in the larval hemolymph from 2 to 3 h after heat stress or H2O2 injection, suggesting a synergic action of the two factors. This speculation was confirmed by demonstrating that co-injection of GBP and SRP caused a more severe reduction in appetite and growth retardation than injection of an individual peptide alone. However, injection of GBP together with SRP did not elevate SRP expression at all, indicating the effect of negative feedback regulation. Furthermore, SRP RNAi larvae showed higher body weights compared to controls, and GBP-induced growth retardation was partially abrogated in SRP RNAi larvae. These results led us to conclude that GBP is an upstream cytokine in the regulation of SRP expression and that these cytokines synergistically retard larval growth by repressing feeding activities when insects are exposed to stress conditions.
Collapse
Affiliation(s)
- Takashi Matsumura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Fumihiro Nakano
- Department of Applied Biological Sciences, Saga University, Saga, 840-8502, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga, 840-8502, Japan
| | - Outa Uryu
- Department of Applied Biological Sciences, Saga University, Saga, 840-8502, Japan
| | - Yoichi Hayakawa
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, 890-0065, Japan; Department of Applied Biological Sciences, Saga University, Saga, 840-8502, Japan.
| |
Collapse
|
11
|
Ryuda M, Tabuchi M, Matsumoto H, Matsumura T, Ochiai M, Hayakawa Y. A gene-driven recovery mechanism: Drosophila larvae increase feeding activity for post-stress weight recovery. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21440. [PMID: 29218733 DOI: 10.1002/arch.21440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recovery from weight loss after stress is important for all organisms, although the recovery mechanisms are not fully understood. We are working to clarify these mechanisms. Here, we recorded enhanced feeding activity of Drosophila melanogaster larvae from 2 to 4 h after heat stress at 35°C for 1 h. During the post-stress period, expression levels of sweet taste gustatory receptor genes (Grs), Gr5a, Gr43a, Gr64a, and Gr64f, were elevated, whereas bitter taste Grs, Gr66a, and Gr33a, were decreased in expression and expression of a non-typical taste receptor Gr, Gr68a, was unchanged. Similar upregulation of Gr5a and downregulation of Gr66a was recorded after cold stress at 4°C. Expression levels of tropomyosin and ATP synthase ß subunit were significantly increased in larval mouth parts around 3 to 5 h after the heat stress. We infer that up-regulation of post-stress larval feeding activity, and weight recovery, is mediated by increasing capacity for mouth part muscular movements and changes in taste sensing physiology. We propose that Drosophila larvae, and likely insects generally, express an efficient mechanism to recover from weight loss during post-stress periods.
Collapse
Affiliation(s)
- Masasuke Ryuda
- Department of Applied Biological Sciences, Saga University, Saga, Japan
- The Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Miku Tabuchi
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Takashi Matsumura
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Masanori Ochiai
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| |
Collapse
|
12
|
Song L, Wang F, Dong Z, Hua X, Xia Q. Label-free quantitative phosphoproteomic profiling of cellular response induced by an insect cytokine paralytic peptide. J Proteomics 2016; 154:49-58. [PMID: 27903465 DOI: 10.1016/j.jprot.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
Abstract
Paralytic peptide (PP) participates in diverse physiological processes as an insect cytokine, such as immunity control, paralysis induction, regulation of cell morphology and proliferation. To investigate the molecular mechanism underlying those physiological activities, we systematically investigated the global phosphorylation events in fat body of silkworm larvae induced by PP through label-free quantitative phosphoproteomics. 2534 phosphosites were finally identified, of which the phosphorylation level of 620 phosphosites on 244 proteins was significantly up-regulated and 67 phosphosites on 43 proteins was down-regulated. Among those proteins, 13 were protein kinases (PKs), 13 were transcription factors (TFs) across 10 families and 17 were metabolism related enzymes. Meanwhile, Motif-X analysis of the phosphorylation sites showed that 16 motifs are significantly enriched, including 8 novel phosphorylation motifs. In addition, KEGG and functional interacting network analysis revealed that phosphorylation cascades play the crucial regulation roles in PP-dependent signaling pathways, and highlighted the potential central position of the mitogen-activated protein kinases (MAPKs) in them. These analyses provide direct insights into the molecule mechanisms of cellular response induced by PP. SIGNIFICANCE PP as an insect cytokine participated in diverse functions including immunity control paralysis induction, regulation of cell morphology and proliferation. In this study, we performed firstly a label-free quantitative phosphoproteomics analysis. We found some new phosphorylation targets of PP-stimulation. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and functional networks revealed that phosphorylation cascades play the crucial regulation roles in PP-dependent signaling pathways. In addition, the potential central position of the mitogen-activated protein kinases (MAPKs) was highlighted in PP-dependent signaling pathways. We think our findings may help us gain a systematic understanding of the cytokine-dependent response regulation in insects.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Xiaoting Hua
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China.
| |
Collapse
|
13
|
Furihata S, Hirata M, Matsumoto H, Hayakawa Y. Bacteria Endosymbiont, Wolbachia, Promotes Parasitism of Parasitoid Wasp Asobara japonica. PLoS One 2015; 10:e0140914. [PMID: 26492411 PMCID: PMC4619603 DOI: 10.1371/journal.pone.0140914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023] Open
Abstract
Wolbachia is the most widespread endosymbiotic bacterium that manipulates reproduction of its arthropod hosts to enhance its own spread throughout host populations. Infection with Wolbachia causes complete parthenogenetic reproduction in many Hymenoptera, producing only female offspring. The mechanism of such reproductive manipulation by Wolbachia has been extensively studied. However, the effects of Wolbachia symbiosis on behavioral traits of the hosts are scarcely investigated. The parasitoid wasp Asobara japonica is an ideal insect to investigate this because symbiotic and aposymbiotic strains are available: Wolbachia-infected Tokyo (TK) and noninfected Iriomote (IR) strains originally collected on the main island and southwest islands of Japan, respectively. We compared the oviposition behaviors of the two strains and found that TK strain females parasitized Drosophila melanogaster larvae more actively than the IR strain, especially during the first two days after eclosion. Removing Wolbachia from the TK strain wasps by treatment with tetracycline or rifampicin decreased their parasitism activity to the level of the IR strain. Morphological and behavioral analyses of both strain wasps showed that Wolbachia endosymbionts do not affect development of the host female reproductive tract and eggs, but do enhance host-searching ability of female wasps. These results suggest the possibility that Wolbachia endosymbionts may promote their diffusion and persistence in the host A. japonica population not only at least partly by parthenogenesis but also by enhancement of oviposition frequency of the host females.
Collapse
Affiliation(s)
- Shunsuke Furihata
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Makiko Hirata
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga, Japan
- * E-mail:
| |
Collapse
|
14
|
Song L, Wang F, Dong S, Hu C, Hua X, Xia Q. Paralytic peptide activates insect humoral immune response via epidermal growth factor receptor. Peptides 2015; 71:20-7. [PMID: 26003397 DOI: 10.1016/j.peptides.2015.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 02/03/2023]
Abstract
Paralytic peptide (PP) activates innate immunity of silkworm Bombyx mori, inducing production of anti-microbial peptides (AMPs) and phagocytosis-related proteins; however the signal pathways of PP-dependent immune responses are not clear. In present study, we characterized BmE cells as a PP-responsive cell line by examining the expression of AMP genes and activation of p38 mitogen-activated protein kinase (p38 MAPK) under PP stimulation, and we also found PP directly binds to BmE cell membrane. Then we found that PP-dependent expression of AMP genes is suppressed by tyrosine kinase inhibitor (genistein) both in BmE cells and in fat body of silkworm larvae. Moreover, the specific tyrosine kinase epidermal growth factor receptor (EGFR) inhibitor (AG1478) attenuates PP-induced expression of AMP genes in BmE cells and fat body of silkworm and RNA interference (RNAi) to BmEGFR also suppresses PP-induced expression of AMP genes. Furthermore, the PP-induced p38 MAPK phosphorylation is inhibited by AG1478. Our results suggest that BmE cells can be used as a cell model to investigate the signal pathway of PP-dependent humoral immune response and receptor tyrosine kinase EGFR/p38 MAPK pathway is involved in the production of AMPs induced by PP.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Shifeng Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Cuimei Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Xiaoting Hua
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
15
|
Tsuzuki S, Matsumoto H, Furihata S, Ryuda M, Tanaka H, Sung EJ, Bird GS, Zhou Y, Shears SB, Hayakawa Y. Switching between humoral and cellular immune responses in Drosophila is guided by the cytokine GBP. Nat Commun 2014; 5:4628. [PMID: 25130174 DOI: 10.1038/ncomms5628] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/08/2014] [Indexed: 11/09/2022] Open
Abstract
Insects combat infection through carefully measured cellular (for example, phagocytosis) and humoral (for example, secretion of antimicrobial peptides (AMPs)) innate immune responses. Little is known concerning how these different defense mechanisms are coordinated. Here, we use insect plasmatocytes and hemocyte-like Drosophila S2 cells to characterize mechanisms of immunity that operate in the haemocoel. We demonstrate that a Drosophila cytokine, growth-blocking peptides (GBP), acts through the phospholipase C (PLC)/Ca(2+) signalling cascade to mediate the secretion of Pvf, a ligand for platelet-derived growth factor- and vascular endothelial growth factor-receptor (Pvr) homologue. Activated Pvr recruits extracellular signal-regulated protein kinase to inhibit humoral immune responses, while stimulating cell 'spreading', an initiating event in cellular immunity. The double-stranded RNA (dsRNA)-targeted knockdown of either Pvf2 or Pvr inhibits GBP-mediated cell spreading and activates AMP expression. Conversely, Pvf2 overexpression enhances cell spreading but inhibits AMP expression. Thus, we describe mechanisms to initiate immune programs that are either humoral or cellular in nature, but not both; such immunophysiological polarization may minimize homeostatic imbalance during infection.
Collapse
Affiliation(s)
- Seiji Tsuzuki
- 1] Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan [2]
| | - Hitoshi Matsumoto
- 1] Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan [2]
| | - Shunsuke Furihata
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Masasuke Ryuda
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Hirotoshi Tanaka
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Eui Jae Sung
- Inositol Signaling Section, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Gary S Bird
- 1] Inositol Signaling Section, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA [2] Calcium Regulation Section, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Yixing Zhou
- Inositol Signaling Section, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Stephen B Shears
- Inositol Signaling Section, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709, USA
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| |
Collapse
|
16
|
Furihata S, Tanaka K, Ryuda M, Ochiai M, Matsumoto H, Csikos G, Hayakawa Y. Immunoevasive protein (IEP)-containing surface layer covering polydnavirus particles is essential for viral infection. J Invertebr Pathol 2013; 115:26-32. [PMID: 24184953 DOI: 10.1016/j.jip.2013.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022]
Abstract
Polydnaviruses (PDVs) are unique symbiotic viruses associated with parasitoid wasps: PDV particles are injected into lepidopteran hosts along with the wasp eggs and express genes that interfere with aspects of host physiology such as immune defenses and development. Recent comparative genomic studies of PDVs have significantly improved our understanding of their origin as well as the genome organization. However, the structural features of functional PDV particles remain ambiguous. To clear up the structure of Cotesia kariyai PDV (CkPDV) particles, we focused on immunoevasive protein (IEP), which is a mediator of immunoevasion by the wasp from the encapsulation reaction of the host insect's hemocytes, because it has been demonstrated to be present on the surface of the virus particle. We discovered that IEP tends to polymerize and constitutes a previously unidentified thin surface layer covering CkPDV particles. This outermost surface layer looked fragile and was easily removed from CkPVD particles by mechanical stressors such as shaking, which prevented CkPDV from expressing the encoded genes in the host target tissues such as fat body or hemocytes. Furthermore, we detected IEP homologue gene expression in the wasp's venom reservoirs, implying IEP has another unknown biological function in the wasp or parasitized hosts. Taken together, the present results demonstrated that female C. kariyai wasps produce the fragile thin layer partly composed of IEP to cover the outer surfaces of CkPDV particles; otherwise, they cannot function as infectious agents in the wasp's host. The fact that IEP family proteins are expressed in both venom reservoirs and oviducts suggests an intimate relationship between both tissues in the development of the parasitism strategy of the wasp.
Collapse
Affiliation(s)
- Shunsuke Furihata
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kohjiro Tanaka
- Institute of Low Temeperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Masasuke Ryuda
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Masanori Ochiai
- Institute of Low Temeperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Gyorge Csikos
- Department of Anatomy, Cell and Molecular Biology, Eotvos Lorand University, Budapest H-1117, Hungary
| | - Yoichi Hayakawa
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
17
|
Furihata SX, Matsumoto H, Kimura MT, Hayakawa Y. Venom components of Asobara japonica impair cellular immune responses of host Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:86-100. [PMID: 23606512 DOI: 10.1002/arch.21093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The endoparasitoid wasp Asobara japonica has highly poisonous venom: the host Drosophila larvae are killed by envenomation at a dose that is naturally injected by the female wasp at parasitism. This insecticidal venom is neutralized, however, because A. japonica introduces lateral oviduct components soon after venom injection at oviposition. Although the venom and lateral oviduct components of this parasitoid have been partially characterized, how the venom components favor successful development of wasp eggs and larvae in the host remains ambiguous. Here, we demonstrated that A. japonica venom did not affect host humoral immune responses, determined as expression of antimicrobial peptide (AMP) genes, but significantly diminished two cellular responses, spreading and phagocytosis, by host hemocytes. Moreover, venom components drastically elevated a serine protease-like activity 4 h after its injection. The lateral oviduct components did not negate the detrimental effects of the venom on host cellular immunities, but significantly reduced the venom-induced elevation of protease activity. Both active factors in venom and lateral oviduct components were roughly characterized as heat-labile substances with a molecular mass of at least 10 kDa. Finally, venom of A. japonica, with a wide host range, was found to be much more toxic than that of Asobara rossica, which has a limited host range. These results reveal that A. japonica venom toxicity allows exploitation of a broader range of host insects because it is essential to overcome cellular immune responses of the host for successful parasitism.
Collapse
Affiliation(s)
- Shunsuke X Furihata
- The United Graduate School of Agricultural Sciences, Kagoshima University, Japan
| | | | | | | |
Collapse
|
18
|
Park JA, Kim Y. Toll recognition signal activates oenocytoid cell lysis via a crosstalk between plasmatocyte-spreading peptide and eicosanoids in response to a fungal infection. Cell Immunol 2012; 279:117-23. [DOI: 10.1016/j.cellimm.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/27/2012] [Accepted: 11/02/2012] [Indexed: 12/31/2022]
|
19
|
Matsumoto H, Tsuzuki S, Date-Ito A, Ohnishi A, Hayakawa Y. Characteristics common to a cytokine family spanning five orders of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:446-454. [PMID: 22465148 DOI: 10.1016/j.ibmb.2012.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Growth-blocking peptide (GBP) is a member of an insect cytokine family with diverse functions including growth and immunity controls. Members of this cytokine family have been reported in 15 species of Lepidoptera, and we have recently identified GBP-like peptides in Diptera such as Lucilia cuprina and Drosophila melanogaster, indicating that this peptide family is not specific to Lepidoptera. In order to extend our knowledge of this peptide family, we purified the same family peptide from one of the tenebrionids, Zophobas atratus,(1) isolated its cDNA, and sequenced it. The Z. atratus GBP sequence together with reported sequence data of peptides from the same family enabled us to perform BLAST searches against EST and genome databases of several insect species including Coleoptera, Diptera, Hymenoptera, and Hemiptera and identify homologous peptide genes. Here we report conserved structural features in these sequence data. They consist of 19-30 amino acid residues encoded at the C terminus of a 73-152 amino acid precursor and contain the motif C-x(2)-G-x(4,6)-G-x(1,2)-C-[KR], which shares a certain similarity with the motif in the mammalian EGF peptide family. These data indicate that these small cytokines belonging to one family are present in at least five insect orders.
Collapse
Affiliation(s)
- Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Honjo-1, Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|
20
|
Yamaguchi K, Matsumoto H, Ochiai M, Tsuzuki S, Hayakawa Y. Enhanced expression of stress-responsive cytokine-like gene retards insect larval growth. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:183-92. [PMID: 22198334 DOI: 10.1016/j.ibmb.2011.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 05/26/2023]
Abstract
Growth rates of immature animals are governed by their feeding activities. A reduction in feeding sometimes causes serious growth retardation in insects; a typical case is often seen in host insects parasitized by a solitary endoparasitoid wasp. However, understanding of the mechanisms underlying the physiological repression of parasitized insects is fragmentary. Here we analyzed brain gene expression of the host common cutworm, Spodoptera litura, parasitized by a solitary endoparasitoid, Microplitis manilae, and identified a novel gene whose expression was significantly enhanced by parasitization. The gene encoded a pre-pro-peptide of a cytokine-like molecule and its expression was observed mainly in nervous tissues, hemocytes, and integuments. The 25 amino acid cytokine-like peptide encoded by the C-terminus of this gene was demonstrated to exist in the hemolymph of S. litura larvae and to change hemocytes from non-adhesive to adhesive in vitro. Further, injection of the active peptide reduced feeding activities of test larvae and consequently delayed their growth. The enhanced gene expression was also observed in larvae under severe stress conditions: abdominal ligature, proleg cutting, mechanical vibration, low temperature, and heat shock at 45°C. Elevated gene expression was maintained only in seriously growth-retarded larvae but not in recovered larvae at 24h or 48h after heat treatment. Thus, it is reasonable to conclude that stress-induced elevation of the peptide gene expression highly correlates with reduced feeding activities and growth retardation of the host larvae parasitized by M. manilae. Based on the conclusion, we named this peptide stress-responsive peptide (SRP).
Collapse
Affiliation(s)
- Koichiro Yamaguchi
- Department of Applied Biological Sciences, Saga University, Honjo-1, Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|
21
|
Lapointe JF, Dunphy GB, Mandato CA. Hemocyte-hemocyte adhesion and nodulation reactions of the greater wax moth, Galleria mellonella are influenced by cholera toxin and its B-subunit. RESULTS IN IMMUNOLOGY 2012; 2:54-65. [PMID: 24371567 DOI: 10.1016/j.rinim.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Nodulation, the lepidopteran insect immune response to large numbers of microbes in the blood (hemolymph) consists of the coordination of the blood cell (hemocyte) types the granular cells and plasmatocytes in terms of granular cell-bacteria adhesion and hemocyte-hemocyte adhesion (microaggregation). Hemocyte-microbe adhesion is influenced by the secondary messenger, cAMP, and cAMP-dependent protein kinase A. In the present study, cholera toxin, an AB5 protein known to indirectly stimulate adenylate cyclase, is used to examine the hemocyte responses to glass, bacteria and hemocyte-hemocyte microaggregates. In vitro, this toxin induces a bimodal hemocyte adhesion response that varies with the holotoxin concentration in terms of the individual and aggregated hemocyte adhesion responses: the lower CTX concentration (1.2 nM) increases microaggregate adhesion and decreases individual hemocyte binding to glass, as does higher concentrations (6-120 nM), however microaggregates induced by lower concentrations do not adhere to glass. Cholera toxin-induced microaggregation is inhibited by RGDS, suggestive of integrin involvement. In vivo, cholera toxin (1.2-120 nM) injected into larvae induces also a bimodal hemocytic response: low levels (1.2-6 nM) cause reduced hemocyte adhesion, while high levels (12-120 nM) increase hemocyte release or mobilization of adhesive hemocyte counts in the hemolymph. Increasing levels of cholera toxin concomitantly injected with the non-pathogenic bacterium, Bacillus subtilis produces a bimodal pattern in bacterial removal from the hemolymph which correlates with nodule frequency in larvae injected with cholera toxin only. The effects of higher concentrations of cholera toxin in vitro (6-120 nM) and in vivo (12-120 nM) are mediated by the B-subunit, whereas the isolated A-subunit has no effect on hemocyte activity. Cholera toxin and its individual subunits did not detectably alter levels of intracellular cAMP in the hemocytes, suggesting a cAMP-independent mechanism stimulating the nodulation response.
Collapse
Affiliation(s)
- Jason F Lapointe
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | - Gary B Dunphy
- Department of Natural Resource Sciences, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| |
Collapse
|
22
|
Tsuzuki S, Ochiai M, Matsumoto H, Kurata S, Ohnishi A, Hayakawa Y. Drosophila growth-blocking peptide-like factor mediates acute immune reactions during infectious and non-infectious stress. Sci Rep 2012; 2:210. [PMID: 22355724 PMCID: PMC3251627 DOI: 10.1038/srep00210] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/13/2011] [Indexed: 11/10/2022] Open
Abstract
Antimicrobial peptides (AMPs), major innate immune effectors, are induced to protect hosts against invading microorganisms. AMPs are also induced under non-infectious stress; however, the signaling pathways of non-infectious stress-induced AMP expression are yet unclear. We demonstrated that growth-blocking peptide (GBP) is a potent cytokine that regulates stressor-induced AMP expression in insects. GBP overexpression in Drosophila elevated expression of AMPs. GBP-induced AMP expression did not require Toll and immune deficiency (Imd) pathway-related genes, but imd and basket were essential, indicating that GBP signaling in Drosophila did not use the orthodox Toll or Imd pathway but used the JNK pathway after association with the adaptor protein Imd. The enhancement of AMP expression by non-infectious physical or environmental stressors was apparent in controls but not in GBP-knockdown larvae. These results indicate that the Drosophila GBP signaling pathway mediates acute innate immune reactions under various stresses, regardless of whether they are infectious or non-infectious.
Collapse
Affiliation(s)
- Seiji Tsuzuki
- Department of Applied Biological Sciences, Saga University, Honjo
| | | | | | | | | | | |
Collapse
|
23
|
Ryuda M, Tsuzuki S, Matsumoto H, Oda Y, Tanimura T, Hayakawa Y. Identification of a novel gene, anorexia, regulating feeding activity via insulin signaling in Drosophila melanogaster. J Biol Chem 2011; 286:38417-38426. [PMID: 21917925 DOI: 10.1074/jbc.m111.267344] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Feeding activities of animals, including insects, are influenced by various signals from the external environment, internal energy status, and physiological conditions. Full understanding of how such signals are integrated to regulate feeding activities has, however, been hampered by a lack of knowledge about the genes involved. Here, we identified an anorexic Drosophila melanogaster mutant (GS1189) in which the expression of a newly identified gene, Anorexia (Anox), is mutated. In Drosophila larvae, Anox encodes an acyl-CoA binding protein with an ankyrin repeat domain that is expressed in the cephalic chemosensory organs and various neurons in the central nervous system (CNS). Loss of its expression or disturbance of neural transmission in Anox-expressing cells decreased feeding activity. Conversely, overexpression of Anox in the CNS increased food intake. We further found that Anox regulates expression of the insulin receptor gene (dInR); overexpression and knockdown of Anox in the CNS, respectively, elevated and repressed dInR expression, which altered larval feeding activity in parallel with Anox expression levels. Anox mutant adults also showed significant repression of sugar-induced nerve responses and feeding potencies. Although Anox expression levels did not depend on the fasting and feeding states cycle, stressors such as high temperature and desiccation significantly repressed its expression levels. These results strongly suggest that Anox is essential for gustatory sensation and food intake of Drosophila through regulation of the insulin signaling activity that is directly regulated by internal nutrition status. Therefore, the mutant strain lacking Anox expression cannot enhance feeding potencies even under starvation.
Collapse
Affiliation(s)
- Masasuke Ryuda
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Seiji Tsuzuki
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Yasunori Oda
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan
| | - Teiichi Tanimura
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 812-8581, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
24
|
Zhang S, Clark KD, Strand MR. The protein P23 identifies capsule-forming plasmatocytes in the moth Pseudoplusia includens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:501-510. [PMID: 21167864 DOI: 10.1016/j.dci.2010.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
The moth Pseudoplusia includens produces four types of hemocytes named granulocytes, plasmatocytes, spherule cells and oenocytoids. Prior studies established that the main function of plasmatocytes in P. includens is encapsulation of parasitoids and other foreign entitites. P. includens plasmatocytes are also recognized by several monoclonal antibodies that bind unknown antigens. Of particular interest is the antibody 43E9A10 whose binding properties indicate that plasmatocytes consist of two subpopulations: cells that can spread on foreign surfaces and cells that cannot. Here we report 43E9A10 recognizes P23, which is a member of the aegerolysin protein family. Expression analyses confirmed that p23 is specifically expressed in plasmatocytes. Functional studies indicated that only P23-expressing plasmatocytes form capsules and spread in response to the cytokine plasmatocyte spreading peptide. In contrast, P23 showed no antibacterial or cytolytic activity toward bacteria and mammalian erythrocytes. Overall, our results suggest that P23 is a maturation marker that identifies capsule-forming plasmatocytes.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
25
|
Kawano T, Shimoda M, Matsumoto H, Ryuda M, Tsuzuki S, Hayakawa Y. Identification of a gene, Desiccate, contributing to desiccation resistance in Drosophila melanogaster. J Biol Chem 2010; 285:38889-97. [PMID: 20937803 PMCID: PMC2998084 DOI: 10.1074/jbc.m110.168864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/06/2010] [Indexed: 11/06/2022] Open
Abstract
Suitable alterations in gene expression are believed to allow animals to survive drastic changes in environmental conditions. Drosophila melanogaster larvae cease eating and exit moist food to search for dry pupation sites after the foraging stage in what is known as the wandering stage. Although the behavioral change from foraging to wandering causes desiccation stress, the mechanism by which Drosophila larvae protect themselves from desiccation remains obscure. Here, we identified a gene, CG14686 (designated as Desiccate (Desi)), whose expression was elevated during the wandering stage. The Desi expression level was reversibly decreased by transferring wandering larvae to wet conditions and increased again by transferring them to dry conditions. Elevation of Desi expression was also observed in foraging larvae when they were placed in dry conditions. Desi encoded a 261-amino acid single-pass transmembrane protein with notable motifs, such as SH2 and PDZ domain-binding motifs and a cAMP-dependent protein kinase phosphorylation motif, in the cytoplasmic region, and its expression was observed mainly in the epidermal cells of the larval integuments. Overexpression of Desi slightly increased the larval resistance to desiccation stress during the second instar. Furthermore, Desi RNAi larvae lost more weight under dry conditions, and subsequently, their mortalities significantly increased compared with control larvae. Under dry conditions, consumption of carbohydrate was much higher in Desi RNAi larvae than control larvae. Based on these results, it is reasonable to conclude that Desi contributes to the resistance of Drosophila larvae to desiccation stress.
Collapse
Affiliation(s)
- Takeshi Kawano
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | |
Collapse
|