1
|
Zheng J, Wang X, Huang R, Xian P, Cui J, Amo A, Chen L, Han Y, Hou S, Yang Y. Integration of comparative cytology, ionome, transcriptome and metabolome provide a basic framework for the response of foxtail millet to Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137684. [PMID: 40007366 DOI: 10.1016/j.jhazmat.2025.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/28/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Apart from directly affecting the growth and development of crops, Cd in the soil can easily enter the human body through the food chain and pose a threat to human health. Therefore, understanding the toxicity of Cd to specific crops and the molecular mechanisms of their response to Cd is essential. In this study, hydroponic experiments were utilized to study the response of foxtail millet to Cd stress through phenotypic investigation, enzyme activity determination, ultrastructure, ionome, transcriptome and metabolome. With the increase in cadmium concentration, both the growth and photosynthetic capacity of foxtail millet seedlings are severely inhibited. The ultrastructure of cells is damaged, cells are deformed, chloroplasts swell and disappear, and cell walls thicken. Cd stress affects the absorption, transport, and redistribution of beneficial metal ions in the seedlings. Multi-omics analysis reveals the crucial roles of glycolysis, glutathione metabolism and phenylpropanoid and lignin biosynthesis pathways in Cd detoxification via energy metabolism, the antioxidant system and cell wall changes. Finally, a schematic diagram of foxtail millet in response to Cd stress was we preliminarily drew. This work provides a basic framework for further revealing the molecular mechanism of Cd tolerance in foxtail millet.
Collapse
Affiliation(s)
- Jie Zheng
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Xinyue Wang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Rong Huang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Peiyu Xian
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Jian Cui
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| | - Liang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
| | - Yuanhuai Han
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Siyu Hou
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| | - Yang Yang
- College of Agriculture, Houji Laboratory of Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030031, China.
| |
Collapse
|
2
|
Liu Q, Liu S, Wang D, Sun D, Ge Y, Zhang S, Li G, Jho EH, Joo JC, Zhao X, Ye M, Hu J. Decoupling soil pH and geography: Universal drivers of cadmium bioavailability in rice across terrains. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125297. [PMID: 40222075 DOI: 10.1016/j.jenvman.2025.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
With the accelerating global industrialization, Cadmium (Cd) pollution in rice has become a significant threat to both ecological safety and human health. But the universal factors influencing Cd content across different terrains remain under-investigated. Hence, 300 groups of root system-rice samples were collected from typical rice planting areas in the plains and hills of Southern China to investigate the driving factors of Cd content in rice at a large scale. Moreover, a Cd content prediction model in rice was built. Results showed that although total Cd (T-Cd) and available Cd (DTPA-Cd) contents in rice soils from hilly areas were significantly lower than those in plains, the Cd content in rice was significantly higher (P < 0.05). In a geographical distribution analysis, there was a weak correlation between geographical distance and Cd content in soil (∣R∣<0.30, P < 0.05), although this showed evidence of gradual geographical changes. In addition, this study found that DTPA-Cd (positive correlation, feature importance score of 42.67) and soil pH (negative correlation, 38.91) were the most critical factors that influenced Cd content in rice from different terrains using a network diagram and random forest model computation. In summary, there was evidence of a complicated interaction between terrain and soil pH in rice-Cd pollution at a large regional scale. Soil pH and DTPA-Cd were dominant influencing factors of Cd content in rice when compared to geographical distribution. These results provide an important scientific reference for large-scaled Cd pollution monitoring, control, and risk evaluation.
Collapse
Affiliation(s)
- Qiang Liu
- Jiangsu Geological Bureau, Nanjing, 210007, Jiangsu, China; Coastal Saline-alkali Land Ecological Rehabilitation and Sustainable Utilizationment Technology Innovation Center, MNR, Nanjing, 210007, Jiangsu, China
| | - Shuyue Liu
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Danling Wang
- Jiangsu Geological Bureau, Nanjing, 210007, Jiangsu, China
| | - Dawei Sun
- College of Information Management, Nanjing Agricultural University, Nanjing, 210014, Jiangsu, China
| | - Yun Ge
- Jiangsu Geological Bureau, Nanjing, 210007, Jiangsu, China; Coastal Saline-alkali Land Ecological Rehabilitation and Sustainable Utilizationment Technology Innovation Center, MNR, Nanjing, 210007, Jiangsu, China
| | - Songwei Zhang
- Jiangsu Geological Bureau, Nanjing, 210007, Jiangsu, China; Coastal Saline-alkali Land Ecological Rehabilitation and Sustainable Utilizationment Technology Innovation Center, MNR, Nanjing, 210007, Jiangsu, China
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Jin Chul Joo
- Department of Civil and Environmental Engineering, Hanbat National University, Dongseo-daero 125, Yuseong-gu, Daejeon, 34158, South Korea
| | - Xin Zhao
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Mao Ye
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China.
| | - Jian Hu
- Jiangsu Geological Bureau, Nanjing, 210007, Jiangsu, China; Coastal Saline-alkali Land Ecological Rehabilitation and Sustainable Utilizationment Technology Innovation Center, MNR, Nanjing, 210007, Jiangsu, China.
| |
Collapse
|
3
|
Zhang A, Wang K, Yang F, Ye D, Liu T, Zhang X, Huang H, Wang Y, Li T, Yu H. Quantitative trait loci mapping for cadmium and microelements accumulation in rice using recombinant inbred lines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109933. [PMID: 40253916 DOI: 10.1016/j.plaphy.2025.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Cadmium (Cd) contamination in Oryza sativa L. rice grain poses a significant food safety risk. Cd uptake in rice occurs via transmembrane proteins that also transport divalent metal microelements such as iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn). Identifying stable quantitative trait loci (QTLs) for Cd across different environments, along with co-localized QTLs for Cd and other elements, is crucial for understanding the genetic mechanisms of low Cd accumulation and facilitating fine mapping and gene cloning. A recombinant inbred line (RIL) population derived from D62B (a Cd-safe rice line) × Wujin4B (a high-Cd-accumulating rice line) was used to identify QTLs associated with Cd, Fe, Mn, Cu, and Zn accumulation. QTL mapping was conducted in three distinct environments to assess locus stability. A total of 61 QTLs were identified, including 23 QTLs related to Cd and 38 QTLs associated with other microelements. Two novel and stable QTLs for Cd (qLCA1 and qLCA12) were consistently detected across different environments, significantly reducing Cd concentration in brown rice and Cd translocation within the plant. Additionally, a previously unreported co-localized QTL (qCdA-4/qCuA-4) was identified, which significantly reduced both Cd and Cu accumulation in whole plants. This study identified two novel and stable QTLs for Cd (qLCA1 and qLCA12) that consistently reduced Cd concentration in brown rice and Cd translocation across different environments. Additionally, a newly discovered co-localized QTL (qCdA-4/qCuA-4) was found to regulate both Cd and Cu accumulation.
Collapse
Affiliation(s)
- Ao Zhang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Keji Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Fu Yang
- Luzhou Naxi District Agriculture and Rural Affairs Bureau, 343 Renmin West Road, Luzhou, Sichuan, 646300, China
| | - Daihua Ye
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tao Liu
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Xizhou Zhang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Huagang Huang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Yongdong Wang
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Tingxuan Li
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| | - Haiying Yu
- College of Resource, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
4
|
Yao Q, He M, Chen J, Yang Y, Li X, Cheng Y, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y. Wheat YSL15-6B underlies grain cadmium concentration via governing cadmium export. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109907. [PMID: 40220666 DOI: 10.1016/j.plaphy.2025.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Cadmium (Cd) is a toxic heavy metal for all organisms. Increasing of wheat grain accumulates Cd posing a serious risk to human health. Thus, reducing grain Cd concentration of wheat is urgently required for food security and human health. Here, we found a wheat yellow stripe-like protein 15 (YSL15-6B) governs grain Cd concentration. METHODS The expression pattern, subcellular localization, Cd transport activity and Cd accumulation in mutant and overexpressing lines of wheat YSL15-6B were analyzed. RESULTS TpYSL15-6B, cloned from Dwarf Polish wheat (Triticum polonicum L. 2n = 4x = 28, AABB), was mainly expressed in roots and leaves. Its protein was localized at the endoplasmic reticulum and plasma membrane in protoplast. Expression of TpYSL15 in yeast increased Cd concentration under Cd-NA stress. Loss-of-function of TtYSL15-6B in 'Kronos' increased Cd uptake, root-to-shoot Cd translocation, and grain Cd concentration. Meanwhile, Ttysl15-6B mutant line exhibited up-regulation of TtNRAMP5 and TtHMA2, and down-regulation of TtZIP1 when compared with the wide type. Overexpression of TpYSL15-6B in rice caused Cd exporting from roots, and limited root-to-shoot Cd translocation and grain Cd concentration. TpYSL15-6B-overexpressing lines showed up-regulation of OsZIP1 and OsABCG36, and down-regulation of OsIRT1 and OsNRAMP2 when compared with the wide type ZH11. CONCLUSION wheat YSL15-6B governs Cd export from plant. These results provide a new gene and insight for limiting grain Cd concentration in wheat and the physiological pathway of Cd transport.
Collapse
Affiliation(s)
- Qin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China; Chengdu Agricultural College, Wenjiang, 611130, Sichuan, China
| | - Miao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jia Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yueying Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xiaoying Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
5
|
Jamil Abbasi A, Anas M, Elahi M, Khan A, Khattak WA, Saleem MH, Fahad S, Elansary HO, Mahmoud EA, Ahmed T, Quraishi UM. Restoring wheat productivity and nutrient balance under cadmium stress through reducing toxicity, metal uptake, and oxidative damage using selenium nanoparticles. J Trace Elem Med Biol 2025; 89:127644. [PMID: 40233590 DOI: 10.1016/j.jtemb.2025.127644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Cadmium (Cd) contamination in soil poses a significant environmental threat, reducing crop yields and compromising food safety. This study investigates the potential of selenium nanoparticles (Se-NPs) synthesized using wheat extract to mitigate Cd toxicity, reduce Cd uptake and mobility, and recover grain nutrient composition in wheat (Triticum aestivum L.). A pot experiment was conducted following a completely randomized design (CRD) with three replications. Treatments included control, four Se-NPs concentrations (10, 25, 50, and 100 ppm), four Cd stress levels (25, 50, 75, and 100 ppm), and their combined interactions. Various physiological, biochemical, and agronomic parameters were analyzed to assess the mitigation potential of Se-NPs against Cd toxicity in wheat. Se-NPs (36.77 nm) were characterized using FTIR, confirming functional groups for stabilization, XRD verifying crystallinity and size via the Scherrer Equation, SEM revealing spherical morphology, and EDX confirming selenium as the predominant element with minor trace elements. Under 50 ppm Cd stress, Se-NPs at 25 ppm reduced days to anthesis by 8.16 % and mitigated a 45.13 % decrease in plant height. Grain yield, which declined by 90.86 % under Cd stress, was restored by 90.86 % with 10 ppm Se-NPs. Additionally, Se-NPs improved thousand kernel weight by 32.71 %, counteracting a 25.92 % reduction due to Cd stress. Antioxidant enzyme activities, including SOD and CAT, increased by up to 333.79 % in roots with Se-NP treatment, while oxidative stress markers decreased by 28 %. Moreover, Se-NPs effectively mitigated Cd uptake and reduced its mobility within the plant. Grain protein content improved by 16.89 %, and carbohydrate levels were maintained at 4.61 % despite Cd exposure. These findings indicate that Se-NPs enhance crop resilience, supporting sustainable food production in Cd-contaminated environments.
Collapse
Affiliation(s)
- Ayesha Jamil Abbasi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Minhas Elahi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Amjid Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Botany, University of Mianwali, Mianwali, Punjab 42200, Pakistan.
| | - Waseem Ahmed Khattak
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Hosam O Elansary
- Department of Plant Production, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| | - Eman A Mahmoud
- Department of Food Science, College of Agriculture, Damietta University, Damietta, Egypt.
| | - Temoor Ahmed
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan; Department of Plant Biotechnology, Korea Universtiy, Seoul 02481, South Korea.
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
6
|
Wu Y, Zhang Q, He H, Liu H, Xiao M, Tan Y, Tang X, Tao Q, Huang R, Li B, Wang C. Measures and effects on soil Cd remediation and safe rice production: a meta-analysis of 10-year Chinese patents. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:662-674. [PMID: 39636685 DOI: 10.1080/15226514.2024.2433547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Rice is the staple food for 1/3 of the world's population, but soil pollution with cadmium (Cd) is harmful to rice production and human health. Therefore, how to reduce the Cd content in rice grains is a hot topic worldwide. However, so far, little is known about Cd remediation technologies for paddy soils from the perspective of patents. Therefore, a meta-analysis was performed to assess the effects of measures based on 1402 observations from 336 patents from 2011 to 2021. The spatio-temporal analysis showed that the number of patents was positively related to the general economic development of the country, but hardly related to the regional economy or the level of provincal Cd pollution. The meta-analysis showed that the overall effect of Cd reduction was slightly higher for combined technologies (59%) than for single technologies (57%). Among all technology classifications, soil applications, which are mainly based on nutritional elements, were the most commonly used technology that could reduce the Cd content in rice grains by 57%. The plant biotechnology was the most effective and could reduce Cd content in rice grains by 76%. Further analysis showed that macronutrients (calcium, phosphorus, and sulfur) were preferred in soil amendments, while micronutrients (silicon, zinc, and selenium) were preferred in foliar amendments. NRAMP5 and HMA3 were the most important genes for manipulating Cd uptake in rice, while Bacillus and Pseudomonas were the most important bacterial taxa for bioremediation of Cd. Overall, this study compiled data on Cd remediation of paddy soil from 10 years of Chinese patents, providing a theoretical basis for better production of low Cd crops and protection of human health.
Collapse
Affiliation(s)
- Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiannian Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Huimin Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Meijuan Xiao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yu Tan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Tang GX, Huang YH, Feng LW, Hu YC, Wei JL, Lü H, Liu LH, Zhao HM, Xiang L, Li H, Mo CH, Li YW, Cai QY. New insights into rhizosphere bacterial community shaped by lettuce genotypes for divergent degradation efficiencies of phthalates. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138077. [PMID: 40168930 DOI: 10.1016/j.jhazmat.2025.138077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Rhizosphere dissipation of organic pollutants benefits safe utilization of the polluted agricultural soil. Nevertheless, dissipation variation of phthalates (PAEs) in rhizosphere among different vegetable genotypes and the related microbial mechanisms remain unknown. Here, twelve lettuce cultivars with different genetic relationships identified by 18S rRNA gene sequencing were cultivated in soil spiked with di-(2-ethylhexyl) phthalate (DEHP). Bacterial communities and function genes in rhizosphere of lettuce were analyzed by 16S rRNA gene and metagenomic sequencing. Results showed significant variations in DEHP concentrations of roots (2.8-15.3 mg/kg) and shoots (0.70-1.8 mg/kg) among 12 cultivars. Notably, cultivars L11 and L12 showed the lowest DEHP accumulation in roots and shoots, being lower by 82 % and 58 % than the highest accumulators (cultivars L5 and L6), respectively. This accumulation variation was closely connected with their genetic relationships and exhibited genotype-dependent trait. The significantly different bacterial community diversities and structures were recorded in rhizosphere among 12 cultivars. Especially, bacterial communities in rhizosphere of cultivars L11 and L12 (low-DEHP accumulators with high DEHP dissipation) strengthened their adaptation by enriching pollutant-resistant taxa, increasing extracellular polymeric substance contents and biofilm formation, as well as constructing complex ecological networks under DEHP pollution. Moreover, PAE-degrading bacteria and genes (e.g., hydrolase65, phtAb, and pcaI) in rhizosphere were enriched by low-DEHP accumulators, which benefited DEHP removal and subsequently safe agricultural products. This study provides new insights into microbial mechanisms on rhizosphere DEHP degradation and its correlation with accumulation variation among different crop genotypes.
Collapse
Affiliation(s)
- Guang-Xuan Tang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Li-Wan Feng
- College of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu-Chang Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jia-Lu Wei
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Li-Hui Liu
- College of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Tan J, Zhang L, Liu C, Hong Z, Wu X, Zhang Y, Fahad M, Shen Y, Bian J, He H, Wu D, Shu Q, Bao J, Wu L. UCL23 hierarchically regulated by WRKY51-miR528 mediates cadmium uptake, tolerance, and accumulation in rice. Cell Rep 2025; 44:115336. [PMID: 39985767 DOI: 10.1016/j.celrep.2025.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/28/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
In humans, cadmium (Cd) toxicity caused by contaminated environments is associated with numerous chronic diseases. Breeding rice with low Cd accumulation is now deemed critical for sustainable agriculture development. Here, we elucidate the crucial functions of UCLACYANIN 23 (UCL23), a small copper protein, in Cd absorption, tolerance, and accumulation through modulation of reactive oxygen signals in rice. Additionally, we demonstrate that WRKY51 binds to promoters of UCL23 and miR528, a post-transcriptional regulator of UCL23, thereby contributing to Cd regulation in a dual-modulatory manner. Furthermore, we show that the natural variation of UCL23 is important for the differential accumulation of Cd in rice grains. Finally, we reveal that Indica rice harboring the major Japonica haplotype of UCL23 significantly reduces Cd uptake in roots and Cd accumulation in grains. Together, our study not only reveals a regulatory cascade in Cd regulation but also provides valuable resources for breeding low-Cd rice cultivars.
Collapse
Affiliation(s)
- Jingai Tan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lantian Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Chuanjia Liu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Zheyuan Hong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqi Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Muhammad Fahad
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxin Shen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dezhi Wu
- Yuelushan Laboratory, College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyao Shu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Jinsong Bao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Liang Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China.
| |
Collapse
|
9
|
Wang YZ, Zhao HM, Huang XP, Zhang Y, Ye JC, Feng NX, Li YW, Liu BL, Cai QY, Xiang L, Mo CH, Li QX. Variety-dependent seed endophytic bacteria enhance stress tolerance to and bioaccumulation of ciprofloxacin in choy sum (Brassica parachinensis). MICROBIOME 2025; 13:80. [PMID: 40121500 PMCID: PMC11929246 DOI: 10.1186/s40168-025-02073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Accumulation of antibiotics in crops threatens human health. However, the mechanisms and effects of microorganisms on the uptake and accumulation of antibiotics in crops remain poorly understood. This study aimed to investigate the impact and underlying mechanisms of seed-borne microbiota in root on ciprofloxacin (CIP) accumulation in two choy sum varieties through amplicon sequencing, multiple statistical analyses, and subsequent validation of key bacteria via isolation and co-culturing with plants. RESULTS Bacillaceae (mainly Bacillus) was enriched specifically in the roots of CIP high-antibiotic-accumulating variety (HAV) via seed-based vertical transmission activated by the root exudate-derived maleic acid. The relative abundance of Bacillaceae was 9.2 to 27.7 times higher in roots of HAV relative to the low-antibiotic-accumulating variety (LAV). The enrichment of Bacillaceae facilitated a cooperative and beneficial bacterial community formed by the deterministic process. The community in HAV could not only stimulate antioxidase activities and decrease membrane lipid peroxidation via secreting indoleacetic acid and siderophore but also promote its biomass, especially the root length and biomass of HAV, thus greatly improving its tolerance to and absorption of CIP. The variety-specific plant-microbial interactions caused 1.6- to 3.2-fold higher CIP accumulation in shoots of HAV relative to LAV shoots. CONCLUSIONS The findings highlight the crucial roles of the seed-borne microbiota in regulating the uptake and accumulation of antibiotics in crops, giving new understanding on the accumulation of organic pollutants in plants, with an emphasis on plant-microbial interactions Video Abstract.
Collapse
Affiliation(s)
- Yi-Ze Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | | | - Xian-Pei Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
10
|
Liang S, Lan Z, Wang J, Zou W, Hu Y, Ran H, Qin M, Xiao G, Zhang S, Ma X, Ye G, Luan W. Knockout of cadmium sensitive gene 1 confers enhanced cadmium tolerance in rice (Oryza sativa L.) by regulating the subcellular distribution of cadmium. Int J Biol Macromol 2025; 306:141604. [PMID: 40024401 DOI: 10.1016/j.ijbiomac.2025.141604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Cadmium (Cd) is a heavy metal which is toxic to both plants and animal. The high content of Cd in the rice grain severely threatens human's health. Here, we identified a Cd sensitive gene, named Cadmium Sensitive Gene 1 (OsCSG1), playing an important role in improving Cd tolerance in rice at seedling stage. The expression of OsCSG1 was induced by CdCl2 and exhibited higher mRNA levels in leaf blade, leaf sheath and stele of roots. Knockout of OsCSG1 improved the Cd tolerance of rice seedlings, suggesting that OsCSG1 negatively regulated Cd tolerance in rice. The Cd concentration in roots of seedling of oscsg1 mutants increased significantly under Cd stress, but not in the shoot and grains compared with wild type (WT). Subcellular distribution of Cd in root cells suggested that Cd proportions in soluble fractions of cells in oscsg1 mutant increased significantly. And CAT activity in oscsg1 mutants increased significantly. Taken together, knocking out OsCSG1 could improve Cd tolerance in rice by regulating subcellular distribution of cadmium and increased CAT activity.
Collapse
Affiliation(s)
- Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Zhipeng Lan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Jiahan Wang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Wenli Zou
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Youchuan Hu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Hongyu Ran
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Mao Qin
- Shenzhen Agricultural Science and Technology Promotion Center, Shenzhen 518055, China
| | - Gui Xiao
- Hunan Hybrid Rice Research Center, Mapoling Yuanda road No. 2, Furong district, Hunan province 410125, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Rice Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines.
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
11
|
Ulhassan Z, Ali S, Kaleem Z, Shahbaz H, He D, Khan AR, Salam A, Hamid Y, Sheteiwy MS, Zhou W, Huang Q. Effects of Nanosilica Priming on Rapeseed ( Brassica napus) Tolerance to Cadmium and Arsenic Stress by Regulating Cellular Metabolism and Antioxidant Defense. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4518-4533. [PMID: 39937631 DOI: 10.1021/acs.jafc.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The mechanisms by which seed-primed silicon dioxide nanoparticles (nSi) alleviated arsenic (As) and cadmium (Cd) toxicity in Brassica napus L. remain unclear. A pot study examined the physico-biochemical, cellular, and molecular responses of B. napus exposed to Cd (10 mg/kg soil) and As (50 mg/kg soil) doses with or without nSi priming. The results showed that nSi priming improved photosynthesis, seedling biomass, and metabolite accumulation, and restored the cell structure. Upon Cd and As stress, nSi diminished oxidative stress by downplaying H2O2 (24-32%) and O2•- (29-36%), MDA, and activating antioxidant defenses. Also, nSi relieved Cd and As accumulation (27-36%) by enhancing root-vacuolar sequestration (upregulating BnHMA3, BnPCs, and BnABCC1), cell wall chelation, and downregulating root transporters (BnNRAMP5, BnIRTI, BnHMA2, BnHMA4, BnPHT1.1, and BnPHT1.4). Our findings revealed that nSi priming effectively enhanced canola tolerance to Cd and As toxicity by strengthening multiple oxidative defense mechanisms and limiting their accumulation.
Collapse
Affiliation(s)
- Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abdul Salam
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Yasir Hamid
- Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Shahzad M, Bibi A, Khan A, Shahzad A, Xu Z, Maruza TM, Zhang G. Utilization of Antagonistic Interactions Between Micronutrients and Cadmium (Cd) to Alleviate Cd Toxicity and Accumulation in Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:707. [PMID: 40094627 PMCID: PMC11901666 DOI: 10.3390/plants14050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The presence of cadmium (Cd) in agricultural soils poses a serious risk to crop growth and food safety. Cadmium uptake and transport in plants occur through the various transporters of nutrient ions that have similar physical and chemical properties to Cd, indicating that the genetic manipulation of these transporters and agronomic improvement in the Cd-antagonistic nutrients could be a good approach for reducing Cd uptake and accumulation in crops. In this review, we discuss the interactions between Cd and some micronutrients, including zinc (Zn) and manganese (Mn), focusing on their influence on the expression of genes encoding Cd-related transporters, including ZIP7, NRAMP3, and NRAMP4. Genetic improvements in enhancing the specificity and efficiency of transporters and agronomic improvements in optimizing micronutrient nutrition can inhibit the Cd uptake and transport by these transporters. This comprehensive review provides a deep insight into genetic and agronomic improvement for fighting against Cd contamination and enhancing sustainable agricultural production.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ayesha Bibi
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ali Shahzad
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Zhengyuan Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Tagarika Munyaradzi Maruza
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Chao ZF, Chao DY. Barriers and carriers for transition metal homeostasis in plants. PLANT COMMUNICATIONS 2025; 6:101235. [PMID: 39731291 PMCID: PMC11897463 DOI: 10.1016/j.xplc.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/25/2024] [Indexed: 12/29/2024]
Abstract
Transition metals are types of metals with high chemical activity. They play critical roles in plant growth, development, reproduction, and environmental adaptation, as well as in human health. However, the acquisition, transport, and storage of these metals pose specific challenges due to their high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout plants. To overcome these obstacles, plants have evolved sophisticated carrier systems to facilitate metal transport, relying on the tight coordination of vesicles, enzymes, metallochaperones, low-molecular-weight metal ligands, and membrane transporters for metals, ligands, and metal-ligand complexes. This review highlights recent advances in the homeostasis of transition metals in plants, focusing on the barriers to transition metal transport and the carriers that facilitate their passage through these barriers.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
14
|
Gui Y, Teo J, Tian D, Mohan R, Yin Z. OsHMA3 overexpression works more efficiently in generating low-Cd rice grain than OsNramp5 knockout mutation. BMC Res Notes 2025; 18:55. [PMID: 39910580 PMCID: PMC11800450 DOI: 10.1186/s13104-025-07112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE Cadmium (Cd) is a highly toxic metal element and a carcinogen to humans. Rice is prone to taking up Cd from paddy fields and accumulating it in grain, which raises health concerns for rice consumers. OsNramp5 is a major transporter for Cd and manganese (Mn) uptake in rice, whereas OsHMA3 is a tonoplast-localized transporter involved in Cd detoxification in vacuoles. In this study, we compared the efficiency of OsNramp5 knockout mutation and OsHMA3 overexpression in reducing Cd content in rice grain. RESULTS The grain Cd content of the OsNramp5 knockout mutants was significantly lower than that of the wild-type rice T5105. However, these mutants still had much higher grain Cd content than the previously reported OsNramp5 mutants or the OsHMA3 overexpression lines developed in our previous study. Pyramiding the OsNramp5 mutant allele and the OsHMA3 transgene in a single line did not result in an additional reduction in grain Cd content. The OsNramp5 gene in T5105 has a haplotype II promoter, and its knockout mutation also partially reduced Mn content in rice grain. Our results demonstrate that OsHMA3 overexpression works more efficiently in generating low-Cd rice grain than OsNramp5 knockout mutation without affecting Mn uptake in rice.
Collapse
Affiliation(s)
- Yuejing Gui
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Joanne Teo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Dongsheng Tian
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Raji Mohan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Zhongchao Yin
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore.
- Department of Biological Sciences, 14 Science Drive, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
15
|
Chen J, Pan J, Duan M, Fan F, Liu J, Hu W, Yu D, Sun Z, Sheng X, Tan Y, Tan Y, Sun X, Tang N, Wang W, Tang W, Ye N, Chen J, Liu Z, Yuan D. In situ images of Cd 2+ in rice reveal Cd 2+ protective mechanism using DNAzyme fluorescent probe. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136650. [PMID: 39603121 DOI: 10.1016/j.jhazmat.2024.136650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
As a common pollutant, cadmium (Cd) poses a serious threat to the growth and development of plants. Currently, there is no effective method to elucidate the protective mechanism of Cd2+ in plant cells. For the first time, we designed a Cd2+ fluorescent probe to observe the adsorption and sequestration of Cd2+ in rice cell walls and vacuoles. Specifically, Cd2+ is blocked by the Casparian strip and electrostatically attracted to hemicellulose, which is abundantly adsorbed and fixed to the cell walls of the endodermis. For Cd2+ that successfully entered the endodermis, one part entered the cells and was compartmentalised and fixed in the vacuoles, while the other part entered the vascular bundles and precipitated in the cell walls of the sclerenchyma through the ion exchange effect. Furthermore, with prolonged exposure to Cd2+, compartmentalised bodies that were strongly labelled by fluorescence gradually appeared in the vacuoles, which were assumed to be a new heavy metal protective mechanism activated by plants in response to continuous Cd2+ exposure. In conclusion, this study provides an innovative and effective method for the detection of adsorption, transportation, and accumulation of Cd2+ in plant tissues, which can be employed for the rapid identification of crops with low Cd accumulation.
Collapse
Affiliation(s)
- Jin Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Meijuan Duan
- Hunan Agricultural University, Changsha 410128, China
| | - Fan Fan
- Hunan Agricultural University, Changsha 410128, China
| | - Jianbing Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wenjie Hu
- Hunan Agricultural University, Changsha 410128, China
| | - Dong Yu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhizhong Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiabing Sheng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yongjun Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuewu Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ning Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wenbang Tang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Nenghui Ye
- Hunan Agricultural University, Changsha 410128, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| | - Zhi Liu
- Hunan Agricultural University, Changsha 410128, China.
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
16
|
Guo Z, Yin Y, Nie M, Ding C, Wang Y, Tang X, He L, Zhou Z, Li Z, Li L, Zhang T, Wang X. Boron's Role in Diminishing Cadmium Concentrations in Rice ( Oryza sativa L.): Insights into Absorption Inhibition and Ripening Promotion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3142-3153. [PMID: 39846753 DOI: 10.1021/acs.jafc.4c12178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Boron, a crucial element for plant growth, has been demonstrated to mitigate cadmium (Cd) absorption in rice seedlings. However, its impact on Cd accumulation in rice grains and the underlying regulatory mechanisms remain poorly understood. The current study explored the roles of boron in reducing Cd accumulation and promoting ripening in rice through pot and hydroponic experiments. The results revealed that the basal boron application (1.5 mg kg-1) decreased grain Cd concentration by 61.1%, primarily due to the synergistic effects of inhibited Cd uptake and transport, along with increased maturation. Boron mitigated the root Cd2+ influx by 32.4% and transport factors by 36.0-47.3% primarily by downregulating the expression of OsNramp5, OsIRT1, and OsHMA2. Moreover, boron enhanced the activities of key sucrose-metabolizing enzymes and increased the relative expression levels of genes associated with sugar metabolism and transport, thereby shortening the rice growth period from 132 to 120 d. Field experiment confirmed that boron application decreased rice grain Cd concentration by 47.7% while promoting earlier maturation. This study elucidates the mechanism behind boron's ability to lower grain Cd levels and highlights its potential as an effective agronomic approach to mitigate food safety risks in rice grown on Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Zhihong Guo
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Nie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
| | - Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing 211135, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China
| |
Collapse
|
17
|
Ran M, Li H, Jiao Y, Li J. Two birds with one stone: Alleviating copper toxicity and inhibiting its upward transport in non-host rice (Oryza sativa L.) by inoculation of Cu-resistant endophytes from the hyperaccumulator Commelina communis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125520. [PMID: 39667572 DOI: 10.1016/j.envpol.2024.125520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Endophytic bacteria derived from metal hyperaccumulators have demonstrated potential for improving copper (Cu) remediation in host plants; however, their potential application in non-host crops remains unclear. In this study, endophytic bacteria isolated from Commelina communis growing in mining areas and their mitigation effects on Cu toxicity in non-host rice were comprehensively evaluated. Among the isolated endophytes, Bacillus sp. D2 exhibited the highest Cu resistance, producing indole-3-acetic acid (IAA) at a concentration of 0.93 mg/L and exhibiting ACC deaminase activity of 13.88 μmol/mg·h under 200 mg/L Cu stress. Pot-experiment results revealed that Bacillus sp. D2 addition significantly increased the biomass and lengths of shoots under Cu stress conditions by 47.6% and 14.2%, respectively. Furthermore, Bacillus sp. D2 inoculation significantly reduced oxidative damage, enhanced antioxidant responses, and modulated plant hormone levels in Cu-exposed rice. Notably, Bacillus sp. D2 inoculation substantially decreased the upward translocation of Cu from underground roots to aboveground tissues. Moreover, Bacillus sp. D2 effectively alleviated Cu toxicity in rice plants by regulating the expression levels of genes involved in antioxidant systems (tAPx, Csd2, and FeSOD1), Cu transporters (AtPDR8 and HMA3), as well as metallothionein (MT2c). These results highlight the value of Bacillus sp. D2 as a bioinoculant for improving crop growth while reducing the risks associated with copper contamination in naturally Cu-contaminated soils.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - He Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
18
|
Lin K, Xu K, Chen Y, Lu Y, Zhou M, Cao F. Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize. PLANT, CELL & ENVIRONMENT 2025; 48:1705-1716. [PMID: 39483059 DOI: 10.1111/pce.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.
Collapse
Affiliation(s)
- Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kewen Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yiqing Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifan Lu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Yang JB, Wang HY, Huang J, Shan CJ, Yan J, Zhong CW, Hu D, Zhang Q, Shen RF, Zhu XF, Zeng DL. Jasmonic acid improves cadmium tolerance in rice (Oryza sativa) by reducing the production of nitric oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117722. [PMID: 39827612 DOI: 10.1016/j.ecoenv.2025.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
The involvement of jasmonic acid (JA) in the rice's response to cadmium (Cd) stress is well recognized, though the underlying mechanisms remain unclear. In this study, exposure to Cd stress rapidly elevated endogenous JA concentrations in rice roots, meanwhile, a mutant coleoptile photomorphogenesis 2 (cpm2) which produces less JA, was more sensitive to Cd stress than its wild type (WT). JA mitigated Cd toxicity by decreasing Cd absorption in root cell wall and shoot, which was achieved by up-regulating the expression of the Cd-chelation and efflux-related genes such as OsHMA3, OsABCG36 and OsCAL1; down-regulating the transcript level of the Cd uptake and translocation-related genes, including OsHMA2, OsCCX2, OsNRAMP1/5, and OsZIP5/7. Additionally, a reduction in hemicellulose content was observed in the root cell wall. Further analysis indicated that the mitigation effect of JA on Cd accumulation was dependent on the inhibition of nitric oxide (NO) synthesis, as the NO donor SNP could diminish this effect. In summary, JA effectively reduced Cd content in rice by modulating the cell wall's capacity for Cd uptake, potentially through reducing the production of NO.
Collapse
Affiliation(s)
- Ji Bo Yang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Hao Yu Wang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Chuan Jin Shan
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Wei Zhong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Die Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Qiang Zhang
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China; State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Da Li Zeng
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China.
| |
Collapse
|
20
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
21
|
Yan H, Peng Z, Zhang H, Wang B, Xu W, He Z. Cadmium Minimization in Crops: A Trade-Off With Mineral Nutrients in Safe Breeding. PLANT, CELL & ENVIRONMENT 2025; 48:838-851. [PMID: 39351608 DOI: 10.1111/pce.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 12/06/2024]
Abstract
Cadmium (Cd) contamination poses a threat to global crop safety. To address this issue, researchers mainly focused on the Cd, explored mechanism of accumulation to low-Cd breeding technologies and created several low-Cd varieties over the past decades. However, new challenges have emerged, particularly the yield reduction due to disturbances in mineral nutrient balance. The goals of breeding have been transferred from a primary focus on 'low-Cd crops' to 'low-Cd/nutrient-balanced' crops, which means limiting Cd content while maintaining other nutrient elements like iron (Fe), manganese (Mn) and zinc (Zn) at a proper content, thus to meet the future agricultural demands. Here, on a multielement perspective, we reviewed the mechanisms of Cd and mineral nutrient transport system in crops and summarized the research advances in Cd minimization through artificial mutations, natural variations and genetic engineering. Furthermore, the challenge of disruption of mineral nutrients in low-Cd crops was discussed and two potential approaches designing Cd-mineral nutrient-optimized artificial transporters and pyramiding Cd-mineral nutrient-optimized variations were proposed. Aiming at addressing these challenges, these approaches represent promising advancements in the field and offer potential pathways for future research and development in the creation of safe and high-quality crops.
Collapse
Affiliation(s)
- Huili Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhimei Peng
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hezifan Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binghan Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxiu Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhenyan He
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
22
|
Huang H, Yamaji N, Huang S, Ma JF. Uptake and Accumulation of Cobalt Is Mediated by OsNramp5 in Rice. PLANT, CELL & ENVIRONMENT 2025; 48:3-14. [PMID: 39222021 PMCID: PMC11615428 DOI: 10.1111/pce.15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cobalt (Co) contamination in soils potentially affects human health through the food chain. Although rice (Oryza sativa) as a staple food is a major dietary source of human Co intake, it is poorly understood how Co is taken up by the roots and accumulated in rice grain. In this study, we physiologically characterized Co accumulation and identified the transporter for Co2+ uptake in rice. A dose-dependent experiment showed that Co mainly accumulated in rice roots. Further analysis with LA-ICP-MS showed Co deposited in most tissue of the roots, including exodermis, endodermis and stele region. Co accumulation analysis using mutants defective in divalent cation uptake showed that Co2+ uptake in rice is mediated by the Mn2+/Cd2+/Pb2+ transporter OsNramp5, rather than OsIRT1 for Fe2+ and OsZIP9 for Zn2+. Knockout of OsNramp5 enhanced tolerance to Co toxicity. Heterologous expression of OsNramp5 showed transport activity for Co2+ in Saccharomyces cerevisiae. Co2+ uptake was inhibited by either Mn2+ or Cd2+ supply. At the reproductive stage, the Co concentration in the straw and grains of the OsNramp5 knockout lines was decreased by 41%-48% and 28%-36%, respectively, compared with that of the wild-type rice. The expression level of OsNramp5 in the roots was not affected by Co2+. Taken together, our results indicate that OsNramp5 is a major transporter for Co2+ uptake in rice, which ultimately mediates Co accumulation in the grains.
Collapse
Affiliation(s)
- Hengliang Huang
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Naoki Yamaji
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Sheng Huang
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Jian Feng Ma
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| |
Collapse
|
23
|
Di Y, Cao Y, Peng D, Liu Y, Li Z. AsGAD1 cloned from creeping bentgrass modulates cadmium tolerance of Arabidopsis thaliana by remodelling membrane lipids and cadmium uptake, transport and chelation. PHYSIOLOGIA PLANTARUM 2025; 177:e70063. [PMID: 39868657 DOI: 10.1111/ppl.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025]
Abstract
The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress. The overexpression of AsGAD1 significantly enhanced Cd tolerance of yeast or A. thaliana associated with improved endogenous GABA content, low oxidative damage, and high cell membrane stability and photochemical efficiency. Compared with wild type, AsGAD1-overexpressing plants or the atgad1 mutant maintained significantly lower or higher Cd content in leaf and root by down-regulating or up-regulating transcript levels of AtNRAMP1/2/3/4/5 and AtZIP1/2, respectively. Moreover, overexpression of AsGAD1 significantly up-regulated transcript levels of AtHMA1/3, contributing to better Cd compartmentalization from chloroplast into cytoplasm and then into vacuoles. AsGAD1 overexpression also induced expressions of AsMT1A/1B/1C/2/3, AsGSH1/2, and AsPCS1/2, indicating better capacity of Cd chelation in cytosol and vacuoles for Cd detoxification. Hence, AsGAD1-regulated detoxification mechanism of Cd could be related to Cd uptake, transport, and chelation. In addition, lipid contents (PC, PG, and DGDG) and the DGDG/MGDG and PC/PG ratios were improved by the AsGAD1 overexpression, which favors membrane stability and functionality under Cd stress. These findings provide new insight into the regulatory role of GAD1 in Cd tolerance in plants.
Collapse
Affiliation(s)
- Yilin Di
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yiqin Cao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dandan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland/Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Lan F, Zou X, Guo B, Zhou X, He D, Zhang Z, Luo JS, Dong C. Effect of pH on growth and Cd accumulation in different rice varieties under hydroponics. PLANT SIGNALING & BEHAVIOR 2024; 19:2399429. [PMID: 39229864 PMCID: PMC11376415 DOI: 10.1080/15592324.2024.2399429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Currently, applying lime to cadmium (Cd)-contaminated paddy fields to increase pH and reduce Cd availability is an effective method to control excessive Cd levels in rice grain. However, under hydroponic conditions, the impact of increased pH on Cd accumulation in different rice varieties remains unclear. This study employed three rice varieties (Yuzhenxiang, Shaoxiang 100, Xiangwanxian 12) with different Cd accumulation characteristics under different pH and long-term treatment with 1 μM CdCl2, to study the effect of pH on growth and Cd accumulation in different rice varieties. The result showed that as pH shifted from 5 to 8, the SPAD values, shoot dry weight, and plant height of the three rice varieties significantly decreased. The main root length, root volume, and root dry weight of Yuzhenxiang, and Shaoxiang100 significantly decreased. Conversely, the root architecture indicators of Xiangwanxian 12 did not change significantly. As for element accumulation, increasing the pH significantly increased the content of Mn in both the shoots and roots of all three varieties. Yuzhenxiang significantly reduced Cd content in both the shoots and roots of rice, while Shaoxiang100 significantly increased Cd content in both parts. Xiangwanxian 12 showed a significant increase in Cd content in the shoots but a decrease in the roots. In terms of subcellular distribution, Yuzhenxiang significantly reduced Cd concentrations in the cell wall and organelles of root cells, resulting in lower Cd concentrations in the root tissue. Conversely, Shaoxiang100 significantly increased Cd concentrations in the cell wall, organelles, and soluble fractions of root cells, leading to higher Cd concentrations in the root tissue. Xiangwanxian 12 also exhibited a decrease in Cd concentrations in the cell wall, organelles, and soluble fraction of root cells, resulting in lower Cd concentrations in the root tissue. Additionally, the expression of the OsNRAMP5 and OsHMA3 gene was significantly increased in Shaoxiang 100, while no significantly change in Yuzhenxiang and Xiangwanxian 12. These results provide important guidance on the impact of pH on Cd accumulation during the vegetative growth stage of different rice varieties.
Collapse
Affiliation(s)
- Falian Lan
- College of Resources, Hunan Agricultural University, Changsha, Hunan, China
| | - Xia Zou
- College of Resources, Hunan Agricultural University, Changsha, Hunan, China
| | - Bao Guo
- College of Resources, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaoyi Zhou
- College of Resources, Hunan Agricultural University, Changsha, Hunan, China
| | - Dawei He
- College of Resources, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin-Song Luo
- College of Resources, Hunan Agricultural University, Changsha, Hunan, China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, Hunan, China
- Hunan New Type Fertilizer Engineering and Technological Research Center, Changsha, Hunan, China
| |
Collapse
|
25
|
Xia W, Ghouri F, Zhong M, Bukhari SAH, Ali S, Shahid MQ. Rice and heavy metals: A review of cadmium impact and potential remediation techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177403. [PMID: 39510291 DOI: 10.1016/j.scitotenv.2024.177403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
In recent decades, the menace of heavy metals to food security and human health has become a serious concern. Given its status as the primary provider of food globally, significant research has been done to ensure the safe cultivation of rice, particularly concerning the mitigation of heavy metal contamination. Therefore, this article focuses on the effects and poisoning mechanism of heavy metals, primarily cadmium, on rice. Here, we have discussed the absorption, translocation, and toxicity mechanism of cadmium in rice and the external factors, such as soil pH, organic matter, microorganisms, and climate change, associated with this pollution. It also discusses in detail the sources of heavy metal pollution and the countermeasures against their effects on rice, such as the use of nanoparticles, biochar, plant growth regulators, nutrient management, molecular approaches, tolerant genotypes, and associated genes/proteins. Lastly, a number of significant research prospects concerning heavy metals in rice fields were suggested for future investigation. This review serves as a crucial reference for addressing the issue of heavy metal contamination in paddy fields, ensuring the safe cultivation of rice, promoting environmentally friendly fish farming practices, and safeguarding future food security and human health.
Collapse
Affiliation(s)
- Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Xu X, Mo Q, Cai Z, Jiang Q, Zhou D, Yi J. Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice. Int J Mol Sci 2024; 25:13237. [PMID: 39769000 PMCID: PMC11675829 DOI: 10.3390/ijms252413237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Rice (Oryza sativa), a globally significant staple crop, is crucial for ensuring human food security due to its high yield and quality. However, the intensification of industrial activities has resulted in escalating cadmium (Cd) pollution in agricultural soils, posing a substantial threat to rice production. To address this challenge, this review comprehensively analyzes rice promoters, with a particular focus on identifying and characterizing key cis-regulatory elements (CREs) within them. By elucidating the roles of these CREs in regulating Cd stress response and accumulation in rice, we aim to establish a scientific foundation for developing rice varieties with reduced Cd accumulation and enhanced tolerance. Furthermore, based on the current understanding of plant promoters and their associated CREs, our study identifies several critical research directions. These include the exploration of tissue-specific and inducible promoters, as well as the discovery of novel CREs specifically involved in the mechanisms of Cd uptake, transport, and detoxification in rice. Our findings not only contribute to the existing knowledge base on genetic engineering strategies for mitigating Cd contamination in rice but pave the way for future research aimed at enhancing rice's resilience to Cd pollution, ultimately contributing to the safeguarding of global food security.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.X.); (Q.M.); (Z.C.); (Q.J.); (D.Z.)
| |
Collapse
|
27
|
Hu Z, Cai X, Huang Y, Feng H, Cai L, Luo W, Liu G, Tang Y, Sirguey C, Morel JL, Qi H, Cao Y, Qiu R. Root Zn sequestration transporter heavy metal ATPase 3 from Odontarrhena chalcidica enhance Cd tolerance and accumulation in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135827. [PMID: 39276736 DOI: 10.1016/j.jhazmat.2024.135827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The Ni hyperaccumulator Odontarrhena chalcidica (formerly Alyssum murale), exhibits a significant capacity to accumulate Zn in the roots. However, the molecular mechanisms underlying the variation in Ni and Zn accumulation are poorly understood. Here, we isolated a homolog of heavy metal ATPase 3 from O. chalcidica (OcHMA3) and characterized its functions using heterologous systems. Phylogenetic analysis revealed that OcHMA3 protein shares 87.6 % identity with AtHMA3, with similar metal binding sites to other HMA3 proteins. Heterologous expression of OcHMA3 in yeast increased sensitivity to Cd, Ni and Zn, suggesting it functions as a broad-specificity transporter. Further investigation showed OcHMA3 is constitutively expressed in the roots and localized to the tonoplast. Overexpression of OcHMA3 in A. thaliana shoots increased its roots Zn concentrations by 41.9 % - 74.1 %. However, overexpression of OcHMA3 in roots enhanced its tolerance to Cd and increased roots Cd concentrations by 50.9 % - 90.6 %. Our findings indicated OcHMA3 is responsible for Zn sequestration in root vacuoles, likely leading to Zn retention in roots and subsequent Ni hyperaccumulation in shoots. This study elucidates the molecular mechanism of Ni and Zn accumulation in O. chalcidica, and identifies OcHMA3 as a potential gene for developing Zn-rich plants and for phytoextraction in Cd-contaminated soils.
Collapse
Affiliation(s)
- Zunhe Hu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yi Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Huayuan Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Liqi Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Weihua Luo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gan Liu
- China Energy Conservation DADI (Hangzhou) Environmental Remediation Co.,Ltd, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | | - Jean-Louis Morel
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Hua Qi
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Zhang QH, Chen YQ, Li ZB, Tan XT, Xin GR, He CT. Defense guard: strategies of plants in the fight against Cadmium stress. ADVANCED BIOTECHNOLOGY 2024; 2:44. [PMID: 39883385 PMCID: PMC11740865 DOI: 10.1007/s44307-024-00052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 01/31/2025]
Abstract
Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops. This review provides an extensive generality of molecular regulation mechanisms involved in Cd absorption, transport, detoxification, and tolerance in plants, highlighting key aspects of rhizosphere, apoplast barrier, Cd uptake, transfer, and cellular repair strategies under Cd stress. Additionally, we summarize the possible approaches for lowering the Cd accumulation crops, including molecular-assistant breeding, applying chemical materials, and microbial strategy to decrease Cd content in edible parts and improve Cd tolerance of crops under Cd stress. This review would provide valuable insights for cultivating low Cd accumulated crop cultivars, ultimately contributing to food safety.
Collapse
Affiliation(s)
- Qian-Hui Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
| | - Yi-Qi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
| | - Zhen-Bang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
| | - Xuan-Tong Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China
- Instrumental Analysis & Research Center, Guangdong Province, Sun Yat-Sen University, Guangzhou City, 510275, China
| | - Guo-Rong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.
| | - Chun-Tao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.
| |
Collapse
|
29
|
Zhao D, Wang P, Zhao FJ. Toxic Metals and Metalloids in Food: Current Status, Health Risks, and Mitigation Strategies. Curr Environ Health Rep 2024; 11:468-483. [PMID: 39352604 PMCID: PMC11588791 DOI: 10.1007/s40572-024-00462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Exposure to toxic metals/metalloids, such as arsenic (As), cadmium (Cd), and lead (Pb), through food consumption is a global public health concern. This review examines the contamination status of these metals/metalloids in food, assesses dietary intake across different populations, and proposes strategies to reduce metal/metalloid exposures throughout the food chain. RECENT FINDINGS For the general population, dietary intake of metals/metalloids is generally lower than health-based guidance values. However, for vulnerable populations, such as infants, children, and pregnant women, their dietary intake levels are close to or even higher than the guidance values. Among different food categories, seafood shows higher total As, but largely present as organic species. Rice accumulates higher As concentration than other cereals, with inorganic As (iAs) and dimethylarsinic acid (DMA) being the main As species. Methylated thioarsenate species, such as dimethylmonothioarsenate, have also been detected in rice. The distribution of iAs and DMA in rice shows geographical variation. Additionally, seafood and cocoa products generally contain more Cd than other food, but seafood consumption does not significantly increase in adverse health effects due to its high zinc and iron content. Compared to As and Cd, Pb concentrations in food are generally lower. To minimize the health risks of metal/metalloid exposure, several strategies are proposed. Food contamination with toxic metals/metalloids poses significant concerns for human health, particularly for vulnerable populations. This review provides scientific evidence and suggestions for policy makers to reduce human exposure of metals/metalloids via dietary intake.
Collapse
Affiliation(s)
- Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
30
|
Noor I, Sohail H, Akhtar MT, Cui J, Lu Z, Mostafa S, Hasanuzzaman M, Hussain S, Guo N, Jin B. From stress to resilience: Unraveling the molecular mechanisms of cadmium toxicity, detoxification and tolerance in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176462. [PMID: 39332719 DOI: 10.1016/j.scitotenv.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Soil contamination with cadmium (Cd) has become a global issue due to increasing human activities. Cd contamination poses threats to plant growth as well as jeopardizing food safety and human health through the accumulation of Cd in edible parts of plants. Unraveling the Cd toxicity mechanisms and responses of plants to Cd stress is critical for promoting plant growth and ensuring food safety in Cd-contaminated soils. Toxicological research on plant responses to heavy metal stress has extensively studied Cd, as it can disrupt multiple physiological processes. In addition to morpho-anatomical, hormonal, and biochemical responses, plants rapidly initiate transcriptional modifications to combat Cd stress-induced oxidative and genotoxic damage. Various families of transcription factors play crucial roles in triggering such responses. Moreover, epigenetic modifications have been identified as essential players in maintaining plant genome stability under genotoxic stress. Plants have developed several detoxification strategies to mitigate Cd-induced toxicity, such as cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. This review provides a comprehensive update on understanding of molecular mechanisms involved in Cd uptake, transportation, and detoxification, with a particular emphasis on the signaling pathways that involve transcriptional and epigenetic responses in plants. This review highlights the innovative strategies for enhancing Cd tolerance and explores their potential application in various crops. Furthermore, this review offers strategies for increasing Cd tolerance and limiting Cd bioavailability in edible parts of plants, thereby improving the safety of food crops.
Collapse
Affiliation(s)
- Iqra Noor
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Hamza Sohail
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Muhammad Tanveer Akhtar
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Jiawen Cui
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Zhaogeng Lu
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Salma Mostafa
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sajjad Hussain
- Citrus Centre, Texas A&M University-Kingsville, Weslaco 78599, United States of America
| | - Nan Guo
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Biao Jin
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China.
| |
Collapse
|
31
|
Li Y, Tao H, Cao H, Wan X, Liao X. Achieving synergistic benefits through integrated governance of cultivated cadmium contamination via multistakeholder collaboration. Nat Commun 2024; 15:9817. [PMID: 39537630 PMCID: PMC11561291 DOI: 10.1038/s41467-024-53626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Rice serves as a vital staple food, but its accumulation of cadmium (Cd) has sparked widespread concerns regarding food safety and ecosystem security. Here, we conducted a seven-year systematic field experiment in the Xiangjiang River Basin of China, where an integrated governance framework (IGF) was established to ensure rice safety. The IGF, tailored to geographical zoning and pollution gradation, includes targeted soil treatments, crop management strategies, and stakeholder engagement. The quality of both the soil and the crop was improved, with a reduction in soil Cd availability of 36%, and a decrease in Cd in rice grain of 57-78%. This framework not only addresses multiple challenges but also supports sustainable development goals (SDGs 2, 3, 6, 9) by fostering comprehensive synergies among science, policy, and local community participation. Our findings provide empirical guidance for safe rice production in Cd-contaminated areas and provide solid scientific-driven decision support globally.
Collapse
Affiliation(s)
- You Li
- Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huan Tao
- Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongying Cao
- Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoming Wan
- Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoyong Liao
- Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
32
|
Liu P, Sun L, Zhang Y, Tan Y, Zhu Y, Peng C, Wang J, Yan H, Mao D, Liang G, Liang G, Li X, Liang Y, Wang F, He Z, Tang W, Huang D, Chen C. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. MOLECULAR PLANT 2024; 17:1733-1752. [PMID: 39354718 DOI: 10.1016/j.molp.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024]
Abstract
Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuxing Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy ofAgricultural Sciences, Nanning 530007, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
33
|
Ahmad MZ, Chen S, Qi X, Feng J, Chen H, Liu X, Sun M, Deng Y. Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109182. [PMID: 39405998 DOI: 10.1016/j.plaphy.2024.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Aluminum toxicity poses a significant threat to plant growth, especially in acidic soils. Heavy metal ATPases (HMAs) are crucial for transporting heavy metal ions across plant cell membranes, yet their role in Al3+ transport remains unexplored. This study identified eight HmHMA genes in the genome of Hydrangea macrophylla, categorizing them into two major clades based on phylogenetic relationships. These genes were found unevenly distributed across six chromosomes. Detailed analysis of their physicochemical properties, collinearity, and gene structure was conducted. RNA-seq and qRT-PCR analyses revealed that specific HmHMA genes, notably HmHMA2, were predominantly expressed in roots and flowers under Al3+ stress, indicating their potential role in Al3+ tolerance. HmHMA2 showed significant expression in roots, especially under Al3+ stress conditions, and when expressed in yeast cells, it conferred resistance to aluminum and zinc but increased sensitivity to cadmium. Overexpression of HmHMA2 in hydrangea leaf discs significantly improved Al3+ tolerance, reduced oxidative stress markers like hydrogen peroxide and malondialdehyde, and enhanced antioxidant enzyme activity such as SOD, POD and CAT compared to controls. These findings shed lights on the potential role of HmHMAs in Al transport and tolerance in H. macrophylla.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xintong Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
34
|
Chen Y, Ding Z, Cao L, Zheng X, Zu Y, Li Z. Response of transporter proteins activities to Cd distribution in two wild rice roots. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117168. [PMID: 39405970 DOI: 10.1016/j.ecoenv.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024]
Abstract
To investigate the characteristics of Cd transport and distribution in the wild rice roots, Oryza rufupogon Griff. and Oryza officinalis Wall. were used at research materials. Pot experiment was conducted to study the effects of different concentrations of Cd (0, 1, 5, 15 and 30 mg∙kg-1) treatments on the root pectin content, root pectin methyl esterase(PME) activity, Cation/proton exchanger(CAX), heavy metal ATPase(HMA) and ATP-binding cassette protein(ABC) activities of wild rice. The difference in Cd flow rate of wild rice root was investigated through non-invasive micro-test technique (NMT). The results showed that the Cd in roots tended to increase with the increase of Cd treatment concentrations. Compared to the CK treatment (0 mg∙kg-1 Cd), the root pectin content of O. rufupogon and O. officinalis under 30 mg∙kg-1 Cd stress were significantly increased by 126.73 % and 109.69 %, respectively. The distribution of Cd contents in wild rice roots were all greater than those in shoots. Under Cd stress, the translocation factor of O. rufupogon (0.46-1.44) were all higher than those of O. officinalis (0.15-0.37). The Cd transport capacity in O. rufupogon was more stronger than in O. officinalis. The Cd content in the xylem sap of O. officinalis was lower than that of O. rufupogon. Compared to the CK, CAX and ABC activities in O. officinalis root under 30 mg∙kg-1 Cd treatment were significantly increased by 11.03 % and 2.37 %, respectively. HMA activity in O. rufupogon root was significantly increased by 4.95 %. Cd flow rate in the root xylem of O. officinalis was higher than that of O. rufupogon. In root cells, the subcellular distribution of Cd contents showed cell wall > soluble components> organelles. With the Cd treatment concentrations increased, the percentage of Cd content in the soluble fractions of the root cells of wild rice showed an increasing. In general, the result showed that O. officinalis immobilized more Cd in the roots by influencing the pectin methyl esterification reaction through PME activity. Under high Cd stress, Cd was immobilized in root cell vacuoles of O. officinalis by enhancing roots CAX and ABC activities, whereas HMA activities were enhanced of O. rufupogon to reduce the damage caused by Cd.
Collapse
Affiliation(s)
- Yue Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Zixiang Ding
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Li Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Xinxin Zheng
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, PR China.
| |
Collapse
|
35
|
Hu S, Chen J, Wang H, Ji E, Su X, Zhu M, Xiang X, Gong L, Zhou Q, Xiao X, Wu G, Zha H. The transcription factor OsNAC5 regulates cadmium accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117102. [PMID: 39332196 DOI: 10.1016/j.ecoenv.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Cadmium (Cd) is a hazardous heavy metal that threatens human health through the consumption of contaminated rice. To mitigate Cd accumulation in rice grains, it is crucial to reduce Cd uptake. Nevertheless, the transcriptional mechanisms governing Cd uptake in rice remain largely unknown. This research identifies the transcription factor OsNAC5 in Oryza sativa as a positive regulator of the Cd transporter gene OsNRAMP1, thereby influencing Cd uptake. OsNAC5 is predominantly expressed in the roots, resides in the nucleus, and is upregulated by Cd-induced hydrogen peroxide (H2O2). Knocking out OsNAC5 results in lower Cd concentrations in both shoots and roots and heightens sensitivity to Cd. The expression of OsNRAMP1, enhanced by Cd stress, is dependent on OsNAC5. OsNAC5 binds to "CATGTG" motifs in the OsNRAMP1 promoter, activating its expression. The loss of OsNAC5 function leads to reduced Cd accumulation in rice grains. Our findings provide insights into the transcriptional regulation of Cd stress response in rice and propose biotechnological strategies to lower Cd uptake in crops.
Collapse
Affiliation(s)
- Shubao Hu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Jinfen Chen
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Hui Wang
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Su
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Muyao Zhu
- College of Resources and Environment, Anhui Science and Technology University, Bengbu, China
| | - Xiaoyan Xiang
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Li Gong
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Xin Xiao
- College of Resources and Environment, Anqing Normal University, Anqing, China
| | - Ganlin Wu
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Anqing Normal University, Anqing, China.
| | - Hannie Zha
- College of Computer and Information, Anqing Normal University, Anqing 246003, China.
| |
Collapse
|
36
|
Li MZ, Hu DW, Liu XQ, Zhang R, Liu H, Tang Z, Zhao FJ, Huang XY. The OsZIP2 transporter is involved in root-to-shoot translocation and intervascular transfer of cadmium in rice. PLANT, CELL & ENVIRONMENT 2024; 47:3865-3881. [PMID: 38828861 DOI: 10.1111/pce.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Cadmium (Cd) is a toxic metal that poses serious threats to human health. Rice is a major source of dietary Cd but how rice plants transport Cd to the grain is not fully understood. Here, we characterize the function of the ZIP (ZRT, IRT-like protein) family protein, OsZIP2, in the root-to-shoot translocation of Cd and intervascular transfer of Cd in nodes. OsZIP2 is localized at the plasma membrane and exhibited Cd2+ transport activity when heterologously expressed in yeast. OsZIP2 is strongly expressed in xylem parenchyma cells in roots and in enlarged vascular bundles in nodes. Knockout of OsZIP2 significantly enhanced root-to-shoot translocation of Cd and alleviated the inhibition of root elongation by excess Cd stress; whereas overexpression of OsZIP2 decreased Cd translocation to shoots and resulted in Cd sensitivity. Knockout of OsZIP2 increased Cd allocation to the flag leaf but decreased Cd allocation to the panicle and grain. We further reveal that the variation of OsZIP2 expression level contributes to grain Cd concentration among rice germplasms. Our results demonstrate that OsZIP2 functions in root-to-shoot translocation of Cd in roots and intervascular transfer of Cd in nodes, which can be used for breeding low Cd rice varieties.
Collapse
Affiliation(s)
- Meng-Zhen Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Qian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 PMCID: PMC11536459 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Zonghe Zhu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Kejin Zhou
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| |
Collapse
|
38
|
Cheng Y, Liu R, Yang T, Yang S, Chen J, Huang Y, Long D, Zeng J, Wu D, Kang H, Fan X, Sha L, Zhang H, Zhou Y, Wang Y. Genetic factors of grain cadmium concentration in Polish wheat (Triticum polonicum L.). PLANT PHYSIOLOGY 2024; 196:979-995. [PMID: 38917222 DOI: 10.1093/plphys/kiae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human cadmium (Cd) intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation and distribution and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTLs) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL) population derived from 2 Polish wheat varieties (RIL_DT; dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16% to 17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A, and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; 3 other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPW genotypes of the RIL_DT population and 2 other natural populations, based on a Kompetitive allele-specific PCR marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.
Collapse
Affiliation(s)
- Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Rui Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Tian Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Shan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jia Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yiwen Huang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dan Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
39
|
Yin M, Wang S, Wang Y, Wei R, Liang Y, Zuo L, Huo M, Huang Z, Lang J, Zhao X, Zhang F, Xu J, Fu B, Li Z, Wang W. Impact of Abiotic Stress on Rice and the Role of DNA Methylation in Stress Response Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2700. [PMID: 39409570 PMCID: PMC11478684 DOI: 10.3390/plants13192700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
With the intensification of global climate change and the increasing complexity of agricultural environments, the improvement of rice stress tolerance is an important focus of current breeding research. This review summarizes the current knowledge on the impact of various abiotic stresses on rice and the associated epigenetic responses (DNA methylation). Abiotic stress factors, including high temperature, drought, cold, heavy metal pollution, and high salinity, have a negative impact on crop productivity. Epigenetic changes are key regulatory factors in plant stress responses, and DNA methylation is one of the earliest discovered and thoroughly studied mechanisms in these epigenetic regulatory mechanisms. The normal growth of rice is highly dependent on the environment, and changes in the environment can lead to rice sterility and severe yield loss. Changes in the regulation of the DNA methylation pathway are involved in rice's response to stress. Various DNA methylation-regulating protein complexes that function during rice development have been identified. Significant changes in DNA methylation occur in numerous stress-responsive genes, particularly those in the abscisic acid signaling pathway. These findings underscore the complex mechanisms of the abiotic stress response in rice. We propose the effective improvement of tolerance traits by regulating the epigenetic status of rice and emphasize the role of DNA methylation in abiotic stress tolerance, thereby addressing global climate change and ensuring food security.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shanwen Wang
- Southwest United Graduate School, Kunming 650092, China;
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Yanfang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Ronghua Wei
- Department of Agronomy, Hebei Agricultural University, Baoding 071001, China;
| | - Yawei Liang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Liying Zuo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Mingyue Huo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zekai Huang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Jie Lang
- Center of Innovation for Perennial Rice Technology in Yunnan, School of Agriculture, Yunnan University, Kunming 650091, China; (Z.H.); (J.L.)
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Fan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
| | - Zichao Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Zhong-Guan-Cun South Street 12#, Beijing 100081, China; (M.Y.); (Y.W.); (Y.L.); (L.Z.); (M.H.); (X.Z.); (F.Z.); (J.X.); (B.F.)
- Southwest United Graduate School, Kunming 650092, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
40
|
Guo Z, Guo J, Yu H, Huang H, Ye D, Liu T, Zhang X, Zhang L, Zheng Z, Wang Y, Li T. OsWNK9 regulates cadmium concentration in brown rice by restraining cadmium transport from straw to brown rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116810. [PMID: 39096692 DOI: 10.1016/j.ecoenv.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.
Collapse
Affiliation(s)
- Zhipeng Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Jingyi Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China; Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Lu Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China.
| |
Collapse
|
41
|
Zhu QY, Ren ML, Jiang YJ, He C, Ding ZJ, Zheng SJ, Wang ZG, Jin CW. Co-mutation of OsLPR1/3/4/5 provides a promising strategy to minimize Cd contamination in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135165. [PMID: 38996675 DOI: 10.1016/j.jhazmat.2024.135165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Minimizing cadmium (Cd) contamination in rice grains is crucial for ensuring food security and promoting sustainable agriculture. Utilizing genetic modification to generate rice varieties with low Cd accumulation is a promising strategy due to its cost-effectiveness and operational simplicity. Our study demonstrated that the CRISPR-Cas9-mediated quadruple mutation of the multicopper oxidase genes OsLPR1/3/4/5 in the japonica rice cultivar Tongjing 981 had little effect on yields. However, a notable increase was observed in the cell wall functional groups that bind with Cd. As a result, the quadruple mutation of OsLPR1/3/4/5 enhanced Cd sequestration within the cell wall while reducing Cd concentrations in both xylem and phloem sap, thereby inhibiting Cd transport from roots to shoots. Consequently, Cd concentrations in brown rice and husk in oslpr1/3/4/5 quadruple mutants (qm) decreased by 52% and 55%, respectively, compared to the wild-type. These findings illustrate that the quadruple mutation of OsLPR1/3/4/5 is an effective method for minimizing Cd contamination in rice grains without compromising yields. Therefore, the quadruple mutation of OsLPR1/3/4/5 via biotechnological pathways may represent a valuable strategy for the generation of new rice varieties with low Cd accumulation.
Collapse
Affiliation(s)
- Qing Yang Zhu
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Meng Lian Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yi Jie Jiang
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China
| | - Ze Gang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China.
| | - Chong Wei Jin
- State Key Laboratory of Plant Environmental Resilience, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
42
|
Liu J, Fan X, Ni J, Cai M, Cai D, Jiang Y, Mo A, Miran W, Peng T, Long X, Yang F. Mitigation of uranium toxicity in rice by Sphingopyxis sp. YF1: Evidence from growth, ultrastructure, subcellular distribution, and physiological characteristics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108958. [PMID: 39053315 DOI: 10.1016/j.plaphy.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Uranium (U) contamination of rice is an urgent ecological and agricultural problem whose effective alleviation is in great demand. Sphingopyxis genus has been shown to remediate heavy metal-contaminated soils. Rare research delves into the mitigation of uranium (U) toxicity to rice by Sphingopyxis genus. In this study, we exposed rice seedlings for 7 days at U concentrations of 0, 10, 20, 40, and 80 mg L-1 with or without the Sphingopyxis sp. YF1 in the rice nutrient solution. Here, we firstly found YF1 colonized on the root of rice seedlings, significantly mitigated the growth inhibition, and counteracted the chlorophyll content reduction in leaves induced by U. When treated with 1.1 × 107 CFU mL-1 YF1 with the amendment of 10 mg L-1 U, the decrease of U accumulation in rice seedling roots and shoots was the largest among all treatments; reduced by 39.3% and 32.1%, respectively. This was associated with the redistribution of the U proportions in different organelle parts, leading to the alleviation of the U damage to the morphology and structure of rice root. Interestingly, we found YF1 significantly weakens the expression of antioxidant enzymes genes (CuZnSOD,CATA,POD), promotes the up-regulation of metal-transporters genes (OsHMA3 and OsHMA2), and reduces the lipid peroxidation damage induced by U in rice seedlings. In summary, YF1 is a plant-probiotic with potential applications for U-contaminated rice, benefiting producers and consumers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Danping Cai
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Jiang
- The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Waheed Miran
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tangjian Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xizi Long
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fei Yang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
43
|
Hassan H, Elaksher SH, Shabala S, Ouyang B. Cadmium uptake and detoxification in tomato plants: Revealing promising targets for genetic improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108968. [PMID: 39074436 DOI: 10.1016/j.plaphy.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Cadmium (Cd) is a hazardous heavy metal known for its detrimental effects on plants, human health, and the environment. This review article delves into the dynamics of Cd uptake, long-distance transport, and its impact on plant performance, with a specific focus on tomato plants. The process of Cd uptake by roots and its subsequent long-distance transport in the xylem and phloem are explored to understand how Cd influences plants operation. The toxic effects of Cd on tomato plants are discussed, highlighting on the challenges it poses to plant growth and development. Furthermore, the review investigates various Cd tolerance mechanisms in plants, including avoidance or exclusion by the root cell wall, root-to-shoot translocation, detoxification pathways, and antioxidative defence systems against Cd-induced stress. In addition, the transcriptomic analyses of tomato plants under Cd stress provide insights into the molecular responses and adaptations of plants to Cd toxicity. Overall, this comprehensive review enhances our understanding of Cd-plant interactions and reveal promising genes for tomato genetic improvement to increase its tolerance to cadmium.
Collapse
Affiliation(s)
- Heba Hassan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China; Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Salma Hassan Elaksher
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Qalyubia, Egypt.
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Liu C, Wen L, Cui Y, Ahammed GJ, Cheng Y. Metal transport proteins and transcription factor networks in plant responses to cadmium stress. PLANT CELL REPORTS 2024; 43:218. [PMID: 39153039 DOI: 10.1007/s00299-024-03303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.
Collapse
Affiliation(s)
- Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Lang Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Yijia Cui
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yuan Cheng
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China.
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
45
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
46
|
Song Q, Zhao Y, Wu F, Guo X, Yu H, Li J, Li W, Wang Y, Li M, Xu J. Physiological and molecular responses of strawberry plants to Cd stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108800. [PMID: 38905729 DOI: 10.1016/j.plaphy.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Cadmium (Cd), a toxic metal element, can be absorbed by plants via divalent metal ion transporters, thereby retarding plant growth and posing a threat to human health. Strawberries are popular and economically valuable berry species that are sensitive to soil pollutants, especially Cd. However, the mechanisms underlying Cd stress responses in strawberry plants remain largely unclear. Here, we investigated the physiological and molecular basis of Cd stress responses in strawberry plants using the diploid strawberry 'Yellow Wonder' as a material. The results indicated that Cd stress induced oxidative damage, repressed photosynthetic efficiency, and interfered with the accumulation and redistribution of trace elements. Furthermore, Cd stress reduced the concentrations of indoleacetic acid, trans-zeatin riboside and gibberellic acid while increasing the concentration of abscisic acid, thus altering the phytohormone signaling pathway in strawberry plants. Cd stress also inhibited the expression of genes involved in nitrogen uptake and assimilation while promoting the energy supply for plant survival under Cd toxicity. Moreover, the flavonoid biosynthesis pathway was induced, and the anthocyanin concentration increased, thereby improving the free radical scavenging capacity of strawberry plants under Cd toxicity. Additionally, we identified several transcription factors and functional genes as hub genes based on a weighted gene coexpression network analysis. These results collectively provide a theoretical foundation for strawberry breeding and ensuring agriculture and food safety.
Collapse
Affiliation(s)
- Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yuan Zhao
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Fei Wu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoyu Guo
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Hao Yu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Yanfang Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Meng Li
- Department of Pharmacy and Biotechnology, Zibo Vocational Institute, Zibo, 255300, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China; Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
47
|
Sui F, Yang Y, Wu Y, Yan J, Fu H, Li C, Qin S, Wang L, Zhang W, Gao W, Liu H, Zhao P. Cadmium Minimization in Grains of Maize and Wheat Grown on Smelting-Impacted Land Ameliorated by Limestone. TOXICS 2024; 12:532. [PMID: 39195634 PMCID: PMC11359027 DOI: 10.3390/toxics12080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024]
Abstract
Cadmium (Cd) contamination in agricultural soils has emerged as a significant concern, particularly due to its potential impact on plant-based food. Soil pH reductions can exacerbate Cd mobility, leading to excessive accumulation in crops. While liming has been demonstrated as an effective method to mitigate Cd accumulation in rice grains in acid soils of southern China, its efficacy in remediating acid soils in northern China remains unclear. In this study, a multi-year field experiment was conducted on farmland impacted by zinc ore smelting at coordinates of 33.92° N 112.46° E to investigate the use of limestone for controlling Cd accumulation in wheat and maize grains. The results indicated that applying 7.5 t ha-1 of limestone significantly raised the soil pH from 4.5 to 6.8 as anticipated. Different rates of limestone application (2.25, 4.45, and 7.50 t ha-1) reduced Cd bioavailability in the soil by 20-54%, and Cd accumulation in wheat grains by 5-38% and maize grains by 21-63%, without yield penalty. The remediation effects were sustained for at least 27 months, highlighting limestone as a promising ameliorant for smelting-affected farmland in northern China.
Collapse
Affiliation(s)
- Fuqing Sui
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Yanzheng Yang
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Yong Wu
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Jiali Yan
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
| | - Haichao Fu
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Chang Li
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Shiyu Qin
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Long Wang
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Wenwen Zhang
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Wei Gao
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Hongen Liu
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| | - Peng Zhao
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (F.S.); (Y.Y.); (Y.W.); (H.F.); (C.L.); (S.Q.); (L.W.); (W.Z.); (W.G.); (H.L.)
| |
Collapse
|
48
|
Zhong S, Li X, Fang L, Bai J, Gao R, Huang Y, Huang Y, Liu Y, Liu C, Yin H, Liu T, Huang F, Li F. Multifunctional Roles of Zinc in Cadmium Transport in Soil-Rice Systems: Novel Insights from Stable Isotope Fractionation and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12467-12476. [PMID: 38966939 DOI: 10.1021/acs.est.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40‰, Δ66Znshoot-root = -0.36 to -0.27‰) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.
Collapse
Affiliation(s)
- Songxiong Zhong
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jianghao Bai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ruichuan Gao
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yingmei Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuhui Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
49
|
Yamamoto T, Kashihara K, Furuta T, Zhang Q, Yu E, Ma JF. Genetic background influences mineral accumulation in rice straw and grains under different soil pH conditions. Sci Rep 2024; 14:15139. [PMID: 38956423 PMCID: PMC11220084 DOI: 10.1038/s41598-024-66036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors. In grains, Cd, As, Mn, Cu, Ni, Mo, Ca, and Mg accumulation was influenced by both pH and varietal factors, whereas Zn, Fe, and P accumulation was affected by varietal factors, and K accumulation was not altered. Only As, Mn, Ca and Mg showed similar trends in the straw and grains, whereas the pH responses of Zn, P, K, and Ni differed between them. pH and flowering time had synergistic effects on Cd, Zn, and Mn in straw and on Cd, Ni, Mo, and Mn in grains. Soil pH is a major factor influencing mineral uptake in rice straw and grains, and genetic factors, flowering stage factors, and their interaction with soil pH contribute in a combined manner.
Collapse
Affiliation(s)
- Toshio Yamamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| | - Kazunari Kashihara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Tomoyuki Furuta
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Qian Zhang
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - En Yu
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- College of Agronomy, Anhui Agriculture University, Hefei, 230036, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
50
|
Huang S, Yamaji N, Ma JF. Metal Transport Systems in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:1-25. [PMID: 38382903 DOI: 10.1146/annurev-arplant-062923-021424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plants take up metals, including essential micronutrients [iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn)] and the toxic heavy metal cadmium (Cd), from soil and accumulate these metals in their edible parts, which are direct and indirect intake sources for humans. Multiple transporters belonging to different families are required to transport a metal from the soil to different organs and tissues, but only a few of them have been fully functionally characterized. The transport systems (the transporters required for uptake, translocation, distribution, redistribution, and their regulation) differ with metals and plant species, depending on the physiological roles, requirements of each metal, and anatomies of different organs and tissues. To maintain metal homeostasis in response to spatiotemporal fluctuations of metals in soil, plants have developed sophisticated and tightly regulated mechanisms through the regulation of transporters at the transcriptional and/or posttranscriptional levels. The manipulation of some transporters has succeeded in generating crops rich in essential metals but low in Cd accumulation. A better understanding of metal transport systems will contribute to better and safer crop production.
Collapse
Affiliation(s)
- Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; , ,
| |
Collapse
|