1
|
Hsin J, Yazejian RM, Pajanoja C, Kerosuo L. Shared and individual expression patterns of pluripotency genes in the developing chick embryo during neurulation and beyond. Differentiation 2025; 144:100866. [PMID: 40449070 DOI: 10.1016/j.diff.2025.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 06/02/2025]
Abstract
The neural crest (NC) is a transient population of pluripotent-like, pleistopotent stem cells that emerges early in vertebrate development. These cells play a pivotal role in generating a diverse array of tissues, including the craniofacial bone and cartilage, the entire peripheral nervous system, melanocytes of the skin, certain cardiac structures, and chromaffin cells of the adrenal medulla, among others. The stem cell potential of neural crest cells (NCCs) has long intrigued developmental biologists, as the NC originates post-gastrulation in the ectoderm, yet NCCs also give rise to derivatives typically associated with mesodermal or endodermal origins. Recent work has shown that NCCs co-express factors known from the core pluripotency complex from the pre-gastrulation stages in the epiblast, which enables their exceptionally high stem cell potential. However, detailed spatiotemporal data on pluripotency factor expression in vertebrate embryos remain limited, and the distinction between the function of co-expression of pluripotency genes versus their individual expression in the developing embryo is not clear. In this study, to elucidate the NCC formation process across axial levels as well as the putative different roles of these stem cell genes during early embryogenesis, we used multi-channel fluorescent in situ hybridization to comprehensively examine the anterior-to-posterior expression of pluripotency factors PouV (Oct4), Nanog, Klf4 and Lin28A in chick embryos across key developmental stages, from Hamburger and Hamilton (HH) stage 5 to stage 14. From head to trunk, we find that while the early ectoderm, including the future epidermis and central nervous system (CNS) domains, in the neural fold stages broadly co-express these genes, their expression profiles differ significantly after neurulation. Nanog expression remains in the hindbrain and vagal migratory NCCs. Klf4 strongly marks the developing floor plate, and Klf4, PouV and Lin28A are expressed also in the neural tube that forms the CNS as well as in the developing somites, implying additional roles for these factors during embryogenesis.
Collapse
Affiliation(s)
- Jenny Hsin
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA; Biointerface Group, Department of Engineering, University of Cambridge, Cambridge, UK; UAB Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita M Yazejian
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA
| | - Ceren Pajanoja
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Kerosuo
- National Institute of Dental and Craniofacial Research, Intramural Research Program, Neural Crest Development and Disease Unit, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
York JR, Rao A, Huber PB, Schock EN, Montequin A, Rigney S, LaBonne C. Shared features of blastula and neural crest stem cells evolved at the base of vertebrates. Nat Ecol Evol 2024; 8:1680-1692. [PMID: 39060477 PMCID: PMC11520720 DOI: 10.1038/s41559-024-02476-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
The neural crest is a vertebrate-specific stem cell population that helped drive the origin and evolution of vertebrates. A distinguishing feature of these cells is their multi-germ layer potential, which has parallels to another stem cell population-pluripotent stem cells of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks of a jawed vertebrate, Xenopus, and a jawless vertebrate, lamprey. We reveal an ancient evolutionary origin of shared regulatory factors in these gene regulatory networks that dates to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5, we show that a lamprey pou5 orthologue is expressed in animal pole cells but is absent from neural crest. Both lamprey and Xenopus pou5 promote neural crest formation, suggesting that pou5 activity was lost from the neural crest of jawless vertebrates or acquired along the jawed vertebrate stem. Finally, we provide evidence that pou5 acquired novel, neural crest-enhancing activity after evolving from an ancestral pou3-like clade. This work provides evidence that both the neural crest and blastula pluripotency networks arose at the base of the vertebrates and that this may be linked to functional evolution of pou5.
Collapse
Affiliation(s)
- Joshua R York
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Anjali Rao
- Research Department, Gilead Sciences, Foster City, CA, USA
| | - Paul B Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Elizabeth N Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Andrew Montequin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sara Rigney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- National Institute for Theory and Mathematics in Biology, Chicago, IL, USA.
| |
Collapse
|
3
|
Li-Bao L, Díaz-Díaz C, Raiola M, Sierra R, Temiño S, Moya FJ, Rodriguez-Perales S, Santos E, Giovinazzo G, Bleckwehl T, Rada-Iglesias Á, Spitz F, Torres M. Regulation of Myc transcription by an enhancer cluster dedicated to pluripotency and early embryonic expression. Nat Commun 2024; 15:3931. [PMID: 38729993 PMCID: PMC11087473 DOI: 10.1038/s41467-024-48258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
MYC plays various roles in pluripotent stem cells, including the promotion of somatic cell reprogramming to pluripotency, the regulation of cell competition and the control of embryonic diapause. However, how Myc expression is regulated in this context remains unknown. The Myc gene lies within a ~ 3-megabase gene desert with multiple cis-regulatory elements. Here we use genomic rearrangements, transgenesis and targeted mutation to analyse Myc regulation in early mouse embryos and pluripotent stem cells. We identify a topologically-associated region that homes enhancers dedicated to Myc transcriptional regulation in stem cells of the pre-implantation and early post-implantation embryo. Within this region, we identify elements exclusively dedicated to Myc regulation in pluripotent cells, with distinct enhancers that sequentially activate during naive and formative pluripotency. Deletion of pluripotency-specific enhancers dampens embryonic stem cell competitive ability. These results identify a topologically defined enhancer cluster dedicated to early embryonic expression and uncover a modular mechanism for the regulation of Myc expression in different states of pluripotency.
Collapse
Affiliation(s)
- Lin Li-Bao
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro Andaluz de Biología del Desarrollo (CABD), Sevilla, Spain
| | - Covadonga Díaz-Díaz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rocío Sierra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Elisa Santos
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Tore Bleckwehl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Álvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Francois Spitz
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
4
|
York JR, Rao A, Huber PB, Schock EN, Montequin A, Rigney S, LaBonne C. Shared features of blastula and neural crest stem cells evolved at the base of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572714. [PMID: 38187687 PMCID: PMC10769357 DOI: 10.1101/2023.12.21.572714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The neural crest is vertebrate-specific stem cell population that helped drive the origin and evolution of the vertebrate clade. A distinguishing feature of these stem cells is their multi-germ layer potential, which has drawn developmental and evolutionary parallels to another stem cell population-pluripotent embryonic stem cells (animal pole cells or ES cells) of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks (GRNs) in both jawed ( Xenopus ) and jawless (lamprey) vertebrates. Through comparative gene expression analysis and transcriptomics, we reveal an ancient evolutionary origin of shared regulatory factors between neural crest and pluripotency GRNs that dates back to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5 (formerly oct4), we show that the lamprey genome encodes a pou5 ortholog that is expressed in animal pole cells, as in jawed vertebrates, but is absent from the neural crest. However, gain-of-function experiments show that both lamprey and Xenopus pou5 enhance neural crest formation, suggesting that pou5 was lost from the neural crest of jawless vertebrates. Finally, we show that pou5 is required for neural crest specification in jawed vertebrates and that it acquired novel neural crest-enhancing activity after evolving from an ancestral pou3 -like clade that lacks this functionality. We propose that a pluripotency-neural crest GRN was assembled in stem vertebrates and that the multi-germ layer potential of the neural crest evolved by deploying this regulatory program.
Collapse
|
5
|
Phelps WA, Hurton MD, Ayers TN, Carlson AE, Rosenbaum JC, Lee MT. Hybridization led to a rewired pluripotency network in the allotetraploid Xenopus laevis. eLife 2023; 12:e83952. [PMID: 37787392 PMCID: PMC10569791 DOI: 10.7554/elife.83952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
After fertilization, maternally contributed factors to the egg initiate the transition to pluripotency to give rise to embryonic stem cells, in large part by activating de novo transcription from the embryonic genome. Diverse mechanisms coordinate this transition across animals, suggesting that pervasive regulatory remodeling has shaped the earliest stages of development. Here, we show that maternal homologs of mammalian pluripotency reprogramming factors OCT4 and SOX2 divergently activate the two subgenomes of Xenopus laevis, an allotetraploid that arose from hybridization of two diploid species ~18 million years ago. Although most genes have been retained as two homeologous copies, we find that a majority of them undergo asymmetric activation in the early embryo. Chromatin accessibility profiling and CUT&RUN for modified histones and transcription factor binding reveal extensive differences in predicted enhancer architecture between the subgenomes, which likely arose through genomic disruptions as a consequence of allotetraploidy. However, comparison with diploid X. tropicalis and zebrafish shows broad conservation of embryonic gene expression levels when divergent homeolog contributions are combined, implying strong selection to maintain dosage in the core vertebrate pluripotency transcriptional program, amid genomic instability following hybridization.
Collapse
Affiliation(s)
- Wesley A Phelps
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Matthew D Hurton
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Taylor N Ayers
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Anne E Carlson
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Joel C Rosenbaum
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Miler T Lee
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
6
|
Gonçalves TM, Stewart CL, Baxley SD, Xu J, Li D, Gabel HW, Wang T, Avraham O, Zhao G. Towards a comprehensive regulatory map of Mammalian Genomes. RESEARCH SQUARE 2023:rs.3.rs-3294408. [PMID: 37841836 PMCID: PMC10571623 DOI: 10.21203/rs.3.rs-3294408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Genome mapping studies have generated a nearly complete collection of genes for the human genome, but we still lack an equivalently vetted inventory of human regulatory sequences. Cis-regulatory modules (CRMs) play important roles in controlling when, where, and how much a gene is expressed. We developed a training data-free CRM-prediction algorithm, the Mammalian Regulatory MOdule Detector (MrMOD) for accurate CRM prediction in mammalian genomes. MrMOD provides genome position-fixed CRM models similar to the fixed gene models for the mouse and human genomes using only genomic sequences as the inputs with one adjustable parameter - the significance p-value. Importantly, MrMOD predicts a comprehensive set of high-resolution CRMs in the mouse and human genomes including all types of regulatory modules not limited to any tissue, cell type, developmental stage, or condition. We computationally validated MrMOD predictions used a compendium of 21 orthogonal experimental data sets including thousands of experimentally defined CRMs and millions of putative regulatory elements derived from hundreds of different tissues, cell types, and stimulus conditions obtained from multiple databases. In ovo transgenic reporter assay demonstrates the power of our prediction in guiding experimental design. We analyzed CRMs located in the chromosome 17 using unsupervised machine learning and identified groups of CRMs with multiple lines of evidence supporting their functionality, linking CRMs with upstream binding transcription factors and downstream target genes. Our work provides a comprehensive base pair resolution annotation of the functional regulatory elements and non-functional regions in the mammalian genomes.
Collapse
Affiliation(s)
| | | | | | - Jason Xu
- Missouri University of Science & Technology
| | - Daofeng Li
- Washington University School of Medicine
| | | | - Ting Wang
- Washington University School of Medicine
| | | | | |
Collapse
|
7
|
Bakhmet EI, Tomilin AN. Key features of the POU transcription factor Oct4 from an evolutionary perspective. Cell Mol Life Sci 2021; 78:7339-7353. [PMID: 34698883 PMCID: PMC11072838 DOI: 10.1007/s00018-021-03975-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023]
Abstract
Oct4, a class V POU-domain protein that is encoded by the Pou5f1 gene, is thought to be a key transcription factor in the early development of mammals. This transcription factor plays indispensable roles in pluripotent stem cells as well as in the acquisition of pluripotency during somatic cell reprogramming. Oct4 has also been shown to play a role as a pioneer transcription factor during zygotic genome activation (ZGA) from zebrafish to human. However, during the past decade, several studies have brought these conclusions into question. It was clearly shown that the first steps in mouse development are not affected by the loss of Oct4. Subsequently, the role of Oct4 as a genome activator was brought into doubt. It was also found that the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) could proceed without Oct4. In this review, we summarize recent findings, reassess the role of Oct4 in reprogramming and ZGA, and point to structural features that may underlie this role. We speculate that pluripotent stem cells resemble neural stem cells more closely than previously thought. Oct4 orthologs within the POUV class hold key roles in genome activation during early development of species with late ZGA. However, in Placentalia, eutherian-specific proteins such as Dux overtake Oct4 in ZGA and endow them with the formation of an evolutionary new tissue-the placenta.
Collapse
Affiliation(s)
- Evgeny I Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Alexey N Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Zhu Z, Zhou X, Chen D, Lu K, Lu Y. Effects of feeder cells on proliferation of inducible pluripotent stem cells in chicken. Biotech Histochem 2021; 97:159-167. [PMID: 34024235 DOI: 10.1080/10520295.2021.1918767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although inducible pluripotent stem cells (iPSC) have been identified in poultry, the induction efficiency is low, because different culture media, feeder cells and feeder layer treatments affect the efficiency of somatic cell reprogramming. We investigated improvement of the feeder culture system for induction of chicken iPSC by comparing the effects of different types and treatments of feeder cells on the growth and proliferation of chicken iPSC. Mouse embryo fibroblasts (MEF), but not Sandoz inbred mouse-derived thioguanine-resistant and ouabain-buffalo rat cells, were suitable feeder cells that supported proliferation of chicken iPSC. Institute of Cancer Research (ICR) mice, but not Kunming mice, were suitable for preparing MEF that support cell proliferation. Also, MEF feeder cells that had been inactivated by mitomycin C were effective. Leukemia inhibitory factor was not required for chicken iPSC culture when MEF feeder cells were used. The optimal feeder culture system for growth and proliferation of chicken iPSC consisted of MEF feeder cells derived from ICR mice that were inactivated by mitomycin C combined with embryonic germ cell culture medium.
Collapse
Affiliation(s)
- Ziying Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Xueliang Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Dongyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi Province, P. R. China
| |
Collapse
|
9
|
Choi HJ, Jin SD, Rengaraj D, Kim JH, Pain B, Han JY. Differential transcriptional regulation of the NANOG gene in chicken primordial germ cells and embryonic stem cells. J Anim Sci Biotechnol 2021; 12:40. [PMID: 33658075 PMCID: PMC7931612 DOI: 10.1186/s40104-021-00563-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Background NANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells (PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well characterized in ESCs, and transcriptional regulation of NANOG is well established in these cells. Although NANOG plays a key role in germ cells, the molecular mechanism underlying its transcriptional regulation in PGCs has not been studied. Therefore, we investigated the mechanism that regulates transcription of the chicken NANOG (cNANOG) gene in PGCs and ESCs. Results We first identified the transcription start site of cNANOG by 5′-rapid amplification of cDNA ends PCR analysis. Then, we measured the promoter activity of various 5′ flanking regions of cNANOG in chicken PGCs and ESCs using the luciferase reporter assay. cNANOG expression required transcriptional regulatory elements, which were positively regulated by POU5F3 (OCT4) and SOX2 and negatively regulated by TP53 in PGCs. The proximal region of the cNANOG promoter contains a positive transcriptional regulatory element (CCAAT/enhancer-binding protein (CEBP)-binding site) in ESCs. Furthermore, small interfering RNA-mediated knockdown demonstrated that POU5F3, SOX2, and CEBP played a role in cell type-specific transcription of cNANOG. Conclusions We show for the first time that different trans-regulatory elements control transcription of cNANOG in a cell type-specific manner. This finding might help to elucidate the mechanism that regulates cNANOG expression in PGCs and ESCs.
Collapse
Affiliation(s)
- Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Dam Jin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin Hwa Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Bertrand Pain
- Univ Lyon, Universite ́Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, 69500, Bron, France
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea. .,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
10
|
Salem NA, Mahnke AH, Tseng AM, Garcia CR, Jahromi HK, Geoffroy CG, Miranda RC. A novel Oct4/Pou5f1-like non-coding RNA controls neural maturation and mediates developmental effects of ethanol. Neurotoxicol Teratol 2021; 83:106943. [PMID: 33221301 PMCID: PMC7856281 DOI: 10.1016/j.ntt.2020.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
Prenatal ethanol exposure can result in loss of neural stem cells (NSCs) and decreased brain growth. Here, we assessed whether a noncoding RNA (ncRNA) related to the NSC self-renewal factor Oct4/Pou5f1, and transcribed from a processed pseudogene locus on mouse chromosome 9 (mOct4pg9), contributed to the loss of NSCs due to ethanol. Mouse fetal cortical-derived NSCs, cultured ex vivo to mimic the early neurogenic environment of the fetal telencephalon, expressed mOct4pg9 ncRNA at significantly higher levels than the parent Oct4/Pou5f1 mRNA. Ethanol exposure increased expression of mOct4pg9 ncRNA, but decreased expression of Oct4/Pou5f1. Gain- and loss-of-function analyses indicated that mOct4pg9 overexpression generally mimicked effects of ethanol exposure, resulting in increased proliferation and expression of transcripts associated with neural maturation. Moreover, mOct4pg9 associated with Ago2 and with miRNAs, including the anti-proliferative miR-328-3p, whose levels were reduced following mOct4pg9 overexpression. Finally, mOct4pg9 inhibited Oct4/Pou5f1-3'UTR-dependent protein translation. Consistent with these observations, data from single-cell transcriptome analysis showed that mOct4pg9-expressing progenitors lack Oct4/Pou5f1, but instead overexpress transcripts for increased mitosis, suggesting initiation of transit amplification. Collectively, these data suggest that the inhibitory effects of ethanol on brain development are explained, in part, by a novel ncRNA which promotes loss of NSC identity and maturation.
Collapse
Affiliation(s)
- Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cadianna R Garcia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hooman K Jahromi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
11
|
Prajapati RS, Hintze M, Streit A. PRDM1 controls the sequential activation of neural, neural crest and sensory progenitor determinants. Development 2019; 146:dev.181107. [PMID: 31806661 DOI: 10.1242/dev.181107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
During early embryogenesis, the ectoderm is rapidly subdivided into neural, neural crest and sensory progenitors. How the onset of lineage determinants and the loss of pluripotency markers are temporally and spatially coordinated in vivo is still debated. Here, we identify a crucial role for the transcription factor PRDM1 in the orderly transition from epiblast to defined neural lineages in chick. PRDM1 is initially expressed broadly in the entire epiblast, but becomes gradually restricted as cell fates are specified. We find that PRDM1 is required for the loss of some pluripotency markers and the onset of neural, neural crest and sensory progenitor specifier genes. PRDM1 directly activates their expression by binding to their promoter regions and recruiting the histone demethylase Kdm4a to remove repressive histone marks. However, once neural lineage determinants become expressed, they in turn repress PRDM1, whereas prolonged PRDM1 expression inhibits neural, neural crest and sensory progenitor genes, suggesting that its downregulation is necessary for cells to maintain their identity. Therefore, PRDM1 plays multiple roles during ectodermal cell fate allocation.
Collapse
Affiliation(s)
- Ravindra S Prajapati
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Mark Hintze
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
12
|
Whitworth DJ, Limnios IJ, Gauthier ME, Weeratunga P, Ovchinnikov DA, Baillie G, Grimmond SM, Graves JAM, Wolvetang EJ. Platypus Induced Pluripotent Stem Cells: The Unique Pluripotency Signature of a Monotreme. Stem Cells Dev 2019; 28:151-164. [PMID: 30417748 DOI: 10.1089/scd.2018.0179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The platypus (Ornithorhynchus anatinus) is an egg-laying monotreme mammal whose ancestors diverged ∼166 million years ago from the evolutionary pathway that eventually gave rise to both marsupial and eutherian mammals. Consequently, its genome is an extraordinary amalgam of both ancestral reptilian and derived mammalian features. To gain insight into the evolution of mammalian pluripotency, we have generated induced pluripotent stem cells from the platypus (piPSCs). Deep sequencing of the piPSC transcriptome revealed that piPSCs robustly express the core eutherian pluripotency factors POU5F1/OCT4, SOX2, and NANOG. Given the more extensive role of SOX3 over SOX2 in avian pluripotency, our data indicate that between 315 and 166 million years ago, primitive mammals replaced the role of SOX3 in the vertebrate pluripotency network with SOX2. DAX1/NR0B1 is not expressed in piPSCs and an analysis of the platypus DAX1 promoter revealed the absence of a proximal SOX2-binding DNA motif known to be critical for DAX1 expression in eutherian pluripotent stem cells, suggesting that the acquisition of SOX2 responsiveness by DAX1 has facilitated its recruitment into the pluripotency network of eutherians. Using the RNAseq data, we were also able to demonstrate that in both fibroblasts and piPSCs, the expression ratio of X chromosomes to autosomes (X1-5 X1-5:AA) is approximately equal to 1, indicating that there is no upregulation of X-linked genes. Finally, the RNAseq data also allowed us to explore the process of X-linked gene inactivation in the platypus, where we determined that for any given gene, there is no preference for silencing of the maternal or paternal allele; that is, within a population of cells, the silencing of X-linked genes is not imprinted.
Collapse
Affiliation(s)
- Deanne J Whitworth
- 1 School of Veterinary Science, University of Queensland, Gatton, Australia.,2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Ioannis J Limnios
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia.,3 Research School of Biology, Australian National University, Acton, Australia.,4 Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | | | | | - Dmitry A Ovchinnikov
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Gregory Baillie
- 5 Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Sean M Grimmond
- 5 Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | | | - Ernst J Wolvetang
- 2 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| |
Collapse
|
13
|
Onikubo T, Shechter D. Chaperone-mediated chromatin assembly and transcriptional regulation in Xenopus laevis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:271-276. [PMID: 27759155 DOI: 10.1387/ijdb.130188ds] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chromatin is the complex of DNA and histone proteins that is the physiological form of the eukaryotic genome. Chromatin is generally repressive for transcription, especially so during early metazoan development when maternal factors are explicitly in control of new zygotic gene expression. In the important model organism Xenopus laevis, maturing oocytes are transcriptionally active with reduced rates of chromatin assembly, while laid eggs and fertilized embryos have robust rates of chromatin assembly and are transcriptionally repressed. As the DNA-to-cytoplasmic ratio decreases approaching the mid-blastula transition (MBT) and the onset of zygotic genome activation (ZGA), the chromatin assembly process changes with the concomitant reduction in maternal chromatin components. Chromatin assembly is mediated in part by histone chaperones that store maternal histones and release them into new zygotic chromatin. Here, we review literature on chromatin and transcription in frog embryos and cell-free extracts and highlight key insights demonstrating the roles of maternal and zygotic histone deposition and their relationship with transcriptional regulation. We explore the central historical and recent literature on the use of Xenopus embryos and the key contributions provided by experiments in cell-free oocyte and egg extracts for the interplay between histone chaperones, chromatin assembly, and transcriptional regulation. Ongoing and future studies in Xenopus cell free extracts will likely contribute essential new insights into the interplay between chromatin assembly and transcriptional regulation.
Collapse
Affiliation(s)
- Takashi Onikubo
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
14
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
15
|
Solana J, Irimia M, Ayoub S, Orejuela MR, Zywitza V, Jens M, Tapial J, Ray D, Morris Q, Hughes TR, Blencowe BJ, Rajewsky N. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians. eLife 2016; 5. [PMID: 27502555 PMCID: PMC4978528 DOI: 10.7554/elife.16797] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI:http://dx.doi.org/10.7554/eLife.16797.001 Stem cells are specialized cells found in all animals that can develop into several different types of mature cells. Stem cells are therefore well suited for maintaining organs that are in heavy use, such as the intestine, and for regenerating tissues that are prone to injury, like the skin. One reason why stem cells differ from mature cell types is because they activate, or “express”, different sets of genes. In addition, many genes can be expressed as one of several versions. These variants, also known as isoforms, are generated by a process called alternative splicing. In mature cells in mammals, a group of proteins called the MBNL proteins help to prevent the expression of gene isoforms that are characteristic to stem cells. The adult flatworm Schmidtea mediterranea contains stem cells that can regenerate any part of the body. Solana, Irimia et al. have now investigated whether alternative splicing is important for controlling how the worm’s stem cells behave. After establishing which gene isoforms are expressed in the stem cells and the mature cells, the levels of different sets of proteins that control alternative splicing were experimentally reduced. The results indicate that just as seen in mammals, the MBNL proteins reduce the expression of stem cell-related gene isoforms in the flatworms. Furthermore, Solana, Irimia et al. found that another protein called CELF counteracts MBNL proteins by helping to express gene isoforms that are active in stem cells. The interplay between the MBNL and CELF proteins has also been observed in human cells. Thus, it appears that this way of controlling alternative splicing is common to flatworms and mammals and is therefore evolutionarily ancient. This suggests that other similar ways of controlling stem cells by interactions between regulatory proteins might be working in all animal stem cells. Further studies are now needed to investigate these control proteins. DOI:http://dx.doi.org/10.7554/eLife.16797.002
Collapse
Affiliation(s)
- Jordi Solana
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Salah Ayoub
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marta Rodriguez Orejuela
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Vera Zywitza
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marvin Jens
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Javier Tapial
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Quaid Morris
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
16
|
Evolution and functions of Oct4 homologs in non-mammalian vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:770-9. [PMID: 27058398 DOI: 10.1016/j.bbagrm.2016.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
PouV class transcription factor Oct4/Pou5f1 is a central regulator of indefinite pluripotency in mammalian embryonic stem cells (ESCs) but also participates in cell lineage specification in mouse embryos and in differentiating cell cultures. The molecular basis for this versatility, which is shared between Oct4 and its non-mammalian homologs Pou5f1 and Pou5f3, is not yet completely understood. Here, I review the current understanding of the evolution of PouV class transcription factors and discuss equivalent and diverse roles of Oct4 homologs in pluripotency, differentiation, and cell behavior in different vertebrate embryos. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
17
|
Nakanoh S, Fuse N, Takahashi Y, Agata K. Verification of chicken Nanog as an epiblast marker and identification of chicken PouV as Pou5f3 by newly raised antibodies. Dev Growth Differ 2015; 57:251-63. [DOI: 10.1111/dgd.12205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Shota Nakanoh
- Department of Biophysics; Graduate School of Science; Kyoto University; Sakyo-Ku Kyoto 606-8502 Japan
| | - Naoyuki Fuse
- RIKEN Center for Developmental Biology; Kobe Hyogo 650-0047 Japan
| | - Yoshiko Takahashi
- Department of Zoology; Graduate School of Science; Kyoto University; Sakyo-ku Kyoto 606-8502 Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency (JST); Kawaguchi Saitama 332-0012 Japan
| | - Kiyokazu Agata
- Department of Biophysics; Graduate School of Science; Kyoto University; Sakyo-Ku Kyoto 606-8502 Japan
| |
Collapse
|
18
|
Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, Johnson AD, Gering M, Ruzov A. 5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics 2014; 7:383-9. [DOI: 10.4161/epi.19375] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
19
|
Abstract
The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency.
Collapse
Affiliation(s)
- David A Gold
- Department of Ecology and Evolution, University of California, Los Angeles
| | - Ruth D Gates
- Department of Ecology and Evolution, University of California, Los Angeles
| | - David K Jacobs
- Department of Ecology and Evolution, University of California, Los Angeles
| |
Collapse
|
20
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|
21
|
YE B, Dai Z, Liu B, Wang R, Li C, Huang G, Wang S, Xia P, Yang X, Kuwahara K, Sakaguchi N, Fan Z. Pcid2 Inactivates Developmental Genes in Human and Mouse Embryonic Stem Cells to Sustain Their Pluripotency by Modulation of EID1 Stability. Stem Cells 2014; 32:623-35. [DOI: 10.1002/stem.1580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Buqing YE
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Zhonghua Dai
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Rui Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Chong Li
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xuan Yang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Kazuhiko Kuwahara
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Nobuo Sakaguchi
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| |
Collapse
|
22
|
Spangenberg L, Correa A, Dallagiovanna B, Naya H. Role of alternative polyadenylation during adipogenic differentiation: an in silico approach. PLoS One 2013; 8:e75578. [PMID: 24143171 PMCID: PMC3797115 DOI: 10.1371/journal.pone.0075578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/14/2013] [Indexed: 01/22/2023] Open
Abstract
Post-transcriptional regulation of stem cell differentiation is far from being completely understood. Changes in protein levels are not fully correlated with corresponding changes in mRNAs; the observed differences might be partially explained by post-transcriptional regulation mechanisms, such as alternative polyadenylation. This would involve changes in protein binding, transcript usage, miRNAs and other non-coding RNAs. In the present work we analyzed the distribution of alternative transcripts during adipogenic differentiation and the potential role of miRNAs in post-transcriptional regulation. Our in silico analysis suggests a modest, consistent, bias in 3'UTR lengths during differentiation enabling a fine-tuned transcript regulation via small non-coding RNAs. Including these effects in the analyses partially accounts for the observed discrepancies in relative abundance of protein and mRNA.
Collapse
Affiliation(s)
- Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Alejandro Correa
- Instituto Carlos Chagas, Fiocruz-Paraná, Curitiba, Paraná, Brazil
| | | | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República
| |
Collapse
|
23
|
Leichsenring M, Maes J, Mössner R, Driever W, Onichtchouk D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 2013; 341:1005-9. [PMID: 23950494 DOI: 10.1126/science.1242527] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of multicellular animals is initially controlled by maternal gene products deposited in the oocyte. During the maternal-to-zygotic transition, transcription of zygotic genes commences, and developmental control starts to be regulated by zygotic gene products. In Drosophila, the transcription factor Zelda specifically binds to promoters of the earliest zygotic genes and primes them for activation. It is unknown whether a similar regulation exists in other animals. We found that zebrafish Pou5f1, a homolog of the mammalian pluripotency transcription factor Oct4, occupies SOX-POU binding sites before the onset of zygotic transcription and activates the earliest zygotic genes. Our data position Pou5f1 and SOX-POU sites at the center of the zygotic gene activation network of vertebrates and provide a link between zygotic gene activation and pluripotency control.
Collapse
Affiliation(s)
- Manuel Leichsenring
- Developmental Biology Unit, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Nakanoh S, Okazaki K, Agata K. Inhibition of MEK and GSK3 Supports ES Cell-like Domed Colony Formation from Avian and Reptile Embryos. Zoolog Sci 2013; 30:543-52. [DOI: 10.2108/zsj.30.543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shota Nakanoh
- Department of Biophysics, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Okazaki
- Department of Biophysics, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
25
|
Jean C, Aubel P, Soleihavoup C, Bouhallier F, Voisin S, Lavial F, Pain B. Pluripotent genes in avian stem cells. Dev Growth Differ 2012; 55:41-51. [DOI: 10.1111/dgd.12021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 01/17/2023]
Affiliation(s)
| | | | | | | | | | - Fabrice Lavial
- Centre de Cancérologie de Lyon, INSERM, U1052, CNRS, UMR5286; Centre Léon Bérard; Université de Lyon; Lyon; France
| | | |
Collapse
|
26
|
De Melo Bernardo A, Sprenkels K, Rodrigues G, Noce T, Chuva De Sousa Lopes SM. Chicken primordial germ cells use the anterior vitelline veins to enter the embryonic circulation. Biol Open 2012; 1:1146-52. [PMID: 23213395 PMCID: PMC3507194 DOI: 10.1242/bio.20122592] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/28/2012] [Indexed: 11/23/2022] Open
Abstract
During gastrulation, chicken primordial germ cells (PGCs) are present in an extraembryonic region of the embryo from where they migrate towards the genital ridges. This is also observed in mammals, but in chicken the vehicle used by the migratory PGCs is the vascular system. We have analysed the migratory pathway of chicken PGCs, focusing on the period of transition from the extraembryonic region to the intraembryonic vascular system. Our findings show that at Hamburger and Hamilton developmental stage HH12–HH14 the majority of PGCs concentrate axially in the sinus terminalis and favour transport axially via the anterior vitelline veins into the embryonic circulation. Moreover, directly blocking the blood flow through the anterior vitelline veins resulted in an accumulation of PGCs in the anterior region and a decreased number of PGCs in the genital ridges. We further confirmed the key role for the anterior vitelline veins in the correct migration of PGCs using an ex ovo culture method that resulted in defective morphogenetic development of the anterior vitelline veins. We propose a novel model for the migratory pathway of chicken PGCs whereby the anterior vitelline veins play a central role at the extraembryonic and embryonic interface. The chicken model of PGC migration through the vasculature may be a powerful tool to study the process of homing (inflammation and metastasis) due to the striking similarities in regulatory signaling pathways (SDF1–CXCR4) and the transient role of the vasculature.
Collapse
Affiliation(s)
- Ana De Melo Bernardo
- Department of Anatomy and Embryology, Leiden University Medical Center , Einthovenweg 20, 2333 ZC Leiden , The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Sérandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C, Palierne G, Gheeraert C, Barloy-Hubler F, Péron CL, Madigou T, Durand E, Froguel P, Staels B, Lefebvre P, Métivier R, Eeckhoute J, Salbert G. Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res 2012; 40:8255-65. [PMID: 22730288 PMCID: PMC3458548 DOI: 10.1093/nar/gks595] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Enhancers are developmentally controlled transcriptional regulatory regions whose activities are modulated through histone modifications or histone variant deposition. In this study, we show by genome-wide mapping that the newly discovered deoxyribonucleic acid (DNA) modification 5-hydroxymethylcytosine (5hmC) is dynamically associated with transcription factor binding to distal regulatory sites during neural differentiation of mouse P19 cells and during adipocyte differentiation of mouse 3T3-L1 cells. Functional annotation reveals that regions gaining 5hmC are associated with genes expressed either in neural tissues when P19 cells undergo neural differentiation or in adipose tissue when 3T3-L1 cells undergo adipocyte differentiation. Furthermore, distal regions gaining 5hmC together with H3K4me2 and H3K27ac in P19 cells behave as differentiation-dependent transcriptional enhancers. Identified regions are enriched in motifs for transcription factors regulating specific cell fates such as Meis1 in P19 cells and PPARγ in 3T3-L1 cells. Accordingly, a fraction of hydroxymethylated Meis1 sites were associated with a dynamic engagement of the 5-methylcytosine hydroxylase Tet1. In addition, kinetic studies of cytosine hydroxymethylation of selected enhancers indicated that DNA hydroxymethylation is an early event of enhancer activation. Hence, acquisition of 5hmC in cell-specific distal regulatory regions may represent a major event of enhancer progression toward an active state and participate in selective activation of tissue-specific genes.
Collapse
Affiliation(s)
- Aurélien A Sérandour
- Université de Rennes 1, CNRS UMR6290, Team SP@RTE, Campus de Beaulieu, Rennes F-35042, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chakraborty C, Agoramoorthy G. Stem cells in the light of evolution. Indian J Med Res 2012; 135:813-9. [PMID: 22825600 PMCID: PMC3410208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
All organisms depend on stem cells for their survival. As a result, stem cells may be a prerequisite for the evolution of specific characteristics in organisms that include regeneration, multicellularity and coloniality. Stem cells have attracted the attention of biologists and medical scientists for a long time. These provide materials for regenerative medicine. We review in this paper, the link between modern stem cell research and early studies in ancient organisms. It also outlines details on stem cells in the light of evolution with an emphasis on their regeneration potential, coloniality and multicellularity. The information provided might be of use to molecular biologists, medical scientists and developmental biologists who are engaged in integrated research involving the stem cells.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Medical Biotechnology Division, School of Bio-Sciences & Technology, VIT University, Vellore, India
| | - Govindasamy Agoramoorthy
- College of Environmental & Health Sciences, Tajen University, Pingtung, Taiwan; Kailash Cancer Hospital & Research Center, Goraj, Gujarat, India,Reprint requests: Dr G. Agoramoorthy, Distinguished Research Professor, College of Environmental & Health Sciences, Tajen University, Yanpu, Pingtung 907, Taiwan e-mail:
| |
Collapse
|
29
|
Acloque H, Lavial F, Pain B. Astacin-like metallo-endopeptidase is dynamically expressed in embryonic stem cells and embryonic epithelium during morphogenesis. Dev Dyn 2012; 241:574-82. [DOI: 10.1002/dvdy.23737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2011] [Indexed: 01/15/2023] Open
|
30
|
Onichtchouk D. Pou5f1/oct4 in pluripotency control: insights from zebrafish. Genesis 2012; 50:75-85. [PMID: 21913309 DOI: 10.1002/dvg.20800] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 12/16/2022]
Abstract
Gastrulation in vertebrates is a conserved process, which involves transition from cellular pluripotency to early precursors of ectoderm, mesoderm, and endoderm. Pluripotency control during this stage is far from being understood. Recent genetic and transcriptomic studies in zebrafish suggest that the core pluripotency transcription factors (TFs) Pou5f1 and TFs of the SoxB1 group are critically involved in large-scale temporal coordination of gene expression during gastrulation. A significant number of evolutionary conserved target genes of Pou5f1 in zebrafish are also involved in stem-cell circuit in mammalian ES cell cultures. Here, I will review the roles of Pou5f1 in development and discuss the evolutionary conservation of Pou5f1 functions and their relation to pluripotency control.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| |
Collapse
|
31
|
Theunissen TW, Costa Y, Radzisheuskaya A, van Oosten AL, Lavial F, Pain B, Castro LFC, Silva JCR. Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development 2011; 138:4853-65. [PMID: 22028025 PMCID: PMC3201656 DOI: 10.1242/dev.068775] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pluripotency is a developmental ground state that can be recreated by direct reprogramming. Establishment of pluripotency is crucially dependent on the homeodomain-containing transcription factor Nanog. Compared with other pluripotency-associated genes, however, Nanog shows relatively low sequence conservation. Here, we investigated whether Nanog orthologs have the capacity to orchestrate establishment of pluripotency in Nanog(-/-) somatic cells. Mammalian, avian and teleost orthologs of Nanog enabled efficient reprogramming to full pluripotency, despite sharing as little as 13% sequence identity with mouse Nanog. Nanog orthologs supported self-renewal of pluripotent cells in the absence of leukemia inhibitory factor, and directly regulated mouse Nanog target genes. Related homeodomain transcription factors showed no reprogramming activity. Nanog is distinguished by the presence of two unique residues in the DNA recognition helix of its homeodomain, and mutations in these positions impaired reprogramming. On the basis of genome analysis and homeodomain identity, we propose that Nanog is a vertebrate innovation, which shared an ancestor with the Bsx gene family prior to the vertebrate radiation. However, cephalochordate Bsx did not have the capacity to replace mouse Nanog in reprogramming. Surprisingly, the Nanog homeodomain, a short sequence that contains the only recognizable conservation between Nanog orthologs, was sufficient to induce naive pluripotency in Nanog(-/-) somatic cells. This shows that control of the pluripotent state resides within a unique DNA-binding domain, which appeared at least 450 million years ago in a common ancestor of vertebrates. Our results support the hypothesis that naive pluripotency is a generic feature of vertebrate development.
Collapse
Affiliation(s)
- Thorold W Theunissen
- Wellcome Trust Centre for Stem Cell Research and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu Y, West FD, Jordan BJ, Mumaw JL, Jordan ET, Gallegos-Cardenas A, Beckstead RB, Stice SL. Avian-induced pluripotent stem cells derived using human reprogramming factors. Stem Cells Dev 2011; 21:394-403. [PMID: 21970437 DOI: 10.1089/scd.2011.0499] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Avian species are important model animals for developmental biology and disease research. However, unlike in mice, where clonal lines of pluripotent stem cells have enabled researchers to study mammalian gene function, clonal and highly proliferative pluripotent avian cell lines have been an elusive goal. Here we demonstrate the generation of avian induced pluripotent stem cells (iPSCs), the first nonmammalian iPSCs, which were clonally isolated and propagated, important attributes not attained in embryo-sourced avian cells. This was accomplished using human pluripotency genes rather than avian genes, indicating that the process in which mammalian and nonmammalian cells are reprogrammed is a conserved process. Quail iPSCs (qiPSCs) were capable of forming all 3 germ layers in vitro and were directly differentiated in culture into astrocytes, oligodendrocytes, and neurons. Ultimately, qiPSCs were capable of generating live chimeric birds and incorporated into tissues from all 3 germ layers, extraembryonic tissues, and potentially the germline. These chimera competent qiPSCs and in vitro differentiated cells offer insight into the conserved nature of reprogramming and genetic tools that were only previously available in mammals.
Collapse
Affiliation(s)
- Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | | | | | | | | | | | | | | |
Collapse
|