1
|
Zhang S, Sun C. Ecological divergence of marine bacteria Alteromonas mediterranea. Mol Phylogenet Evol 2025; 208:108359. [PMID: 40262702 DOI: 10.1016/j.ympev.2025.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
Alteromonas mediterranea, originally designated as A. macleodii, is a deep-sea ecotype that plays an important ecological role in the ocean. However, a comprehensive understanding of their biogeographic distribution and evolutionary histories remains limited. In this study, our analysis indicated that A. mediterranea members could adapt contrasting marine ecosystems and flourish in nutrient-rich habitats such as feces and coral reefs. No significant correlations between the relative abundance of A. mediterranea members and the environmental variables were identified. Phylogenetic analysis and geographic patterns of A. mediterranea strains suggested that they could be clustered into two clades (clade Ⅰ and clade Ⅱ). In contrast, many distinct genomic traits exist between these clades, such as the complete genes encoding cytochrome o ubiquinol oxidase only involved in clade Ⅱ. Genes were more likely to be lost in the evolutionary history of A. mediterranea relatives. Gene loss might be a major force in all phylogenetic groups driving the distinct clades. Adaptation to different biotopes resulted in the functional differentiation of A. mediterranea members, with the loss of genes encoding carbohydrate-active enzymes. Genes acquired horizontally from unclassified bacteria, and Proteobacteria represented by Gammaproteobacteria played key roles in the functional diversification of A. mediterranea in marine habitats. Given these data, these results are useful for information supplementation of A. mediterranea strains, particularly for making significant advances in understanding marine microbial ecology within different clonal frames using genome-wide recruitments.
Collapse
Affiliation(s)
- Shuangfei Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan 570228, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Chongran Sun
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan 570228, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
2
|
Hou L, Zhao Z, Steger-Mähnert B, Jiao N, Herndl GJ, Zhang Y. Microbial metabolism in laboratory reared marine snow as revealed by a multi-omics approach. MICROBIOME 2025; 13:114. [PMID: 40329386 PMCID: PMC12054258 DOI: 10.1186/s40168-025-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/19/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Marine snow represents an organic matter-rich habitat and provides substrates for diverse microbial populations in the marine ecosystem. However, the functional diversity and metabolic interactions within the microbial community inhabiting marine snow remain largely underexplored, particularly for specific metabolic pathways involved in marine snow degradation. Here, we used a multi-omics approach to explore the microbial response to laboratory-reared phytoplankton-derived marine snow. RESULTS Our results demonstrated a dramatic shift in both taxonomic and functional profiles of the microbial community after the formation of phytoplankton-derived marine snow using a rolling tank system. The changes in microbial metabolic processes were more pronounced in the metaproteome than in the metagenome in response to marine snow. Fast-growing taxa within the Gammaproteobacteria were the most dominant group at both the metagenomic and metaproteomic level. These Gammaproteobacteria possessed a variety of carbohydrate-active enzymes (CAZymes) and transporters facilitating substrate cleavage and uptake, respectively. Analysis of metagenome-assembled genomes (MAGs) revealed that the response to marine snow amendment was primarily mediated by Alteromonas, Vibrio, and Thalassotalea. Among these, Alteromonas exclusively expressing auxiliary activities 2 (AA2) of the CAZyme subfamily were abundant in both the free-living (FL) and marine snow-attached (MA) microbial communities. Thus, Alteromonas likely played a pivotal role in the degradation of marine snow. The enzymes of AA2 produced by these Alteromonas MAGs are capable of detoxifying peroxide intermediates generated during the breakdown of marine snow into smaller poly- and oligomers, providing available substrates for other microorganisms within the system. In addition, Vibrio and Thalassotalea MAGs exhibited distinct responses to these hydrolysis products of marine snow in different size fractions, suggesting a distinct niche separation. Although chemotaxis proteins were found to be enriched in the proteome of all three MAGs, differences in transporter proteins were identified as the primary factor contributing to the niche separation between these two groups. Vibrio in the FL fraction predominantly utilized ATP-binding cassette transporters (ABCTs), while Thalassotalea MAGs in the MA fraction primarily employed TonB-dependent outer membrane transporters (TBDTs). CONCLUSIONS Our findings shed light on the essential metabolic interactions within marine snow-degrading microbial consortia, which employ complementary physiological mechanisms and survival strategies to effectively scavenge marine snow. This work advances our understanding of the fate of marine snow and the role of microbes in carbon sequestration in the ocean. Video Abstract.
Collapse
Affiliation(s)
- Lei Hou
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zihao Zhao
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Barbara Steger-Mähnert
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands.
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Sher D, George EE, Wietz M, Gifford S, Zoccarato L, Weissberg O, Koedooder C, Valiya Kalladi WB, Barreto Filho MM, Mireles R, Malavin S, Liddor Naim M, Idan T, Shrivastava V, Itelson L, Sade D, Abu Hamoud A, Soussan-Farhat Y, Barak N, Karp P, Moore LR. Collaborative metabolic curation of an emerging model marine bacterium, Alteromonas macleodii ATCC 27126. PLoS One 2025; 20:e0321141. [PMID: 40273159 PMCID: PMC12021255 DOI: 10.1371/journal.pone.0321141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Inferring the metabolic capabilities of an organism from its genome is a challenging process, relying on computationally-derived or manually curated metabolic networks. Manual curation can correct mistakes in the draft network and add missing reactions based on the literature, but requires significant expertise and is often the bottleneck for high-quality metabolic reconstructions. Here, we present a synopsis of a community curation workshop for the model marine bacterium Alteromonas macleodii ATCC 27126 and its genome database in BioCyc, focusing on pathways for utilizing organic carbon and nitrogen sources. Due to the scarcity of biochemical information or gene knock-outs, the curation process relied primarily on published growth phenotypes and bioinformatic analyses, including comparisons with related Alteromonas strains. We report full pathways for the utilization of the algal polysaccharides alginate and pectin in contrast to inconclusive evidence for one-carbon metabolism and mixed acid fermentation, in accordance with the lack of growth on methanol and formate. Pathways for amino acid degradation are ubiquitous across Alteromonas macleodii strains, yet enzymes in the pathways for the degradation of threonine, tryptophan and tyrosine were not identified. Nucleotide degradation pathways are also partial in ATCC 27126. We postulate that demonstrated growth on nitrate as sole nitrogen source proceeds via a nitrate reductase pathway that is a hybrid of known pathways. Our evidence highlights the value of joint and interactive curation efforts, but also shows major knowledge gaps regarding Alteromonas metabolism. The manually-curated metabolic reconstruction is available as a "Tier-2" database on BioCyc.
Collapse
Affiliation(s)
- Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Emma E. George
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Scott Gifford
- Department of Earth, Marine and Environmental Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Luca Zoccarato
- Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Bioinformatics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Osnat Weissberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | - Raul Mireles
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,
| | - Stas Malavin
- Israel Oceanographic and Limnological Research, Haifa, Israel
- Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Michal Liddor Naim
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Idan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vibhaw Shrivastava
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Lynne Itelson
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Dagan Sade
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alhan Abu Hamoud
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Yara Soussan-Farhat
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Noga Barak
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Peter Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| |
Collapse
|
4
|
Quinlan ZA, Nelson CE, Koester I, Petras D, Nothias L, Comstock J, White BM, Aluwihare LI, Bailey BA, Carlson CA, Dorrestein PC, Haas AF, Wegley Kelly L. Microbial Community Metabolism of Coral Reef Exometabolomes Broadens the Chemodiversity of Labile Dissolved Organic Matter. Environ Microbiol 2025; 27:e70064. [PMID: 40108841 PMCID: PMC11923415 DOI: 10.1111/1462-2920.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/22/2025]
Abstract
Dissolved organic matter (DOM) comprises diverse compounds with variable bioavailability across aquatic ecosystems. The sources and quantities of DOM can influence microbial growth and community structure with effects on biogeochemical processes. To investigate the chemodiversity of labile DOM in tropical reef waters, we tracked microbial utilisation of over 3000 untargeted mass spectrometry ion features exuded from two coral and three algal species. Roughly half of these features clustered into over 500 biologically labile spectral subnetworks annotated to diverse structural superclasses, including benzenoids, lipids, organic acids, heterocyclics and phenylpropanoids, comprising on average one-third of the ion richness and abundance within each chemical class. Distinct subsets of these labile compounds were exuded by algae and corals during the day and night, driving differential microbial growth and substrate utilisation. This study expands the chemical diversity of labile marine DOM with implications for carbon cycling in coastal environments.
Collapse
Affiliation(s)
| | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and TechnologyUniversity of Hawaiʻi at MānoaHonoluluHawaiʻiUSA
| | - Irina Koester
- Scripps Institution of Oceanography, UC San DiegoLa JollaCaliforniaUSA
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San DiegoLa JollaCaliforniaUSA
- Controlling Microbes to Fight Infections Cluster of ExcellenceUniversity of TuebingenTuebingenGermany
| | - Louis‐Felix Nothias
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San DiegoLa JollaCaliforniaUSA
- Université Côte d'Azur, CNRS, ICNNiceFrance
| | - Jacqueline Comstock
- Department of EcologyEvolution and Marine Biology and Marine Science Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | - Brandie M. White
- Department of Mathematics and StatisticsSan Diego State UniversitySan DiegoCaliforniaUSA
| | | | - Barbara A. Bailey
- Department of Mathematics and StatisticsSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Craig A. Carlson
- Department of EcologyEvolution and Marine Biology and Marine Science Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical Sciences, UC San DiegoLa JollaCaliforniaUSA
| | - Andreas F. Haas
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht UniversityTexelthe Netherlands
| | | |
Collapse
|
5
|
Stephens BM, Stincone P, Petras D, English CJ, Opalk K, Giovannoni S, Carlson CA. Oxidation state of bioavailable dissolved organic matter influences bacterioplankton respiration and growth efficiency. Commun Biol 2025; 8:145. [PMID: 39880889 PMCID: PMC11779884 DOI: 10.1038/s42003-025-07574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Oxygen consumption by oceanic microbes can predict respiration (CO2 production) but requires an assumed respiratory quotient (RQ; ΔO2/ΔCO2). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.39 ± 0.14, similar to predictions for complete consumption of plankton biomass. DOM removed with an elevated nominal oxidation state (i.e., more oxidized DOM), as detected by liquid chromatography-tandem mass spectrometry, coincided with increased hydrolyzable amino acid removal, increased ARQs and bacterioplankton respiration (BR), and a decreased bacterioplankton growth efficiency (BGE). Across experiments, evidence emerged that nitrification and DOM partial oxidation, driven in part by bacterioplankton members of OM43, SAR92 and Rhodobacteraceae, can elevate BR relative to bacterioplankton consumption of plankton-derived carbon. These rare synoptic measurements of interrelated variables reveal complex biochemical and cellular processes underlying variability in large-scale CO2 production estimates.
Collapse
Affiliation(s)
- Brandon M Stephens
- Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan.
| | - Paolo Stincone
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, 72076, Tuebingen, Germany
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, 72076, Tuebingen, Germany
- Department of Biochemistry, University of California, Riverside, CA, USA
| | - Chance J English
- Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Keri Opalk
- Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | | | - Craig A Carlson
- Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
6
|
Pozas-Schacre C, Bischoff H, Raviglione D, Chaib S, Clerissi C, Bonnard I, Maggy MN. Invasive macroalgae shape chemical and microbial waterscapes on coral reefs. Commun Biol 2025; 8:16. [PMID: 39762374 PMCID: PMC11704319 DOI: 10.1038/s42003-024-07433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Over the past decades, human impacts have changed the structure of tropical benthic reef communities towards coral depletion and macroalgal proliferation. However, how these changes have modified chemical and microbial waterscapes is poorly known. Here, we assessed how the experimental removal of macroalgal assemblages influences the chemical and microbial composition of two reef boundary layers, the benthic and the momentum. Chemical and microbial waterscapes were spatially structured, both horizontally and vertically, according to macroalgal dominance and boundary layers. Microbes associated with reef degradation were enriched in the boundary layers surrounding macroalgal-dominated substrata. Dominant macroalgae were surrounded by a distinct chemical pool of diverse lipid classes (e.g., diterpenoids and glycerolipids) and labile organic matter (e.g., organooxygen compounds), which diffused from algal tissues to boundary layers according to their polarity. Finally, our results highlighted strong co-variations between specific algal-derived metabolites and planktonic microbes, giving insight into their roles in coral reef functioning and resilience.
Collapse
Affiliation(s)
- Chloé Pozas-Schacre
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France.
| | - Hugo Bischoff
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE BP 1013, Papeto'ai, Mo'orea, French Polynesia
| | - Delphine Raviglione
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Plateau MSXM plateforme Bio2Mar, Université de Perpignan, Perpignan, France
| | - Slimane Chaib
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Camille Clerissi
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d'Excellence "CORAIL", Perpignan, France
| | - Isabelle Bonnard
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Plateau MSXM plateforme Bio2Mar, Université de Perpignan, Perpignan, France
- Laboratoire d'Excellence "CORAIL", Perpignan, France
| | - M Nugues Maggy
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
- Laboratoire d'Excellence "CORAIL", Perpignan, France
| |
Collapse
|
7
|
Wang S, Flipo N, Garnier J, Romary T. Bayesian inversion of bacterial physiology and dissolved organic carbon biodegradability on water incubation data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177252. [PMID: 39486544 DOI: 10.1016/j.scitotenv.2024.177252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
In aquatic ecosystems, dissolved organic carbon (DOC) plays a significant role in the global carbon cycle. Microorganisms mineralize biodegradable DOC, releasing greenhouse gases (carbon dioxide, methane) into the atmosphere. Extensive research has focused on the concentrations and biodegradability of DOC in aquatic systems worldwide. However, little attention has been given to uncertainties regarding the physiological characteristics of heterotrophic bacteria, which are crucial for biogeochemical modeling. In this study, the physiological properties of heterotrophic bacteria and the properties of DOC biodegradability in water are inferred through a Bayesian inversion approach. To achieve this, treated and natural water samples collected from the Seine River basin, were inoculated and incubated in laboratory. During incubation, the concentrations of DOC and heterotrophic bacteria biomass were measured. Then, a multiple Monte Carlo Markov Chains method and the HSB model (High-weight polymers, Substrate, heterotrophic Bacteria) are applied on the water incubation data. The results indicate a higher biodegradable fraction of DOC in natural water compared to treated water and significant variability in the fraction of fast biodegradable DOC within 5 days in both water samples. The significant variability highlights the uncertainties/challenges in the HSB model parameterization. The seven water samples used in the paper serve as a proof of concept. They are from various origins and display the potential of the method to identify parameter values in a large range of values. Because mortality rate of heterotrophic bacteria at 20 ∘C (kd20) showed a remarkable stability at 0.013 h-1, we considered that this parameter can be fixed at this value. The maximum growth rates at 20 ∘C (μmax20) was 0.061 h-1 while optimal growth yield (Y) estimated at 0.34 for treated water and at 0.25 for natural water. All these parameter values are well in accordance with previous determinations.
Collapse
Affiliation(s)
- Shuaitao Wang
- Sorbonne Université, CNRS, EPHE, UMR METIS, Paris 75005, France; BRGM, Geological Survey of France, Orléans 45100, France.
| | - Nicolas Flipo
- Mines Paris, PSL University, Center for geosciences and geoengineering, Fontainebleau 77300, France
| | - Josette Garnier
- Sorbonne Université, CNRS, EPHE, UMR METIS, Paris 75005, France
| | - Thomas Romary
- Mines Paris, PSL University, Center for geosciences and geoengineering, Fontainebleau 77300, France
| |
Collapse
|
8
|
Quan Q, Liu J, Li C, Ke Z, Tan Y. Insights into prokaryotic communities and their potential functions in biogeochemical cycles in cold seep. mSphere 2024; 9:e0054924. [PMID: 39269181 PMCID: PMC11524163 DOI: 10.1128/msphere.00549-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Microorganisms are significant drivers of organic matter mineralization and are essential in marine biogeochemical cycles. However, the variations and influencing factors in prokaryotic communities from cold-seep sediments to the water column and the specific role of these microorganisms in biogeochemical cycles in the water column above cold seep remain unclear. Here, we investigated prokaryotic communities and their roles in nitrogen/sulfur cycling processes and conducted in situ dissolved organic matter (DOM) enrichment experiments to explore the effects of diverse sources of DOM on prokaryotic communities. Field investigations showed that the prokaryotic communities in the near-bottom water were more similar to those in the deep layer of the euphotic zone (44.60%) and at a depth of 400 m (50.89%) than those in the sediment (18.00%). DOM enrichment experiments revealed that adding dissolved organic nitrogen (DON) and phosphorus DOP caused a notable increase in the relative abundances of Rhodobacterales and Vibrionales, respectively. A remarkable increase was observed in the relative abundance of Alteromonadales and Pseudomonadales after the addition of dissolved organic sulfur (DOS). The metagenomic results revealed that Proteobacteria served as the keystone taxa in mediating the biogeochemical cycles of nitrogen, phosphorus, and sulfur in the Haima cold seep. This study highlights the responses of prokaryotes to DOM with different components and the microbially driven elemental cycles in cold seeps, providing a foundational reference for further studies on material energy metabolism and the coupled cycling of essential elements mediated by deep-sea microorganisms. IMPORTANCE Deep-sea cold seeps are among the most productive ecosystems, sustaining unique fauna and microbial communities through the release of methane and other hydrocarbons. Our study revealed that the influence of seepage fluid on the prokaryotic community in the water column is surprisingly limited, which challenges conventional views regarding the impact of seepage fluids. In addition, we identified that different DOM compositions play a crucial role in shaping the prokaryotic community composition, providing new insights into the factors driving microbial diversity in cold seeps. Furthermore, the study highlighted Proteobacteria as key and multifaceted drivers of biogeochemical cycles in cold seeps, emphasizing their significant contribution to complex interactions and processes. These findings offer a fresh perspective on the dynamics of cold-seep environments and their microbial communities, advancing our understanding of the biogeochemical functions in deep-sea environments.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaolun Li
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Arnold J, Joye SB. Metatranscriptomic response of deep ocean microbial populations to infusions of oil and/or synthetic chemical dispersant. Appl Environ Microbiol 2024; 90:e0108324. [PMID: 39041797 PMCID: PMC11337851 DOI: 10.1128/aem.01083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the "mobilome," potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments' heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.
Collapse
Affiliation(s)
- Tito D. Peña-Montenegro
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Andrew E. Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA
| | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - John P. McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Robertson JM, Garza EA, Stubbusch AKM, Dupont CL, Hwa T, Held NA. Marine bacteria Alteromonas spp. require UDP-glucose-4-epimerase for aggregation and production of sticky exopolymer. mBio 2024; 15:e0003824. [PMID: 38958440 PMCID: PMC11325263 DOI: 10.1128/mbio.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
The physiology and ecology of particle-associated marine bacteria are of growing interest, but our knowledge of their aggregation behavior and mechanisms controlling their association with particles remains limited. We have found that a particle-associated isolate, Alteromonas sp. ALT199 strain 4B03, and the related type-strain A. macleodii 27126 both form large (>500 μm) aggregates while growing in rich medium. A non-clumping variant (NCV) of 4B03 spontaneously arose in the lab, and whole-genome sequencing revealed a partial deletion in the gene encoding UDP-glucose-4-epimerase (galEΔ308-324). In 27126, a knock-out of galE (ΔgalE::kmr) resulted in a loss of aggregation, mimicking the NCV. Microscopic analysis shows that both 4B03 and 27126 rapidly form large aggregates, whereas their respective galE mutants remain primarily as single planktonic cells or clusters of a few cells. Strains 4B03 and 27126 also form aggregates with chitin particles, but their galE mutants do not. Alcian Blue staining shows that 4B03 and 27126 produce large transparent exopolymer particles (TEP), but their galE mutants are deficient in this regard. This study demonstrates the capabilities of cell-cell aggregation, aggregation of chitin particles, and production of TEP in strains of Alteromonas, a widespread particle-associated genus of heterotrophic marine bacteria. A genetic requirement for galE is evident for each of the above capabilities, expanding the known breadth of requirement for this gene in biofilm-related processes. IMPORTANCE Heterotrophic marine bacteria have a central role in the global carbon cycle. Well-known for releasing CO2 by decomposition and respiration, they may also contribute to particulate organic matter (POM) aggregation, which can promote CO2 sequestration via the formation of marine snow. We find that two members of the prevalent particle-associated genus Alteromonas can form aggregates comprising cells alone or cells and chitin particles, indicating their ability to drive POM aggregation. In line with their multivalent aggregation capability, both strains produce TEP, an excreted polysaccharide central to POM aggregation in the ocean. We demonstrate a genetic requirement for galE in aggregation and large TEP formation, building our mechanistic understanding of these aggregative capabilities. These findings point toward a role for heterotrophic bacteria in POM aggregation in the ocean and support broader efforts to understand bacterial controls on the global carbon cycle based on microbial activities, community structure, and meta-omic profiling.
Collapse
Affiliation(s)
- Jacob M Robertson
- Division of Biological Sciences, UC San Diego, La Jolla, California, USA
| | - Erin A Garza
- Microbial and Environmental Genomics, J Craig Venter Institute, La Jolla, California, USA
| | - Astrid K M Stubbusch
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Earth Sciences, Geological Institute, ETH Zurich, Zurich, Switzerland
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J Craig Venter Institute, La Jolla, California, USA
| | - Terence Hwa
- Division of Biological Sciences, UC San Diego, La Jolla, California, USA
- Department of Physics, UC San Diego, La Jolla, California, USA
| | - Noelle A Held
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Bandekar M, More KD, Seleyi SC, Ramaiah N, Kekäläinen J, Akkanen J. Comparative analysis of microbiome inhabiting oxygenated and deoxygenated habitats using V3 and V6 metabarcoding of 16S rRNA gene. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106615. [PMID: 38941665 DOI: 10.1016/j.marenvres.2024.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
We examine how oxygen levels and the choice of 16S ribosomal RNA (rRNA) tags impact marine bacterial communities using Next-Generation amplicon sequencing. Analyzing V3 and V6 regions, we assess microbial composition in both Oxygen minimum zones (OMZ) and non-OMZ (NOMZ) areas in the Arabian Sea (AS) and the Central Indian Ocean basin (CIOB) respectively. Operational taxonomic units (OTUs) at 97% similarity showed slightly higher richness and diversity with V6 compared to V3. Vertical diversity patterns were consistent across both regions. NOMZ showed greater richness and diversity than OMZ. AS and CIOB exhibited significant differences in bacterial community, diversity, and relative abundance at the order and family levels. Alteromonadaceae dominated the OMZ, while Pelagibacteraceae dominated the NOMZ. Synechococcaceae were found exclusively at 250 m in OMZ. Bacteria putatively involved in nitrification, denitrification, and sulfurylation were detected at both sites. Dissolved oxygen significantly influenced microbial diversity at both sites, while seasonal environmental parameters affected diversity consistently, with no observed temporal variation.
Collapse
Affiliation(s)
- Mandar Bandekar
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Kuopio, Finland; Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Kuldeep D More
- Business Development Group, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Seyieleno C Seleyi
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India
| | - Nagappa Ramaiah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Kuopio, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Kuopio, Finland
| |
Collapse
|
12
|
Hamilton M, Ferrer‐González FX, Moran MA. Heterotrophic bacteria trigger transcriptome remodelling in the photosynthetic picoeukaryote Micromonas commoda. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13285. [PMID: 38778545 PMCID: PMC11112143 DOI: 10.1111/1758-2229.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.
Collapse
Affiliation(s)
- Maria Hamilton
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
13
|
Zhao Z, Amano C, Reinthaler T, Orellana MV, Herndl GJ. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. SCIENCE ADVANCES 2024; 10:eadn5143. [PMID: 38748788 PMCID: PMC11095472 DOI: 10.1126/sciadv.adn5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Marine heterotrophic prokaryotes primarily take up ambient substrates using transporters. The patterns of transporters targeting particular substrates shape the ecological role of heterotrophic prokaryotes in marine organic matter cycles. Here, we report a size-fractionated pattern in the expression of prokaryotic transporters throughout the oceanic water column due to taxonomic variations, revealed by a multi-"omics" approach targeting ATP-binding cassette (ABC) transporters and TonB-dependent transporters (TBDTs). Substrate specificity analyses showed that marine SAR11, Rhodobacterales, and Oceanospirillales use ABC transporters to take up organic nitrogenous compounds in the free-living fraction, while Alteromonadales, Bacteroidetes, and Sphingomonadales use TBDTs for carbon-rich organic matter and metal chelates on particles. The expression of transporter proteins also supports distinct lifestyles of deep-sea prokaryotes. Our results suggest that transporter divergency in organic matter assimilation reflects a pronounced niche separation in the prokaryote-mediated organic matter cycles.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Mónica V. Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Environmental and Climate Research Hub, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Sparagon WJ, Arts MGI, Quinlan ZA, Wegley Kelly L, Koester I, Comstock J, Bullington JA, Carlson CA, Dorrestein PC, Aluwihare LI, Haas AF, Nelson CE. Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation. Commun Biol 2024; 7:160. [PMID: 38351328 PMCID: PMC10864316 DOI: 10.1038/s42003-023-05730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.
Collapse
Affiliation(s)
- Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Milou G I Arts
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Zachary A Quinlan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Irina Koester
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Jacqueline Comstock
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Jessica A Bullington
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | | | - Lihini I Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Andreas F Haas
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
- San Diego State University, San Diego, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
15
|
Goldman AL, Fulk EM, Momper LM, Heider C, Mulligan J, Osburn M, Masiello CA, Silberg JJ. Microbial sensor variation across biogeochemical conditions in the terrestrial deep subsurface. mSystems 2024; 9:e0096623. [PMID: 38059636 PMCID: PMC10805038 DOI: 10.1128/msystems.00966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Microbes can be found in abundance many kilometers underground. While microbial metabolic capabilities have been examined across different geochemical settings, it remains unclear how changes in subsurface niches affect microbial needs to sense and respond to their environment. To address this question, we examined how microbial extracellular sensor systems vary with environmental conditions across metagenomes at different Deep Mine Microbial Observatory (DeMMO) subsurface sites. Because two-component systems (TCSs) directly sense extracellular conditions and convert this information into intracellular biochemical responses, we expected that this sensor family would vary across isolated oligotrophic subterranean environments that differ in abiotic and biotic conditions. TCSs were found at all six subsurface sites, the service water control, and the surface site, with an average of 0.88 sensor histidine kinases (HKs) per 100 genes across all sites. Abundance was greater in subsurface fracture fluids compared with surface-derived fluids, and candidate phyla radiation (CPR) bacteria presented the lowest HK frequencies. Measures of microbial diversity, such as the Shannon diversity index, revealed that HK abundance is inversely correlated with microbial diversity (r2 = 0.81). Among the geochemical parameters measured, HK frequency correlated most strongly with variance in dissolved organic carbon (r2 = 0.82). Taken together, these results implicate the abiotic and biotic properties of an ecological niche as drivers of sensor needs, and they suggest that microbes in environments with large fluctuations in organic nutrients (e.g., lacustrine, terrestrial, and coastal ecosystems) may require greater TCS diversity than ecosystems with low nutrients (e.g., open ocean).IMPORTANCEThe ability to detect extracellular environmental conditions is a fundamental property of all life forms. Because microbial two-component sensor systems convert information about extracellular conditions into biochemical information that controls their behaviors, we evaluated how two-component sensor systems evolved within the deep Earth across multiple sites where abiotic and biotic properties vary. We show that these sensor systems remain abundant in microbial consortia at all subterranean sampling sites and observe correlations between sensor system abundances and abiotic (dissolved organic carbon variation) and biotic (consortia diversity) properties. These results suggest that multiple environmental properties may drive sensor protein evolution and highlight the need for further studies of metagenomic and geochemical data in parallel to understand the drivers of microbial sensor evolution.
Collapse
Affiliation(s)
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Lily M. Momper
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Clinton Heider
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - John Mulligan
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - Magdalena Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Caroline A. Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
16
|
Zhou P, Tian L, Siddique MS, Song S, Graham NJD, Zhu YG, Yu W. Divergent Fate and Roles of Dissolved Organic Matter from Spatially Varied Grassland Soils in China During Long-Term Biogeochemical Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1164-1176. [PMID: 38164759 DOI: 10.1021/acs.est.3c08046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Terrestrial dissolved organic matter (DOM) is critical to global carbon and nutrient cycling, climate change, and human health. However, how the spatial and compositional differences of soil DOM affect its dynamics and fate in water during the carbon cycle is largely unclear. Herein, the biodegradation of DOM from 14 spatially distributed grassland soils in China with diverse organic composition was investigated by 165 days of incubation experiments. The results showed that although the high humified fraction (high-HS) regions were featured by high humic-like fractions of 4-25 kDa molecular weight, especially the abundant condensed aromatics and tannins, they unexpectedly displayed greater DOM degradation during 45-165 days. In contrast, the unique proteinaceous and 25-100 kDa fractions enriched in the low humified fraction (low-HS) regions were drastically depleted and improved the decay of bulk DOM but only during 0-45 days. Together, DOM from the high-HS regions would cause lower CO2 outgassing to the atmosphere but higher organic loads for drinking water production in the short term than that from the low-HS regions. However, this would be reversed for the two regions during the long-term transformation processes. These findings highlight the importance of spatial and temporal variability of DOM biogeochemistry to mitigate the negative impacts of grassland soil DOM on climate, waters, and humans.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shian Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Li S, Mosier D, Dong X, Kouris A, Ji G, Strous M, Diao M. Frequency of change determines effectiveness of microbial response strategies. THE ISME JOURNAL 2023; 17:2047-2057. [PMID: 37723339 PMCID: PMC10579261 DOI: 10.1038/s41396-023-01515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Nature challenges microbes with change at different frequencies and demands an effective response for survival. Here, we used controlled laboratory experiments to investigate the effectiveness of different response strategies, such as post-translational modification, transcriptional regulation, and specialized versus adaptable metabolisms. For this, we inoculated replicated chemostats with an enrichment culture obtained from sulfidic stream microbiomes 16 weeks prior. The chemostats were submitted to alternatingly oxic and anoxic conditions at three frequencies, with periods of 1, 4 and 16 days. The microbial response was recorded with 16S rRNA gene amplicon sequencing, shotgun metagenomics, transcriptomics and proteomics. Metagenomics resolved provisional genomes of all abundant bacterial populations, mainly affiliated with Proteobacteria and Bacteroidetes. Almost all these populations maintained a steady growth rate under both redox conditions at all three frequencies of change. Our results supported three conclusions: (1) Oscillating oxic/anoxic conditions selected for generalistic species, rather than species specializing in only a single condition. (2) A high frequency of change selected for strong codon usage bias. (3) Alignment of transcriptomes and proteomes required multiple generations and was dependent on a low frequency of change.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, 100871, Beijing, China
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Damon Mosier
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, 100871, Beijing, China
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
18
|
Bouchachi N, Obernosterer I, Carpaneto Bastos C, Li F, Scenna L, Marie B, Crispi O, Catala P, Ortega-Retuerta E. Effects of Phosphorus Limitation on the Bioavailability of DOM Released by Marine Heterotrophic Prokaryotes. MICROBIAL ECOLOGY 2023; 86:1961-1971. [PMID: 36912945 DOI: 10.1007/s00248-023-02201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Heterotrophic prokaryotes (HP) contribute largely to dissolved organic matter (DOM) processing in the ocean, but they also release diverse organic substances. The bioavailability of DOM released by HP under varying environmental conditions has not been fully elucidated. In this study, we investigated the bioavailability of DOM released by a single bacterial strain (Sphingopyxis alaskensis) and 2 natural HP communities grown under P-replete and P-limited conditions. The released DOM (HP-DOM) was used as a substrate for natural HP communities at a coastal site in the Northwestern Mediterranean Sea. We followed changes in HP growth, enzymatic activity, diversity, and community composition together with the consumption of HP-DOM fluorescence (FDOM). HP-DOM produced under P-replete and P-limited conditions promoted significant growth in all incubations. No clear differences in HP-DOM lability released under P-repletion and P-limitation were evidenced based on the HP growth, and P-limitation was not demonstrated to decrease HP-DOM lability. However, HP-DOM supported the growth of diverse HP communities, and P-driven differences in HP-DOM quality were selected for different indicator taxa in the degrading communities. The humic-like fluorescence, commonly considered recalcitrant, was consumed during the incubations when this peak was initially dominating the FDOM pool, and this consumption coincided with higher alkaline phosphatase activity. Taken together, our findings emphasize that HP-DOM lability is dependent on both DOM quality, which is shaped by P availability, and the composition of the consumer community.
Collapse
Affiliation(s)
- Nawal Bouchachi
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France.
| | - Ingrid Obernosterer
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France
| | - Cécile Carpaneto Bastos
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France
| | - Franck Li
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France
| | - Lorenzo Scenna
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Barbara Marie
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France
| | - Olivier Crispi
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France
| | - Philippe Catala
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France
| | - Eva Ortega-Retuerta
- CNRS/Sorbonne Université, UMR7621 Laboratoire d'Océanographie Microbienne, Banyuls sur Mer, France.
| |
Collapse
|
19
|
Peña-Montenegro TD, Kleindienst S, Allen AE, Eren AM, McCrow JP, Sánchez-Calderón JD, Arnold J, Joye SB. Species-specific responses of marine bacteria to environmental perturbation. ISME COMMUNICATIONS 2023; 3:99. [PMID: 37736763 PMCID: PMC10516948 DOI: 10.1038/s43705-023-00310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Environmental perturbations shape the structure and function of microbial communities. Oil spills are a major perturbation and resolving spills often requires active measures like dispersant application that can exacerbate the initial disturbance. Species-specific responses of microorganisms to oil and dispersant exposure during such perturbations remain largely unknown. We merged metatranscriptomic libraries with pangenomes to generate Core-Accessory Metatranscriptomes (CA-Metatranscriptomes) for two microbial hydrocarbon degraders that played important roles in the aftermath of the Deepwater Horizon oil spill. The Colwellia CA-Metatranscriptome illustrated pronounced dispersant-driven acceleration of core (~41%) and accessory gene (~59%) transcription, suggesting an opportunistic strategy. Marinobacter responded to oil exposure by expressing mainly accessory genes (~93%), suggesting an effective hydrocarbon-degrading lifestyle. The CA-Metatranscriptome approach offers a robust way to identify the underlying mechanisms of key microbial functions and highlights differences of specialist-vs-opportunistic responses to environmental disturbance.
Collapse
Affiliation(s)
- Tito D Peña-Montenegro
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Grupo de Investigación y Desarrollo en Ciencias, Tecnología e Innovación (BioGRID), Sociedad de Doctores e Investigadores de Colombia (SoPhIC), Bogotá, Colombia
| | - Sara Kleindienst
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Bandtäle 2, 70569, Stuttgart, Germany
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, 92037, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, University of Oldenburg, Oldenburg, 26129, Germany
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - John P McCrow
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Juan D Sánchez-Calderón
- Grupo de Investigación en Gestión Ecológica y Agroindustrial (GEA), Programa de Microbiología, Facultad de Ciencias Exactas y Naturales, Universidad Libre, Seccional Barranquilla, Barranquilla, Colombia
| | - Jonathan Arnold
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602-7229, USA
- Department of Genetics, University of Georgia, 120 Green St., Athens, GA, 30602-7223, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, 325 Sanford Dr., Athens, GA, 30602-3636, USA.
| |
Collapse
|
20
|
Debeljak P, Bayer B, Sun Y, Herndl GJ, Obernosterer I. Seasonal patterns in microbial carbon and iron transporter expression in the Southern Ocean. MICROBIOME 2023; 11:187. [PMID: 37596690 PMCID: PMC10439609 DOI: 10.1186/s40168-023-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/16/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Heterotrophic microbes in the Southern Ocean are challenged by the double constraint of low concentrations of organic carbon (C) and iron (Fe). These essential elements are tightly coupled in cellular processes; however, the prokaryotic requirements of C and Fe under varying environmental settings remain poorly studied. Here, we used a combination of metatranscriptomics and metaproteomics to identify prokaryotic membrane transporters for organic substrates and Fe in naturally iron-fertilized and high-nutrient, low-chlorophyll waters of the Southern Ocean during spring and late summer. RESULTS Pronounced differences in membrane transporter profiles between seasons were observed at both sites, both at the transcript and protein level. When specific compound classes were considered, the two approaches revealed different patterns. At the transcript level, seasonal patterns were only observed for subsets of genes belonging to each transporter category. At the protein level, membrane transporters of organic compounds were relatively more abundant in spring as compared to summer, while the opposite pattern was observed for Fe transporters. These observations suggest an enhanced requirement for organic C in early spring and for Fe in late summer. Mapping transcripts and proteins to 50 metagenomic-assembled genomes revealed distinct taxon-specific seasonal differences pointing to potentially opportunistic clades, such as Pseudomonadales and Nitrincolaceae, and groups with a more restricted repertoire of expressed transporters, such as Alphaproteobacteria and Flavobacteriaceae. CONCLUSION The combined investigations of C and Fe membrane transporters suggest seasonal changes in the microbial requirements of these elements under different productivity regimes. The taxon-specific acquisition strategies of different forms of C and Fe illustrate how diverse microbes could shape transcript and protein expression profiles at the community level at different seasons. Our results on the C- and Fe-related metabolic capabilities of microbial taxa provide new insights into their potential role in the cycling of C and Fe under varying nutrient regimes in the Southern Ocean. Video Abstract.
Collapse
Affiliation(s)
- Pavla Debeljak
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls/Mer, F-66650, France.
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
- SupBiotech, Villejuif, France.
| | - Barbara Bayer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
| | - Ying Sun
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls/Mer, F-66650, France
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ (Royal Netherlands Institute for Sea Research), Den Burg, 1790 AB, The Netherlands
- Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria
| | - Ingrid Obernosterer
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS, Sorbonne Université, Banyuls/Mer, F-66650, France
| |
Collapse
|
21
|
Sun CC, Zhao WJ, Yue WZ, Cheng H, Sun FL, Wang YT, Wu ML, Engel A, Wang YS. Polymeric carbohydrates utilization separates microbiomes into niches: insights into the diversity of microbial carbohydrate-active enzymes in the inner shelf of the Pearl River Estuary, China. Front Microbiol 2023; 14:1180321. [PMID: 37425997 PMCID: PMC10322874 DOI: 10.3389/fmicb.2023.1180321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Polymeric carbohydrates are abundant and their recycling by microbes is a key process of the ocean carbon cycle. A deeper analysis of carbohydrate-active enzymes (CAZymes) can offer a window into the mechanisms of microbial communities to degrade carbohydrates in the ocean. In this study, metagenomic genes encoding microbial CAZymes and sugar transporter systems were predicted to assess the microbial glycan niches and functional potentials of glycan utilization in the inner shelf of the Pearl River Estuary (PRE). The CAZymes gene compositions were significantly different between in free-living (0.2-3 μm, FL) and particle-associated (>3 μm, PA) bacteria of the water column and between water and surface sediments, reflecting glycan niche separation on size fraction and selective degradation in depth. Proteobacteria and Bacteroidota had the highest abundance and glycan niche width of CAZymes genes, respectively. At the genus level, Alteromonas (Gammaproteobacteria) exhibited the greatest abundance and glycan niche width of CAZymes genes and were marked by a high abundance of periplasmic transporter protein TonB and members of the major facilitator superfamily (MFS). The increasing contribution of genes encoding CAZymes and transporters for Alteromonas in bottom water contrasted to surface water and their metabolism are tightly related with particulate carbohydrates (pectin, alginate, starch, lignin-cellulose, chitin, and peptidoglycan) rather than on the utilization of ambient-water DOC. Candidatus Pelagibacter (Alphaproteobacteria) had a narrow glycan niche and was primarily preferred for nitrogen-containing carbohydrates, while their abundant sugar ABC (ATP binding cassette) transporter supported the scavenging mode for carbohydrate assimilation. Planctomycetota, Verrucomicrobiota, and Bacteroidota had similar potential glycan niches in the consumption of the main component of transparent exopolymer particles (sulfated fucose and rhamnose containing polysaccharide and sulfated-N-glycan), developing considerable niche overlap among these taxa. The most abundant CAZymes and transporter genes as well as the widest glycan niche in the abundant bacterial taxa implied their potential key roles on the organic carbon utilization, and the high degree of glycan niches separation and polysaccharide composition importantly influenced bacterial communities in the coastal waters of PRE. These findings expand the current understanding of the organic carbon biotransformation, underlying the size-fractionated glycan niche separation near the estuarine system.
Collapse
Affiliation(s)
- Cui-Ci Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Wen-Jie Zhao
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Zhong Yue
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fu-Lin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Yu-Tu Wang
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| | - Mei-Lin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Anja Engel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Ren L, Song X, Wu C, Li G, Zhang X, Xia X, Xiang C, Han BP, Jeppesen E, Wu QL. Biogeographical and Biodiversity Patterns of Marine Planktonic Bacteria Spanning from the South China Sea across the Gulf of Bengal to the Northern Arabian Sea. Microbiol Spectr 2023; 11:e0039823. [PMID: 37098981 PMCID: PMC10269852 DOI: 10.1128/spectrum.00398-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Understanding the biogeographical and biodiversity patterns of bacterial communities is essential in unraveling their responses to future environmental changes. However, the relationships between marine planktonic bacterial biodiversity and seawater chlorophyll a are largely understudied. Here, we used high-throughput sequencing to study the biodiversity patterns of marine planktonic bacteria across a broad chlorophyll a gradient spanning from the South China Sea across the Gulf of Bengal to the northern Arabian Sea. We found that the biogeographical patterns of marine planktonic bacteria complied with the scenario of homogeneous selection, with chlorophyll a concentration being the key environmental selecting variable of bacteria taxa. The relative abundance of Prochlorococcus, the SAR11 clade, the SAR116 clade, and the SAR86 clade significantly decreased in habitats with high chlorophyll a concentrations (>0.5 μg/L). Free-living bacteria (FLB) and particle-associated bacteria (PAB) displayed contrasting alpha diversity and chlorophyll a relationships with a positive linear correlation for FLB but a negative correlation for PAB. We further found that PAB had a narrower niche breadth of chlorophyll a than did FLB, with far fewer bacterial taxa being favored at higher chlorophyll a concentrations. Higher chlorophyll a concentrations were linked to the enhanced stochastic drift and reduced beta diversity of PAB but to the weakened homogeneous selection, enhanced dispersal limitation, and increased beta diversity of FLB. Taken together, our findings might broaden our knowledge about the biogeography of marine planktonic bacteria and advance the understanding of bacterial roles in predicting ecosystem functioning under future environmental changes that are derived from eutrophication. IMPORTANCE One of the long-standing interests of biogeography is to explore diversity patterns and uncover their underlying mechanisms. Despite intensive studies on the responses of eukaryotic communities to chlorophyll a concentrations, we know little about how changes in seawater chlorophyll a concentrations affect free-living bacteria (FLB) and particle-associated bacteria (PAB) diversity patterns in natural systems. Our biogeography study demonstrated that marine FLB and PAB displayed contrasting diversity and chlorophyll a relationships and exhibited completely different assembly mechanisms. Our findings broaden our knowledge about the biogeographical and biodiversity patterns of marine planktonic bacteria in nature systems and suggest that PAB and FLB should be considered independently in predicting marine ecosystem functioning under future frequent eutrophication.
Collapse
Affiliation(s)
- Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chuangfeng Wu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiufeng Zhang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chenhui Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
23
|
Liu Y, Liu X, Wen Y, Sun J. A snapshot on vertical variability of dissolved organic matter in the epilagic zone of the eastern Indian Ocean. MARINE POLLUTION BULLETIN 2023; 192:114985. [PMID: 37167664 DOI: 10.1016/j.marpolbul.2023.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Marine dissolved organic matter (DOM) plays an important role in aquatic ecosystems and is an essential reservoir of organic carbon in the marine carbon cycle. In this study, seawater DOM samples from 33 stations were collected in spring 2022 (April to May, 20 stations) and autumn 2020 (October to November, 13 stations) to better characterize and compare DOM variability within 200 m water layer in the eastern Indian Ocean (EIO). Hydrological parameters, nutrients and spectroscopic indices were calculated and evaluated for two cruises. In addition, excitation emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) was used to directly analyse seawater DOM samples. The sources and processes of DOM in the EIO were assessed by fluorescence index (FI), freshness index (β/α), Biological index (BIX), and humification index (HIX). Three fluorescent components were identified in DOM samples from two cruises, including: C1 (tryptophan- and tyrosine-like), C2 (marine and/or terrestrial humic-like), and C3 (terrestrial humic-like). The components of C1 accounted for 39.45 % ± 8.79 %, C2 for 33.05 % ± 6.42 %, and C3 for 27.20 % ± 4.47 % within 200 m water layer. The intensity of the DOM fluorescence seems to varied due to seasonal differences. In particular, the source of the DOM fraction varied at <100 m layer, which may also be related to the structure of the microbial community. Further, there is a strong correlation between the depth of seawater and hydrographic parameters, fluorescence indices and fluorescence components. Nutrients (nitrate, dissolved inorganic phosphate, and dissolved silicate) and humic-like fractions are more likely to accumulate in the deeper layers of the ocean. Thus, these results provide some data support for the variability of DOM fractions on a vertical scale in the EIO.
Collapse
Affiliation(s)
- Yang Liu
- Institute for Advance Marine Research, China University of Geosciences, Guangzhou 511462, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Xiaofang Liu
- Institute for Advance Marine Research, China University of Geosciences, Guangzhou 511462, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yujian Wen
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Sun
- Institute for Advance Marine Research, China University of Geosciences, Guangzhou 511462, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
24
|
Fahmi AM, Summers S, Jones M, Bowler B, Hennige S, Gutierrez T. Effect of ocean acidification on the growth, response and hydrocarbon degradation of coccolithophore-bacterial communities exposed to crude oil. Sci Rep 2023; 13:5013. [PMID: 36973465 PMCID: PMC10042988 DOI: 10.1038/s41598-023-31784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrocarbon-degrading bacteria, which can be found living with eukaryotic phytoplankton, play a pivotal role in the fate of oil spillage to the marine environment. Considering the susceptibility of calcium carbonate-bearing phytoplankton under future ocean acidification conditions and their oil-degrading communities to oil exposure under such conditions, we investigated the response of non-axenic E. huxleyi to crude oil under ambient versus elevated CO2 concentrations. Under elevated CO2 conditions, exposure to crude oil resulted in the immediate decline of E. huxleyi, with concomitant shifts in the relative abundance of Alphaproteobacteria and Gammaproteobacteria. Survival of E. huxleyi under ambient conditions following oil enrichment was likely facilitated by enrichment of oil-degraders Methylobacterium and Sphingomonas, while the increase in relative abundance of Marinobacter and unclassified Gammaproteobacteria may have increased competitive pressure with E. huxleyi for micronutrient acquisition. Biodegradation of the oil was not affected by elevated CO2 despite a shift in relative abundance of known and putative hydrocarbon degraders. While ocean acidification does not appear to affect microbial degradation of crude oil, elevated mortality responses of E. huxleyi and shifts in the bacterial community illustrates the complexity of microalgal-bacterial interactions and highlights the need to factor these into future ecosystem recovery projections.
Collapse
Affiliation(s)
- Afiq Mohd Fahmi
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Fakulti Sains dan Sekitaran Marin, Universiti Malaysia Terengganu, 21030, Kuala, Terengganu, Malaysia
| | - Stephen Summers
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- The Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Martin Jones
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE17RU, UK
| | - Bernard Bowler
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE17RU, UK
| | - Sebastian Hennige
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3JW, UK.
| | - Tony Gutierrez
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
25
|
Ferrer-González FX, Hamilton M, Smith CB, Schreier JE, Olofsson M, Moran MA. Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda. ISME COMMUNICATIONS 2023; 3:5. [PMID: 36690682 PMCID: PMC9870897 DOI: 10.1038/s43705-023-00212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
Collapse
Affiliation(s)
| | - Maria Hamilton
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
26
|
Genomic potential for exopolysaccharide production and differential polysaccharide degradation in closely related Alteromonas sp. PRIM-21 and Alteromonas fortis 1 T. Antonie Van Leeuwenhoek 2023; 116:39-51. [PMID: 36396850 DOI: 10.1007/s10482-022-01796-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Members of the genus Alteromonas are widely distributed in diverse marine environments and are often associated with marine organisms. Their ability to produce exopolysaccharides (EPS) and depolymerize sulfated algal polysaccharides has provided industrial importance to some species. Here, we describe the draft genome of an algae-associated strain namely, Alteromonas sp. PRIM-21 isolated from the southwest coast of India to understand the EPS biosynthetic pathways as well as polysaccharide depolymerization system in comparison to the closely related strain Alteromonas fortis 1T that shares 99.8% 16S rRNA gene sequence similarity. Whole-genome shotgun sequencing of Alteromonas sp. PRIM-21 yielded 50 contigs with a total length of 4,638,422 bp having 43.86% GC content. The resultant genome shared 95.9% OrthoANI value with A. fortis 1 T, and contained 4125 predicted protein-coding genes, 71 tRNA and 10 rRNA genes. Genes involved in Wzx/Wzy-, ABC transporter- and synthase-dependent pathways for EPS production and secretion were common in both Alteromonas sp. PRIM-21 and A. fortis 1T. However, the distribution of carbohydrate-active enzymes (CAZymes) was heterogeneous. The strain PRIM-21 harbored polysaccharide lyases for the degradation of alginate, ulvan, arabinogalactan and chondroitin. This was further validated from the culture-based assays using seven different polysaccharides. The depolymerizing ability of the bacteria may be useful in deriving nutrients from the biopolymers produced in the algal host while the EPS biosynthesis may provide additional advantages for life in the stressful marine environment. The results also highlight the genetic heterogeneity in terms of polysaccharide utilization among the closely related Alteromonas strains.
Collapse
|
27
|
Yamazaki Y, Moriya S, Kawarai S, Morita H, Kikusui T, Iriki A. Effects of enhanced insect feeding on the faecal microbiota and transcriptome of a family of captive common marmosets (Callithrix jacchus). PLoS One 2022; 17:e0279380. [PMID: 36548292 PMCID: PMC9779035 DOI: 10.1371/journal.pone.0279380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Common marmosets have been widely used in biomedical research for years. Nutritional control is an important factor in managing their health, and insect intake would be beneficial for that purpose because common marmosets frequently feed on insects in natural habitats. Here, we examined the effect of enhanced insect feeding on the gut by analysing the faecal microbiota and transcripts of captive marmosets. A family consisting of six marmosets was divided into two groups. During the seven-day intervention period, one group (the insect feeding group, or Group IF) was fed one cricket and one giant mealworm per marmoset per day, while the other (the control group, or Group C) was not fed these insects. RNA was extracted from faecal samples to evaluate the ecology and transcripts of the microbiota, which were then compared among time points before (Pre), immediately after (Post), and two weeks after the intervention (Follow_up) using total RNA sequencing. The gut microbiota of marmosets showed Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria as dominant phyla. Linear discriminant analysis showed differential characteristics of microbiota with and without insect feeding treatment. Further analysis of differentially expressed genes revealed increases and decreases in Bacteroidetes and Firmicutes, respectively, corresponding to the availability of insects under both Post and Follow_up conditions. Significant changes specific to insect feeding were also detected within the transcriptome, some of which were synchronized with the fluctuations in the microbiota, suggesting a functional correlation or interaction between the two. The rapid changes in the microbiota and transcripts may be achieved by the microbiota community originally developed in the wild through marmosets' feeding ecology. The results were informative for identifying the physiological impact of insect feeding to produce a better food regimen and for detecting transcripts that are currently unidentifiable.
Collapse
Affiliation(s)
- Yumiko Yamazaki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- * E-mail:
| | - Shigeharu Moriya
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Numazu, Shizuoka, Japan
| | - Shinpei Kawarai
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama, Japan
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| |
Collapse
|
28
|
Callac N, Boulo V, Giraud C, Beauvais M, Ansquer D, Ballan V, Maillez JR, Wabete N, Pham D. Microbiota of the Rearing Water of Penaeus stylirostris Larvae Influenced by Lagoon Seawater and Specific Key Microbial Lineages of Larval Stage and Survival. Microbiol Spectr 2022; 10:e0424122. [PMID: 36416556 PMCID: PMC9769815 DOI: 10.1128/spectrum.04241-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Aquacultured animals are reared in water, where they interact with microorganisms which can be involved in their development, immunity, and disease. It is therefore interesting to study the rearing water microbiota, especially in the hatcheries of the Pacific blue shrimp Penaeus stylirostris, where larval mass mortalities occur. In this study, using HiSeq sequencing of the V4 region of the 16S rRNA molecule coupled with zootechnical and chemical analyses, we investigated whether any microbial lineages could be associated with certain mortality rates at a given larval stage. Our results indicate that the active microbiota of the rearing water was highly dynamic throughout the rearing process, with distinct communities influenced by progressive water eutrophication, larval stage, and survival rate. Our data also highlighted the role of the lagoon seawater on the rearing water microbiome, as many operational taxonomic units (OTUs) specific to a given larval stage and survival rate were detected in the primary reservoir which contained the lagoon water. We also identified biomarkers specific to water eutrophication, with Alteromonadaceae, Vibrionaceae, and Methylophilaceae, respectively, linked to increases in ammonia, nitrogen, and soluble reactive phosphate, or to increases in colored dissolved organic matter in the rearing water; other biomarkers were specific to certain larval stages and survival rates. Indeed, the Marinobacteraceae were specific to the Nauplii, and the Thalassospiraceae and Saprospiraceae to the Zoea Good condition; when mortality occurred, the Litoricolaceae were specific to the Zoea Bad, Microbacteraceae to the Mysis Bad, and Methylophilaceae to the Mysis Worst condition. Thus, these biomarkers might be used as potential early warning sentinels in water storage to infer the evolution of larval rearing to improve shrimp larval rearing. IMPORTANCE In New Caledonia, rearing of P. stylirostris is one of the main economic activities; unfortunately, mass larval mortalities cause important production decreases, involving major economic losses for the farmers and the Territory. This phenomenon, which has occurred at any larval stage over the past decade, is poorly understood. The significance of our research is in the identification of biomarkers specific to larval stage and survival rate, with some of these biomarkers being already present in the lagoon water. This enhances the role of the lagoon on the active microbiota of the rearing water at various larval stages and survival rates. Together, our results help us understand which active microbial communities are present in the rearing water according to larval stage and health. This might lead to broader impacts on hatcheries by helping to develop useful tools for using the water-lagoon, reservoir, or rearing-to test for the presence of these biomarkers as an early monitoring strategy.
Collapse
Affiliation(s)
- Nolwenn Callac
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Viviane Boulo
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Carolane Giraud
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA), University of New Caledonia, Nouméa, New Caledonia
| | - Maxime Beauvais
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Dominique Ansquer
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Valentine Ballan
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Jean-René Maillez
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Nelly Wabete
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Dominique Pham
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| |
Collapse
|
29
|
Baranwal P, Kang DW, Seo Y. Impacts of algal organic matter and humic substances on microcystin-LR removal and their biotransformation during the biodegradation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:157993. [PMID: 35964751 DOI: 10.1016/j.scitotenv.2022.157993] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The application of bioaugmentation (i.e., injection of contaminant-degrading microorganisms) has shown its potential to remove harmful cyanotoxins like microcystin-LR (MC-LR) from drinking water sources. However, the natural organic matter (NOM) present in both natural and engineered water systems might affect the bacterial biodegradation of MC-LR. Therefore, for the successful application of bioaugmentation for MC-LR removal in water treatment, it is important to understand NOM effects on MC-LR biodegradation. In this study, the impact of NOM [algal organic matter (AOM) and humic substances (HS)] on MC-LR biodegradation was evaluated in the presence of varying concentrations of NOM by monitoring MC-LR biodegradation kinetics. The changes in NOM composition during MC-LR biodegradation were also characterized by a five-component Parallel factor (PARAFAC) model using 336 excitation-emission matrix (EEM) spectra collected at different sampling points. Our results showed decreases in MC-LR biodegradation rate of 1.6-and 3.4-fold in the presence of AOM and HS, respectively. The expression of the functional mlrA gene exhibited a similar trend to the MC-LR degradation rate at different NOM concentrations. EEM-PARAFAC analyses and NOM molecular size fractionation results indicated a relatively greater production of terrestrial humic-like components (57%) and a decrease of protein-like components. Two-dimensional correlation spectroscopy (2D-COS) analyses further confirmed that low molecular weight protein-like components were initially utilized by bacteria, followed by the formation of higher molecular weight humic-like components, likely due to microbial metabolism.
Collapse
Affiliation(s)
- Parul Baranwal
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States
| | - Dae-Wook Kang
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States
| | - Youngwoo Seo
- Department of Civil and Environmental Engineering, University of Toledo, Mail Stop 307, 3006 Nitschke Hall, Toledo, OH 43606, United States; Department of Chemical Engineering, University of Toledo, Mail Stop 307, 3048 Nitschke Hall, Toledo, OH 43606, United States.
| |
Collapse
|
30
|
Emiliania huxleyi-Bacteria Interactions under Increasing CO 2 Concentrations. Microorganisms 2022; 10:microorganisms10122461. [PMID: 36557715 PMCID: PMC9786219 DOI: 10.3390/microorganisms10122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The interactions established between marine microbes, namely phytoplankton-bacteria, are key to the balance of organic matter export to depth and recycling in the surface ocean. Still, their role in the response of phytoplankton to rising CO2 concentrations is poorly understood. Here, we show that the response of the cosmopolitan Emiliania huxleyi (E. huxleyi) to increasing CO2 is affected by the coexistence with bacteria. Specifically, decreased growth rate of E. huxleyi at enhanced CO2 concentrations was amplified in the bloom phase (potentially also related to nutrient concentrations) and with the coexistence with Idiomarina abyssalis (I. abyssalis) and Brachybacterium sp. In addition, enhanced CO2 concentrations also affected E. huxleyi's cellular content estimates, increasing organic and decreasing inorganic carbon, in the presence of I. abyssalis, but not Brachybacterium sp. At the same time, the bacterial isolates only survived in coexistence with E. huxleyi, but exclusively I. abyssalis at present CO2 concentrations. Bacterial species or group-specific responses to the projected CO2 rise, together with the concomitant effect on E. huxleyi, might impact the balance between the microbial loop and the export of organic matter, with consequences for atmospheric carbon dioxide.
Collapse
|
31
|
Pinhassi J, Farnelid H, García SM, Teira E, Galand PE, Obernosterer I, Quince C, Vila-Costa M, Gasol JM, Lundin D, Andersson AF, Labrenz M, Riemann L. Functional responses of key marine bacteria to environmental change - toward genetic counselling for coastal waters. Front Microbiol 2022; 13:869093. [PMID: 36532459 PMCID: PMC9751014 DOI: 10.3389/fmicb.2022.869093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/11/2022] [Indexed: 10/31/2024] Open
Abstract
Coastal ecosystems deteriorate globally due to human-induced stress factors, like nutrient loading and pollution. Bacteria are critical to marine ecosystems, e.g., by regulating nutrient cycles, synthesizing vitamins, or degrading pollutants, thereby providing essential ecosystem services ultimately affecting economic activities. Yet, until now bacteria are overlooked both as mediators and indicators of ecosystem health, mainly due to methodological limitations in assessing bacterial ecosystem functions. However, these limitations are largely overcome by the advances in molecular biology and bioinformatics methods for characterizing the genetics that underlie functional traits of key bacterial populations - "key" in providing important ecosystem services, being abundant, or by possessing high metabolic rates. It is therefore timely to analyze and define the functional responses of bacteria to human-induced effects on coastal ecosystem health. We posit that categorizing the responses of key marine bacterial populations to changes in environmental conditions through modern microbial oceanography methods will allow establishing the nascent field of genetic counselling for our coastal waters. This requires systematic field studies of linkages between functional traits of key bacterial populations and their ecosystem functions in coastal seas, complemented with systematic experimental analyses of the responses to different stressors. Research and training in environmental management along with dissemination of results and dialogue with societal actors are equally important to ensure the role of bacteria is understood as fundamentally important for coastal ecosystems. Using the responses of microorganisms as a tool to develop genetic counselling for coastal ecosystems can ultimately allow for integrating bacteria as indicators of environmental change.
Collapse
Affiliation(s)
- Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Sandra Martínez García
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Eva Teira
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Pierre E. Galand
- CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Sorbonne Université, Banyuls-sur-Mer, France
| | - Ingrid Obernosterer
- CNRS, Laboratoire d’Océanographie Microbienne (LOMIC), Sorbonne Université, Banyuls-sur-Mer, France
| | | | | | | | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Anders F. Andersson
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Lasse Riemann
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
32
|
Osbeck CMG, Lundin D, Karlsson C, Teikari JE, Moran MA, Pinhassi J. Divergent gene expression responses in two Baltic Sea heterotrophic model bacteria to dinoflagellate dissolved organic matter. PLoS One 2022; 17:e0243406. [PMCID: PMC9671461 DOI: 10.1371/journal.pone.0243406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Phytoplankton release massive amounts of dissolved organic matter (DOM) into the water column during recurring blooms in coastal waters and inland seas. The released DOM encompasses a complex mixture of both known and unknown compounds, and is a rich nutrient source for heterotrophic bacteria. The metabolic activity of bacteria during and after phytoplankton blooms can hence be expected to reflect the characteristics of the released DOM. We therefore investigated if bacterioplankton could be used as “living sensors” of phytoplankton DOM quantity and/or quality, by applying gene expression analyses to identify bacterial metabolisms induced by DOM. We used transcriptional analysis of two Baltic Sea bacterial isolates (Polaribacter sp. BAL334 [Flavobacteriia] and Brevundimonas sp. BAL450 [Alphaproteobacteria]) growing with DOM from axenic cultures of the dinoflagellate Prorocentrum minimum. We observed pronounced differences between the two bacteria both in growth and the expressed metabolic pathways in cultures exposed to dinoflagellate DOM compared with controls. Differences in metabolic responses between the two isolates were caused both by differences in gene repertoire between them (e.g. in the SEED categories for membrane transport, motility and photoheterotrophy) and the regulation of expression (e.g. fatty acid metabolism), emphasizing the importance of separating the responses of different taxa in analyses of community sequence data. Similarities between the bacteria included substantially increased expression of genes for Ton and Tol transport systems in both isolates, which are commonly associated with uptake of complex organic molecules. Polaribacter sp. BAL334 showed stronger metabolic responses to DOM harvested from exponential than stationary phase dinoflagellates (128 compared to 26 differentially expressed genes), whereas Brevundimonas sp. BAL450 responded more to the DOM from stationary than exponential phase dinoflagellates (33 compared to 6 differentially expressed genes). These findings suggest that shifts in bacterial metabolisms during different phases of phytoplankton blooms can be detected in individual bacterial species and can provide insights into their involvement in DOM transformations.
Collapse
Affiliation(s)
- Christofer M. G. Osbeck
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar, Sweden
| | - Camilla Karlsson
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar, Sweden
| | - Jonna E. Teikari
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus University, Kalmar, Sweden
- * E-mail:
| |
Collapse
|
33
|
Pontiller B, Martínez-García S, Joglar V, Amnebrink D, Pérez-Martínez C, González JM, Lundin D, Fernández E, Teira E, Pinhassi J. Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system. THE ISME JOURNAL 2022; 16:2360-2372. [PMID: 35804052 PMCID: PMC9478159 DOI: 10.1038/s41396-022-01273-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Coastal upwelling zones are hotspots of oceanic productivity, driven by phytoplankton photosynthesis. Bacteria, in turn, grow on and are the principal remineralizers of dissolved organic matter (DOM) produced in aquatic ecosystems. However, the molecular processes that key bacterial taxa employ to regulate the turnover of phytoplankton-derived DOM are not well understood. We therefore carried out comparative time-series metatranscriptome analyses of bacterioplankton in the Northwest Iberian upwelling system, using parallel sampling of seawater and mesocosms with in situ-like conditions. The mesocosm experiment uncovered a taxon-specific progression of transcriptional responses from bloom development (characterized by a diverse set of taxa in the orders Cellvibrionales, Rhodobacterales, and Pelagibacterales), over early decay (mainly taxa in the Alteromonadales and Flavobacteriales), to senescence phases (Flavobacteriales and Saprospirales taxa). Pronounced order-specific differences in the transcription of glycoside hydrolases, peptidases, and transporters were found, supporting that functional resource partitioning is dynamically structured by temporal changes in available DOM. In addition, comparative analysis of mesocosm and field samples revealed a high degree of metabolic plasticity in the degradation and uptake of carbohydrates and nitrogen-rich compounds, suggesting these gene systems critically contribute to modulating the stoichiometry of the labile DOM pool. Our findings suggest that cascades of transcriptional responses in gene systems for the utilization of organic matter and nutrients largely shape the fate of organic matter on the time scales typical of upwelling-driven phytoplankton blooms.
Collapse
|
34
|
Birnstiel S, Sebastián M, Romera-Castillo C. Structure and activity of marine bacterial communities responding to plastic leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155264. [PMID: 35439504 DOI: 10.1016/j.scitotenv.2022.155264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 05/12/2023]
Abstract
Plastic in the ocean releases organic compounds that are able to enter the marine dissolved organic carbon pool and be utilized by heterotrophic bacteria. However, no information is known about which groups of bacteria are able to grow and degrade plastic leachates. Here we characterized a marine bacterial community from the NW Mediterranean Sea growing on plastic leachates and quantified its total activity. We used two petro-based plastics, low density polyethylene (LDPE) and polystyrene, and one biodegradable plastic, polylactic acid (PLA), to generate leachates under irradiated (UV-Vis) and non-irradiated conditions. Then we incubated them with a natural bacterial inoculum and determined the single-cell activity and associated taxonomy of the bacterial groups, using a combination of Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARDFISH) and BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT). The community growing in the leachates was mainly composed of Alteromonas (Gammaproteobacteria), followed by Roseobacter (Alphaproteobacteria) and unclassified Gammaproteobacteria. Overall, marine bacteria in the irradiated treatments showed higher total activity compared to the non-irradiated ones, with the community growing on LDPE's leachates presenting the highest values. The biodegradable PLA leachates presented lower activity than those from petro-based plastics but similar bacterial composition, suggesting that it is possible that PLA could last in the ocean as much as petro-based plastics do. The results from this study show the impact of marine plastic debris in the marine microbial community and the marine carbon cycle.
Collapse
|
35
|
Song L, Wang Y, Zhang R, Yang S. Microbial Mediation of Carbon, Nitrogen, and Sulfur Cycles During Solid Waste Decomposition. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02056-y. [PMID: 35705745 DOI: 10.1007/s00248-022-02056-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Landfills are a unique "terrestrial ecosystem" and serve as a significant carbon sink. Microorganisms convert biodegradable substances in municipal solid waste (MSW) to CH4, CO2, and microbial biomass, consisting of the carbon cycling in landfills. Microbial-mediated N and S cycles are also the important biogeochemical process during MSW decomposition, resulting in N2O and H2S emission, respectively. Meanwhile, microbial-mediated N and S cycles affect carbon cycling. How microbial community structure and function respond to C, N, and S cycling during solid waste decomposition, however, are not well-characterized. Here, we show the response of bacterial and archaeal community structure and functions to C, N, and S cycling during solid waste decomposition in a long-term (265 days) operation laboratory-scale bioreactor through 16S rRNA-based pyrosequencing and metagenomics analysis. Bacterial and archaeal community composition varied during solid waste decomposition. Aerobic respiration was the main pathway for CO2 emission, while anaerobic C fixation was the main pathway in carbon fixation. Methanogenesis and denitrification increased during solid waste decomposition, suggesting increasing CH4 and N2O emission. In contract, fermentation decreased along solid waste decomposition. Interestingly, Clostridiales were abundant and showed potential for several pathways in C, N, and S cycling. Archaea were involved in many pathways of C and N cycles. There is a shift between bacteria and archaea involvement in N2 fixation along solid waste decomposition that bacteria Clostridiales and Bacteroidales were initially dominant and then Methanosarcinales increased and became dominant in methanogenic phase. These results provide extensive microbial mediation of C, N, and S cycling profiles during solid waste decomposition.
Collapse
Affiliation(s)
- Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China.
| | - Yangqing Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing, 400714, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
36
|
He C, Liu J, Wang R, Li Y, Zheng Q, Jiao F, He C, Shi Q, Xu Y, Zhang R, Thomas H, Batt J, Hill P, Lewis M, Maclntyre H, Lu L, Zhang Q, Tu Q, Shi T, Chen F, Jiao N. Metagenomic evidence for the microbial transformation of carboxyl-rich alicyclic molecules: A long-term macrocosm experiment. WATER RESEARCH 2022; 216:118281. [PMID: 35316680 DOI: 10.1016/j.watres.2022.118281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Carboxyl-rich alicyclic molecules (CRAMs) widely exist in the ocean and constitute the central part of the refractory dissolved organic matter (RDOM) pool. Although a consensus has been reached that microbial activity forms CRAMs, the detailed molecular mechanisms remain largely unexplored. To better understand the underlying genetic mechanisms driving the microbial transformation of CRAM, a long-term macrocosm experiment spanning 220 days was conducted in the Aquatron Tower Tank at Dalhousie University, Halifax, Canada, with the supply of diatom-derived DOM as a carbon source. The DOM composition, community structure, and metabolic pathways were characterised using multi-omics approaches. The addition of diatom lysate introduced a mass of labile DOM into the incubation seawater, which led to a low degradation index (IDEG) and refractory molecular lability boundary (RMLB) on days 1 and 18. The molecular compositions of the DOM molecules in the later incubation period (from day 120 to day 220) were more similar in composition to those on day 0, suggesting a rapid turnover of phytoplankton debris by microbial communities. Taxonomically, while Alpha proteobacteria dominated during the entire incubation period, Gamma proteobacteria became more sensitive and abundant than the other bacterial groups on days 1 and 18. Recalcitrant measurements such as IDEG and RMLB were closely related to the DOM molecules, bacterial community, and Kyoto encyclopaedia of Genes and Genomes (KEGG) modules, suggesting close associations between RDOM accumulation and microbial metabolism. KEGG modules that showed strong positive correlation with CRAMs were identified using a microbial ecological network approach. The identified KEGG modules produced the substrates, such as the acetyl-CoA or 3‑hydroxy-3-methylglutaryl-CoA, which could participate in the mevalonate pathway to generate the precursor of CRAM analogues, isopentenyl-PP, suggesting a potential generation pathway of CRAM analogues in bacteria and archaea. This study revealed the potential genetic and molecular processes involved in the microbial origin of CRAM analogues, and thus indicated a vital ecological role of bacteria and archaea in RDOM production. This study also offered new perspectives on the carbon sequestration in the ocean.
Collapse
Affiliation(s)
- Changfei He
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510000, China.
| | - Rui Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Qiang Zheng
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Fanglue Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Rui Zhang
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China
| | - Helmuth Thomas
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada; Helmholtz-Center Geesthacht, Institute for Coastal Research, Max-Planck-Strasse 1, Geesthacht d-21502, Germany
| | - John Batt
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Paul Hill
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Marlon Lewis
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Hugh Maclntyre
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Longfei Lu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China; Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, Shandong, China
| | - Qinghua Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China; Marine Equipment Inspection & Testing Co. Ltd, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Tuo Shi
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China
| | - Feng Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; Environmental Research Center, University of Maryland at Baltimore, United States
| | - Nianzhi Jiao
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Halifax, NS, B3H 4R2, Canada, Qingdao 266237, China, and Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510000, China
| |
Collapse
|
37
|
Cabugao KGM, Gushgari-Doyle S, Chacon SS, Wu X, Bhattacharyya A, Bouskill N, Chakraborty R. Characterizing Natural Organic Matter Transformations by Microbial Communities in Terrestrial Subsurface Ecosystems: A Critical Review of Analytical Techniques and Challenges. Front Microbiol 2022; 13:864895. [PMID: 35602028 PMCID: PMC9114703 DOI: 10.3389/fmicb.2022.864895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Determining the mechanisms, traits, and pathways that regulate microbial transformation of natural organic matter (NOM) is critical to informing our understanding of the microbial impacts on the global carbon cycle. The capillary fringe of subsurface soils is a highly dynamic environment that remains poorly understood. Characterization of organo-mineral chemistry combined with a nuanced understanding of microbial community composition and function is necessary to understand microbial impacts on NOM speciation in the capillary fringe. We present a critical review of the popular analytical and omics techniques used for characterizing complex carbon transformation by microbial communities and focus on how complementary information obtained from the different techniques enable us to connect chemical signatures with microbial genes and pathways. This holistic approach offers a way forward for the comprehensive characterization of the formation, transformation, and mineralization of terrestrial NOM as influenced by microbial communities.
Collapse
Affiliation(s)
- Kristine Grace M Cabugao
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sara Gushgari-Doyle
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephany S Chacon
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaoqin Wu
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Amrita Bhattacharyya
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicholas Bouskill
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
38
|
She W, Yang J, Wu G, Jiang H. The synergy of environmental and microbial variations caused by hydrologic management affects the carbon emission in the Three Gorges Reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153446. [PMID: 35092771 DOI: 10.1016/j.scitotenv.2022.153446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The synergy of environmental and microbiological changes caused by hydrologic management on carbon emissions of river reservoirs remains unknown. Here, we investigated physiochemistry parameters, compositions of dissolved organic matter (DOM), carbon fluxes (CH4 and CO2), and microbial communities in the surface waters of the Three Gorges Reservoir (TGR) within one whole hydrological year. The results showed that hydrologic management significantly changed physiochemistry and DOM composition of the TGR water, and further influenced microbial community composition and functions. DOM content during the drainage period was much lower than during the impoundment period. During the impoundment period, humification extent of DOM became decreasing, while biotransformation extent became increasing compared with the drainage period. DOM composition and water pH exhibited significant correlation with the fluxes of CH4 and CO2, respectively. Microbial community composition and function significantly differed between the drainage and impoundment periods. Most of the differential microbial taxa were affiliated with functional groups involved in carbon cycle such as methanotrophy and phototrophy, which showed significant correlation with carbon fluxes. CH4 and CO2 fluxes can be mostly explained by synergy of microbial function with DOM composition and water pH, respectively. Such synergistic effect may account for the observed temporal variations of CH4 fluxes and spatial variations of CO2, and for the relatively low annual carbon emissions in the TGR. In summary, the synergy of environmental and microbial variations caused by hydrologic management affects carbon emissions from river reservoirs.
Collapse
Affiliation(s)
- Weiyu She
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
39
|
Wang T, Li J, Jing H, Qin S. Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105622. [PMID: 35429822 DOI: 10.1016/j.marenvres.2022.105622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Marine Synechococcus, a main group of picocyanobacteria, has been ubiquitously observed across the global oceans. Synechococcus exhibits high phylogenetical and phenotypical diversity, and horizontal gene transfer makes its genetic evolution much more intricate. With the development of measurement technologies and analysis methods, the genomic information and niche partition of each Synechococcus lineage tend to be precisely described, but the global analysis is still lacking. Therefore, it is necessary to summarize existing studies and integrate published data to gain a comprehensive understanding of Synechococcus on genetic variation, niche division, and potential functions. In this review, the maximum likelihood trees are constructed based on existing sequence data, including both phylogenetic and pigmentary gene markers. The global distribution characteristics of abundance, lineages, and pigment types are concluded through pooled analysis of more than 700 samples obtained from approximately 50 scientific research cruises. The potential functions of Synechococcus are explored in element cycles and biological interactions. Future work on Synechococcus is suggested to focus on not only elucidating the nature of Synechococcus biodiversity but also demonstrating its interactions with the ecosystem by combining bioinformatics and macroscopic isotope-labeled environmental parameters.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Li
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
40
|
Nilsson E, Li K, Hoetzinger M, Holmfeldt K. Nutrient driven transcriptional changes during phage infection in an aquatic Gammaproteobacterium. Environ Microbiol 2022; 24:2270-2281. [PMID: 35049095 PMCID: PMC9305737 DOI: 10.1111/1462-2920.15904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
Abstract
Phages modulate bacterial metabolism during infection by regulating gene expression, which influences aquatic nutrient cycling. However, the effects of shifting nutrient regimes are less understood. Here, we analyzed transcriptomes of an ecologically relevant Gammaproteobacterium and its lytic phage in high (HNM) and low (LNM) nutrient medium. Despite different infection characteristics, including reduced burst size and longer latent period in LNM, the phage had a fixed expression profile. Bacterial transcription was instead different depending on nutrient regime, with HNM bacteria focusing on growth while LNM bacteria focused on motility and membrane transport. Additionally, phage infection had a larger effect on bacterial gene expression in LNM compared to HNM, e.g. suppressing increased iron uptake and altering expression of phosphorus uptake genes. Overall, phage infection influenced host metabolism more in LNM, which was more similar to natural conditions, emphasizing the importance of considering natural conditions to understand phage and host ecology.
Collapse
Affiliation(s)
- Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Ke Li
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| |
Collapse
|
41
|
Seasonal and geographical differences in the ruminal microbial and chloroplast composition of sika deer (Cervus nippon) in Japan. Sci Rep 2022; 12:6356. [PMID: 35428768 PMCID: PMC9012793 DOI: 10.1038/s41598-022-09855-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
To understand the nutritional status of culled wild sika deer (Cervus nippon), we compared the ruminal microbes of deer living in habitats differing in food composition (Nagano winter, Nagano spring, and Hokkaido winter) using next-generation sequencing. Twenty-nine sika deer were sampled. Alpha and beta diversity metrics determined via 16S and 18S rRNA amplicon-seq analysis showed compositional differences. Prevotella, Entodinium, and Piromyces were the dominant genera of bacteria, fungi and protozoa, respectively. Moreover, 66 bacterial taxa, 44 eukaryotic taxa, and 46 chloroplastic taxa were shown to differ significantly among the groups by the linear discriminant analysis effect size (LEfSe) technique. Total RNA-seq analysis yielded 397 significantly differentially expressed transcripts (q < 0.05), of which 48 (q < 0.01) were correlated with the bacterial amplicon-seq results (Pearson correlation coefficient > 0.7). The ruminal microbial composition corresponded with the presence of different plants because the amplicon-seq results indicated that chloroplast from broadleaf trees and Stramenopiles-Alveolates-Rhizaria (SAR) were enriched in Nagano, whereas chloroplast from graminoids, Firmicutes and the dominant phylum of fungi were enriched in Hokkaido. These results could be related to the severe snow conditions in Hokkaido in winter and the richness of plants with leaves and acorns in Nagano in winter and spring. The findings are useful for understanding the nutritional status of wild sika deer.
Collapse
|
42
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
43
|
Olofsson M, Ferrer-González FX, Uchimiya M, Schreier JE, Holderman NR, Smith CB, Edison AS, Moran MA. Growth-stage-related shifts in diatom endometabolome composition set the stage for bacterial heterotrophy. ISME COMMUNICATIONS 2022; 2:28. [PMID: 37938663 PMCID: PMC9723723 DOI: 10.1038/s43705-022-00116-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups. In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling.
Collapse
Affiliation(s)
- Malin Olofsson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 57, Uppsala, Sweden
| | | | - Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Nicole R Holderman
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Arthur S Edison
- Department of Biochemistry and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
44
|
Microbial Community Structure and Ecological Networks during Simulation of Diatom Sinking. Microorganisms 2022; 10:microorganisms10030639. [PMID: 35336213 PMCID: PMC8949005 DOI: 10.3390/microorganisms10030639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial-mediated utilization of particulate organic matter (POM) during its downward transport from the surface to the deep ocean constitutes a critical component of the global ocean carbon cycle. However, it remains unclear as to how high hydrostatic pressure (HHP) and low temperature (LT) with the sinking particles affects community structure and network interactions of the particle-attached microorganisms (PAM) and those free-living microorganisms (FLM) in the surrounding water. In this study, we investigated microbial succession and network interactions in experiments simulating POM sinking in the ocean. Diatom-derived 13C- and 12C-labeled POM were used to incubate surface water microbial communities from the East China Sea (ECS) under pressure (temperature) of 0.1 (25 °C), 20 (4 °C), and 40 (4 °C) MPa (megapascal). Our results show that the diversity and species richness of the PAM and FLM communities decreased significantly with HHP and LT. Microbial community analysis indicated an increase in the relative abundance of Bacteroidetes at high pressure (40 MPa), mostly at the expense of Gammaproteobacteria, Alphaproteobacteria, and Gracilibacteria at atmospheric pressure. Hydrostatic pressure and temperature affected lifestyle preferences between particle-attached (PA) and free-living (FL) microbes. Ecological network analysis showed that HHP and LT enhanced microbial network interactions and resulted in higher vulnerability to networks of the PAM communities and more resilience of those of the FLM communities. Most interestingly, the PAM communities occupied most of the module hubs of the networks, whereas the FLM communities mainly served as connectors of the modules, suggesting their different ecological roles of the two groups of microbes. These results provided novel insights into how HHP and LT affected microbial community dynamics, ecological networks during POM sinking, and the implications for carbon cycling in the ocean.
Collapse
|
45
|
Zhang X, Liu S, Jiang Z, Wu Y, Huang X. Gradient of microbial communities around seagrass roots was mediated by sediment grain size. Ecosphere 2022. [DOI: 10.1002/ecs2.3942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province Sanya Institute of Oceanology, SCSIO Sanya China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| |
Collapse
|
46
|
Ataeian M, Liu Y, Kouris A, Hawley AK, Strous M. Ecological Interactions of Cyanobacteria and Heterotrophs Enhances the Robustness of Cyanobacterial Consortium for Carbon Sequestration. Front Microbiol 2022; 13:780346. [PMID: 35222325 PMCID: PMC8880816 DOI: 10.3389/fmicb.2022.780346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Lack of robustness is a major barrier to foster a sustainable cyanobacterial biotechnology. Use of cyanobacterial consortium increases biodiversity, which provides functional redundancy and prevents invading species from disrupting the production ecosystem. Here we characterized a cyanobacterial consortium enriched from microbial mats of alkaline soda lakes in BC, Canada, at high pH and alkalinity. This consortium has been grown in open laboratory culture for 4 years without crashes. Using shotgun metagenomic sequencing, 29 heterotrophic metagenome-assembled-genomes (MAGs) were retrieved and were assigned to Bacteroidota, Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobiota, Patescibacteria, Planctomycetota, and Archaea. In combination with metaproteomics, the overall stability of the consortium was determined under different cultivation conditions. Genome information from each heterotrophic population was investigated for six ecological niches created by cyanobacterial metabolism and one niche for phototrophy. Genome-resolved metaproteomics with stable isotope probing using 13C-bicarbonate (protein/SIP) showed tight coupling of carbon transfer from cyanobacteria to the heterotrophic populations, specially Wenzhouxiangella. The community structure was compared to a previously described consortium of a closely related cyanobacteria, which indicated that the results may be generalized. Productivity losses associated with heterotrophic metabolism were relatively small compared to other losses during photosynthesis.
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Yihua Liu
- Department Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
Eigemann F, Rahav E, Grossart HP, Aharonovich D, Sher D, Vogts A, Voss M. Phytoplankton exudates provide full nutrition to a subset of accompanying heterotrophic bacteria via carbon, nitrogen and phosphorus allocation. Environ Microbiol 2022; 24:2467-2483. [PMID: 35146867 DOI: 10.1111/1462-2920.15933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Marine bacteria rely on phytoplankton exudates as carbon sources (DOCp). Yet, it is unclear to what extent phytoplankton exudates also provide nutrients such as phytoplankton-derived N and P (DONp, DOPp). We address these questions by mesocosm exudate addition experiments with spent media from the ubiquitous pico-cyanobacterium Prochlorococcus to bacterial communities in contrasting ecosystems in the Eastern Mediterranean - a coastal and an open-ocean, oligotrophic station with and without on-top additions of inorganic nutrients. Inorganic nutrient addition did not lower the incorporation of exudate DONp, nor did it reduce alkaline phosphatase activity, suggesting that bacterial communities are able to exclusively cover their nitrogen and phosphorus demands with organic forms provided by phytoplankton exudates. Approximately half of the cells in each ecosystem took up detectable amounts of Prochlorococcus-derived C and N, yet based on 16S rRNA sequencing different bacterial genera were responsible for the observed exudate utilization patterns. In the coastal community, several phylotypes of Aureimarina, Psychrosphaera and Glaciecola responded positively to the addition of phytoplankton exudates, whereas phylotypes of Pseudoalteromonas increased and dominated the open-ocean communities. Together, our results strongly indicate that phytoplankton exudates provide coastal and open-ocean bacterial communities with organic carbon, nitrogen and phosphorus, and that phytoplankton exudate serve a full-fledged meal for the accompanying bacterial community in the nutrient-poor eastern Mediterranean. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Falk Eigemann
- Leibniz-Institute for Baltic Sea Research Warnemünde.,Water quality engineering, Technical University of Berlin
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa
| | | | | | - Daniel Sher
- Leon H. Charney School of Marine Sciences, University Haifa
| | - Angela Vogts
- Leibniz-Institute for Baltic Sea Research Warnemünde
| | - Maren Voss
- Leibniz-Institute for Baltic Sea Research Warnemünde
| |
Collapse
|
48
|
Dynamics of actively dividing prokaryotes in the western Mediterranean Sea. Sci Rep 2022; 12:2064. [PMID: 35136122 PMCID: PMC8825817 DOI: 10.1038/s41598-022-06120-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3–3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.
Collapse
|
49
|
Dungan AM, Hartman LM, Blackall LL, van Oppen MJH. Exploring microbiome engineering as a strategy for improved thermal tolerance in Exaiptasia diaphana. J Appl Microbiol 2022; 132:2940-2956. [PMID: 35104027 PMCID: PMC9303619 DOI: 10.1111/jam.15465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Aims Fourteen percent of all living coral, equivalent to more than all the coral on the Great Barrier Reef, has died in the past decade as a result of climate change‐driven bleaching. Inspired by the ‘oxidative stress theory of coral bleaching’, we investigated whether a bacterial consortium designed to scavenge free radicals could integrate into the host microbiome and improve thermal tolerance of the coral model, Exaiptasia diaphana. Methods and Results E. diaphana anemones were inoculated with a consortium of high free radical scavenging (FRS) bacteria, a consortium of congeneric low FRS bacteria, or sterile seawater as a control, then exposed to elevated temperature. Increases in the relative abundance of Labrenzia during the first 2 weeks following the last inoculation provided evidence for temporary inoculum integration into the E. diaphana microbiome. Initial uptake of other consortium members was inconsistent, and these bacteria did not persist either in E. diaphana’s microbiome over time. Given their non‐integration into the host microbiome, the ability of the FRS consortium to mitigate thermal stress could not be assessed. Importantly, there were no physiological impacts (negative or positive) of the bacterial inoculations on the holobiont. Conclusions The introduced bacteria were not maintained in the anemone microbiome over time, thus, their protective effect is unknown. Achieving long‐term integration of bacteria into cnidarian microbiomes remains a research priority. Significance and Impact of the Study Microbiome engineering strategies to mitigate coral bleaching may assist coral reefs in their persistence until climate change has been curbed. This study provides insights that will inform microbiome manipulation approaches in coral bleaching mitigation research.
Collapse
Affiliation(s)
- Ashley M Dungan
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Leon M Hartman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.,Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
50
|
Manck LE, Park J, Tully BJ, Poire AM, Bundy RM, Dupont CL, Barbeau KA. Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean. THE ISME JOURNAL 2022; 16:358-369. [PMID: 34341506 PMCID: PMC8776838 DOI: 10.1038/s41396-021-01065-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.
Collapse
Affiliation(s)
- Lauren E Manck
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Jiwoon Park
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Benjamin J Tully
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
| | - Alfonso M Poire
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA, USA
| | - Randelle M Bundy
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Christopher L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Human Health, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Synthetic Biology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|