1
|
Hayes MN, Cohen-Gogo S, Kee L, Xiong X, Weiss A, Layeghifard M, Ladumor Y, Valencia-Sama I, Rajaselvam A, Kaplan DR, Villani A, Shlien A, Morgenstern DA, Irwin MS. DNA damage response deficiency enhances neuroblastoma progression and sensitivity to combination PARP and ATR inhibition. Cell Rep 2025; 44:115537. [PMID: 40220294 DOI: 10.1016/j.celrep.2025.115537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Sequencing of neuroblastoma (NB) tumors has revealed genetic alterations in genes involved in DNA damage response (DDR) pathways. However, roles for specific alterations of DDR genes in pediatric solid tumors remain poorly understood. To address this, mutations in the DDR pathway including Brca2, Atm, and Palb2 were incorporated into an established zebrafish MYCN transgenic model (Tg(dbh:EGFP-MYCN)). These mutations enhance NB formation and metastasis and result in upregulation of cell-cycle checkpoint and DNA damage repair signatures, revealing molecular vulnerabilities in DDR-deficient NB. DDR gene knockdown in zebrafish and human NB cells increases sensitivity to the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, and this effect is enhanced by inhibition of the ataxia telangiectasia and rad3-related (ATR) kinase. This work provides in vivo evidence demonstrating that alterations in certain DDR-pathway genes promote aggressive NB and supports combination PARP + ATR inhibitor therapy for NB patients with tumors harboring specific genetic alterations in DDR.
Collapse
Affiliation(s)
- Madeline N Hayes
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Sarah Cohen-Gogo
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xueting Xiong
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alex Weiss
- Developmental, Stem Cell and Cancer Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mehdi Layeghifard
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yagnesh Ladumor
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Anisha Rajaselvam
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - David R Kaplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel A Morgenstern
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Meredith S Irwin
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
2
|
Kawasaki T, Nishimura T, Tani N, Ramos C, Karaulanov E, Shinya M, Saito K, Taylor E, Ketting RF, Ishiguro KI, Tanaka M, Siegfried KR, Sakai N. Meioc-Piwil1 complexes regulate rRNA transcription for differentiation of spermatogonial stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.17.623901. [PMID: 39605693 PMCID: PMC11601514 DOI: 10.1101/2024.11.17.623901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Ribosome biogenesis is vital for sustaining stem cell properties, yet its regulatory mechanisms are obscure. Herein, we show unique properties of zebrafish meioc mutants in which spermatogonial stem cells (SSCs) do not differentiate or upregulate rRNAs. Meioc colocalized with Piwil1 in perinuclear germ granules, but Meioc depletion resulted in Piwil1 accumulation in nucleoli. Nucleolar Piwil1 interacted with 45S pre-rRNA. piwil1 +/- spermatogonia with reduced Piwil1 upregulated rRNAs, and piwil1 +/- ;meioc -/- spermatogonia recovered differentiation later than those in meioc -/- . Further, Piwil1 interacted with Setdb1 and HP1α, and meioc -/- spermatogonia exhibited high levels of H3K9me3 and methylated CpG in the 45S-rDNA region. These results indicate that zebrafish SSCs maintain low levels of rRNA transcription with repressive marks similar to Drosophila piRNA targets of RNA polymerase II, and that Meioc has a unique function on preventing localization of Piwil1 in nucleoli to upregulate rRNA transcripts and to promote SSC differentiation.
Collapse
Affiliation(s)
- Toshihiro Kawasaki
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Nagoya University, Nagoya 464-8601, Japan
| | - Naoki Tani
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Carina Ramos
- Biology Department, University of Massachusetts Boston, Boston, MA 02125
| | | | - Minori Shinya
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Kenji Saito
- Department of Gene Function and Phenomics, National Institute of Genetics
| | - Emily Taylor
- Biology Department, University of Massachusetts Boston, Boston, MA 02125
| | | | - Kei-ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Minoru Tanaka
- Division of Biological Science, Nagoya University, Nagoya 464-8601, Japan
| | | | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| |
Collapse
|
3
|
Cero C, House JS, Verdi V, Ferguson JL, Jima DD, Selmek AA, Patania OM, Dwyer JE, Wei BR, Lloyd DT, Shive HR. Profiling the cancer-prone microenvironment in a zebrafish model for MPNST. Oncogene 2025; 44:179-191. [PMID: 39511408 PMCID: PMC11725499 DOI: 10.1038/s41388-024-03210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Microenvironmental contributions to soft tissue sarcoma progression are relatively undefined, particularly during sarcoma onset. Use of animal models to reveal these contributions is impeded by difficulties in discriminating between microenvironmental, precancerous, and cancer cells, and challenges in defining a precancerous microenvironment. We developed a zebrafish model that allows segregation of microenvironmental, precancerous, and cancerous cell populations by fluorescence-activated cell sorting. This model has high predilection for malignant peripheral nerve sheath tumor (MPNST), a type of soft tissue sarcoma that exhibits rapid, aggressive growth. Using RNA-seq, we profiled the transcriptomes of microenvironmental, precancerous, and cancer cells from our zebrafish MPNST model. We show broad activation of inflammation/immune-associated signaling networks, describe gene expression patterns that uniquely characterize the transition from precancerous to cancer ME, and identify macrophages as potential contributors to microenvironmental phenotypes. We identify conserved gene expression changes and candidate genes of interest by comparative genomics analysis of MPNST versus benign lesions in both humans and zebrafish. Finally, we functionally validate a candidate extracellular matrix protein, periostin (POSTN), in human MPNST. This work provides insight into how the microenvironment may regulate MPNST initiation and progression.
Collapse
Affiliation(s)
- Cheryl Cero
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Cancer Biology, Cancer Cell Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John S House
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Vincenzo Verdi
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jordan L Ferguson
- State Laboratory of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Dereje D Jima
- Center of Human Health and the Environment and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dillon T Lloyd
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Heather R Shive
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Mansuri A, Trivedi C, Kumar A. Impact of virgin and weathered microplastics on zebrafish: Bioaccumulation, developmental toxicity and molecular pathway disruptions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177510. [PMID: 39536872 DOI: 10.1016/j.scitotenv.2024.177510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are ubiquitous environmental pollutants with significant ecological risks, particularly due to their potential for bioaccumulation and toxicity. This study examines the effects of virgin spherical MPs and environmentally weathered MPs, specifically polystyrene (PS) and polyethylene (PE), on zebrafish larvae to enhance the environmental relevance of the findings. MP concentrations used were 105-106 particles/L for the virgin MP group and 104 particles/L for the weathered MP group, reflecting levels commonly observed in natural environments. Weathered MPs were produced through mechanical grinding followed by one month of exposure to water and sunlight to simulate environmental aging. MP characterization was performed using advanced microscopy techniques, including Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The results indicated significantly higher mortality in the weathered MP group (80%) compared to the virgin MP group (20%). Zebrafish larvae ingested MPs and exhibited disruptions in key molecular pathways, including those involved in oxidative stress response, apoptosis, and DNA damage repair. Notably, this study is among the first to evaluate the impact of MPs on the complete homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways. Our findings highlight the enhanced toxicity of weathered MPs and emphasize the importance of considering MP aging in toxicological assessments. These results contribute to a deeper understanding of MP pollution and provide valuable insights for the development of regulatory measures to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Charvi Trivedi
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
5
|
Miron S, Legrand P, Dupaigne P, van Rossum-Fikkert SE, Ristic D, Majeed A, Kanaar R, Zinn-Justin S, Zelensky A. DMC1 and RAD51 bind FxxA and FxPP motifs of BRCA2 via two separate interfaces. Nucleic Acids Res 2024; 52:7337-7353. [PMID: 38828772 PMCID: PMC11229353 DOI: 10.1093/nar/gkae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.
Collapse
Affiliation(s)
- Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Atifa Majeed
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
7
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
8
|
Paul K, Restoux G, Phocas F. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss). Genet Sel Evol 2024; 56:13. [PMID: 38389056 PMCID: PMC10882880 DOI: 10.1186/s12711-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Evolutionary processes leave footprints along the genome over time. Highly homozygous regions may correspond to positive selection of favorable alleles, while maintenance of heterozygous regions may be due to balancing selection phenomena. We analyzed data from 176 fish from four disconnected domestic rainbow trout populations that were genotyped using a high-density Axiom Trout genotyping 665K single nucleotide polymorphism array, including 20 from the US and 156 from three French lines. Using methods based on runs of homozygosity and extended haplotype homozygosity, we detected signatures of selection in these four populations. RESULTS Nine genomic regions that included 253 genes were identified as being under positive selection in all four populations Most were located on chromosome 2 but also on chromosomes 12, 15, 16, and 20. In addition, four heterozygous regions that contain 29 genes that are putatively under balancing selection were also shared by the four populations. These were located on chromosomes 10, 13, and 19. Regardless of the homozygous or heterozygous nature of the regions, in each region, we detected several genes that are highly conserved among vertebrates due to their critical roles in cellular and nuclear organization, embryonic development, or immunity. We identified new candidate genes involved in rainbow trout fitness, as well as 17 genes that were previously identified to be under positive selection, 10 of which in other fishes (auts2, atp1b3, zp4, znf135, igf-1α, brd2, col9a2, mrap2, pbx1, and emilin-3). CONCLUSIONS Using material from disconnected populations of different origins allowed us to draw a genome-wide map of signatures of positive selection that are shared between these rainbow trout populations, and to identify several regions that are putatively under balancing selection. These results provide a valuable resource for future investigations of the dynamics of genetic diversity and genome evolution during domestication.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gwendal Restoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
10
|
Bravo P, Liu Y, Draper BW, Marlow FL. Macrophage activation drives ovarian failure and masculinization in zebrafish. SCIENCE ADVANCES 2023; 9:eadg7488. [PMID: 37992158 PMCID: PMC10664988 DOI: 10.1126/sciadv.adg7488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
BMP15 is a conserved regulator of ovarian development and maintenance in vertebrates. In humans, premature ovarian insufficiency is caused by autoimmunity and genetic factors, including mutation of BMP15. The cellular mechanisms underlying ovarian failure caused by BMP15 mutation and immune contributions are not understood. Using zebrafish, we established a causal link between macrophage activation and ovarian failure, which, in zebrafish, causes sex reversal. We define a germline-soma signaling axis that activates macrophages and drives ovarian failure and female-to-male sex reversal. Germline loss of zebrafish Bmp15 impairs oogenesis and initiates this cascade. Single-cell RNA sequencing and genetic analyses implicate ovarian somatic cells that express conserved macrophage-activating ligands as mediators of ovarian failure and sex reversal. Genetic ablation of macrophages or elimination of Csf1Rb ligands, Il34 or Csf1a, delays or blocks premature oocyte loss and sex reversal. The axis identified here provides insight into the cells and pathways governing oocyte and ovary maintenance and potential therapeutic targets to preserve female fertility.
Collapse
Affiliation(s)
- Paloma Bravo
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yulong Liu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Florence L. Marlow
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Shin U, Lee Y. Unraveling DNA Repair Processes In Vivo: Insights from Zebrafish Studies. Int J Mol Sci 2023; 24:13120. [PMID: 37685935 PMCID: PMC10487404 DOI: 10.3390/ijms241713120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The critical role of the DNA repair system in preserving the health and survival of living organisms is widely recognized as dysfunction within this system can result in a broad range of severe conditions, including neurodegenerative diseases, blood disorders, infertility, and cancer. Despite comprehensive research on the molecular and cellular mechanisms of DNA repair pathways, there remains a significant knowledge gap concerning these processes at an organismal level. The teleost zebrafish has emerged as a powerful model organism for investigating these intricate DNA repair mechanisms. Their utility arises from a combination of their well-characterized genomic information, the ability to visualize specific phenotype outcomes in distinct cells and tissues, and the availability of diverse genetic experimental approaches. In this review, we provide an in-depth overview of recent advancements in our understanding of the in vivo roles of DNA repair pathways. We cover a variety of critical biological processes including neurogenesis, hematopoiesis, germ cell development, tumorigenesis, and aging, with a specific emphasis on findings obtained from the use of zebrafish as a model system. Our comprehensive review highlights the importance of zebrafish in enhancing our understanding of the functions of DNA repair systems at the organismal level and paves the way for future investigations in this field.
Collapse
Affiliation(s)
- Unbeom Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea
| |
Collapse
|
12
|
Nanjappa DP, De Saffel H, Kalladka K, Arjuna S, Babu N, Prasad K, Sips P, Chakraborty A. Poly (A)-specific ribonuclease deficiency impacts oogenesis in zebrafish. Sci Rep 2023; 13:10026. [PMID: 37340076 DOI: 10.1038/s41598-023-37226-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/18/2023] [Indexed: 06/22/2023] Open
Abstract
Poly (A)-specific ribonuclease (PARN) is the most important 3'-5'exonuclease involved in the process of deadenylation, the removal of poly (A) tails of mRNAs. Although PARN is primarily known for its role in mRNA stability, recent studies suggest several other functions of PARN including a role in telomere biology, non-coding RNA maturation, trimming of miRNAs, ribosome biogenesis and TP53 function. Moreover, PARN expression is de-regulated in many cancers, including solid tumours and hematopoietic malignancies. To better understand the in vivo role of PARN, we used a zebrafish model to study the physiological consequences of Parn loss-of-function. Exon 19 of the gene, which partially codes for the RNA binding domain of the protein, was targeted for CRISPR-Cas9-directed genome editing. Contrary to the expectations, no developmental defects were observed in the zebrafish with a parn nonsense mutation. Intriguingly, the parn null mutants were viable and fertile, but turned out to only develop into males. Histological analysis of the gonads in the mutants and their wild type siblings revealed a defective maturation of gonadal cells in the parn null mutants. The results of this study highlight yet another emerging function of Parn, i.e., its role in oogenesis.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Krithika Kalladka
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Srividya Arjuna
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Kishan Prasad
- Department of Pathology, KS Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
13
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
14
|
Martino J, Siri SO, Calzetta NL, Paviolo NS, Garro C, Pansa MF, Carbajosa S, Brown AC, Bocco JL, Gloger I, Drewes G, Madauss KP, Soria G, Gottifredi V. Inhibitors of Rho kinases (ROCK) induce multiple mitotic defects and synthetic lethality in BRCA2-deficient cells. eLife 2023; 12:e80254. [PMID: 37073955 PMCID: PMC10185344 DOI: 10.7554/elife.80254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.
Collapse
Affiliation(s)
| | | | | | | | - Cintia Garro
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
- OncoPrecisionCórdobaArgentina
| | - Maria F Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
| | - Sofía Carbajosa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
- OncoPrecisionCórdobaArgentina
| | - Aaron C Brown
- Center for Molecular Medicine, Maine Medical Center Research InstituteScarboroughUnited States
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
| | - Israel Gloger
- GlaxoSmithKline-Trust in Science, Global Health R&DStevenageUnited Kingdom
| | - Gerard Drewes
- GlaxoSmithKline-Trust in Science, Global Health R&DStevenageUnited Kingdom
| | - Kevin P Madauss
- GlaxoSmithKline-Trust in Science, Global Health R&DUpper ProvidenceUnited States
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdobaArgentina
- OncoPrecisionCórdobaArgentina
| | | |
Collapse
|
15
|
Drummond BE, Ercanbrack WS, Wingert RA. Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish. J Dev Biol 2023; 11:9. [PMID: 36810461 PMCID: PMC9944608 DOI: 10.3390/jdb11010009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Podocytes are exquisitely fashioned kidney cells that serve an essential role in the process of blood filtration. Congenital malformation or damage to podocytes has dire consequences and initiates a cascade of pathological changes leading to renal disease states known as podocytopathies. In addition, animal models have been integral to discovering the molecular pathways that direct the development of podocytes. In this review, we explore how researchers have used the zebrafish to illuminate new insights about the processes of podocyte ontogeny, model podocytopathies, and create opportunities to discover future therapies.
Collapse
Affiliation(s)
| | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Bravo P, Liu Y, Draper BW, Marlow FL. Macrophage activation drives ovarian failure and masculinization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522645. [PMID: 36711702 PMCID: PMC9881905 DOI: 10.1101/2023.01.03.522645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In humans, premature ovarian insufficiency (POI) is caused by autoimmunity and genetic factors, such as mutation of BMP15, a key ovarian determining gene. The cellular mechanisms associated with ovarian failure caused by BMP15 mutation and immune contributions to the disorder are not understood. BMP15's role in ovarian follicle development is conserved in vertebrates, including zebrafish. Using zebrafish, we established a causal link between macrophage activation and ovarian failure. We identified a germline-somatic gonadal cell-macrophage axis underlying ovarian atresia. Germline loss of Bmp15 triggers this axis that single-cell RNA sequencing and genetic analyses indicate involves activation of ovarian somatic cells that express conserved macrophage-activating ligands. Genetic ablation of macrophages blocks premature oocyte loss. Thus, the axis identified here represents potential therapeutic targets to preserve female fertility.
Collapse
Affiliation(s)
- Paloma Bravo
- Department of Cell, Developmental and Regenerative Biology. Icahn School of Medicine at Mount Sinai; New York, NY, USA
| | - Yulong Liu
- Department of Molecular and Cellular Biology. University of California; Davis, CA, USA
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology. University of California; Davis, CA, USA
| | - Florence L. Marlow
- Department of Cell, Developmental and Regenerative Biology. Icahn School of Medicine at Mount Sinai; New York, NY, USA
| |
Collapse
|
17
|
Wu M, Xu J, Zhang Y, Wen Z. Learning from Zebrafish Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:137-157. [PMID: 38228963 DOI: 10.1007/978-981-99-7471-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoiesis is a complex process that tightly regulates the generation, proliferation, differentiation, and maintenance of hematopoietic cells. Disruptions in hematopoiesis can lead to various diseases affecting both hematopoietic and non-hematopoietic systems, such as leukemia, anemia, thrombocytopenia, rheumatoid arthritis, and chronic granuloma. The zebrafish serves as a powerful vertebrate model for studying hematopoiesis, offering valuable insights into both hematopoietic regulation and hematopoietic diseases. In this chapter, we present a comprehensive overview of zebrafish hematopoiesis, highlighting its distinctive characteristics in hematopoietic processes. We discuss the ontogeny and modulation of both primitive and definitive hematopoiesis, as well as the microenvironment that supports hematopoietic stem/progenitor cells. Additionally, we explore the utility of zebrafish as a disease model and its potential in drug discovery, which not only advances our understanding of the regulatory mechanisms underlying hematopoiesis but also facilitates the exploration of novel therapeutic strategies for hematopoietic diseases.
Collapse
Affiliation(s)
- Mei Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin Xu
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Yiyue Zhang
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Zilong Wen
- Southern University of Science and Technology, School of Life Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
18
|
Dey A, Flajšhans M, Pšenička M, Gazo I. DNA repair genes play a variety of roles in the development of fish embryos. Front Cell Dev Biol 2023; 11:1119229. [PMID: 36936683 PMCID: PMC10014602 DOI: 10.3389/fcell.2023.1119229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Embryogenesis is one of the most important life stages because it determines an organism's healthy growth. However, embryos of externally fertilizing species, such as most fish, are directly exposed to the environment during development and may be threatened by DNA damaging factors (pollutants, UV, reactive oxygen species). To counteract the negative effects of DNA fragmentation, fish embryos evolved complex damage response pathways. DNA repair pathways have been extensively studied in some fish species, such as zebrafish (Danio rerio). Our literature review, on the other hand, revealed a paucity of knowledge about DNA damage response and repair in non-model aquaculture fish species. Further, several pieces of evidence underlie the additional role of DNA repair genes and proteins in organogenesis, spatiotemporal localization in different tissue, and its indispensability for normal embryo development. In this review, we will summarize features of different DNA repair pathways in course of fish embryo development. We describe how the expression of DNA repair genes and proteins is regulated during development, their organogenetic roles, and how the expression of DNA repair genes changes in response to genotoxic stress. This will aid in addressing the link between genotoxic stress and embryo phenotype. Furthermore, available data indicate that embryos can repair damaged DNA, but the effects of early-life stress may manifest later in life as behavioral changes, neoplasia, or neurodegeneration. Overall, we conclude that more research on DNA repair in fish embryos is needed.
Collapse
|
19
|
Zhang R, Tu Y, Ye D, Gu Z, Chen Z, Sun Y. A Germline-Specific Regulator of Mitochondrial Fusion is Required for Maintenance and Differentiation of Germline Stem and Progenitor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203631. [PMID: 36257818 PMCID: PMC9798980 DOI: 10.1002/advs.202203631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Indexed: 06/01/2023]
Abstract
Maintenance and differentiation of germline stem and progenitor cells (GSPCs) is important for sexual reproduction. Here, the authors identify zebrafish pld6 as a novel germline-specific gene by cross-analyzing different RNA sequencing results, and find that pld6 knockout mutants develop exclusively into infertile males. In pld6 mutants, GSPCs fail to differentiate and undergo apoptosis, leading to masculinization and infertility. Mitochondrial fusion in pld6-depleted GSPCs is severely impaired, and the mutants exhibit defects in piRNA biogenesis and transposon suppression. Overall, this work uncovers zebrafish Pld6 as a novel germline-specific regulator of mitochondrial fusion, and highlights its essential role in the maintenance and differentiation of GSPCs as well as gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yi‐Xuan Tu
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
| | - Zhenglong Gu
- Division of Nutritional SciencesCornell UniversityIthacaNY14853USA
- Center for Mitochondrial Genetics and HealthGreater Bay Area Institute of Precision Medicine (Guangzhou)Fudan UniversityNansha DistrictGuangzhou511400China
| | - Zhen‐Xia Chen
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhen518000China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
20
|
Russo I, Sartor E, Fagotto L, Colombo A, Tiso N, Alaibac M. The Zebrafish model in dermatology: an update for clinicians. Discov Oncol 2022; 13:48. [PMID: 35713744 PMCID: PMC9206045 DOI: 10.1007/s12672-022-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
Recently, the zebrafish has been established as one of the most important model organisms for medical research. Several studies have proved that there is a high level of similarity between human and zebrafish genomes, which encourages the use of zebrafish as a model for understanding human genetic disorders, including cancer. Interestingly, zebrafish skin shows several similarities to human skin, suggesting that this model organism is particularly suitable for the study of neoplastic and inflammatory skin disorders. This paper appraises the specific characteristics of zebrafish skin and describes the major applications of the zebrafish model in dermatological research.
Collapse
Affiliation(s)
- Irene Russo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Emma Sartor
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Laura Fagotto
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Natascia Tiso
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy.
| |
Collapse
|
21
|
Liu Y, Kossack ME, McFaul ME, Christensen LN, Siebert S, Wyatt SR, Kamei CN, Horst S, Arroyo N, Drummond IA, Juliano CE, Draper BW. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022; 11:e76014. [PMID: 35588359 PMCID: PMC9191896 DOI: 10.7554/elife.76014] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michelle E Kossack
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Matthew E McFaul
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Lana N Christensen
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Sydney R Wyatt
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Caramai N Kamei
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Samuel Horst
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nayeli Arroyo
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Iain A Drummond
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
22
|
Vierstraete J, Fieuws C, Creytens D, Van Dorpe J, Willaert A, Vral A, Claes KBM. Atm deficient zebrafish model reveals conservation of the tumour suppressor function and a role in fertility. Genes Dis 2022; 10:381-384. [DOI: 10.1016/j.gendis.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
|
23
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
24
|
Mishra AP, Hartford SA, Sahu S, Klarmann K, Chittela RK, Biswas K, Jeon AB, Martin BK, Burkett S, Southon E, Reid S, Albaugh ME, Karim B, Tessarollo L, Keller JR, Sharan SK. BRCA2-DSS1 interaction is dispensable for RAD51 recruitment at replication-induced and meiotic DNA double strand breaks. Nat Commun 2022; 13:1751. [PMID: 35365640 PMCID: PMC8975877 DOI: 10.1038/s41467-022-29409-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB. Mishra et al. have generated mice with a single amino acid substitution in BRCA2, which disrupts its interaction with DSS1 resulting in a severe HR defect. They show the interaction to be dispensable for HR at replication induced and meiotic DSBs.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne A Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kimberly Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Albert B Jeon
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Basic Science Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
25
|
Bloom syndrome helicase contributes to germ line development and longevity in zebrafish. Cell Death Dis 2022; 13:363. [PMID: 35436990 PMCID: PMC9016072 DOI: 10.1038/s41419-022-04815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/08/2022]
Abstract
RecQ helicases—also known as the “guardians of the genome”—play crucial roles in genome integrity maintenance through their involvement in various DNA metabolic pathways. Aside from being conserved from bacteria to vertebrates, their importance is also reflected in the fact that in humans impaired function of multiple RecQ helicase orthologs are known to cause severe sets of problems, including Bloom, Werner, or Rothmund-Thomson syndromes. Our aim was to create and characterize a zebrafish (Danio rerio) disease model for Bloom syndrome, a recessive autosomal disorder. In humans, this syndrome is characterized by short stature, skin rashes, reduced fertility, increased risk of carcinogenesis, and shortened life expectancy brought on by genomic instability. We show that zebrafish blm mutants recapitulate major hallmarks of the human disease, such as shortened lifespan and reduced fertility. Moreover, similarly to other factors involved in DNA repair, some functions of zebrafish Blm bear additional importance in germ line development, and consequently in sex differentiation. Unlike fanc genes and rad51, however, blm appears to affect its function independent of tp53. Therefore, our model will be a valuable tool for further understanding the developmental and molecular attributes of this rare disease, along with providing novel insights into the role of genome maintenance proteins in somatic DNA repair and fertility.
Collapse
|
26
|
Raman R, Ramanagoudr-Bhojappa R, Dhinoja S, Ramaswami M, Carrington B, Jagadeeswaran P, Chandrasekharappa SC. Pancytopenia and thrombosis defects in zebrafish mutants of Fanconi anemia genes. Blood Cells Mol Dis 2022; 93:102640. [PMID: 34991062 PMCID: PMC8760166 DOI: 10.1016/j.bcmd.2021.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Progressive pancytopenia is a common feature observed in DNA crosslink repair deficiency disorder, Fanconi anemia (FA). However, this phenotype has not been recapitulated in single FA gene knockout animal models. In this study, we analyzed hematological characteristics in zebrafish null mutants for two FA genes, fanca and fanco. In adult mutants, we demonstrate age-associated reduction in blood cell counts for all lineages, resembling progressive pancytopenia in FA patients. In larval mutants, we demonstrate vascular injury-induced thrombosis defects, particularly upon treatment with crosslinking agent diepoxybutane (DEB), indicating DNA damage induced inefficiency of thrombocytes.
Collapse
Affiliation(s)
- Revathi Raman
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Mukundhan Ramaswami
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Blake Carrington
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pudur Jagadeeswaran
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America.
| | - Settara C. Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
27
|
Chen K, Wang P, Chen J, Ying Y, Chen Y, Gilson E, Lu Y, Ye J. Loss of atm in Zebrafish as a Model of Ataxia-Telangiectasia Syndrome. Biomedicines 2022; 10:392. [PMID: 35203601 PMCID: PMC8962326 DOI: 10.3390/biomedicines10020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is a key DNA damage signaling kinase that is mutated in humans with ataxia-telangiectasia (A-T) syndrome. This syndrome is characterized by neurodegeneration, immune abnormality, cancer predisposition, and premature aging. To better understand the function of ATM in vivo, we engineered a viable zebrafish model with a mutated atm gene. Zebrafish atm loss-of-function mutants show characteristic features of A-T-like motor disturbance, including coordination disorders, immunodeficiency, and tumorigenesis. The immunological disorder of atm homozygote fish is linked to the developmental blockade of hematopoiesis, which occurs at the adulthood stage and results in a decrease in infection defense but, with little effect on wound healing. Malignant neoplasms found in atm mutant fish were mainly nerve sheath tumors and myeloid leukemia, which rarely occur in A-T patients or Atm-/- mice. These results underscore the importance of atm during immune cell development. This zebrafish A-T model opens up a pathway to an improved understanding of the molecular basis of tumorigenesis in A-T and the cellular role of atm.
Collapse
Affiliation(s)
- Kehua Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Peng Wang
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jingrun Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Yiling Ying
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Yi Chen
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Eric Gilson
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
- Faculty of Medicine, University Côte d’Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
- Department of Medical Genetics, CHU, 06107 Nice, France
| | - Yiming Lu
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jing Ye
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| |
Collapse
|
28
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
29
|
Aharon D, Marlow FL. Sexual determination in zebrafish. Cell Mol Life Sci 2021; 79:8. [PMID: 34936027 PMCID: PMC11072476 DOI: 10.1007/s00018-021-04066-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023]
Abstract
Zebrafish have emerged as a major model organism to study vertebrate reproduction due to their high fecundity and external development of eggs and embryos. The mechanisms through which zebrafish determine their sex have come under extensive investigation, as they lack a definite sex-determining chromosome and appear to have a highly complex method of sex determination. Single-gene mutagenesis has been employed to isolate the function of genes that determine zebrafish sex and regulate sex-specific differentiation, and to explore the interactions of genes that promote female or male sexual fate. In this review, we focus on recent advances in understanding of the mechanisms, including genetic and environmental factors, governing zebrafish sex development with comparisons to gene functions in other species to highlight conserved and potentially species-specific mechanisms for specifying and maintaining sexual fate.
Collapse
Affiliation(s)
- Devora Aharon
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy, Place Box 1020, New York, NY, 10029-6574, USA
| | - Florence L Marlow
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy, Place Box 1020, New York, NY, 10029-6574, USA.
| |
Collapse
|
30
|
Shin U, Nakhro K, Oh CK, Carrington B, Song H, Varshney GK, Kim Y, Song H, Jeon S, Robbins G, Kim S, Yoon S, Choi YJ, Kim YJ, Burgess S, Kang S, Sood R, Lee Y, Myung K. Large-scale generation and phenotypic characterization of zebrafish CRISPR mutants of DNA repair genes. DNA Repair (Amst) 2021; 107:103173. [PMID: 34390914 DOI: 10.1016/j.dnarep.2021.103173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
A systematic knowledge of the roles of DNA repair genes at the level of the organism has been limited due to the lack of appropriate experimental approaches using animal model systems. Zebrafish has become a powerful vertebrate genetic model system with availability due to the ease of genome editing and large-scale phenotype screening. Here, we generated zebrafish mutants for 32 DNA repair and replication genes through multiplexed CRISPR/Cas9-mediated mutagenesis. Large-scale phenotypic characterization of our mutant collection revealed that three genes (atad5a, ddb1, pcna) are essential for proper embryonic development and hematopoiesis; seven genes (apex1, atrip, ino80, mre11a, shfm1, telo2, wrn) are required for growth and development during juvenile stage and six genes (blm, brca2, fanci, rad51, rad54l, rtel1) play critical roles in sex development. Furthermore, mutation in six genes (atad5a, brca2, polk, rad51, shfm1, xrcc1) displayed hypersensitivity to DNA damage agents. Our zebrafish mutant collection provides a unique resource for understanding of the roles of DNA repair genes at the organismal level.
Collapse
Affiliation(s)
- Unbeom Shin
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Khriezhanuo Nakhro
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Anatomy, School of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Blake Carrington
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - HeaIn Song
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA; Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Yeongjae Kim
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyemin Song
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sangeun Jeon
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Gabrielle Robbins
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sangin Kim
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Suhyeon Yoon
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yong Jun Choi
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yoo Jung Kim
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shawn Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Raman Sood
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoonsung Lee
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute for Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
31
|
Imai Y, Olaya I, Sakai N, Burgess SM. Meiotic Chromosome Dynamics in Zebrafish. Front Cell Dev Biol 2021; 9:757445. [PMID: 34692709 PMCID: PMC8531508 DOI: 10.3389/fcell.2021.757445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies in zebrafish have revealed key features of meiotic chromosome dynamics, including clustering of telomeres in the bouquet configuration, biogenesis of chromosome axis structures, and the assembly and disassembly of the synaptonemal complex that aligns homologs end-to-end. The telomere bouquet stage is especially pronounced in zebrafish meiosis and sub-telomeric regions play key roles in mediating pairing and homologous recombination. In this review, we discuss the temporal progression of these events in meiosis prophase I and highlight the roles of proteins associated with meiotic chromosome architecture in homologous recombination. Finally, we discuss the interplay between meiotic mutants and gonadal sex differentiation and future research directions to study meiosis in living cells, including cell culture.
Collapse
Affiliation(s)
- Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Ghouil R, Miron S, Koornneef L, Veerman J, Paul MW, Le Du MH, Sleddens-Linkels E, van Rossum-Fikkert SE, van Loon Y, Felipe-Medina N, Pendas AM, Maas A, Essers J, Legrand P, Baarends WM, Kanaar R, Zinn-Justin S, Zelensky AN. BRCA2 binding through a cryptic repeated motif to HSF2BP oligomers does not impact meiotic recombination. Nat Commun 2021; 12:4605. [PMID: 34326328 PMCID: PMC8322138 DOI: 10.1038/s41467-021-24871-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Lieke Koornneef
- Department of Developmental Biology, Oncode Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jasper Veerman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Yvette van Loon
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
33
|
Yang Q, Mumusoglu S, Qin Y, Sun Y, Hsueh AJ. A kaleidoscopic view of ovarian genes associated with premature ovarian insufficiency and senescence. FASEB J 2021; 35:e21753. [PMID: 34233068 DOI: 10.1096/fj.202100756r] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Ovarian infertility and subfertility presenting with premature ovarian insufficiency (POI) and diminished ovarian reserve are major issues facing the developed world due to the trend of delaying childbirth. Ovarian senescence and POI represent a continuum of physiological/pathophysiological changes in ovarian follicle functions. Based on advances in whole exome sequencing, evaluation of gene copy variants, together with family-based and genome-wide association studies, we discussed genes responsible for POI and ovarian senescence. We used a gene-centric approach to sort out literature deposited in the Ovarian Kaleidoscope database (http://okdb.appliedbioinfo.net) by sub-categorizing candidate genes as ligand-receptor signaling, meiosis and DNA repair, transcriptional factors, RNA metabolism, enzymes, and others. We discussed individual gene mutations found in POI patients and verification of gene functions in gene-deleted model organisms. Decreased expression of some of the POI genes could be responsible for ovarian senescence, especially those essential for DNA repair, meiosis and mitochondrial functions. We propose to set up a candidate gene panel for targeted sequencing in POI patients together with studies on mitochondria-associated genes in middle-aged subfertile patients.
Collapse
Affiliation(s)
- Qingling Yang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sezcan Mumusoglu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Aaron J Hsueh
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
34
|
Blokhina YP, Frees MA, Nguyen A, Sharifi M, Chu DB, Bispo K, Olaya I, Draper BW, Burgess SM. Rad21l1 cohesin subunit is dispensable for spermatogenesis but not oogenesis in zebrafish. PLoS Genet 2021; 17:e1009127. [PMID: 34138874 PMCID: PMC8291703 DOI: 10.1371/journal.pgen.1009127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 07/20/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
During meiosis I, ring-shaped cohesin complexes play important roles in aiding the proper segregation of homologous chromosomes. RAD21L is a meiosis-specific vertebrate cohesin that is required for spermatogenesis in mice but is dispensable for oogenesis in young animals. The role of this cohesin in other vertebrate models has not been explored. Here, we tested if the zebrafish homolog Rad21l1 is required for meiotic chromosome dynamics during spermatogenesis and oogenesis. We found that Rad21l1 localizes to unsynapsed chromosome axes. It is also found between the axes of the mature tripartite synaptonemal complex (SC) in both sexes. We knocked out rad21l1 and found that nearly all rad21l1-/- mutants develop as fertile males, suggesting that the mutation causes a defect in juvenile oogenesis, since insufficient oocyte production triggers female to male sex reversal in zebrafish. Sex reversal was partially suppressed by mutation of the checkpoint gene tp53, suggesting that the rad21l1 mutation activates Tp53-mediated apoptosis or arrest in females. This response, however, is not linked to a defect in repairing Spo11-induced double-strand breaks since deletion of spo11 does not suppress the sex reversal phenotype. Compared to tp53 single mutant controls, rad21l1-/- tp53-/- double mutant females produce poor quality eggs that often die or develop into malformed embryos. Overall, these results indicate that the absence of rad21l1-/- females is due to a checkpoint-mediated response and highlight a role for a meiotic-specific cohesin subunit in oogenesis but not spermatogenesis.
Collapse
Affiliation(s)
- Yana P. Blokhina
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, United States of America
| | - Michelle A. Frees
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - An Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Masuda Sharifi
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, California, United States of America
| | - Daniel B. Chu
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, United States of America
| | - Kristi Bispo
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
35
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
36
|
Kobar K, Collett K, Prykhozhij SV, Berman JN. Zebrafish Cancer Predisposition Models. Front Cell Dev Biol 2021; 9:660069. [PMID: 33987182 PMCID: PMC8112447 DOI: 10.3389/fcell.2021.660069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.
Collapse
Affiliation(s)
- Kim Kobar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keon Collett
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Zebrafish male differentiation: Do all testes go through a "juvenile ovary" stage? Tissue Cell 2021; 72:101545. [PMID: 33915358 DOI: 10.1016/j.tice.2021.101545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/24/2022]
Abstract
Zebrafish (Danio rerio) studies describe before the onset of mature gonads differentiation all individuals go through a "juvenile ovary" stage. However, the sequential events of the early zebrafish gonad differentiation are still not described in full detail and recent works indicate that some individuals never form a "juvenile ovary" structure. Therefore, the present study aimed to confirm the existence of two processes of zebrafish male differentiation. For this purpose, every two days between 20 and 30 days post-fertilization (dpf) zebrafish were collected for a stereological analysis of the differentiating gonads. The histological evaluation showed that prior to 22 dpf, zebrafish gonads were still undifferentiated. At 24 dpf, some individuals started to present a "juvenile ovary" and from 26 to 30 dpf, it was possible to discern two processes of gonad development. The majority of the individuals (80 %) developed a "juvenile ovary", while in the remaining (20 %) it was not possible to detect this structure. The results of the present study show the existence of two distinct processes of zebrafish male gonad development, indicating that not all individuals go through the "juvenile ovary" stage.
Collapse
|
38
|
Bertho S, Clapp M, Banisch TU, Bandemer J, Raz E, Marlow FL. Zebrafish dazl regulates cystogenesis and germline stem cell specification during the primordial germ cell to germline stem cell transition. Development 2021; 148:dev187773. [PMID: 33722898 PMCID: PMC8077517 DOI: 10.1242/dev.187773] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/04/2021] [Indexed: 01/14/2023]
Abstract
Fertility and gamete reserves are maintained by asymmetric divisions of the germline stem cells to produce new stem cells or daughters that differentiate as gametes. Before entering meiosis, differentiating germ cells (GCs) of sexual animals typically undergo cystogenesis. This evolutionarily conserved process involves synchronous and incomplete mitotic divisions of a GC daughter (cystoblast) to generate sister cells connected by intercellular bridges that facilitate the exchange of materials to support rapid expansion of the gamete progenitor population. Here, we investigated cystogenesis in zebrafish and found that early GCs are connected by ring canals, and show that Deleted in azoospermia-like (Dazl), a conserved vertebrate RNA-binding protein (Rbp), is a regulator of this process. Analysis of dazl mutants revealed the essential role of Dazl in regulating incomplete cytokinesis, germline cyst formation and germline stem cell specification before the meiotic transition. Accordingly, dazl mutant GCs form defective ring canals, and ultimately remain as individual cells that fail to differentiate as meiocytes. In addition to promoting cystoblast divisions and meiotic entry, dazl is required for germline stem cell establishment and fertility.
Collapse
Affiliation(s)
- Sylvain Bertho
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
| | - Mara Clapp
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Torsten U. Banisch
- Institute of Cell Biology Center for Molecular Biology of Inflammation, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
- New York University School of Medicine, Department of Cell Biology, New York, NY 10012, USA
| | - Jan Bandemer
- Institute of Cell Biology Center for Molecular Biology of Inflammation, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Erez Raz
- Institute of Cell Biology Center for Molecular Biology of Inflammation, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Florence L. Marlow
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
39
|
Imai Y, Saito K, Takemoto K, Velilla F, Kawasaki T, Ishiguro KI, Sakai N. Sycp1 Is Not Required for Subtelomeric DNA Double-Strand Breaks but Is Required for Homologous Alignment in Zebrafish Spermatocytes. Front Cell Dev Biol 2021; 9:664377. [PMID: 33842489 PMCID: PMC8033029 DOI: 10.3389/fcell.2021.664377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
In meiotic prophase I, homologous chromosomes are bound together by the synaptonemal complex, in which two axial elements are connected by transverse filaments and central element proteins. In human and zebrafish spermatocytes, homologous recombination and assembly of the synaptonemal complex initiate predominantly near telomeres. In mice, synapsis is not required for meiotic double-strand breaks (DSBs) and homolog alignment but is required for DSB repair; however, the interplay of these meiotic events in the context of peritelomeric bias remains unclear. In this study, we identified a premature stop mutation in the zebrafish gene encoding the transverse filament protein Sycp1. In sycp1 mutant zebrafish spermatocytes, axial elements were formed and paired at chromosome ends between homologs during early to mid-zygonema. However, they did not synapse, and their associations were mostly lost in late zygotene- or pachytene-like stages. In sycp1 mutant spermatocytes, γH2AX signals were observed, and Dmc1/Rad51 and RPA signals appeared predominantly near telomeres, resembling wild-type phenotypes. We observed persistent localization of Hormad1 along the axis in sycp1 mutant spermatocytes, while the majority of Iho1 signals appeared and disappeared with kinetics similar to those in wild-type spermatocytes. Notably, persistent Iho1 foci were observed in spo11 mutant spermatocytes, suggesting that Iho1 dissociation from axes occurs in a DSB-dependent manner. Our results demonstrated that Sycp1 is not required for peritelomeric DSB formation but is necessary for complete pairing of homologs in zebrafish meiosis.
Collapse
Affiliation(s)
- Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Kenji Saito
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Kazumasa Takemoto
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Fabien Velilla
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Toshihiro Kawasaki
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| |
Collapse
|
40
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
41
|
Dai X, Cheng X, Huang J, Gao Y, Wang D, Feng Z, Zhai G, Lou Q, He J, Wang Z, Yin Z. Rbm46, a novel germ cell-specific factor, modulates meiotic progression and spermatogenesis. Biol Reprod 2021; 104:1139-1153. [PMID: 33524105 DOI: 10.1093/biolre/ioab016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
It has been suggested that many novel RNA-binding proteins (RBPs) are required for gametogenesis, but the necessity of few of these proteins has been functionally verified. Here, we identified one RBP, Rbm46, and investigated its expression pattern and role in zebrafish reproduction. We found that rbm46 is maternally provided and specifically expressed in the germ cells of gonadal tissues using in situ hybridization, reverse transcription-PCR, and quantitative real-time polymerase chain reaction (qRT-PCR). Two independent rbm46 mutant zebrafish lines were generated via the transcription activator-like effector nuclease technique. Specific disruption of rbm46 resulted in masculinization and infertility in the mutants. Although the spermatogonia appeared grossly normal in the mutants, spermatogenesis was impaired, and meiosis events were not observed. The introduction of a tp53M214K mutation could not rescue the female-to-male sex-reversal phenotype, indicating that rbm46 acts independently of the p53-dependent apoptotic pathway. RNA sequencing and qRT-PCR subsequently indicated that Rbm46 might be involved in the posttranscriptional regulation of functional genes essential for germ cell development, such as nanos3, dazl, and sycp3, during gametogenesis. Together, our results reveal for the first time the crucial role of rbm46 in regulating germ cell development in vivo through promotion of germ cell progression through meiosis prophase I.
Collapse
Affiliation(s)
- Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinkai Cheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianfei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yanping Gao
- Research Centre for Diagnosis and Prevention of Hereditary Disease, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhi Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
42
|
Ye M, Chen Y. Zebrafish as an emerging model to study gonad development. Comput Struct Biotechnol J 2020; 18:2373-2380. [PMID: 32994895 PMCID: PMC7498840 DOI: 10.1016/j.csbj.2020.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023] Open
Abstract
The zebrafish (Danio rerio) has emerged as a popular model organism in developmental biology and pharmacogenetics due to its attribute of pathway conservation. Coupled with the availability of robust genetic and transgenic tools, transparent embryos and rapid larval development, studies of zebrafish allow detailed cellular analysis of many dynamic processes. In recent decades, the cellular and molecular mechanisms involved in the process of gonad development have been the subject of intense research using zebrafish models. In this mini-review, we give a brief overview of these studies, and highlight the essential genes involved in sex determination and gonad development in zebrafish.
Collapse
Affiliation(s)
- Mengling Ye
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Raby L, Völkel P, Le Bourhis X, Angrand PO. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020; 12:E2168. [PMID: 32759814 PMCID: PMC7464884 DOI: 10.3390/cancers12082168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (X.L.B.)
| |
Collapse
|
44
|
Xie H, Kang Y, Wang S, Zheng P, Chen Z, Roy S, Zhao C. E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet 2020; 16:e1008655. [PMID: 32196499 PMCID: PMC7112233 DOI: 10.1371/journal.pgen.1008655] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/01/2020] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
E2f5 is a member of the E2f family of transcription factors that play essential roles during many cellular processes. E2f5 was initially characterized as a transcriptional repressor in cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic and post-embryonic development remain incompletely investigated. Here, we report that zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) differentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants, spermatogenesis is arrested at the zygotene stage due to homologous recombination (HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5;tp53 double mutants rescued ovarian development, although oocytes generated from the double mutants were still abnormal, characterized by aberrant distribution of nucleoli. Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5 mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demonstrate that ion transporting principal cells in the pronephric ducts, which remain intercalated with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 activates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as well as motile cilia differentiation by the neighboring principal cells. Taken together, our data suggest that E2f5 can function as a versatile transcriptional activator and identify novel roles of the protein in spermatogenesis as well as MCC differentiation during zebrafish development.
Collapse
Affiliation(s)
- Haibo Xie
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shuo Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Pengfei Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Zhe Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chengtian Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
45
|
Sycp2 is essential for synaptonemal complex assembly, early meiotic recombination and homologous pairing in zebrafish spermatocytes. PLoS Genet 2020; 16:e1008640. [PMID: 32092049 PMCID: PMC7062287 DOI: 10.1371/journal.pgen.1008640] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 03/09/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Meiotic recombination is essential for faithful segregation of homologous chromosomes during gametogenesis. The progression of recombination is associated with dynamic changes in meiotic chromatin structures. However, whether Sycp2, a key structural component of meiotic chromatin, is required for the initiation of meiotic recombination is still unclear in vertebrates. Here, we describe that Sycp2 is required for assembly of the synaptonemal complex and early meiotic events in zebrafish spermatocytes. Our genetic screening by N-ethyl-N-nitrosourea mutagenesis revealed that ietsugu (its), a mutant zebrafish line with an aberrant splice site in the sycp2 gene, showed a defect during meiotic prophase I. The its mutation appeared to be a hypomorphic mutation compared to sycp2 knockout mutations generated by TALEN mutagenesis. Taking advantage of these sycp2 hypomorphic and knockout mutant lines, we demonstrated that Sycp2 is required for the assembly of the synaptonemal complex that is initiated in the vicinity of telomeres in wild-type zebrafish spermatocytes. Accordingly, homologous pairing, the foci of the meiotic recombinases Dmc1/Rad51 and RPA, and γH2AX signals were largely diminished in sycp2 knockout spermatocytes. Taken together, our data indicate that Sycp2 plays a critical role in not only the assembly of the synaptonemal complex, but also early meiotic recombination and homologous pairing, in vertebrates.
Collapse
|
46
|
Yao Y, Wang L, Wang X. Modeling of Solid-Tumor Microenvironment in Zebrafish (Danio Rerio) Larvae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:413-428. [PMID: 32130712 DOI: 10.1007/978-3-030-34025-4_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish larvae have emerged as a powerful model for studying tumorigenesis in vivo, with remarkable conservation with mammals in genetics, molecular and cell biology. Zebrafish tumor models bear the significant advantages of optical clarity in comparison to that in the mammalian models, allowing noninvasive investigation of the tumor cell and its microenvironment at single-cell resolution. Here we review recent progressions in the field of zebrafish models of solid tumor diseases in two main categories: the genetically engineered tumor models in which all cells in the tumor microenvironment are zebrafish cells, and xenograft tumor models in which the tumor microenvironment is composed of zebrafish cells and cells from other species. Notably, the zebrafish patient-derived xenograft (zPDX) models can be used for personalized drug assessment on primary tumor biopsies, including the pancreatic cancer. For the future studies, a series of high throughput drug screenings on the library of transgenic zebrafish models of solid tumor are expected to provide systematic database of oncogenic mutation, cell-of-origin, and leading compounds; and the humanization of zebrafish in genetics and cellular composition will make it more practical hosts for zPDX modeling. Together, zebrafish tumor model systems are unique and convenient in vivo platforms, with great potential to serve as valuable tools for cancer researches.
Collapse
Affiliation(s)
- Yuxiao Yao
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Hason M, Bartůněk P. Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes (Basel) 2019; 10:genes10110935. [PMID: 31731811 PMCID: PMC6896156 DOI: 10.3390/genes10110935] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
Zebrafish (Danio rerio) is a valuable non-mammalian vertebrate model widely used to study development and disease, including more recently cancer. The evolutionary conservation of cancer-related programs between human and zebrafish is striking and allows extrapolation of research outcomes obtained in fish back to humans. Zebrafish has gained attention as a robust model for cancer research mainly because of its high fecundity, cost-effective maintenance, dynamic visualization of tumor growth in vivo, and the possibility of chemical screening in large numbers of animals at reasonable costs. Novel approaches in modeling tumor growth, such as using transgene electroporation in adult zebrafish, could improve our knowledge about the spatial and temporal control of cancer formation and progression in vivo. Looking at genetic as well as epigenetic alterations could be important to explain the pathogenesis of a disease as complex as cancer. In this review, we highlight classic genetic and transplantation models of cancer in zebrafish as well as provide new insights on advances in cancer modeling. Recent progress in zebrafish xenotransplantation studies and drug screening has shown that zebrafish is a reliable model to study human cancer and could be suitable for evaluating patient-derived xenograft cell invasiveness. Rapid, large-scale evaluation of in vivo drug responses and kinetics in zebrafish could undoubtedly lead to new applications in personalized medicine and combination therapy. For all of the above-mentioned reasons, zebrafish is approaching a future of being a pre-clinical cancer model, alongside the mouse. However, the mouse will continue to be valuable in the last steps of pre-clinical drug screening, mostly because of the highly conserved mammalian genome and biological processes.
Collapse
|
48
|
Allen TA, Asad D, Amu E, Hensley MT, Cores J, Vandergriff A, Tang J, Dinh PU, Shen D, Qiao L, Su T, Hu S, Liang H, Shive H, Harrell E, Campbell C, Peng X, Yoder JA, Cheng K. Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential. J Cell Sci 2019; 132:jcs231563. [PMID: 31409692 PMCID: PMC6771143 DOI: 10.1242/jcs.231563] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Metastasis accounts for the majority of all cancer deaths, yet the process remains poorly understood. A pivotal step in the metastasis process is the exiting of tumor cells from the circulation, a process known as extravasation. However, it is unclear how tumor cells extravasate and whether multicellular clusters of tumor cells possess the ability to exit as a whole or must first disassociate. In this study, we use in vivo zebrafish and mouse models to elucidate the mechanism tumor cells use to extravasate. We found that circulating tumor cells exit the circulation using the recently identified extravasation mechanism, angiopellosis, and do so as both clusters and individual cells. We further show that when melanoma and cervical cancer cells utilize this extravasation method to exit as clusters, they exhibit an increased ability to form tumors at distant sites through the expression of unique genetic profiles. Collectively, we present a new model for tumor cell extravasation of both individual and multicellular circulating tumor cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler A Allen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Dana Asad
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Emmanuel Amu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Adam Vandergriff
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Deliang Shen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Li Qiao
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Hongxia Liang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Heather Shive
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Erin Harrell
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Connor Campbell
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27607, USA
| |
Collapse
|
49
|
Ferguson JL, Shive HR. Sequential Immunofluorescence and Immunohistochemistry on Cryosectioned Zebrafish Embryos. J Vis Exp 2019:10.3791/59344. [PMID: 31157768 PMCID: PMC7291005 DOI: 10.3791/59344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Investigation of intercellular interactions often requires discrete labeling of specific cell populations and precise protein localization. The zebrafish embryo is an excellent tool for examining such interactions with an in vivo model. Whole-mount immunohistochemical and immunofluorescence assays are frequently applied in zebrafish embryos to assess protein expression. However, it can be difficult to achieve accurate mapping of co-localized proteins in three-dimensional space. In addition, some studies may require the use of two antibodies that are not compatible with the same technique (e.g., antibody 1 is only suitable for immunohistochemistry and antibody 2 is only suitable for immunofluorescence). The purpose of the method described herein is to perform sequential immunofluorescence and/or immunohistochemistry on individual cryosections derived from early-stage zebrafish embryos. Here we describe the use of sequential rounds of immunofluorescence, imaging, immunohistochemistry, imaging for a single cryosection in order to achieve precise identification of protein expression at the single-cell level. This methodology is suitable for any study in early-stage zebrafish embryos that requires accurate identification of multiple protein targets in individual cells.
Collapse
|
50
|
Genotypic and Phenotypic Variables Affect Meiotic Cell Cycle Progression, Tumor Ploidy, and Cancer-Associated Mortality in a brca2-Mutant Zebrafish Model. JOURNAL OF ONCOLOGY 2019; 2019:9218251. [PMID: 30930946 PMCID: PMC6413366 DOI: 10.1155/2019/9218251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
Abstract
Successful cell replication requires both cell cycle completion and accurate chromosomal segregation. The tumor suppressor BRCA2 is positioned to influence both of these outcomes, and thereby influence genomic integrity, during meiotic and mitotic cell cycles. Accordingly, mutations in BRCA2 induce chromosomal abnormalities and disrupt cell cycle progression in both germ cells and somatic cells. Despite these findings, aneuploidy is not more prevalent in BRCA2-associated versus non-BRCA2-associated human cancers. More puzzlingly, diploidy in BRCA2-associated cancers is a negative prognostic factor, unlike non-BRCA2-associated cancers and many other human cancers. We used a brca2-mutant/tp53-mutant cancer-prone zebrafish model to explore the impact of BRCA2 mutation on cell cycle progression, ploidy, and cancer-associated mortality by performing DNA content/cell cycle analysis on zebrafish germ cells, somatic cells, and cancer cells. First, we determined that combined brca2/tp53 mutations uniquely disrupt meiotic progression. Second, we determined that sex significantly influences ploidy outcome in zebrafish cancers. Third, we determined that brca2 mutation and female sex each significantly reduce survival time in cancer-bearing zebrafish. Finally, we provide evidence to support a link between BRCA2 mutation, tumor diploidy, and poor survival outcome. These outcomes underscore the utility of this model for studying BRCA2-associated genomic aberrations in normal and cancer cells.
Collapse
|