1
|
Shi Y, Eskew RT. S cone increments and decrements: Nearly-linear perceptual scales and variable noise. Vision Res 2025; 231:108613. [PMID: 40311392 DOI: 10.1016/j.visres.2025.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Two psychophysical experiments investigated perceptual differences between increases and decreases in stimulation of the short-wavelength (S) cone photoreceptors. In Experiment 1, observers' suprathreshold perceptual scale responses to S cone stimulation were estimated using the Maximum Likelihood Difference Scaling (MLDS) procedure. In Experiment 2, observers' pedestal discrimination thresholds were measured with a two alternative forced choice (2AFC) method. Both experiments were performed using incremental (S+) and decremental (S-) contrasts separately. Substantial asymmetry between S+ and S- was found in pedestal discrimination thresholds, but not in S+ and S- perceptual scales: perceived S cone contrast was nearly linear with S cone contrast for both polarities. To reconcile perceptual scales and thresholds, a model is proposed in which the noise in the S cone pathway is assumed to be proportional to the square root of stimulus contrast. The model works well for both the perceptual scales and forced-choice discrimination, indicating that S+ and S- signals are processed in an asymmetrical way, likely due to the physiological differences between S ON and S OFF pathways.
Collapse
Affiliation(s)
- Yangyi Shi
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Rhea T Eskew
- Department of Psychology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Liu Y, Luo X, Zhang Y, Zhang Y, Zhang W, Qu H. Spike-VisNet: A novel framework for visual recognition with FocusLayer-STDP learning. Neural Netw 2025; 182:106918. [PMID: 39612689 DOI: 10.1016/j.neunet.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Current vision-inspired spiking neural networks (SNNs) face key challenges due to their model structures typically focusing on single mechanisms and neglecting the integration of multiple biological features. These limitations, coupled with limited synaptic plasticity, hinder their ability to implement biologically realistic visual processing. To address these issues, we propose Spike-VisNet, a novel retina-inspired framework designed to enhance visual recognition capabilities. This framework simulates both the functional and layered structure of the retina. To further enhance this architecture, we integrate the FocusLayer-STDP learning rule, allowing Spike-VisNet to dynamically adjust synaptic weights in response to varying visual stimuli. This rule combines channel attention, inhibition mechanisms, and competitive mechanisms with spike-timing-dependent plasticity (STDP), significantly improving synaptic adaptability and visual recognition performance. Comprehensive evaluations on benchmark datasets demonstrate that Spike-VisNet outperforms other STDP-based SNNs, achieving precision scores of 98.6% on MNIST, 93.29% on ETH-80, and 86.27% on CIFAR-10. These results highlight its effectiveness and robustness, showcasing Spike-VisNet's potential to simulate human visual processing and its applicability to complex real-world visual challenges.
Collapse
Affiliation(s)
- Ying Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaoling Luo
- Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Sichuan University of Science and Engineering, Yibin 644000, PR China
| | - Ya Zhang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yun Zhang
- School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Wei Zhang
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Hong Qu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
3
|
Zhang B, Zhang R, Zhao J, Yang J, Xu S. The mechanism of human color vision and potential implanted devices for artificial color vision. Front Neurosci 2024; 18:1408087. [PMID: 38962178 PMCID: PMC11221215 DOI: 10.3389/fnins.2024.1408087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Vision plays a major role in perceiving external stimuli and information in our daily lives. The neural mechanism of color vision is complicated, involving the co-ordinated functions of a variety of cells, such as retinal cells and lateral geniculate nucleus cells, as well as multiple levels of the visual cortex. In this work, we reviewed the history of experimental and theoretical studies on this issue, from the fundamental functions of the individual cells of the visual system to the coding in the transmission of neural signals and sophisticated brain processes at different levels. We discuss various hypotheses, models, and theories related to the color vision mechanism and present some suggestions for developing novel implanted devices that may help restore color vision in visually impaired people or introduce artificial color vision to those who need it.
Collapse
Affiliation(s)
- Bingao Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Rong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jingjin Zhao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| | - Jiarui Yang
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Shengyong Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Institute of Physical Electronics, Department of Electronics, Peking University, Beijing, China
| |
Collapse
|
4
|
Kawashima R, Matsushita K, Mandai K, Sugita Y, Maruo T, Mizutani K, Midoh Y, Oguchi A, Murakawa Y, Kuniyoshi K, Sato R, Furukawa T, Nishida K, Takai Y. Necl-1/CADM3 regulates cone synapse formation in the mouse retina. iScience 2024; 27:109577. [PMID: 38623325 PMCID: PMC11016759 DOI: 10.1016/j.isci.2024.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
In vertebrates, retinal neural circuitry for visual perception is organized in specific layers. The outer plexiform layer is the first synaptic region in the visual pathway, where photoreceptor synaptic terminals connect with bipolar and horizontal cell processes. However, molecular mechanisms underlying cone synapse formation to mediate OFF pathways remain unknown. This study reveals that Necl-1/CADM3 is localized at S- and S/M-opsin-containing cones and dendrites of type 4 OFF cone bipolar cells (CBCs). In Necl-1-/- mouse retina, synapses between cones and type 4 OFF CBCs were dislocated, horizontal cell distribution became abnormal, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors were dislocated. Necl-1-/- mice exhibited aberrant short-wavelength-light-elicited signal transmission from cones to OFF CBCs, which was rescued by AMPA receptor potentiator. Additionally, Necl-1-/- mice showed impaired optokinetic responses. These findings suggest that Necl-1 regulates cone synapse formation to mediate OFF cone pathways elicited by short-wavelength light in mouse retina.
Collapse
Affiliation(s)
- Rumi Kawashima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Matsushita
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Department of Molecular and Cellular Neurobiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0374, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
- Division of Pathogenetic Signaling, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yoshihiro Midoh
- Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, IMS RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, IMS RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Ryohei Sato
- Forefront Research Center for Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Shi Y, Eskew RT. Asymmetries between achromatic increments and decrements: Perceptual scales and discrimination thresholds. J Vis 2024; 24:10. [PMID: 38607638 PMCID: PMC11019583 DOI: 10.1167/jov.24.4.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/16/2024] [Indexed: 04/13/2024] Open
Abstract
The perceptual response to achromatic incremental (A+) and decremental (A-) visual stimuli is known to be asymmetrical, due most likely to differences between ON and OFF channels. In the current study, we further investigated this asymmetry psychophysically. In Experiment 1, maximum likelihood difference scaling (MLDS) was used to estimate separately observers' perceptual scales for A+ and A-. In Experiment 2, observers performed two spatial alternative forced choice (2SAFC) pedestal discrimination on multiple pedestal contrast levels, using all combinations of A+ and A- pedestals and tests. Both experiments showed the well-known asymmetry. The perceptual scale curves of A+ follow a modified Naka-Rushton equation, whereas those of A- follow a cubic function. Correspondingly, the discrimination thresholds for the A+ pedestal increased monotonically with pedestal contrast, whereas the thresholds of the A- pedestal first increased as the pedestal contrast increased, then decreased as the contrast became higher. We propose a model that links the results of the two experiments, in which the pedestal discrimination threshold is inversely related to the derivative of the perceptual scale curve. Our findings generally agree with Whittle's previous findings (Whittle, 1986, 1992), which also included strong asymmetry between A+ and A-. We suggest that the perception of achromatic balanced incremental and decremental (bipolar) stimuli, such as gratings or flicker, might be dominated by one polarity due to this asymmetry under some conditions.
Collapse
Affiliation(s)
- Yangyi Shi
- Department of Psychology, Northeastern University, Boston, MA, USA
- yangyishi.com
| | - Rhea T Eskew
- Department of Psychology, Northeastern University, Boston, MA, USA
- https://web.northeastern.edu/visionlab/
| |
Collapse
|
6
|
McDonald H, Gardner-Russell J, Alarcon-Martinez L. Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication. Results Probl Cell Differ 2024; 73:229-247. [PMID: 39242382 DOI: 10.1007/978-3-031-62036-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.
Collapse
Affiliation(s)
- Hannah McDonald
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Melbourne, VIC, Australia.
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Deng B, Li W, Chen Z, Zeng J, Zhao F. Temporal bright light at low frequency retards lens-induced myopia in guinea pigs. PeerJ 2023; 11:e16425. [PMID: 38025747 PMCID: PMC10655705 DOI: 10.7717/peerj.16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Bright light conditions are supposed to curb eye growth in animals with experimental myopia. Here we investigated the effects of temporal bright light at very low frequencies exposures on lens-induced myopia (LIM) progression. Methods Myopia was induced by application of -6.00 D lenses over the right eye of guinea pigs. They were randomly divided into four groups based on exposure to different lighting conditions: constant low illumination (CLI; 300 lux), constant high illumination (CHI; 8,000 lux), very low frequency light (vLFL; 300/8,000 lux, 10 min/c), and low frequency light (LFL; 300/8,000 lux, 20 s/c). Refraction and ocular dimensions were measured per week. Changes in ocular dimensions and refractions were analyzed by paired t-tests, and differences among the groups were analyzed by one-way ANOVA. Results Significant myopic shifts in refractive error were induced in lens-treated eyes compared with contralateral eyes in all groups after 3 weeks (all P < 0.05). Both CHI and LFL conditions exhibited a significantly less refractive shift of LIM eyes than CLI and vLFL conditions (P < 0.05). However, only LFL conditions showed significantly less overall myopic shift and axial elongation than CLI and vLFL conditions (both P < 0.05). The decrease in refractive error of both eyes correlated significantly with axial elongation in all groups (P < 0.001), except contralateral eyes in the CHI group (P = 0.231). LFL condition significantly slacked lens thickening in the contralateral eyes. Conclusions Temporal bright light at low temporal frequency (0.05 Hz) appears to effectively inhibit LIM progression. Further research is needed to determine the safety and the potential mechanism of temporal bright light in myopic progression.
Collapse
Affiliation(s)
- Baodi Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wentao Li
- Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, China
| | - Ziping Chen
- Guangdong Light Visual Health Research Institute, Guangzhou, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Feng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
8
|
Zhou R, Xie X, Wang J, Ma B, Hao X. Why do children with autism spectrum disorder have abnormal visual perception? Front Psychiatry 2023; 14:1087122. [PMID: 37255685 PMCID: PMC10225551 DOI: 10.3389/fpsyt.2023.1087122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with severe impairment in social functioning. Visual information processing provides nonverbal cues that support social interactions. ASD children exhibit abnormalities in visual orientation, continuous visual exploration, and visual-spatial perception, causing social dysfunction, and mechanisms underlying these abnormalities remain unclear. Transmission of visual information depends on the retina-lateral geniculate nucleus-visual cortex pathway. In ASD, developmental abnormalities occur in rapid expansion of the visual cortex surface area with constant thickness during early life, causing abnormal transmission of the peak of the visual evoked potential (P100). We hypothesized that abnormal visual perception in ASD are related to the abnormal visual information transmission and abnormal development of visual cortex in early life, what's more, explored the mechanisms of abnormal visual symptoms to provide suggestions for future research.
Collapse
Affiliation(s)
- Rongyi Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyue Xie
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Wang
- Henan Provincial People's Hospital, Henan Institute of Ophthalmology, Zhengzhou, China
| | - Bingxiang Ma
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Hao
- Renmin University of China, Beijing, China
| |
Collapse
|
9
|
Hahn J, Monavarfeshani A, Qiao M, Kao A, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536039. [PMID: 37066415 PMCID: PMC10104162 DOI: 10.1101/2023.04.07.536039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs (Baden et al., 2020). One might expect that retinal cell types evolved to accommodate these varied needs, but this has not been systematically studied. Here, we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a teleost fish, a bird, a reptile and a lamprey. Molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells [RGCs] and Muller glia) is striking, with transcriptomic differences across species correlated with evolutionary distance. Major subclasses are also conserved, whereas variation among types within classes or subclasses is more pronounced. However, an integrative analysis revealed that numerous types are shared across species based on conserved gene expression programs that likely trace back to the common ancestor of jawed vertebrates. The degree of variation among types increases from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified mammalian orthologs of midget RGCs, which comprise >80% of RGCs in the human retina, subserve high-acuity vision, and were believed to be primate-specific (Berson, 2008); in contrast, the mouse orthologs comprise <2% of mouse RGCs. Projections both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allison Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley M. Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Robert J. Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joshua T. Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095 United States
| | - Joshua R. Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Learning to Adapt to Light. Int J Comput Vis 2023. [DOI: 10.1007/s11263-022-01745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Greene E, Morrison J. Evaluating the Talbot-Plateau law. Front Neurosci 2023; 17:1169162. [PMID: 37179545 PMCID: PMC10172486 DOI: 10.3389/fnins.2023.1169162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
The Talbot-Plateau law asserts that when the flux (light energy) of a flicker-fused stimulus equals the flux of a steady stimulus, they will appear equal in brightness. To be perceived as flicker-fused, the frequency of the flash sequence must be high enough that no flicker is perceived, i.e., it appears to be a steady stimulus. Generally, this law has been accepted as being true across all brightness levels, and across all combinations of flash duration and frequency that generate the matching flux level. Two experiments that were conducted to test the law found significant departures from its predictions, but these were small relative to the large range of flash intensities that were tested.
Collapse
|
12
|
Cushing CA, Dawes AJ, Hofmann SG, Lau H, LeDoux JE, Taschereau-Dumouchel V. A generative adversarial model of intrusive imagery in the human brain. PNAS NEXUS 2023; 2:pgac265. [PMID: 36733294 PMCID: PMC9887942 DOI: 10.1093/pnasnexus/pgac265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The mechanisms underlying the subjective experiences of mental disorders remain poorly understood. This is partly due to long-standing over-emphasis on behavioral and physiological symptoms and a de-emphasis of the patient's subjective experiences when searching for treatments. Here, we provide a new perspective on the subjective experience of mental disorders based on findings in neuroscience and artificial intelligence (AI). Specifically, we propose the subjective experience that occurs in visual imagination depends on mechanisms similar to generative adversarial networks that have recently been developed in AI. The basic idea is that a generator network fabricates a prediction of the world, and a discriminator network determines whether it is likely real or not. Given that similar adversarial interactions occur in the two major visual pathways of perception in people, we explored whether we could leverage this AI-inspired approach to better understand the intrusive imagery experiences of patients suffering from mental illnesses such as post-traumatic stress disorder (PTSD) and acute stress disorder. In our model, a nonconscious visual pathway generates predictions of the environment that influence the parallel but interacting conscious pathway. We propose that in some patients, an imbalance in these adversarial interactions leads to an overrepresentation of disturbing content relative to current reality, and results in debilitating flashbacks. By situating the subjective experience of intrusive visual imagery in the adversarial interaction of these visual pathways, we propose testable hypotheses on novel mechanisms and clinical applications for controlling and possibly preventing symptoms resulting from intrusive imagery.
Collapse
Affiliation(s)
- Cody A Cushing
- Department of Psychology, UCLA, Los Angeles, CA, 90095, USA
| | - Alexei J Dawes
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Stefan G Hofmann
- Department of Clinical Psychology, Philipps-University Marburg, 35037 Marburg, Germany
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Hakwan Lau
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Joseph E LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, 10012, USA
- Department of Psychiatry, and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, 10016, USA
| | - Vincent Taschereau-Dumouchel
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec H1N 3M5, Canada
| |
Collapse
|
13
|
Croteau LP, Risner ML, Wareham LK, McGrady NR, Chamling X, Zack DJ, Calkins DJ. Ex Vivo Integration of Human Stem Retinal Ganglion Cells into the Mouse Retina. Cells 2022; 11:cells11203241. [PMID: 36291110 PMCID: PMC9600680 DOI: 10.3390/cells11203241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cell replacement therapies may be key in achieving functional recovery in neurodegenerative optic neuropathies diseases such as glaucoma. One strategy that holds promise in this regard is the use of human embryonic stem cell and induced pluripotent stem-derived retinal ganglion cells (hRGCs). Previous hRGC transplantation studies have shown modest success. This is in part due to the low survival and integration of the transplanted cells in the host retina. The field is further challenged by mixed assays and outcome measurements that probe and determine transplantation success. Thefore, we have devised a transplantation assay involving hRGCs and mouse retina explants that bypasses physical barriers imposed by retinal membranes. We show that hRGC neurites and somas are capable of invading mouse explants with a subset of hRGC neurites being guided by mouse RGC axons. Neonatal mouse retina explants, and to a lesser extent, adult explants, promote hRGC integrity and neurite outgrowth. Using this assay, we tested whether suppmenting cultures with brain derived neurotrophic factor (BDNF) and the adenylate cyclase activator, forskolin, enhances hRGC neurite integration, neurite outgrowth, and integrity. We show that supplementing cultures with a combination BDNF and forskolin strongly favors hRGC integrity, increasing neurite outgrowth and complexity as well as the invasion of mouse explants. The transplantation assay presented here is a practical tool for investigating strategies for testing and optimizing the integration of donor cells into host tissues.
Collapse
Affiliation(s)
- Louis-Philippe Croteau
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nolan R. McGrady
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
14
|
Duan H, Xu X. Create Machine Vision Inspired by Eagle Eye. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891728. [PMID: 39301503 PMCID: PMC11412415 DOI: 10.34133/2022/9891728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/05/2022] [Indexed: 09/22/2024]
Abstract
Eagle, a representative species in the raptor world, has the sharpest visual acuity among all animals. The reputation of the "clairvoyance" is employed to describe an eagle. The excellent visual skills of eagles depend on their unique eye structures and special visual principles. The powerful vision perception mechanisms of the eagle bring abundant inspiration for traditional visual applications. Biological eagle eye vision technology provides a creative way to solve visual perception issues of "Knowing What is Where by Seeing." The theoretical research and practical works of eagle vision would contribute to the development of machine vision, or even artificial intelligence (AI) in the real world. Furthermore, eagle eye vision also provides feasible ideas for the popularization of new concepts in the virtual world in the future.
Collapse
Affiliation(s)
- Haibin Duan
- State Key Laboratory of Virtual Reality Technology and Systems, School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100083, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Xiaobin Xu
- State Key Laboratory of Virtual Reality Technology and Systems, School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100083, China
| |
Collapse
|
15
|
Westö J, Martyniuk N, Koskela S, Turunen T, Pentikäinen S, Ala-Laurila P. Retinal OFF ganglion cells allow detection of quantal shadows at starlight. Curr Biol 2022; 32:2848-2857.e6. [PMID: 35609606 DOI: 10.1016/j.cub.2022.04.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Perception of light in darkness requires no more than a handful of photons, and this remarkable behavioral performance can be directly linked to a particular retinal circuit-the retinal ON pathway. However, the neural limits of shadow detection in very dim light have remained unresolved. Here, we unravel the neural mechanisms that determine the sensitivity of mice (CBA/CaJ) to light decrements at the lowest light levels by measuring signals from the most sensitive ON and OFF retinal ganglion cell types and by correlating their signals with visually guided behavior. We show that mice can detect shadows when only a few photon absorptions are missing among thousands of rods. Behavioral detection of such "quantal" shadows relies on the retinal OFF pathway and is limited by noise and loss of single-photon signals in retinal processing. Thus, in the dim-light regime, light increments and decrements are encoded separately via the ON and OFF retinal pathways, respectively.
Collapse
Affiliation(s)
- Johan Westö
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Nataliia Martyniuk
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Sanna Koskela
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Tuomas Turunen
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Santtu Pentikäinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland; Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
16
|
Fernandes P, Ferreira C, Domingues J, Amorim-de-Sousa A, Faria-Ribeiro M, Queirós A, González-Meijome JM. Short-term delay in neural response with multifocal contact lens might start at the retinal level. Doc Ophthalmol 2022; 145:37-51. [PMID: 35364776 DOI: 10.1007/s10633-022-09870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Multifocal simultaneous imaging challenges the visual system to process the multiple overlaps of focused and defocused images. Retinal image processing may be an important step in neuroadaptation to multifocal optical images. Our aims are, firstly to evaluate the short-term effect of different multifocal contact lenses (MF) on retinal activity in young healthy subjects (Experiment#1) and secondly, to evaluate any changes in retinal activity in presbyopic patients fitted with MF over a 15-day period (Experiment#2). METHODS In Experiment-#1, 10 emmetropic healthy young subjects were included to evaluate the short-term effect of different MFs designs. In Experiment #2, 4 presbyopic subjects were included to wear MF for 15 days. Following the ISCEV Standards, multifocal electroretinograms (mfERGs) were recorded to evaluate different retinal regions under different conditions: with single vision contact lens (SVCL) and with center-distance and center-near MF. RESULTS In Exp#1 the peak time of N1, P1 and N2 were found to be delayed with the MF (p ≤ 0.040). There was a significant reduction for N1 amplitude in all retinal regions (p < 0.001), while for P1 and N2 amplitudes this reduction was more significant in the peripheral regions (p < 0.005, ring 5 to 6). With center-near MF the mean response density (nV/deg2) showed a significant decrease in all wave components of the mfERGs response, particularly from Ring 3 to Ring 6 (p < 0.001, all Rings). In Exp#2, the mean mfERG response is similar between SVCL and center-distance MF, while center-near MF showed an increase in implicit time N1 and P1 on day 1 that tends to recover to baseline values after 15 days of MF wear. CONCLUSIONS significant changes in the mfERGs responses were found with the MF lens, being most noticeable with the center-near MF lens design. The present results suggest that the observed delay in cortical response described during the adaptation to multifocality may partially begin at the retina level.
Collapse
Affiliation(s)
- Paulo Fernandes
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal.
| | - Cesarina Ferreira
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - Joana Domingues
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - Ana Amorim-de-Sousa
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - Miguel Faria-Ribeiro
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - António Queirós
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - José M González-Meijome
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| |
Collapse
|
17
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
N2PN: Non-reference two-pathway network for low-light image enhancement. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
|
20
|
Marcar VL, Battegay E, Schmidt D, Cheetham M. Parallel processing in human visual cortex revealed through the influence of their neural responses on the visual evoked potential. Vision Res 2021; 193:107994. [PMID: 34979298 DOI: 10.1016/j.visres.2021.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
The neural response in the human visual system is composed of magno-, parvo- and koniocellular input from the retina. Signal differences from functional imaging between health and individuals with a cognitive weakness are attributed to a dysfunction of a specific retinal input. Yet, anatomical interconnections within the human visual system obscure individual contribution to the neural response in V1. Deflections in the visual evoked potential (VEP) arise from an interaction between electric dipoles, their strength determined by the size of the neural population active during temporal - and spatial luminance contrast processing. To investigate interaction between these neural responses, we recorded the VEP over visual cortex of 14 healthy adults viewing four series of windmill patterns. Within a series, the relative area white in a pattern varied systematically. Between series, the number of sectors across which this area was distributed doubled. These patterns were viewed as pattern alternating and on-/off stimuli. P100/P1 amplitude increased linearly with the relative area white in the pattern, while N135/N1 and P240/P2 amplitude increased with the number of sectors of which the area white was distributed. The decreases P100 amplitude with increasing number of sectors is attributed to an interaction between electric dipoles located in granular and supragranular layers of V1. Differences between the VEP components obtained during a pattern reversing display and following pattern onset are accounted for by the transient and sustained nature of neural responses processing temporal - and spatial luminance contrast and ability of these responses to manifest in the VEP.
Collapse
Affiliation(s)
- V L Marcar
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Comprehensive Cancer Centre Zurich, PO Box, 157, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Biomedical Optical Research Laboratory (BORL), Department of Neonatology, Frauenklinikstrasse 10, CH-8006 Zürich, Switzerland.
| | - E Battegay
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Research Priority Program "Dynamics of Healthy Aging", University of Zürich, Zürich, Switzerland; International Center for Multimorbidity and Complexity in Medicine (ICMC), University Zurich, University Hospital Basel (Department of Psychosomatic Medicine), Merian Iselin Klinik Basel, Switzerland
| | - D Schmidt
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - M Cheetham
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
21
|
Brooks CJ, Chan YM, Fielding J, White OB, Badcock DR, McKendrick AM. Visual contrast perception in visual snow syndrome reveals abnormal neural gain but not neural noise. Brain 2021; 145:1486-1498. [PMID: 34633444 DOI: 10.1093/brain/awab383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Visual snow syndrome is a neurological condition characterised by a persistent visual disturbance, visual snow, in conjunction with additional visual symptoms. Cortical hyperexcitability is a potential pathophysiological mechanism, which could be explained by increased gain in neural responses to visual input. Alternatively, neural noise in the visual pathway could be abnormally elevated. We assessed these two potential competing neural mechanisms in our studies of visual contrast perception. Cortical hyperexcitation also occurs in migraine, which commonly co-occurs with visual snow syndrome. Therefore, to determine whether the effect of visual snow syndrome can be distinguished from interictal migraine, we recruited four participant groups: controls, migraine alone, visual snow syndrome alone, visual snow syndrome with migraine. In the first experiment, we estimated internal noise in 20 controls, 21 migraine participants, 32 visual snow syndrome participants (16 with migraine) using a luminance increment detection task. In the second experiment, we estimated neural contrast gain in 21 controls, 22 migraine participants, 35 visual snow syndrome participants (16 with migraine) using tasks assessing sensitivity to changes in contrast from a reference. Contrast gain and sensitivity were measured for the putative parvocellular and ON and OFF magnocellular pathways, respectively. We found that luminance increment thresholds and internal noise estimates were normal in both visual snow syndrome and migraine. Contrast gain measures for putative parvocellular processing and contrast sensitivity for putative OFF magnocellular processing were abnormally increased in visual snow syndrome, regardless of migraine status. Therefore, our results indicate that visual snow syndrome is characterised by increased neural contrast gain but not abnormal neural noise within the targeted pathways.
Collapse
Affiliation(s)
- Cassandra J Brooks
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Yu Man Chan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen B White
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - David R Badcock
- School of Psychological Science, The University of Western Australia, Crawley, Western Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
22
|
You M, Rong R, Zeng Z, Xia X, Ji D. Transneuronal Degeneration in the Brain During Glaucoma. Front Aging Neurosci 2021; 13:643685. [PMID: 33889083 PMCID: PMC8055862 DOI: 10.3389/fnagi.2021.643685] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
The death of retinal ganglion cells (RGCs) is a key factor in the pathophysiology of all types of glaucoma, but the mechanism of pathogenesis of glaucoma remains unclear. RGCs are a group of central nervous system (CNS) neurons whose soma are in the inner retina. The axons of RGCs form the optic nerve and converge at the optic chiasma; from there, they project to the visual cortex via the lateral geniculate nucleus (LGN). In recent years, there has been increasing interest in the dysfunction and death of CNS and retinal neurons caused by transneuronal degeneration of RGCs, and the view that glaucoma is a widespread neurodegenerative disease involving CNS damage appears more and more frequently in the literature. In this review, we summarize the current knowledge of LGN and visual cortex neuron damage in glaucoma and possible mechanisms behind the damage. This review presents an updated and expanded view of neuronal damage in glaucoma, and reveals new and potential targets for neuroprotection and treatment.
Collapse
Affiliation(s)
- Mengling You
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Rong Rong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Zhou Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
23
|
Clarkson-Townsend DA, Bales KL, Marsit CJ, Pardue MT. Light Environment Influences Developmental Programming of the Metabolic and Visual Systems in Mice. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 33861321 PMCID: PMC8083116 DOI: 10.1167/iovs.62.4.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose Light is a salient cue that can influence neurodevelopment and the immune system. Light exposure out of sync with the endogenous clock causes circadian disruption and chronic disease. Environmental light exposure may contribute to developmental programming of metabolic and neurological systems but has been largely overlooked in Developmental Origins of Health and Disease (DOHaD) research. Here, we investigated whether developmental light exposure altered programming of visual and metabolic systems. Methods Pregnant mice and pups were exposed to control light (12:12 light:dark) or weekly light cycle inversions (circadian disruption [CD]) until weaning, after which male and female offspring were housed in control light and longitudinally measured to evaluate differences in growth (weight), glucose tolerance, visual function (optomotor response), and retinal function (electroretinogram), with and without high fat diet (HFD) challenge. Retinal microglia and macrophages were quantified by positive Iba1 and CD11b immunofluorescence. Results CD exposure caused impaired visual function and increased retinal immune cell expression in adult offspring. When challenged with HFD, CD offspring also exhibited altered retinal function and sex-specific impairments in glucose tolerance. Conclusions Overall, these findings suggest that the light environment contributes to developmental programming of the metabolic and visual systems, potentially promoting a pro-inflammatory milieu in the retina and increasing the risk of visual disease later in life.
Collapse
Affiliation(s)
- Danielle A. Clarkson-Townsend
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
| | - Katie L. Bales
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Machelle T. Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
24
|
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol 2021; 12:661938. [PMID: 34093409 PMCID: PMC8175861 DOI: 10.3389/fneur.2021.661938] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Retinal ganglion cells (RGCs) are the bridging neurons that connect the retinal input to the visual processing centres within the central nervous system. There is a remarkable diversity of RGCs and the various subtypes have unique morphological features, distinct functions, and characteristic pathways linking the inner retina to the relevant brain areas. A number of psychophysical and electrophysiological tests have been refined to investigate this large and varied population of RGCs. Technological advances, such as high-resolution optical coherence tomography imaging, have provided additional tools to define the pattern of RGC involvement and the chronological sequence of events in both inherited and acquired optic neuropathies. The mechanistic insights gained from these studies, in particular the selective vulnerability and relative resilience of particular RGC subtypes, are of fundamental importance as they are directly relevant to the development of targeted therapies for these invariably progressive blinding diseases. This review provides a comprehensive description of the various types of RGCs, the developments in proposed methods of classification, and the current gaps in our knowledge of how these RGCs are differentially affected depending on the underlying aetiology. The synthesis of the current body of knowledge on the diversity of RGCs and the pathways that are potentially amenable to therapeutic modulation will hopefully lead to much needed effective treatments for patients with optic neuropathies.
Collapse
Affiliation(s)
- Ungsoo Samuel Kim
- Kim's Eye Hospital, Seoul, South Korea
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- *Correspondence: Ungsoo Samuel Kim
| | - Omar A. Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Section of Ophthalmology, King's College London, St. Thomas' Hospital Campus, London, United Kingdom
| | - John D. Mollon
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
25
|
Hirasawa H, Miwa N, Watanabe SI. GABAergic and glycinergic systems regulate ON-OFF electroretinogram by cooperatively modulating cone pathways in the amphibian retina. Eur J Neurosci 2020; 53:1428-1440. [PMID: 33222336 DOI: 10.1111/ejn.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
The network mechanisms underlying how inhibitory circuits regulate ON- and OFF-responses (the b- and d-waves) in the electroretinogram (ERG) remain unclear. The purpose of this study was to investigate the contribution of inhibitory circuits to the emergence of the b- and d-waves in the full-field ERG in the newt retina. To this end, we investigated the effects of several synaptic transmission blockers on the amplitudes of the b- and d-waves in the ERG obtained from newt eyecup preparations. Our results demonstrated that (a) L-APB blocked the b-wave, indicating that the b-wave arises from the activity of ON-bipolar cells (BCs) expressing type six metabotropic glutamate receptors; (b) the combined administration of UBP310/GYKI 53655 blocked the d-wave, indicating that the d-wave arises from the activity of OFF-BCs expressing kainate-/AMPA-receptors; (c) SR 95531 augmented both the b- and the d-wave, indicating that GABAergic lateral inhibitory circuits inhibit both ON- and OFF-BC pathways; (d) the administration of strychnine in the presence of SR 95531 attenuated the d-wave, and this attenuation was prevented by blocking ON-pathways with L-APB, which indicated that the glycinergic inhibition of OFF-BC pathway is downstream of the GABAergic inhibition of the ON-system; and (e) the glycinergic inhibition from the ON- to the OFF-system widens the response range of OFF-BC pathways, specifically in the absence of GABAergic lateral inhibition. Based on these results, we proposed a circuitry mechanism for the regulation of the d-wave and offered a tentative explanation of the circuitry mechanisms underlying ERG formation.
Collapse
Affiliation(s)
- Hajime Hirasawa
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Naofumi Miwa
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Shu-Ichi Watanabe
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
26
|
Zemon V, Herrera S, Gordon J, Revheim N, Silipo G, Butler PD. Contrast sensitivity deficits in schizophrenia: A psychophysical investigation. Eur J Neurosci 2020; 53:1155-1170. [DOI: 10.1111/ejn.15026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Vance Zemon
- Ferkauf Graduate School of Psychology Yeshiva University Bronx NY USA
| | - Shaynna Herrera
- Ferkauf Graduate School of Psychology Yeshiva University Bronx NY USA
| | - James Gordon
- Hunter College of the City University of New York New York NY USA
| | - Nadine Revheim
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
| | - Gail Silipo
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
| | - Pamela D. Butler
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
- Department of Psychiatry New York University School of Medicine New York NY USA
| |
Collapse
|
27
|
Mikhalkin A, Nikitina N, Merkulyeva N. Heterochrony of postnatal accumulation of nonphosphorylated heavy‐chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus. J Comp Neurol 2020; 529:1430-1441. [DOI: 10.1002/cne.25028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Aleksandr Mikhalkin
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Nina Nikitina
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| | - Natalia Merkulyeva
- lab Neuromorphology Pavlov Institute of Physiology RAS Makarov emb, 6 Saint‐Petersburg Russia
| |
Collapse
|
28
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
29
|
Seleem AA. Immunohistochemical localization of alpha-synuclein in the retina of some nocturnal and diurnal animals. Biotech Histochem 2020; 95:360-372. [PMID: 31951746 DOI: 10.1080/10520295.2019.1703218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Although alpha-synuclein has been reported to participate in neurodegenerative diseases, the actual normal biological function of alpha-synuclein remains unclear. I investigated the correlation of alpha-synuclein expression with nocturnal and diurnal activity for various species. Hematoxylin and eosin staining, periodic acid-Schiff's reaction (PAS) and immunohistochemistry of alpha-synuclein expression were performed for the retinas of diurnal, nocturnal, nocturnal with diurnal activity species. I found different intensity of alpha-synuclein expression in the retinal layers. I found alpha-synuclein expression in the outer segment of the photoreceptor layer in the diurnal studied species and absence of alpha-synuclein expression in the compartments of photoreceptor layer in the retina of nocturnal species. I found localization of alpha-synuclein in the inner and outer segments of photoreceptors of the retina of nocturnal with diurnal activity species. The retinas of diurnal animals exhibited glycogen in the paraboloid structure in the inner segment of the photoreceptor layer. The retinas of nocturnal and nocturnal with diurnal activity species were devoid of glycogen in the photoreceptor layer. I conclude that the function of alpha-synuclein is more related to diurnal than to nocturnal species.
Collapse
Affiliation(s)
- Amin A Seleem
- Amin A. Seleem, Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt and Biology Department, Faculty of Science and Arts, Alula, Taibah University, Kingdom Saudi Arabia
| |
Collapse
|
30
|
Yang KF, Zhang XS, Li YJ. A Biological Vision Inspired Framework for Image Enhancement in Poor Visibility Conditions. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:1493-1506. [PMID: 31562084 DOI: 10.1109/tip.2019.2938310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Image enhancement is an important pre-processing step for many computer vision applications especially regarding the scenes in poor visibility conditions. In this work, we develop a unified two-pathway model inspired by the biological vision, especially the early visual mechanisms, which contributes to image enhancement tasks including low dynamic range (LDR) image enhancement and high dynamic range (HDR) image tone mapping. Firstly, the input image is separated and sent into two visual pathways: structure-pathway and detail-pathway, corresponding to the M-and P-pathway in the early visual system, which code the low-and high-frequency visual information, respectively. In the structure-pathway, an extended biological normalization model is used to integrate the global and local luminance adaptation, which can handle the visual scenes with varying illuminations. On the other hand, the detail enhancement and local noise suppression are achieved in the detail-pathway based on local energy weighting. Finally, the outputs of structure-and detail-pathway are integrated to achieve the low-light image enhancement. In addition, the proposed model can also be used for tone mapping of HDR images with some fine-tuning steps. Extensive experiments on three datasets (two LDR image datasets and one HDR scene dataset) show that the proposed model can handle the visual enhancement tasks mentioned above efficiently and outperform the related state-of-the-art methods.
Collapse
|
31
|
Paradoxical Rules of Spike Train Decoding Revealed at the Sensitivity Limit of Vision. Neuron 2019; 104:576-587.e11. [PMID: 31519460 DOI: 10.1016/j.neuron.2019.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/28/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
All sensory information is encoded in neural spike trains. It is unknown how the brain utilizes this neural code to drive behavior. Here, we unravel the decoding rules of the brain at the most elementary level by linking behavioral decisions to retinal output signals in a single-photon detection task. A transgenic mouse line allowed us to separate the two primary retinal outputs, ON and OFF pathways, carrying information about photon absorptions as increases and decreases in spiking, respectively. We measured the sensitivity limit of rods and the most sensitive ON and OFF ganglion cells and correlated these results with visually guided behavior using markerless head and eye tracking. We show that behavior relies only on the ON pathway even when the OFF pathway would allow higher sensitivity. Paradoxically, behavior does not rely on the spike code with maximal information but instead relies on a decoding strategy based on increases in spiking.
Collapse
|
32
|
Read JCA, Cumming BG. The psychophysics of stereopsis can be explained without invoking independent ON and OFF channels. J Vis 2019; 19:7. [PMID: 31173632 PMCID: PMC6690401 DOI: 10.1167/19.6.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Early vision proceeds through distinct ON and OFF channels, which encode luminance increments and decrements respectively. It has been argued that these channels also contribute separately to stereoscopic vision. This is based on the fact that observers perform better on a noisy disparity discrimination task when the stimulus is a random-dot pattern consisting of equal numbers of black and white dots (a “mixed-polarity stimulus,” argued to activate both ON and OFF stereo channels), than when it consists of all-white or all-black dots (“same-polarity,” argued to activate only one). However, it is not clear how this theory can be reconciled with our current understanding of disparity encoding. Recently, a binocular convolutional neural network was able to replicate the mixed-polarity advantage shown by human observers, even though it was based on linear filters and contained no mechanisms which would respond separately to black or white dots. Here, we show that a subtle feature of the way the stimuli were constructed in all these experiments can explain the results. The interocular correlation between left and right images is actually lower for the same-polarity stimuli than for mixed-polarity stimuli with the same amount of disparity noise applied to the dots. Because our current theories suggest stereopsis is based on a correlation-like computation in primary visual cortex, this postulate can explain why performance was better for the mixed-polarity stimuli. We conclude that there is currently no evidence supporting separate ON and OFF channels in stereopsis.
Collapse
Affiliation(s)
- Jenny C A Read
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Bruce G Cumming
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Schaeffner LF, Welchman AE. The mixed-polarity benefit of stereopsis arises in early visual cortex. J Vis 2019; 19:9. [PMID: 30779843 PMCID: PMC6380879 DOI: 10.1167/19.2.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Depth perception is better when observers view stimuli containing a mixture of bright and dark visual features. It is currently unclear where in the visual system sensory processing benefits from the availability of different contrast polarity. To address this question, we applied transcranial magnetic stimulation to the visual cortex to modulate normal neural activity during processing of single- or mixed-polarity random-dot stereograms. In line with previous work, participants gave significantly better depth judgments for mixed-polarity stimuli. Stimulation of early visual cortex (V1/V2) significantly increased this benefit for mixed-polarity stimuli, and it did not affect performance for single-polarity stimuli. Stimulation of disparity responsive areas V3a and LO had no effect on perception. Our findings show that disparity processing in early visual cortex gives rise to the mixed-polarity benefit. This is consistent with computational models of stereopsis at the level of V1 that produce a mixed polarity benefit.
Collapse
|
34
|
Ahmad R, Paradis H, Boyce D, McDonald J, Gendron RL. Novel characteristics of the cultured Lumpfish Cyclopterus lumpus eye during post-hatch larval and juvenile developmental stages. JOURNAL OF FISH BIOLOGY 2019; 94:297-312. [PMID: 30565257 DOI: 10.1111/jfb.13892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
We systematically analysed the characteristics of the Cyclopterus lumpus eye and retina during cultured post-hatch developmental stages using gross observations, histology, immunohistochemistry, microscopy, fundus imaging and spectral domain optical coherence tomography retinal imaging. Post-hatch developing cultured C. lumpus eye and retinal tissues share a number of features typically conserved in other teleost fish. However, cultured C. lumpus possess some novel ocular and retinal features different from previous descriptions of other teleosts, including a prominent retractor lentis pigmented tissue closely associated with the vascular rete mirabile, peripherally located lobes of separate retinal tissue containing proliferative cells, extensive tapetum material of varying thickness, prominent fundus stripes and an elongated rod-shaped optic nerve stalk. Post-hatch developing cultured C. lumpus also developmentally regulate a protein homologous to alpha smooth-muscle actin in strikingly dense continuous bands in the plexiform layers of the retina. The novel features of the eye and retina of cultured C. lumpus described here could contribute to our understanding of fitness and survival of C. lumpus in a widely ranging habitat.
Collapse
Affiliation(s)
- Raahyma Ahmad
- Division of Biomedical Science, Memorial University, St. John's, Newfoundland, Canada
| | - Helene Paradis
- Division of Biomedical Science, Memorial University, St. John's, Newfoundland, Canada
| | - Danny Boyce
- Department of Ocean Science, Memorial University, St. John's, Newfoundland, Canada
| | - James McDonald
- Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| | - Robert L Gendron
- Division of Biomedical Science, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
35
|
Li Q, Song M, Xu J, Qin W, Yu C, Jiang T. Cortical thickness development of human primary visual cortex related to the age of blindness onset. Brain Imaging Behav 2018; 11:1029-1036. [PMID: 27468855 DOI: 10.1007/s11682-016-9576-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Blindness primarily induces structural alteration in the primary visual cortex (V1). Some studies have found that the early blind subjects had a thicker V1 compared to sighted controls, whereas late blind subjects showed no significant differences in the V1. This implies that the age of blindness onset may exert significant effects on the development of cortical thickness of the V1. However, no previous research used a trajectory of the age of blindness onset-related changes to investigate these effects. Here we explored this issue by mapping the cortical thickness trajectory of the V1 against the age of blindness onset using data from 99 blind individuals whose age of blindness onset ranged from birth to 34 years. We found that the cortical thickness of the V1 could be fitted well with a quadratic curve in both the left (F = 11.59, P = 3 × 10-5) and right hemispheres (F = 6.54, P = 2 × 10-3). Specifically, the cortical thickness of the V1 thinned rapidly during childhood and adolescence and did not change significantly thereafter. This trend was not observed in the primary auditory cortex (A1), primary motor cortex (M1), or primary somatosensory cortex (S1). These results provide evidence that an onset of blindness before adulthood significantly affects the cortical thickness of the V1 and suggest a critical period for cortical development of the human V1.
Collapse
Affiliation(s)
- Qiaojun Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Jiayuan Xu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China. .,The Queensland Brain Institute, University of Queensland, QLD, Brisbane, Australia.
| |
Collapse
|
36
|
Nurzynska K, Mikhalkin A, Piorkowski A. CAS: Cell Annotation Software - Research on Neuronal Tissue Has Never Been so Transparent. Neuroinformatics 2018; 15:365-382. [PMID: 28849545 PMCID: PMC5671565 DOI: 10.1007/s12021-017-9340-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CAS (Cell Annotation Software) is a novel tool for analysis of microscopic images and selection of the cell soma or nucleus, depending on the research objectives in medicine, biology, bioinformatics, etc. It replaces time-consuming and tiresome manual analysis of single images not only with automatic methods for object segmentation based on the Statistical Dominance Algorithm, but also semi-automatic tools for object selection within a marked region of interest. For each image, a broad set of object parameters is computed, including shape features and optical and topographic characteristics, thus giving additional insight into data. Our solution for cell detection and analysis has been verified by microscopic data and its application in the annotation of the lateral geniculate nucleus has been examined in a case study.
Collapse
Affiliation(s)
- Karolina Nurzynska
- Institute of Informatics, Silesian University of Technology, Gliwice, Poland.
| | - Aleksandr Mikhalkin
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | - Adam Piorkowski
- Department of Geoinformatics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland
| |
Collapse
|
37
|
Ren YM, Weng CH, Zhao CJ, Yin ZQ. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats. Int J Ophthalmol 2018; 11:756-765. [PMID: 29862172 DOI: 10.18240/ijo.2018.05.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/16/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. METHODS The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Chuan-Huang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cong-Jian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
38
|
Lrit1, a Retinal Transmembrane Protein, Regulates Selective Synapse Formation in Cone Photoreceptor Cells and Visual Acuity. Cell Rep 2018; 22:3548-3561. [DOI: 10.1016/j.celrep.2018.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
|
39
|
Marcar VL, Baselgia S, Lüthi-Eisenegger B, Jäncke L. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP. Brain Behav 2018. [PMID: 29541531 PMCID: PMC5840453 DOI: 10.1002/brb3.860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. METHOD We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. RESULTS When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. CONCLUSIONS This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.
Collapse
Affiliation(s)
- Valentine L Marcar
- Neurorehabilitation and Paraplegic Unit REHAB Basel Basel Switzerland.,BORL Department of Neonatology University of Zürich University Hospital Zürich Zürich Switzerland.,Institute of Psychology Chair of Neuropsychology, University of Zürich Zürich Switzerland
| | - Silvana Baselgia
- Institute of Psychology Chair of Neuropsychology, University of Zürich Zürich Switzerland
| | | | - Lutz Jäncke
- Institute of Psychology Chair of Neuropsychology, University of Zürich Zürich Switzerland
| |
Collapse
|
40
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Adaptive Acceleration of Visually Evoked Smooth Eye Movements in Mice. J Neurosci 2017; 36:6836-49. [PMID: 27335412 DOI: 10.1523/jneurosci.0067-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The optokinetic response (OKR) consists of smooth eye movements following global motion of the visual surround, which suppress image slip on the retina for visual acuity. The effective performance of the OKR is limited to rather slow and low-frequency visual stimuli, although it can be adaptably improved by cerebellum-dependent mechanisms. To better understand circuit mechanisms constraining OKR performance, we monitored how distinct kinematic features of the OKR change over the course of OKR adaptation, and found that eye acceleration at stimulus onset primarily limited OKR performance but could be dramatically potentiated by visual experience. Eye acceleration in the temporal-to-nasal direction depended more on the ipsilateral floccular complex of the cerebellum than did that in the nasal-to-temporal direction. Gaze-holding following the OKR was also modified in parallel with eye-acceleration potentiation. Optogenetic manipulation revealed that synchronous excitation and inhibition of floccular complex Purkinje cells could effectively accelerate eye movements in the nasotemporal and temporonasal directions, respectively. These results collectively delineate multiple motor pathways subserving distinct aspects of the OKR in mice and constrain hypotheses regarding cellular mechanisms of the cerebellum-dependent tuning of movement acceleration. SIGNIFICANCE STATEMENT Although visually evoked smooth eye movements, known as the optokinetic response (OKR), have been studied in various species for decades, circuit mechanisms of oculomotor control and adaptation remain elusive. In the present study, we assessed kinematics of the mouse OKR through the course of adaptation training. Our analyses revealed that eye acceleration at visual-stimulus onset primarily limited working velocity and frequency range of the OKR, yet could be dramatically potentiated during OKR adaptation. Potentiation of eye acceleration exhibited different properties between the nasotemporal and temporonasal OKRs, indicating distinct visuomotor circuits underlying the two. Lesions and optogenetic manipulation of the cerebellum provide constraints on neural circuits mediating visually driven eye acceleration and its adaptation.
Collapse
|
42
|
Wang Z, Fang Y. A hybrid approach for face alignment. PATTERN RECOGNITION AND IMAGE ANALYSIS 2017. [DOI: 10.1134/s1054661817030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Neuroprotective Strategy in Retinal Degeneration: Suppressing ER Stress-Induced Cell Death via Inhibition of the mTOR Signal. Int J Mol Sci 2017; 18:ijms18010201. [PMID: 28106827 PMCID: PMC5297831 DOI: 10.3390/ijms18010201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
The retina is a specialized sensory organ, which is essential for light detection and visual formation in the human eye. Inherited retinal degenerations are a heterogeneous group of eye diseases that can eventually cause permanent vision loss. UPR (unfolded protein response) and ER (endoplasmic reticulum) stress plays an important role in the pathological mechanism of retinal degenerative diseases. mTOR (the mammalian target of rapamycin) kinase, as a signaling hub, controls many cellular processes, covering protein synthesis, RNA translation, ER stress, and apoptosis. Here, the hypothesis that inhibition of mTOR signaling suppresses ER stress-induced cell death in retinal degenerative disorders is discussed. This review surveys knowledge of the influence of mTOR signaling on ER stress arising from misfolded proteins and genetic mutations in retinal degenerative diseases and highlights potential neuroprotective strategies for treatment and therapeutic implications.
Collapse
|
44
|
Qin W, Hadjinicolaou A, Grayden DB, Meffin H, Burkitt AN, Ibbotson MR, Kameneva T. Single-compartment models of retinal ganglion cells with different electrophysiologies. NETWORK (BRISTOL, ENGLAND) 2017; 28:74-93. [PMID: 29649919 DOI: 10.1080/0954898x.2018.1455993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There are more than 15 different types of retinal ganglion cells (RGCs) in the mammalian retina. To model responses of RGCs to electrical stimulation, we use single-compartment Hodgkin-Huxley-type models and run simulations in the Neuron environment. We use our recently published in vitro data of different morphological cell types to constrain the model, and study the effects of electrophysiology on the cell responses separately from the effects of morphology. We find simple models that can match the spike patterns of different types of RGCs. These models, with different input-output properties, may be used in a network to study retinal network dynamics and interactions.
Collapse
Affiliation(s)
- Wei Qin
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
| | - Alex Hadjinicolaou
- b Department of Neurology, Massachusetts General Hospital , Harvard Medical School , Boston , USA
| | - David B Grayden
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
| | - Hamish Meffin
- c National Vision Research Institute , Australian College of Optometry , Melbourne , Australia
- d Department of Optometry and Vision Sciences , University of Melbourne , Melbourne , Australia
| | - Anthony N Burkitt
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
| | - Michael R Ibbotson
- c National Vision Research Institute , Australian College of Optometry , Melbourne , Australia
- d Department of Optometry and Vision Sciences , University of Melbourne , Melbourne , Australia
| | - Tatiana Kameneva
- a Department of Biomedical Engineering , The University of Melbourne , Melbourne , Australia
- e Engineering and Technology , Swinburne University of Technology , Melbourne , Australia
| |
Collapse
|
45
|
The Café Wall Illusion: Local and Global Perception from Multiple Scales to Multiscale. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING 2017. [DOI: 10.1155/2017/8179579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Geometrical illusions are a subclass of optical illusions in which the geometrical characteristics of patterns in particular orientations and angles are distorted and misperceived as a result of low-to-high-level retinal/cortical processing. Modelling the detection of tilt in these illusions, and its strength, is a challenging task and leads to the development of techniques that explain important features of human perception. We present here a predictive and quantitative approach for modelling foveal and peripheral vision for the induced tilt in the Café Wall illusion, in which parallel mortar lines between shifted rows of black and white tiles appear to converge and diverge. Difference of Gaussians is used to define a bioderived filtering model for the responses of retinal simple cells to the stimulus, while an analytical processing pipeline is developed to quantify the angle of tilt in the model and develop confidence intervals around them. Several sampling sizes and aspect ratios are explored to model variant foveal views, and a variety of pattern configurations are tested to model variant Gestalt views. The analysis of our model across this range of test configurations presents a precisely quantified comparison contrasting local tilt detection in the foveal sample sets with pattern-wide Gestalt tilt.
Collapse
|
46
|
Fan WJ, Li X, Yao HL, Deng JX, Liu HL, Cui ZJ, Wang Q, Wu P, Deng JB. Neural differentiation and synaptogenesis in retinal development. Neural Regen Res 2016; 11:312-8. [PMID: 27073386 PMCID: PMC4810997 DOI: 10.4103/1673-5374.177743] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function.
Collapse
Affiliation(s)
- Wen-Juan Fan
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Xue Li
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Huan-Ling Yao
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jie-Xin Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Hong-Liang Liu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Zhan-Jun Cui
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Qiang Wang
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Ping Wu
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| | - Jin-Bo Deng
- Institute of Neurobiology, School of Life Science, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
47
|
Kim J, Sangjun O, Kim Y, Lee M. Convolutional Neural Network with Biologically Inspired Retinal Structure. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.procs.2016.07.418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Zhang XS, Gao SB, Li CY, Li YJ. A Retina Inspired Model for Enhancing Visibility of Hazy Images. Front Comput Neurosci 2015; 9:151. [PMID: 26733857 PMCID: PMC4686735 DOI: 10.3389/fncom.2015.00151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
The mammalian retina seems far smarter than scientists have believed so far. Inspired by the visual processing mechanisms in the retina, from the layer of photoreceptors to the layer of retinal ganglion cells (RGCs), we propose a computational model for haze removal from a single input image, which is an important issue in the field of image enhancement. In particular, the bipolar cells serve to roughly remove the low-frequency of haze, and the amacrine cells modulate the output of cone bipolar cells to compensate the loss of details by increasing the image contrast. Then the RGCs with disinhibitory receptive field surround refine the local haze removal as well as the image detail enhancement. Results on a variety of real-world and synthetic hazy images show that the proposed model yields results comparative to or even better than the state-of-the-art methods, having the advantage of simultaneous dehazing and enhancing of single hazy image with simple and straightforward implementation.
Collapse
Affiliation(s)
- Xian-Shi Zhang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Shao-Bing Gao
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Chao-Yi Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengdu, China; Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Yong-Jie Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|
49
|
|
50
|
Jiang Y, Purushothaman G, Casagrande VA. The functional asymmetry of ON and OFF channels in the perception of contrast. J Neurophysiol 2015; 114:2816-29. [PMID: 26334011 DOI: 10.1152/jn.00560.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022] Open
Abstract
To fully understand the relationship between perception and single neural responses, one should take into consideration the early stages of sensory processing. Few studies, however, have directly examined the neural underpinning of visual perception in the lateral geniculate nucleus (LGN), only one synapse away from the retina. In this study we recorded from LGN parvocellular (P) ON-center and OFF-center neurons while monkeys either passively viewed or actively detected a full range of contrasts. We found that OFF neurons were more sensitive in detecting negative contrasts than ON neurons were in detecting positive contrasts. Also, OFF neurons had higher spontaneous activities, higher peak response amplitudes, and were more sustained than ON neurons in their contrast responses. Puzzlingly, OFF neurons failed to show any significant correlations with the monkeys' perceptual choices, despite their greater contrast sensitivities. If, however, choice probabilities were calculated from interspike intervals instead of spike counts (thus taking into account the higher firing rates of OFF neurons), OFF neurons but not ON neurons were significantly correlated with behavioral choices. Taken together, these results demonstrate in awake, behaving animals that: 1) the ON and OFF pathways do not simply mirror each other in their functionality but instead carry qualitatively different types of information, and 2) the responses of ON and OFF neurons can be correlated with perceptual choices even in the absence of physical stimuli and interneuronal correlations.
Collapse
Affiliation(s)
- Yaoguang Jiang
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Gopathy Purushothaman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; and
| | - Vivien A Casagrande
- Department of Psychology, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; and Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|