1
|
Montoya MC, Wilhoit K, Murray D, Perfect JR, Magwene PM. Genome restructuring and lineage diversification of Cryptococcus neoformans during chronic infection of human hosts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.17.25320472. [PMID: 40034768 PMCID: PMC11875314 DOI: 10.1101/2025.02.17.25320472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Classified as a critical public health threat by the World Health Organization, Cryptococcus neo-formans infections with significant morbidity and mortality. Reports of cryptococcosis persistence, relapse, and reinfection date back to the 1950s, yet the factors driving chronic infections remain poorly understood. A major challenge is the scarcity of serial patient specimens and detailed medical records to study the simultaneous evolution of the pathogen and host health status. This study provides the first genomic and phenotypic analysis of in-host evolution of C. neoformans during chronic infections lasting over a year in six immunocompromised patients. We find fungal genome evolution during persistent infection is characterized by large-scale genome restructuring and increasing genomic heterogeneity. Phenotypic changes show diversification in virulence traits and antifungal susceptibility. Genotypically and phenotypically distinct sub-lineages arise and co-persist within the same tissues, consistent with a model of diversifying selection and niche partitioning in the complex environment of human hosts.
Collapse
Affiliation(s)
- Marhiah C. Montoya
- Division of Infectious Diseases, Department of Medicine, Duke University, NC, USA
| | - Kayla Wilhoit
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Debra Murray
- Department of Biology, Duke University, Durham, NC, USA
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University, NC, USA
| | | |
Collapse
|
2
|
Peña JJ, Scopel EFC, Ward AK, Bensasson D. Footprints of Human Migration in the Population Structure of Wild Baker's Yeast. Mol Ecol 2025:e17669. [PMID: 39902568 DOI: 10.1111/mec.17669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Humans have a long history of fermenting food and beverages that led to domestication of the baker's yeast, Saccharomyces cerevisiae. Despite their tight companionship with humans, yeast species that are domesticated or pathogenic can also live on trees. Here we used over 300 genomes of S. cerevisiae from oaks and other trees to determine whether tree-associated populations are genetically distinct from domesticated lineages and estimate the timing of forest lineage divergence. We found populations on trees are highly structured within Europe, Japan, and North America. Approximate estimates of when forest lineages diverged out of Asia and into North America and Europe coincide with the end of the last ice age, the spread of agriculture, and the onset of fermentation by humans. It appears that migration from human-associated environments to trees is ongoing. Indeed, patterns of ancestry in the genomes of three recent migrants from the trees of North America to Europe could be explained by the human response to the Great French Wine Blight. Our results suggest that human-assisted migration affects forest populations, albeit rarely. Such migration events may even have shaped the global distribution of S. cerevisiae. Given the potential for lasting impacts due to yeast migration between human and natural environments, it seems important to understand the evolution of human commensals and pathogens in wild niches.
Collapse
Affiliation(s)
- Jacqueline J Peña
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Eduardo F C Scopel
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Audrey K Ward
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Douda Bensasson
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Schwarzkopf EJ, Brandt N, Smukowski Heil C. The recombination landscape of introgression in yeast. PLoS Genet 2025; 21:e1011585. [PMID: 39937775 PMCID: PMC11845044 DOI: 10.1371/journal.pgen.1011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/21/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Meiotic recombination is an evolutionary force that acts by breaking up genomic linkage, increasing the efficacy of selection. Recombination is initiated with a double-strand break which is resolved via a crossover, which involves the reciprocal exchange of genetic material between homologous chromosomes, or a non-crossover, which results in small tracts of non-reciprocal exchange of genetic material. Crossover and non-crossover rates vary between species, populations, individuals, and across the genome. In recent years, recombination rate has been associated with the distribution of ancestry derived from past interspecific hybridization (introgression) in a variety of species. We explore this interaction of recombination and introgression by sequencing spores and detecting crossovers and non-crossovers from two crosses of the yeast Saccharomyces uvarum. One cross is between strains which each contain introgression from their sister species, S. eubayanus, while the other cross has no introgression present. We find that the recombination landscape is significantly different between S. uvarum crosses, and that some of these differences can be explained by the presence of introgression in one cross. Crossovers are significantly reduced in heterozygous introgression compared to syntenic regions in the cross without introgression. This translates to reduced allele shuffling within introgressed regions, and an overall reduction of shuffling on most chromosomes with introgression compared to the syntenic regions and chromosomes without introgression. Our results suggest that hybridization can significantly influence the recombination landscape, and that the reduction in allele shuffling contributes to the initial purging of introgression in the generations following a hybridization event.
Collapse
Affiliation(s)
- Enrique J. Schwarzkopf
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
4
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
5
|
Chen G, Shi G, Dai Y, Zhao R, Wu Q. Graph-Based Pan-Genome Reveals the Pattern of Deleterious Mutations during the Domestication of Saccharomyces cerevisiae. J Fungi (Basel) 2024; 10:575. [PMID: 39194902 DOI: 10.3390/jof10080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
The "cost of domestication" hypothesis suggests that the domestication of wild species increases the number, frequency, and/or proportion of deleterious genetic variants, potentially reducing their fitness in the wild. While extensively studied in domesticated species, this phenomenon remains understudied in fungi. Here, we used Saccharomyces cerevisiae, the world's oldest domesticated fungus, as a model to investigate the genomic characteristics of deleterious variants arising from fungal domestication. Employing a graph-based pan-genome approach, we identified 1,297,761 single nucleotide polymorphisms (SNPs), 278,147 insertion/deletion events (indels; <30 bp), and 19,967 non-redundant structural variants (SVs; ≥30 bp) across 687 S. cerevisiae isolates. Comparing these variants with synonymous SNPs (sSNPs) as neutral controls, we found that the majority of the derived nonsynonymous SNPs (nSNPs), indels, and SVs were deleterious. Heterozygosity was positively correlated with the impact of deleterious SNPs, suggesting a role of genetic diversity in mitigating their effects. The domesticated isolates exhibited a higher additive burden of deleterious SNPs (dSNPs) than the wild isolates, but a lower burden of indels and SVs. Moreover, the domesticated S. cerevisiae showed reduced rates of adaptive evolution relative to the wild S. cerevisiae. In summary, deleterious variants tend to be heterozygous, which may mitigate their harmful effects, but they also constrain breeding potential. Addressing deleterious alleles and minimizing the genetic load are crucial considerations for future S. cerevisiae breeding efforts.
Collapse
Affiliation(s)
- Guotao Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruilin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Schwarzkopf EJ, Brandt N, Heil CS. The recombination landscape of introgression in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574263. [PMID: 39026729 PMCID: PMC11257466 DOI: 10.1101/2024.01.04.574263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Meiotic recombination is an evolutionary force that acts by breaking up genomic linkage, increasing the efficacy of selection. Recombination is initiated with a double-strand break which is resolved via a crossover, which involves the reciprocal exchange of genetic material between homologous chromosomes, or a non-crossover, which results in small tracts of non-reciprocal exchange of genetic material. Crossover and non-crossover rates vary between species, populations, individuals, and across the genome. In recent years, recombination rate has been associated with the distribution of ancestry derived from past interspecific hybridization (introgression) in a variety of species. We explore this interaction of recombination and introgression by sequencing spores and detecting crossovers and non-crossovers from two crosses of the yeast Saccharomyces uvarum. One cross is between strains which each contain introgression from their sister species, S. eubayanus, while the other cross has no introgression present. We find that the recombination landscape is significantly different between S. uvarum crosses, and that some of these differences can be explained by the presence of introgression in one cross. Crossovers are reduced and non-crossovers are increased in heterozygous introgression compared to syntenic regions in the cross without introgression. This translates to reduced allele shuffling within introgressed regions, and an overall reduction of shuffling on most chromosomes with introgression compared to the syntenic regions and chromosomes without introgression. Our results suggest that hybridization can significantly influence the recombination landscape, and that the reduction in allele shuffling contributes to the initial purging of introgression in the generations following a hybridization event.
Collapse
Affiliation(s)
| | - Nathan Brandt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | | |
Collapse
|
7
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
8
|
Ekdahl LI, Salcedo JA, Dungan MM, Mason DV, Myagmarsuren D, Murphy HA. Selection on plastic adherence leads to hyper-multicellular strains and incidental virulence in the budding yeast. eLife 2023; 12:e81056. [PMID: 37916911 PMCID: PMC10764007 DOI: 10.7554/elife.81056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/01/2023] [Indexed: 11/03/2023] Open
Abstract
Many disease-causing microbes are not obligate pathogens; rather, they are environmental microbes taking advantage of an ecological opportunity. The existence of microbes whose life cycle does not require a host and are not normally pathogenic, yet are well-suited to host exploitation, is an evolutionary puzzle. One hypothesis posits that selection in the environment may favor traits that incidentally lead to pathogenicity and virulence, or serve as pre-adaptations for survival in a host. An example of such a trait is surface adherence. To experimentally test the idea of 'accidental virulence', replicate populations of Saccharomyces cerevisiae were evolved to attach to a plastic bead for hundreds of generations. Along with plastic adherence, two multicellular phenotypes- biofilm formation and flor formation- increased; another phenotype, pseudohyphal growth, responded to the nutrient limitation. Thus, experimental selection led to the evolution of highly-adherent, hyper-multicellular strains. Wax moth larvae injected with evolved hyper-multicellular strains were significantly more likely to die than those injected with evolved non-multicellular strains. Hence, selection on plastic adherence incidentally led to the evolution of enhanced multicellularity and increased virulence. Our results support the idea that selection for a trait beneficial in the open environment can inadvertently generate opportunistic, 'accidental' pathogens.
Collapse
Affiliation(s)
- Luke I Ekdahl
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Juliana A Salcedo
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Matthew M Dungan
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Despina V Mason
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | | | - Helen A Murphy
- Department of Biology, College of William and MaryWilliamsburgUnited States
| |
Collapse
|
9
|
Kovuri P, Yadav A, Sinha H. Role of genetic architecture in phenotypic plasticity. Trends Genet 2023; 39:703-714. [PMID: 37173192 DOI: 10.1016/j.tig.2023.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic plasticity, the ability of an organism to display different phenotypes across environments, is widespread in nature. Plasticity aids survival in novel environments. Herein, we review studies from yeast that allow us to start uncovering the genetic architecture of phenotypic plasticity. Genetic variants and their interactions impact the phenotype in different environments, and distinct environments modulate the impact of genetic variants and their interactions on the phenotype. Because of this, certain hidden genetic variation is expressed in specific genetic and environmental backgrounds. A better understanding of the genetic mechanisms of phenotypic plasticity will help to determine short- and long-term responses to selection and how wide variation in disease manifestation occurs in human populations.
Collapse
Affiliation(s)
- Purnima Kovuri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| |
Collapse
|
10
|
Marr RA, Moore J, Formby S, Martiniuk JT, Hamilton J, Ralli S, Konwar K, Rajasundaram N, Hahn A, Measday V. Whole genome sequencing of Canadian Saccharomyces cerevisiae strains isolated from spontaneous wine fermentations reveals a new Pacific West Coast Wine clade. G3 (BETHESDA, MD.) 2023; 13:jkad130. [PMID: 37307358 PMCID: PMC10411583 DOI: 10.1093/g3journal/jkad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Vineyards in wine regions around the world are reservoirs of yeast with oenological potential. Saccharomyces cerevisiae ferments grape sugars to ethanol and generates flavor and aroma compounds in wine. Wineries place a high-value on identifying yeast native to their region to develop a region-specific wine program. Commercial wine strains are genetically very similar due to a population bottleneck and in-breeding compared to the diversity of S. cerevisiae from the wild and other industrial processes. We have isolated and microsatellite-typed hundreds of S. cerevisiae strains from spontaneous fermentations of grapes from the Okanagan Valley wine region in British Columbia, Canada. We chose 75 S. cerevisiae strains, based on our microsatellite clustering data, for whole genome sequencing using Illumina paired-end reads. Phylogenetic analysis shows that British Columbian S. cerevisiae strains cluster into 4 clades: Wine/European, Transpacific Oak, Beer 1/Mixed Origin, and a new clade that we have designated as Pacific West Coast Wine. The Pacific West Coast Wine clade has high nucleotide diversity and shares genomic characteristics with wild North American oak strains but also has gene flow from Wine/European and Ecuadorian clades. We analyzed gene copy number variations to find evidence of domestication and found that strains in the Wine/European and Pacific West Coast Wine clades have gene copy number variation reflective of adaptations to the wine-making environment. The "wine circle/Region B", a cluster of 5 genes acquired by horizontal gene transfer into the genome of commercial wine strains is also present in the majority of the British Columbian strains in the Wine/European clade but in a minority of the Pacific West Coast Wine clade strains. Previous studies have shown that S. cerevisiae strains isolated from Mediterranean Oak trees may be the living ancestors of European wine yeast strains. This study is the first to isolate S. cerevisiae strains with genetic similarity to nonvineyard North American Oak strains from spontaneous wine fermentations.
Collapse
Affiliation(s)
- R Alexander Marr
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jackson Moore
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sean Formby
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Jonathan T Martiniuk
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Food Science Graduate Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jonah Hamilton
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sneha Ralli
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive East K9625, Burnaby, BC V5A 1S6, Canada
| | - Kishori Konwar
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Nisha Rajasundaram
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Aria Hahn
- Koonkie Canada Inc., 321 Water Street Suite 501, Vancouver, BC V6B 1B8, Canada
| | - Vivien Measday
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
12
|
Demirjian C, Vailleau F, Berthomé R, Roux F. Genome-wide association studies in plant pathosystems: success or failure? TRENDS IN PLANT SCIENCE 2023; 28:471-485. [PMID: 36522258 DOI: 10.1016/j.tplants.2022.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.
Collapse
Affiliation(s)
- Choghag Demirjian
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| |
Collapse
|
13
|
Salzberg LI, Martos AAR, Lombardi L, Jermiin LS, Blanco A, Byrne KP, Wolfe KH. A widespread inversion polymorphism conserved among Saccharomyces species is caused by recurrent homogenization of a sporulation gene family. PLoS Genet 2022; 18:e1010525. [PMID: 36441813 PMCID: PMC9731477 DOI: 10.1371/journal.pgen.1010525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces genomes are highly collinear and show relatively little structural variation, both within and between species of this yeast genus. We investigated the only common inversion polymorphism known in S. cerevisiae, which affects a 24-kb 'flip/flop' region containing 15 genes near the centromere of chromosome XIV. The region exists in two orientations, called reference (REF) and inverted (INV). Meiotic recombination in this region is suppressed in crosses between REF and INV orientation strains such as the BY x RM cross. We find that the inversion polymorphism is at least 17 million years old because it is conserved across the genus Saccharomyces. However, the REF and INV isomers are not ancient alleles but are continually being re-created by re-inversion of the region within each species. Inversion occurs due to continual homogenization of two almost identical 4-kb sequences that form an inverted repeat (IR) at the ends of the flip/flop region. The IR consists of two pairs of genes that are specifically and strongly expressed during the late stages of sporulation. We show that one of these gene pairs, YNL018C/YNL034W, codes for a protein that is essential for spore formation. YNL018C and YNL034W are the founder members of a gene family, Centroid, whose members in other Saccharomycetaceae species evolve fast, duplicate frequently, and are preferentially located close to centromeres. We tested the hypothesis that Centroid genes are a meiotic drive system, but found no support for this idea.
Collapse
Affiliation(s)
- Letal I. Salzberg
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandre A. R. Martos
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Lisa Lombardi
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kevin P. Byrne
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth H. Wolfe
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
14
|
Mullis MN, Ghione C, Lough-Stevens M, Goldstein I, Matsui T, Levy SF, Dean MD, Ehrenreich IM. Complex genetics cause and constrain fungal persistence in different parts of the mammalian body. Genetics 2022; 222:6698696. [PMID: 36103708 PMCID: PMC9630980 DOI: 10.1093/genetics/iyac138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/26/2022] [Indexed: 12/05/2022] Open
Abstract
Determining how genetic polymorphisms enable certain fungi to persist in mammalian hosts can improve understanding of opportunistic fungal pathogenesis, a source of substantial human morbidity and mortality. We examined the genetic basis of fungal persistence in mice using a cross between a clinical isolate and the lab reference strain of the budding yeast Saccharomyces cerevisiae. Employing chromosomally encoded DNA barcodes, we tracked the relative abundances of 822 genotyped, haploid segregants in multiple organs over time and performed linkage mapping of their persistence in hosts. Detected loci showed a mix of general and antagonistically pleiotropic effects across organs. General loci showed similar effects across all organs, while antagonistically pleiotropic loci showed contrasting effects in the brain vs the kidneys, liver, and spleen. Persistence in an organ required both generally beneficial alleles and organ-appropriate pleiotropic alleles. This genetic architecture resulted in many segregants persisting in the brain or in nonbrain organs, but few segregants persisting in all organs. These results show complex combinations of genetic polymorphisms collectively cause and constrain fungal persistence in different parts of the mammalian body.
Collapse
Affiliation(s)
- Martin N Mullis
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Caleb Ghione
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Michael Lough-Stevens
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Ilan Goldstein
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Takeshi Matsui
- Stanford University Joint Initiative for Metrology in Biology, , CA 94305, USA
- SLAC National Accelerator Laboratory , Menlo Park, CA, 94025, USA
- Stanford University Department of Genetics, , Stanford, CA 94305, USA
| | - Sasha F Levy
- Stanford University Joint Initiative for Metrology in Biology, , CA 94305, USA
- SLAC National Accelerator Laboratory , Menlo Park, CA, 94025, USA
- Stanford University Department of Genetics, , Stanford, CA 94305, USA
| | - Matthew D Dean
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| | - Ian M Ehrenreich
- University of Southern California Molecular and Computational Biology Section, Department of Biological Sciences, , Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7:607-619. [PMID: 35508719 PMCID: PMC9097544 DOI: 10.1038/s41564-022-01112-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
16
|
Aggeli D, Marad DA, Liu X, Buskirk SW, Levy SF, Lang GI. Overdominant and partially dominant mutations drive clonal adaptation in diploid Saccharomyces cerevisiae. Genetics 2022; 221:6569837. [PMID: 35435209 PMCID: PMC9157133 DOI: 10.1093/genetics/iyac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Identification of adaptive targets in experimental evolution typically relies on extensive replication and genetic reconstruction. An alternative approach is to directly assay all mutations in an evolved clone by generating pools of segregants that contain random combinations of evolved mutations. Here, we apply this method to six Saccharomyces cerevisiae clones isolated from four diploid populations that were clonally evolved for 2,000 generations in rich glucose medium. Each clone contains 17-26 mutations relative to the ancestor. We derived intermediate genotypes between the founder and the evolved clones by bulk mating sporulated cultures of the evolved clones to a barcoded haploid version of the ancestor. We competed the resulting barcoded diploids en masse and quantified fitness in the experimental and alternative environments by barcode sequencing. We estimated average fitness effects of evolved mutations using barcode-based fitness assays and whole genome sequencing for a subset of segregants. In contrast to our previous work with haploid evolved clones, we find that diploids carry fewer beneficial mutations, with modest fitness effects (up to 5.4%) in the environment in which they arose. In agreement with theoretical expectations, reconstruction experiments show that all mutations with a detectable fitness effect manifest some degree of dominance over the ancestral allele, and most are overdominant. Genotypes with lower fitness effects in alternative environments allowed us to identify conditions that drive adaptation in our system.
Collapse
Affiliation(s)
- Dimitra Aggeli
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| | - Daniel A Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| | - Xianan Liu
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA94025, USA
| | - Sean W Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA.,Department of Biology, West Chester University, West Chester, PA19383, USA
| | - Sasha F Levy
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA94025, USA
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015, USA
| |
Collapse
|
17
|
De Chiara M, Barré BP, Persson K, Irizar A, Vischioni C, Khaiwal S, Stenberg S, Amadi OC, Žun G, Doberšek K, Taccioli C, Schacherer J, Petrovič U, Warringer J, Liti G. Domestication reprogrammed the budding yeast life cycle. Nat Ecol Evol 2022; 6:448-460. [PMID: 35210580 DOI: 10.1038/s41559-022-01671-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Domestication of plants and animals is the foundation for feeding the world human population but can profoundly alter the biology of the domesticated species. Here we investigated the effect of domestication on one of our prime model organisms, the yeast Saccharomyces cerevisiae, at a species-wide level. We tracked the capacity for sexual and asexual reproduction and the chronological life span across a global collection of 1,011 genome-sequenced yeast isolates and found a remarkable dichotomy between domesticated and wild strains. Domestication had systematically enhanced fermentative and reduced respiratory asexual growth, altered the tolerance to many stresses and abolished or impaired the sexual life cycle. The chronological life span remained largely unaffected by domestication and was instead dictated by clade-specific evolution. We traced the genetic origins of the yeast domestication syndrome using genome-wide association analysis and genetic engineering and disclosed causative effects of aneuploidy, gene presence/absence variations, copy number variations and single-nucleotide polymorphisms. Overall, we propose domestication to be the most dramatic event in budding yeast evolution, raising questions about how much domestication has distorted our understanding of the natural biology of this key model species.
Collapse
Affiliation(s)
| | - Benjamin P Barré
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karl Persson
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| | | | - Chiara Vischioni
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.,Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | - Sakshi Khaiwal
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden
| | - Onyetugo Chioma Amadi
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Gašper Žun
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Doberšek
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Italy
| | | | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
| |
Collapse
|
18
|
Forehand AL, Myagmarsuren D, Chen Z, Murphy HA. Variation in pH gradients and FLO11 expression in mat biofilms from environmental isolates of the yeast Saccharomyces cerevisiae. Microbiologyopen 2022; 11:e1277. [PMID: 35478280 PMCID: PMC9059236 DOI: 10.1002/mbo3.1277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Saccharomyces cerevisiae produces a multicellular phenotype, known as a mat, on a semi-solid medium. This biofilm phenotype was first described in the lab strain Σ1278b and has been analyzed mostly in this same background. Yeast cells form a mat by spreading across the medium and adhering to each other and the surface, in part through the variegated expression of the cell adhesion, FLO11. This process creates a characteristic floral pattern and generates pH and glucose gradients outward from the center of the mat. Mats are encapsulated in a liquid which may aid in surface spreading and diffusion. Here, we examine thirteen environmental isolates that vary visually in the phenotype. We predicted that mat properties were universal and increased morphological complexity would be associated with more extreme trait values. Our results showed that pH varied significantly among strains, but was not correlated to mat complexity. Only two isolates generated significant liquid boundaries and neither produced visually complex mats. In five isolates, we tracked the initiation of FLO11 using green fluorescent protein (GFP) under the control of the endogenous promoter. Strains varied in when and how much GFP was detected, with increased signal associated with increased morphological complexity. Generally, the signal was strongest in the center of the mat and absent at the expanding edge. Our results show that traits discovered in one background vary and exist independently of mat complexity in natural isolates. The environment may favor different sets of traits, which could have implications for how this yeast adapts to its many ecological niches.
Collapse
Affiliation(s)
- Amy L. Forehand
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Amy L. Forehand, Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Ziyan Chen
- Department of BiologyWilliam & MaryWilliamsburgVirginiaUSA,Present address:
Ziyan Chen, School of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | |
Collapse
|
19
|
Matsui T, Mullis MN, Roy KR, Hale JJ, Schell R, Levy SF, Ehrenreich IM. The interplay of additivity, dominance, and epistasis on fitness in a diploid yeast cross. Nat Commun 2022; 13:1463. [PMID: 35304450 PMCID: PMC8933436 DOI: 10.1038/s41467-022-29111-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
In diploid species, genetic loci can show additive, dominance, and epistatic effects. To characterize the contributions of these different types of genetic effects to heritable traits, we use a double barcoding system to generate and phenotype a panel of ~200,000 diploid yeast strains that can be partitioned into hundreds of interrelated families. This experiment enables the detection of thousands of epistatic loci, many whose effects vary across families. Here, we show traits are largely specified by a small number of hub loci with major additive and dominance effects, and pervasive epistasis. Genetic background commonly influences both the additive and dominance effects of loci, with multiple modifiers typically involved. The most prominent dominance modifier in our data is the mating locus, which has no effect on its own. Our findings show that the interplay between additivity, dominance, and epistasis underlies a complex genotype-to-phenotype map in diploids.
Collapse
Affiliation(s)
- Takeshi Matsui
- Joint Initiative for Metrology in Biology, Stanford, CA, 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Martin N Mullis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Twist Bioscience, 681 Gateway Blvd, South San Francisco, CA, 94080, USA
| | - Kevin R Roy
- Joint Initiative for Metrology in Biology, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
| | - Joseph J Hale
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rachel Schell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sasha F Levy
- Joint Initiative for Metrology in Biology, Stanford, CA, 94305, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
20
|
Mozzachiodi S, Bai FY, Baldrian P, Bell G, Boundy-Mills K, Buzzini P, Čadež N, Riffo FC, Dashko S, Dimitrov R, Fisher KJ, Gibson BR, Gouliamova D, Greig D, Heistinger L, Hittinger CT, Jecmenica M, Koufopanou V, Landry CR, Mašínová T, Naumova ES, Opulente D, Peña JJ, Petrovič U, Tsai IJ, Turchetti B, Villarreal P, Yurkov A, Liti G, Boynton P. Yeasts from temperate forests. Yeast 2022; 39:4-24. [PMID: 35146791 DOI: 10.1002/yea.3699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats, and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.
Collapse
Affiliation(s)
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Graham Bell
- Biology Department and Redpath Museum, McGill University, Québec, Canada
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Pietro Buzzini
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Neža Čadež
- Biotechnical Faculty, Food Science and Technology Department, University of Ljubljana, Ljubljana, Slovenia
| | - Francisco Cubillos Riffo
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sofia Dashko
- DSM Food Specialties, Center for Food Innovation, AX, Delft, The Netherlands
| | - Roumen Dimitrov
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kaitlin J Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian R Gibson
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Chair of Brewing and Beverage Technology, Berlin, Germany
| | - Dilnora Gouliamova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Duncan Greig
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Lina Heistinger
- ETH Zurich, Department of Biology, Institute of Biochemistry, Switzerland
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Canada.,PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Canada.,Centre de Recherche sur les Données Massives, Université Laval, Canada.,Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Canada
| | - Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Elena S Naumova
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Dana Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | - Uroš Petrovič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.,Jožef Stefan Institute, Department of Molecular and Biomedical Sciences, Ljubljana, Slovenia
| | | | - Benedetta Turchetti
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Pablo Villarreal
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | |
Collapse
|
21
|
Bai FY, Han DY, Duan SF, Wang QM. The Ecology and Evolution of the Baker's Yeast Saccharomyces cerevisiae. Genes (Basel) 2022; 13:230. [PMID: 35205274 PMCID: PMC8871604 DOI: 10.3390/genes13020230] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
The baker's yeast Saccharomyces cerevisiae has become a powerful model in ecology and evolutionary biology. A global effort on field survey and population genetics and genomics of S. cerevisiae in past decades has shown that the yeast distributes ubiquitously in nature with clearly structured populations. The global genetic diversity of S. cerevisiae is mainly contributed by strains from Far East Asia, and the ancient basal lineages of the species have been found only in China, supporting an 'out-of-China' origin hypothesis. The wild and domesticated populations are clearly separated in phylogeny and exhibit hallmark differences in sexuality, heterozygosity, gene copy number variation (CNV), horizontal gene transfer (HGT) and introgression events, and maltose utilization ability. The domesticated strains from different niches generally form distinct lineages and harbor lineage-specific CNVs, HGTs and introgressions, which contribute to their adaptations to specific fermentation environments. However, whether the domesticated lineages originated from a single, or multiple domestication events is still hotly debated and the mechanism causing the diversification of the wild lineages remains to be illuminated. Further worldwide investigations on both wild and domesticated S. cerevisiae, especially in Africa and West Asia, will be helpful for a better understanding of the natural and domestication histories and evolution of S. cerevisiae.
Collapse
Affiliation(s)
- Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
- College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; (D.-Y.H.); (S.-F.D.)
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China;
| |
Collapse
|
22
|
Travers Cook TJ, Skirgaila C, Martin OY, Buser CC. Infection by dsRNA viruses is associated with enhanced sporulation efficiency in Saccharomyces cerevisiae. Ecol Evol 2022; 12:e8558. [PMID: 35127053 PMCID: PMC8794758 DOI: 10.1002/ece3.8558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 01/07/2023] Open
Abstract
Upon starvation diploid cells of the facultative sexual yeast Saccharomyces cerevisiae undergo sporulation, forming four metabolically quiescent and robust haploid spores encased in a degradable ascus. All endosymbionts, whether they provide net benefits or costs, utilize host resources; in yeast, this should induce an earlier onset of sporulation. Here, we tested whether the presence of endosymbiotic dsRNA viruses (M satellite and L-A helper) correspond with higher sporulation rate of their host, S. cerevisiae. We find that S. cerevisiae hosting both the M and L-A viruses (so-called "killer yeasts") have significantly higher sporulation efficiency than those without. We also found that the removal of the M virus did not reduce sporulation frequency, possibly because the L-A virus still utilizes host resources with and without the M virus. Our findings indicate that either virulent resource use by endosymbionts induces sporulation, or that viruses are spread more frequently to sporulating strains. Further exploration is required to distinguish cause from effect.
Collapse
Affiliation(s)
- Thomas J. Travers Cook
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | | | - Oliver Y. Martin
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of BiologyETH ZürichZürichSwitzerland
| | - Claudia C. Buser
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| |
Collapse
|
23
|
Laine VN, Sackton T, Meselson M. Genomic Signature of Sexual Reproduction in the Bdelloid Rotifer Macrotrachella quadricornifera. Genetics 2021; 220:6458333. [PMID: 34888647 DOI: 10.1093/genetics/iyab221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Bdelloid rotifers, common freshwater invertebrates of ancient origin and worldwide distribution have long been thought to be entirely asexual, being the principal exception to the view that in eukaryotes the loss of sex leads to early extinction. That bdelloids are facultatively sexual is shown by a study of allele sharing within a group of closely related bdelloids of the species Macrotrachella quadricornifera, supporting the view that sexual reproduction is essential for long-term success in all eukaryotes.
Collapse
Affiliation(s)
- Veronika N Laine
- Department of Animal Ecology, Finnish Museum of Natural History, University of Helsinki, Helsinki 00100, Finland
| | - Timothy Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138; USA
| | - Matthew Meselson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
24
|
Heasley LR, Argueso JL. Genomic characterization of a wild diploid isolate of Saccharomyces cerevisiae reveals an extensive and dynamic landscape of structural variation. Genetics 2021; 220:6428545. [PMID: 34791219 PMCID: PMC9176296 DOI: 10.1093/genetics/iyab193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/15/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been extensively characterized for many decades and is a critical resource for the study of numerous facets of eukaryotic biology. Recently, whole genome sequence analysis of over 1000 natural isolates of S. cerevisiae has provided critical insights into the evolutionary landscape of this species by revealing a population structure comprised of numerous genomically diverse lineages. These survey-level analyses have been largely devoid of structural genomic information, mainly because short read sequencing is not suitable for detailed characterization of genomic architecture. Consequently, we still lack a complete perspective of the genomic variation the exists within the species. Single molecule long read sequencing technologies, such as Oxford Nanopore and PacBio, provide sequencing-based approaches with which to rigorously define the structure of a genome, and have empowered yeast geneticists to explore this poorly described realm of eukaryotic genomics. Here, we present the comprehensive genomic structural analysis of a wild diploid isolate of S. cerevisiae, YJM311. We used long read sequence analysis to construct a haplotype-phased, telomere-to-telomere length assembly of the YJM311 genome and characterized the structural variations (SVs) therein. We discovered that the genome of YJM311 contains significant intragenomic structural variation, some of which imparts notable consequences to the genomic stability and developmental biology of the strain. Collectively, we outline a new methodology for creating accurate haplotype-phased genome assemblies and highlight how such genomic analyses can define the structural architectures of S. cerevisiae isolates. It is our hope that continued structural characterization of S. cerevisiae genomes, such as we have reported here for YJM311, will comprehensively advance our understanding of eukaryotic genome structure-function relationships, structural genomic diversity, and evolution.
Collapse
Affiliation(s)
- Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
25
|
Interspecific hybridization as a driver of fungal evolution and adaptation. Nat Rev Microbiol 2021; 19:485-500. [PMID: 33767366 DOI: 10.1038/s41579-021-00537-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Cross-species gene transfer is often associated with bacteria, which have evolved several mechanisms that facilitate horizontal DNA exchange. However, the increased availability of whole-genome sequences has revealed that fungal species also exchange DNA, leading to intertwined lineages, blurred species boundaries or even novel species. In contrast to prokaryotes, fungal DNA exchange originates from interspecific hybridization, where two genomes are merged into a single, often highly unstable, polyploid genome that evolves rapidly into stabler derivatives. The resulting hybrids can display novel combinations of genetic and phenotypic variation that enhance fitness and allow colonization of new niches. Interspecific hybridization led to the emergence of important pathogens of humans and plants (for example, various Candida and 'powdery mildew' species, respectively) and industrially important yeasts, such as Saccharomyces hybrids that are important in the production of cold-fermented lagers or cold-cellared Belgian ales. In this Review, we discuss the genetic processes and evolutionary implications of fungal interspecific hybridization and highlight some of the best-studied examples. In addition, we explain how hybrids can be used to study molecular mechanisms underlying evolution, adaptation and speciation, and serve as a route towards development of new variants for industrial applications.
Collapse
|
26
|
Dutta A, Dutreux F, Schacherer J. Loss of heterozygosity results in rapid but variable genome homogenization across yeast genetic backgrounds. eLife 2021; 10:70339. [PMID: 34159898 PMCID: PMC8245132 DOI: 10.7554/elife.70339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics and diversity of the appearance of genetic variants play an essential role in the evolution of the genome and the shaping of biodiversity. Recent population-wide genome sequencing surveys have highlighted the importance of loss of heterozygosity (LOH) events and have shown that they are a neglected part of the genetic diversity landscape. To assess the extent, variability, and spectrum, we explored the accumulation of LOH events in 169 heterozygous diploid Saccharomyces cerevisiae mutation accumulation lines across nine genetic backgrounds. In total, we detected a large set of 22,828 LOH events across distinct genetic backgrounds with a heterozygous level ranging from 0.1% to 1%. LOH events are very frequent with a rate consistently much higher than the mutation rate, showing their importance for genome evolution. We observed that the interstitial LOH (I-LOH) events, resulting in internal short LOH tracts, were much frequent (n = 19,660) than the terminal LOH (T-LOH) events, that is, tracts extending to the end of the chromosome (n = 3168). However, the spectrum, the rate, and the fraction of the genome under LOH vary across genetic backgrounds. Interestingly, we observed that the more the ancestors were heterozygous, the more they accumulated T-LOH events. In addition, frequent short I-LOH tracts are a signature of the lines derived from hybrids with low spore fertility. Finally, we found lines showing almost complete homozygotization during vegetative progression. Overall, our results highlight that the variable dynamics of the LOH accumulation across distinct genetic backgrounds might lead to rapid differential genome evolution during vegetative growth.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
27
|
West PT, Peters SL, Olm MR, Yu FB, Gause H, Lou YC, Firek BA, Baker R, Johnson AD, Morowitz MJ, Hettich RL, Banfield JF. Genetic and behavioral adaptation of Candida parapsilosis to the microbiome of hospitalized infants revealed by in situ genomics, transcriptomics, and proteomics. MICROBIOME 2021; 9:142. [PMID: 34154658 PMCID: PMC8215838 DOI: 10.1186/s40168-021-01085-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, and infections have been increasing over the past two decades. C. parapsilosis has been primarily studied in pure culture, leaving gaps in understanding of its function in a microbiome context. RESULTS Here, we compare five unique C. parapsilosis genomes assembled from premature infant fecal samples, three of which are newly reconstructed, and analyze their genome structure, population diversity, and in situ activity relative to reference strains in pure culture. All five genomes contain hotspots of single nucleotide variants, some of which are shared by strains from multiple hospitals. A subset of environmental and hospital-derived genomes share variants within these hotspots suggesting derivation of that region from a common ancestor. Four of the newly reconstructed C. parapsilosis genomes have 4 to 16 copies of the gene RTA3, which encodes a lipid translocase and is implicated in antifungal resistance, potentially indicating adaptation to hospital antifungal use. Time course metatranscriptomics and metaproteomics on fecal samples from a premature infant with a C. parapsilosis blood infection revealed highly variable in situ expression patterns that are distinct from those of similar strains in pure cultures. For example, biofilm formation genes were relatively less expressed in situ, whereas genes linked to oxygen utilization were more highly expressed, indicative of growth in a relatively aerobic environment. In gut microbiome samples, C. parapsilosis co-existed with Enterococcus faecalis that shifted in relative abundance over time, accompanied by changes in bacterial and fungal gene expression and proteome composition. CONCLUSIONS The results reveal potentially medically relevant differences in Candida function in gut vs. laboratory environments, and constrain evolutionary processes that could contribute to hospital strain persistence and transfer into premature infant microbiomes. Video abstract.
Collapse
Affiliation(s)
- Patrick T. West
- Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Samantha L. Peters
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Matthew R. Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | | - Haley Gause
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA USA
| | - Yue Clare Lou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Brian A. Firek
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Robyn Baker
- Division of Newborn Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA USA
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA USA
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Robert L. Hettich
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jillian F. Banfield
- Chan Zuckerberg Biohub, San Francisco, CA USA
- Department of Earth and Planetary Science, University of California, Berkeley, CA USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
28
|
Han DY, Han PJ, Rumbold K, Koricha AD, Duan SF, Song L, Shi JY, Li K, Wang QM, Bai FY. Adaptive Gene Content and Allele Distribution Variations in the Wild and Domesticated Populations of Saccharomyces cerevisiae. Front Microbiol 2021; 12:631250. [PMID: 33679656 PMCID: PMC7925643 DOI: 10.3389/fmicb.2021.631250] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies on population genomics of Saccharomyces cerevisiae have substantially improved our understanding of the genetic diversity and domestication history of the yeast. However, the origin of the domesticated population of S. cerevisiae and the genomic changes responsible for ecological adaption of different populations and lineages remain to be fully revealed. Here we sequenced 64 African strains from various indigenous fermented foods and forests in different African countries and performed a population genomic analysis on them combined with a set of previously sequenced worldwide S. cerevisiae strains representing the maximum genetic diversity of the species documented so far. The result supports the previous observations that the wild and domesticated populations of S. cerevisiae are clearly separated and that the domesticated population diverges into two distinct groups associated with solid- and liquid-state fermentations from a single ancestor. African strains are mostly located in basal lineages of the two domesticated groups, implying a long domestication history of yeast in Africa. We identified genes that mainly or exclusively occur in specific groups or lineages and genes that exhibit evident group or lineage specific allele distribution patterns. Notably, we show that the homing endonuclease VDE is generally absent in the wild but commonly present in the domesticated lineages of S. cerevisiae. The genes with group specific allele distribution patterns are mostly enriched in functionally similar or related fundamental metabolism processes, including the evolutionary conserved TOR signaling pathway.
Collapse
Affiliation(s)
- Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Karl Rumbold
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anbessa Dabassa Koricha
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Bibi M, Murphy S, Benhamou RI, Rosenberg A, Ulman A, Bicanic T, Fridman M, Berman J. Combining Colistin and Fluconazole Synergistically Increases Fungal Membrane Permeability and Antifungal Cidality. ACS Infect Dis 2021; 7:377-389. [PMID: 33471513 PMCID: PMC7887753 DOI: 10.1021/acsinfecdis.0c00721] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/17/2022]
Abstract
The increasing emergence of drug-resistant fungal pathogens, together with the limited number of available antifungal drugs, presents serious clinical challenges to treating systemic, life-threatening infections. Repurposing existing drugs to augment the antifungal activity of well-tolerated antifungals is a promising antifungal strategy with the potential to be implemented rapidly. Here, we explored the mechanism by which colistin, a positively charged lipopeptide antibiotic, enhances the antifungal activity of fluconazole, the most widely used orally available antifungal. In a range of susceptible and drug-resistant isolates and species, colistin was primarily effective at reducing fluconazole tolerance, a property of subpopulations of cells that grow slowly in the presence of a drug and may promote the emergence of persistent infections and resistance. Clinically relevant concentrations of colistin synergized with fluconazole, reducing fluconazole minimum inhibitory concentration 4-fold. Combining fluconazole and colistin also increased survival in a C. albicans Galleria mellonella infection, especially for a highly fluconazole-tolerant isolate. Mechanistically, colistin increased permeability to fluorescent antifungal azole probes and to intracellular dyes, accompanied by an increase in cell death that was dependent upon pharmacological or genetic inhibition of the ergosterol biosynthesis pathway. The positive charge of colistin is critical to its antifungal, and antibacterial, activity: colistin directly binds to several eukaryotic membrane lipids (i.e., l-α-phosphatidylinositol, l-α-phosphatidyl-l-serine, and l-α-phosphatidylethanolamine) that are enriched in the membranes of ergosterol-depleted cells. These results support the idea that colistin binds to fungal membrane lipids and permeabilizes fungal cells in a manner that depends upon the degree of ergosterol depletion.
Collapse
Affiliation(s)
- Maayan Bibi
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Sarah Murphy
- Institute
for Infection and Immunity, St George’s
University, Cranmer Terrace, London SW17 0RE, United Kingdom
| | - Raphael I. Benhamou
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Alex Rosenberg
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Adi Ulman
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Tihana Bicanic
- Institute
for Infection and Immunity, St George’s
University, Cranmer Terrace, London SW17 0RE, United Kingdom
- Clinical
Academic Group in Infection, St George’s
Hospital NHS Trust, London SW17 0QT, United Kingdom
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Judith Berman
- Shmunis
School of Biomedical and Cancer Research, George S. Wise Faculty of
Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel
| |
Collapse
|
30
|
Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev 2021; 45:6121427. [PMID: 33503232 DOI: 10.1093/femsre/fuab006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Dept. of Microbiology, Dept. of Statistics, University of Manitoba Canada
| | | |
Collapse
|
31
|
Abstract
DNA break lesions pose a serious threat to the integrity of the genome. Eukaryotic cells can repair these lesions using the homologous recombination pathway that guides the repair reaction by using a homologous DNA template. The budding yeast Saccharomyces cerevisiae is an excellent model system with which to study this repair mechanism and the resulting patterns of genomic change resulting from it. In this chapter, we describe an approach that utilizes whole-genome sequencing data to support the analysis of tracts of loss-of-heterozygosity (LOH) that can arise from mitotic recombination in the context of the entire diploid yeast genome. The workflow and the discussion in this chapter are intended to enable classically trained molecular biologists and geneticists with limited experience in computational methods to conceptually understand and execute the steps of genome-wide LOH analysis as well as to adapt and apply them to their own specific studies and experimental models.
Collapse
Affiliation(s)
- Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nadia M V Sampaio
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
32
|
Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiol 2020; 96:103685. [PMID: 33494889 DOI: 10.1016/j.fm.2020.103685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/10/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023]
Abstract
Nitrogen requirements by S. cerevisiae during wine fermentation are highly strain-dependent. Different approaches were applied to explore the nitrogen requirements of 28 wine yeast strains. Based on the growth and fermentation behaviour displayed at different nitrogen concentrations, high and low nitrogen-demanding strains were selected and further verified by competition fermentation. Biomass production with increasing nitrogen concentrations in the exponential fermentation phase was analysed by chemostat cultures. Low nitrogen-demanding (LND) strains produced a larger amount of biomass in nitrogen-limited synthetic grape musts, whereas high nitrogen-demanding (HND) strains achieved a bigger biomass yield when the YAN concentration was above 100 mg/L. Constant rate fermentation was carried out with both strains to determine the amount of nitrogen required to maintain the highest fermentation rate. Large differences appeared in the analysis of the genomes of low and high-nitrogen demanding strains showed for heterozygosity and the amino acid substitutions between orthologous proteins, with nitrogen recycling system genes showing the widest amino acid divergences. The CRISPR/Cas9-mediated genome modification method was used to validate the involvement of GCN1 in the yeast strain nitrogen needs. However, the allele swapping of gene GCN1 from low nitrogen-demanding strains to high nitrogen-demanding strains did not significantly influence the fermentation rate.
Collapse
|
33
|
A yeast living ancestor reveals the origin of genomic introgressions. Nature 2020; 587:420-425. [PMID: 33177709 DOI: 10.1038/s41586-020-2889-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/11/2020] [Indexed: 11/08/2022]
Abstract
Genome introgressions drive evolution across the animal1, plant2 and fungal3 kingdoms. Introgressions initiate from archaic admixtures followed by repeated backcrossing to one parental species. However, how introgressions arise in reproductively isolated species, such as yeast4, has remained unclear. Here we identify a clonal descendant of the ancestral yeast hybrid that founded the extant Saccharomyces cerevisiae Alpechin lineage5, which carries abundant Saccharomyces paradoxus introgressions. We show that this clonal descendant, hereafter defined as a 'living ancestor', retained the ancestral genome structure of the first-generation hybrid with contiguous S. cerevisiae and S. paradoxus subgenomes. The ancestral first-generation hybrid underwent catastrophic genomic instability through more than a hundred mitotic recombination events, mainly manifesting as homozygous genome blocks generated by loss of heterozygosity. These homozygous sequence blocks rescue hybrid fertility by restoring meiotic recombination and are the direct origins of the introgressions present in the Alpechin lineage. We suggest a plausible route for introgression evolution through the reconstruction of extinct stages and propose that genome instability allows hybrids to overcome reproductive isolation and enables introgressions to emerge.
Collapse
|
34
|
Sui Y, Qi L, Wu JK, Wen XP, Tang XX, Ma ZJ, Wu XC, Zhang K, Kokoska RJ, Zheng DQ, Petes TD. Genome-wide mapping of spontaneous genetic alterations in diploid yeast cells. Proc Natl Acad Sci U S A 2020; 117:28191-28200. [PMID: 33106417 PMCID: PMC7668089 DOI: 10.1073/pnas.2018633117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genomic alterations including single-base mutations, deletions and duplications, translocations, mitotic recombination events, and chromosome aneuploidy generate genetic diversity. We examined the rates of all of these genetic changes in a diploid strain of Saccharomyces cerevisiae by whole-genome sequencing of many independent isolates (n = 93) subcloned about 100 times in unstressed growth conditions. The most common alterations were point mutations and small (<100 bp) insertion/deletions (n = 1,337) and mitotic recombination events (n = 1,215). The diploid cells of most eukaryotes are heterozygous for many single-nucleotide polymorphisms (SNPs). During mitotic cell divisions, recombination can produce derivatives of these cells that have become homozygous for the polymorphisms, termed loss-of-heterozygosity (LOH) events. LOH events can change the phenotype of the cells and contribute to tumor formation in humans. We observed two types of LOH events: interstitial events (conversions) resulting in a short LOH tract (usually less than 15 kb) and terminal events (mostly cross-overs) in which the LOH tract extends to the end of the chromosome. These two types of LOH events had different distributions, suggesting that they may have initiated by different mechanisms. Based on our results, we present a method of calculating the probability of an LOH event for individual SNPs located throughout the genome. We also identified several hotspots for chromosomal rearrangements (large deletions and duplications). Our results provide insights into the relative importance of different types of genetic alterations produced during vegetative growth.
Collapse
Affiliation(s)
- Yang Sui
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705
| | - Lei Qi
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705
| | - Jian-Kun Wu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xue-Ping Wen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xing-Xing Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Zhong-Jun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Science, Zhejiang University, 310058 Hangzhou, China
| | - Ke Zhang
- Institute of Microbiology, College of Life Science, Zhejiang University, 310058 Hangzhou, China;
| | - Robert J Kokoska
- Physical Sciences Directorate, United States Army Research Office, Research Triangle Park, NC 27709
| | - Dao-Qiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China;
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705;
| |
Collapse
|
35
|
Abstract
The genus Saccharomyces is an evolutionary paradox. On the one hand, it is composed of at least eight clearly phylogenetically delineated species; these species are reproductively isolated from each other, and hybrids usually cannot complete their sexual life cycles. On the other hand, Saccharomyces species have a long evolutionary history of hybridization, which has phenotypic consequences for adaptation and domestication. A variety of cellular, ecological, and evolutionary mechanisms are responsible for this partial reproductive isolation among Saccharomyces species. These mechanisms have caused the evolution of diverse Saccharomyces species and hybrids, which occupy a variety of wild and domesticated habitats. In this article, we introduce readers to the mechanisms isolating Saccharomyces species, the circumstances in which reproductive isolation mechanisms are effective and ineffective, and the evolutionary consequences of partial reproductive isolation. We discuss both the evolutionary history of the genus Saccharomyces and the human history of taxonomists and biologists struggling with species concepts in this fascinating genus.
Collapse
Affiliation(s)
- Jasmine Ono
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6AA, UK; ,
| | - Duncan Greig
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6AA, UK; ,
| | - Primrose J Boynton
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6AA, UK; ,
| |
Collapse
|
36
|
Loss of Heterozygosity and Base Mutation Rates Vary Among Saccharomyces cerevisiae Hybrid Strains. G3-GENES GENOMES GENETICS 2020; 10:3309-3319. [PMID: 32727920 PMCID: PMC7466981 DOI: 10.1534/g3.120.401551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests that mutation rates exhibit intra-species specific variation. We estimated genome-wide loss of heterozygosity (LOH), gross chromosomal changes, and single nucleotide mutation rates to determine intra-species specific differences in hybrid and homozygous strains of Saccharomyces cerevisiae. The mutation accumulation lines of the S. cerevisiae hybrid backgrounds - S288c/YJM789 (S/Y) and S288c/RM11-1a (S/R) were analyzed along with the homozygous diploids RM11, S288c, and YJM145. LOH was extensive in both S/Y and S/R hybrid backgrounds. The S/Y background also showed longer LOH tracts, gross chromosomal changes, and aneuploidy. Short copy number aberrations were observed in the S/R background. LOH data from the S/Y and S/R hybrids were used to construct a LOH map for S288c to identify hotspots. Further, we observe up to a sixfold difference in single nucleotide mutation rates among the S. cerevisiae S/Y and S/R genetic backgrounds. Our results demonstrate LOH is common during mitotic divisions in S. cerevisiae hybrids and also highlight genome-wide differences in LOH patterns and rates of single nucleotide mutations between commonly used S. cerevisiae hybrid genetic backgrounds.
Collapse
|
37
|
Persistence and reservoirs of Saccharomyces cerevisiae biodiversity in different vineyard niches. Food Microbiol 2020; 86:103328. [DOI: 10.1016/j.fm.2019.103328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/26/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
|
38
|
Morard M, Benavent-Gil Y, Ortiz-Tovar G, Pérez-Través L, Querol A, Toft C, Barrio E. Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerevisiae x Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes phenotypic diversity. Microb Genom 2020; 6:e000333. [PMID: 32065577 PMCID: PMC7200066 DOI: 10.1099/mgen.0.000333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/15/2020] [Indexed: 01/03/2023] Open
Abstract
Interspecific hybridization has played an important role in the evolution of eukaryotic organisms by favouring genetic interchange between divergent lineages to generate new phenotypic diversity involved in the adaptation to new environments. This way, hybridization between Saccharomyces species, involving the fusion between their metabolic capabilities, is a recurrent adaptive strategy in industrial environments. In the present study, whole-genome sequences of natural hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii were obtained to unveil the mechanisms involved in the origin and evolution of hybrids, as well as the ecological and geographic contexts in which spontaneous hybridization and hybrid persistence take place. Although Saccharomyces species can mate using different mechanisms, we concluded that rare-mating is the most commonly used, but other mechanisms were also observed in specific hybrids. The preponderance of rare-mating was confirmed by performing artificial hybridization experiments. The mechanism used to mate determines the genomic structure of the hybrid and its final evolutionary outcome. The evolution and adaptability of the hybrids are triggered by genomic instability, resulting in a wide diversity of genomic rearrangements. Some of these rearrangements could be adaptive under the stressful conditions of the industrial environment.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Yaiza Benavent-Gil
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Guadalupe Ortiz-Tovar
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Centro de Estudios Vitivinícolas de Baja California, México, CETYS Universidad, Ensenada, Baja California, Mexico
| | - Laura Pérez-Través
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
- Present address: Institute for Integrative and Systems Biology, Universitat de València and CSIC, Paterna, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Burjassot, Valencia, Spain
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Paterna, Valencia, Spain
| |
Collapse
|
39
|
Libkind D, Peris D, Cubillos FA, Steenwyk JL, Opulente DA, Langdon QK, Rokas A, Hittinger CT. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Res 2020; 20:foaa008. [PMID: 32009143 PMCID: PMC7067299 DOI: 10.1093/femsyr/foaa008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography, especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and analyze genomes of wild yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET/Universidad Nacional del Comahue, Quintral 1250 (8400), Bariloche., Argentina
| | - D Peris
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-CSIC, Calle Catedrático Dr. D. Agustin Escardino Benlloch n°7, 46980 Paterna, Valencia, Spain
| | - F A Cubillos
- Millennium Institute for Integrative Biology (iBio). General del Canto 51 (7500574), Santiago
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología. Alameda 3363 (9170002). Estación Central. Santiago, Chile
| | - J L Steenwyk
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
| | - A Rokas
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| |
Collapse
|
40
|
Leu JY, Chang SL, Chao JC, Woods LC, McDonald MJ. Sex alters molecular evolution in diploid experimental populations of S. cerevisiae. Nat Ecol Evol 2020; 4:453-460. [PMID: 32042122 DOI: 10.1038/s41559-020-1101-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 01/07/2020] [Indexed: 02/02/2023]
Abstract
Sex is common among eukaryotes, but entails considerable costs. The selective conditions that drive the evolutionary maintenance of sexual reproduction remain an open question. One long-standing explanation is that sex and recombination facilitate adaptation to fluctuating environmental conditions, although the genetic mechanisms that underlie such a benefit have not been empirically observed. In this study, we compare the dynamics and fitness effects of mutations in sexual and asexual diploid populations of the yeast Saccharomyces cerevisiae during adaptation to a fluctuating environment. While we find no detectable difference in the rate of adaptation between sexual and asexual populations, only the former evolve high fitness mutations in parallel, a genetic signature of adaptation. Using genetic reconstructions and fitness assays, we demonstrate that evolved, overdominant mutations can be beneficial in asexual populations, but maintained at lower frequencies in sexual populations due to segregation load. Overall these data show that sex alters the molecular basis of adaptation in diploids, and confers both costs and benefits.
Collapse
Affiliation(s)
- Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nangang, Taiwan
| | - Shang-Lin Chang
- Institute of Molecular Biology, Academia Sinica, Nangang, Taiwan.,Genomics Research Center, Academia Sinica, Nangang, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Nangang, Taiwan
| | - Laura C Woods
- School of Biological Sciences, Monash University, Victoria, Monash, Australia
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Victoria, Monash, Australia.
| |
Collapse
|
41
|
Salazar AN, Gorter de Vries AR, van den Broek M, Brouwers N, de la Torre Cortès P, Kuijpers NGA, Daran JMG, Abeel T. Chromosome level assembly and comparative genome analysis confirm lager-brewing yeasts originated from a single hybridization. BMC Genomics 2019; 20:916. [PMID: 31791228 PMCID: PMC6889557 DOI: 10.1186/s12864-019-6263-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2 strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity for S. cerevisiae chromosomes. As a result, Group 2 strains were hypothesized to have emerged from a hybridization event distinct from Group 1 strains. Current genome assemblies of S. pastorianus strains are incomplete and highly fragmented, limiting our ability to investigate their evolutionary history. RESULTS To fill this gap, we generated a chromosome-level genome assembly of the S. pastorianus strain CBS 1483 from Oxford Nanopore MinION DNA sequencing data and analysed the newly assembled subtelomeric regions and chromosome heterozygosity. To analyse the evolutionary history of S. pastorianus strains, we developed Alpaca: a method to compute sequence similarity between genomes without assuming linear evolution. Alpaca revealed high similarities between the S. cerevisiae subgenomes of Group 1 and 2 strains, and marked differences from sequenced S. cerevisiae strains. CONCLUSIONS Our findings suggest that Group 1 and Group 2 strains originated from a single hybridization involving a heterozygous S. cerevisiae strain, followed by different evolutionary trajectories. The clear differences between both groups may originate from a severe population bottleneck caused by the isolation of the first pure cultures. Alpaca provides a computationally inexpensive method to analyse evolutionary relationships while considering non-linear evolution such as horizontal gene transfer and sexual reproduction, providing a complementary viewpoint beyond traditional phylogenetic approaches.
Collapse
Affiliation(s)
- Alex N Salazar
- Delft Bioinformatics Lab, Delft University of Technology, 2628, CD, Delft, The Netherlands
| | - Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Nick Brouwers
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Pilar de la Torre Cortès
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Niels G A Kuijpers
- HEINEKEN Supply Chain B.V., Global Innovation and Research, Zoeterwoude, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, 2628, CD, Delft, The Netherlands.
- Broad Institute of MIT and Harvard, Boston, MA, 02142, USA.
| |
Collapse
|
42
|
Raghavan V, Aquadro CF, Alani E. Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress. Trends Genet 2019; 35:804-817. [PMID: 31526615 PMCID: PMC6825890 DOI: 10.1016/j.tig.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Global outbreaks of drug-resistant fungi such as Candida auris are thought to be due at least in part to excessive use of antifungal drugs. Baker's yeast Saccharomyces cerevisiae has gained importance as an emerging opportunistic fungal pathogen that can cause infections in immunocompromised patients. Analyses of over 1000 S. cerevisiae isolates are providing rich resources to better understand how fungi can grow in human environments. A large percentage of clinical S. cerevisiae isolates are heterozygous across many nucleotide sites, and a significant proportion are of mixed ancestry and/or are aneuploid or polyploid. Such features potentially facilitate adaptation to new environments. These observations provide strong impetus for expanding genomic and molecular studies on clinical and wild isolates to understand the prevalence of genetic diversity and instability-generating mechanisms, and how they are selected for and maintained. Such work can also lead to the identification of new targets for antifungal drugs.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
43
|
James TY, Michelotti LA, Glasco AD, Clemons RA, Powers RA, James ES, Simmons DR, Bai F, Ge S. Adaptation by Loss of Heterozygosity in Saccharomyces cerevisiae Clones Under Divergent Selection. Genetics 2019; 213:665-683. [PMID: 31371407 PMCID: PMC6781901 DOI: 10.1534/genetics.119.302411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Loss of heterozygosity (LOH) is observed during vegetative growth and reproduction of diploid genotypes through mitotic crossovers, aneuploidy caused by nondisjunction, and gene conversion. We aimed to test the role that LOH plays during adaptation of two highly heterozygous Saccharomyces cerevisiae genotypes to multiple environments over a short time span in the laboratory. We hypothesized that adaptation would be observed through parallel LOH events across replicate populations. Using genome resequencing of 70 clones, we found that LOH was widespread with 5.2 LOH events per clone after ∼500 generations. The most common mode of LOH was gene conversion (51%) followed by crossing over consistent with either break-induced replication or double Holliday junction resolution. There was no evidence that LOH involved nondisjunction of whole chromosomes. We observed parallel LOH in both an environment-specific and environment-independent manner. LOH largely involved recombining existing variation between the parental genotypes, but also was observed after de novo, presumably beneficial, mutations occurred in the presence of canavanine, a toxic analog of arginine. One highly parallel LOH event involved the ENA salt efflux pump locus on chromosome IV, which showed repeated LOH to the allele from the European parent, an allele originally derived by introgression from S. paradoxus Using CRISPR-engineered LOH we showed that the fitness advantage provided by this single LOH event was 27%. Overall, we found extensive evidence that LOH could be adaptive and is likely to be a greater source of initial variation than de novo mutation for rapid evolution of diploid genotypes.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Alexander D Glasco
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Rebecca A Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Robert A Powers
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Ellen S James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - D Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fengyan Bai
- Institute of Microbiology, Chinese Academy of Sciences, State Key Laboratory of Mycology, Chaoyang District, Beijing 100101, China
| | - Shuhua Ge
- Technology Development and Transfer Center, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100029, China
| |
Collapse
|
44
|
Sampaio NMV, Watson RA, Argueso JL. Controlled Reduction of Genomic Heterozygosity in an Industrial Yeast Strain Reveals Wide Cryptic Phenotypic Variation. Front Genet 2019; 10:782. [PMID: 31572430 PMCID: PMC6749062 DOI: 10.3389/fgene.2019.00782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023] Open
Abstract
Abundant genomic heterozygosity can be found in wild strains of the budding yeast Saccharomyces cerevisiae isolated from industrial and clinical environments. The extent to which heterozygosity influences the phenotypes of these isolates is not fully understood. One such case is the PE-2/JAY270 strain, a natural hybrid widely adopted by sugarcane bioethanol distilleries for its ability to thrive under harsh biotic and abiotic stresses during industrial scale fermentation, however, it is not known whether or how the heterozygous configuration of the JAY270 genome contributes to its many desirable traits. In this study, we took a step toward exploring this question by conducting an initial functional characterization of JAY270’s heteroalleles. We manipulated the abundance and distribution of heterozygous alleles through inbreeding and targeted uniparental disomy (UPD). Unique combinations of homozygous alleles in each inbred strain revealed wide phenotypic variation for at least two important industrial traits: Heat stress tolerance and competitive growth. Quantitative trait loci analyses allowed the identification of broad genomic regions where genetic polymorphisms potentially impacted these traits, and there was no overlap between the loci associated with each. In addition, we adapted an approach to induce bidirectional UPD of three targeted pairs of chromosomes (IV, XIV, and XV), while heterozygosity was maintained elsewhere in the genome. In most cases UPD led to detectable phenotypic alterations, often in opposite directions between the two homozygous haplotypes in each UPD pair. Our results showed that both widespread and regional homozygosity could uncover cryptic phenotypic variation supported by the heteroalleles residing in the JAY270 genome. Interestingly, we characterized multiple examples of inbred and UPD strains that displayed heat tolerance or competitive growth phenotypes that were superior to their heterozygous parent. However, we propose that homozygosity for those regions may be associated with a decrease in overall fitness in the complex and dynamic distillery environment, and that may have contributed to slowing down the erosion of heterozygosity from the JAY270 genome. This study also laid a foundation for approaches that can be expanded to the identification of specific alleles of interest for industrial applications in this and other hybrid yeast strains.
Collapse
Affiliation(s)
- Nadia M V Sampaio
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Ruth A Watson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
45
|
A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat Commun 2019; 10:4061. [PMID: 31492891 PMCID: PMC6731263 DOI: 10.1038/s41467-019-12014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Tiny marine green algae issued from two deep branches of the Chlorophyta, the Mamiellophyceae and Chloropicophyceae, dominate different regions of the oceans and play key roles in planktonic communities. Considering that the Mamiellophyceae is the sole lineage of prasinophyte algae that has been intensively investigated, the extent to which these two algal groups differ in their metabolic capacities and cellular processes is currently unknown. To address this gap of knowledge, we investigate here the nuclear genome sequence of a member of the Chloropicophyceae, Chloropicon primus. Among the main biological insights that emerge from this 17.4 Mb genome, we find an unexpected diploid structure for most chromosomes and a propionate detoxification pathway in green algae. Our results support the notion that separate events of genome minimization, which entailed differential losses of genes/pathways, have occurred in the Chloropicophyceae and Mamiellophyceae, suggesting different strategies of adaptation to oceanic environments.
Collapse
|
46
|
Korhola M, Naumova ES, Partti E, Aittamaa M, Turakainen H, Naumov GI. Exploiting heterozygosity in industrial yeasts to create new and improved baker's yeasts. Yeast 2019; 36:571-587. [PMID: 31243797 DOI: 10.1002/yea.3428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023] Open
Abstract
The main aim of the work was to utilize heterozygosity of industrial yeast strains to construct new baker's yeast strains. Commercial baker's yeast strain ALKO 743, its more ethanol tolerant descendant ALKO 554 selected initially for growth over 300 generations in increasing ethanol concentrations in a glucose medium, and ALKO 3460 from an old domestic sour dough starter were used as starting strains. Isolated meiotic segregants of the strains were characterized genetically for sporulation ability and mating type, and the ploidy was determined physically. Heterozygosity of the segregant strains was estimated by a variety of molecular characterizations and fermentation and growth assays. The results showed wide heterozygosity and that the segregants were clustered into subgroups. This clustering was used for choosing distantly or closely related partners for strain construction crosses. Intrastrain hybrids made with segregants of ALKO 743 showed 16-24% hybrid vigour or heterosis. Interstrain hybrids with segregants of ALKO 743 and ALKO 3460 showed a wide variety of characteristics but also clear heterosis of 27-31% effects as assayed by lean and sugar dough raising. Distiller's yeast ALKO 554 turned out to be a diploid genetic segregant and not just a more ethanol tolerant mutant of the tetraploid parent strain ALKO 743.
Collapse
Affiliation(s)
- Matti Korhola
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Elena S Naumova
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Edvard Partti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Marja Aittamaa
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Hilkka Turakainen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Alkomohr Biotech Ltd., Helsinki, Finland
| | - Gennadi I Naumov
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
47
|
Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, Sanchez I, Couloux A, Guy J, Franco-Duarte R, Marcet-Houben M, Gabaldon T, Schuller D, Sampaio JP, Dequin S. Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Mol Biol Evol 2019; 35:1712-1727. [PMID: 29746697 PMCID: PMC5995190 DOI: 10.1093/molbev/msy066] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae can be found in the wild and is also frequently associated with human activities. Despite recent insights into the phylogeny of this species, much is still unknown about how evolutionary processes related to anthropogenic niches have shaped the genomes and phenotypes of S. cerevisiae. To address this question, we performed population-level sequencing of 82 S. cerevisiae strains from wine, flor, rum, dairy products, bakeries, and the natural environment (oak trees). These genomic data enabled us to delineate specific genetic groups corresponding to the different ecological niches and revealed high genome content variation across the groups. Most of these strains, compared with the reference genome, possessed additional genetic elements acquired by introgression or horizontal transfer, several of which were population-specific. In addition, several genomic regions in each population showed evidence of nonneutral evolution, as shown by high differentiation, or of selective sweeps including genes with key functions in these environments (e.g., amino acid transport for wine yeast). Linking genetics to lifestyle differences and metabolite traits has enabled us to elucidate the genetic basis of several niche-specific population traits, such as growth on galactose for cheese strains. These data indicate that yeast has been subjected to various divergent selective pressures depending on its niche, requiring the development of customized genomes for better survival in these environments. These striking genome dynamics associated with local adaptation and domestication reveal the remarkable plasticity of the S. cerevisiae genome, revealing this species to be an amazing complex of specialized populations.
Collapse
Affiliation(s)
- Jean-Luc Legras
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Virginie Galeote
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Frédéric Bigey
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Carole Camarasa
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Souhir Marsit
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Arnaud Couloux
- Centre National de Séquençage, Institut de Genomique, Genoscope, Evry Cedex, France
| | - Julie Guy
- Centre National de Séquençage, Institut de Genomique, Genoscope, Evry Cedex, France
| | - Ricardo Franco-Duarte
- CBMA, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| | - Dorit Schuller
- CBMA, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - José Paulo Sampaio
- UCIBIO-REQUIMTE, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sylvie Dequin
- SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
48
|
Variation in Filamentous Growth and Response to Quorum-Sensing Compounds in Environmental Isolates of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:1533-1544. [PMID: 30862622 PMCID: PMC6505140 DOI: 10.1534/g3.119.400080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In fungi, filamentous growth is a major developmental transition that occurs in response to environmental cues. In diploid Saccharomyces cerevisiae, it is known as pseudohyphal growth and presumed to be a foraging mechanism. Rather than unicellular growth, multicellular filaments composed of elongated, attached cells spread over and into surfaces. This morphogenetic switch can be induced through quorum sensing with the aromatic alcohols phenylethanol and tryptophol. Most research investigating pseudohyphal growth has been conducted in a single lab background, Σ1278b. To investigate the natural variation in this phenotype and its induction, we assayed the diverse 100-genomes collection of environmental isolates. Using computational image analysis, we quantified the production of pseudohyphae and observed a large amount of variation. Population origin was significantly associated with pseudohyphal growth, with the West African population having the most. Surprisingly, most strains showed little or no response to exogenous phenylethanol or tryptophol. We also investigated the amount of natural genetic variation in pseudohyphal growth using a mapping population derived from a highly-heterozygous clinical isolate that contained as much phenotypic variation as the environmental panel. A bulk-segregant analysis uncovered five major peaks with candidate loci that have been implicated in the Σ1278b background. Our results indicate that the filamentous growth response is a generalized, highly variable phenotype in natural populations, while response to quorum sensing molecules is surprisingly rare. These findings highlight the importance of coupling studies in tractable lab strains with natural isolates in order to understand the relevance and distribution of well-studied traits.
Collapse
|
49
|
Gorter de Vries AR, Voskamp MA, van Aalst ACA, Kristensen LH, Jansen L, van den Broek M, Salazar AN, Brouwers N, Abeel T, Pronk JT, Daran JMG. Laboratory Evolution of a Saccharomyces cerevisiae × S. eubayanus Hybrid Under Simulated Lager-Brewing Conditions. Front Genet 2019; 10:242. [PMID: 31001314 PMCID: PMC6455053 DOI: 10.3389/fgene.2019.00242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/04/2019] [Indexed: 11/23/2022] Open
Abstract
Saccharomyces pastorianus lager-brewing yeasts are domesticated hybrids of S. cerevisiae x S. eubayanus that display extensive inter-strain chromosome copy number variation and chromosomal recombinations. It is unclear to what extent such genome rearrangements are intrinsic to the domestication of hybrid brewing yeasts and whether they contribute to their industrial performance. Here, an allodiploid laboratory hybrid of S. cerevisiae and S. eubayanus was evolved for up to 418 generations on wort under simulated lager-brewing conditions in six independent sequential batch bioreactors. Characterization of 55 single-cell isolates from the evolved cultures showed large phenotypic diversity and whole-genome sequencing revealed a large array of mutations. Frequent loss of heterozygosity involved diverse, strain-specific chromosomal translocations, which differed from those observed in domesticated, aneuploid S. pastorianus brewing strains. In contrast to the extensive aneuploidy of domesticated S. pastorianus strains, the evolved isolates only showed limited (segmental) aneuploidy. Specific mutations could be linked to calcium-dependent flocculation, loss of maltotriose utilization and loss of mitochondrial activity, three industrially relevant traits that also occur in domesticated S. pastorianus strains. This study indicates that fast acquisition of extensive aneuploidy is not required for genetic adaptation of S. cerevisiae × S. eubayanus hybrids to brewing environments. In addition, this work demonstrates that, consistent with the diversity of brewing strains for maltotriose utilization, domestication under brewing conditions can result in loss of this industrially relevant trait. These observations have important implications for the design of strategies to improve industrial performance of novel laboratory-made hybrids.
Collapse
Affiliation(s)
- Arthur R. Gorter de Vries
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Maaike A. Voskamp
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Aafke C. A. van Aalst
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Line H. Kristensen
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Liset Jansen
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Marcel van den Broek
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Alex N. Salazar
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
| | - Nick Brouwers
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Department of Intelligent Systems, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Jack T. Pronk
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G. Daran
- Industrial Microbiology, Department of Biotechnology Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
50
|
Dale AL, Feau N, Everhart SE, Dhillon B, Wong B, Sheppard J, Bilodeau GJ, Brar A, Tabima JF, Shen D, Brasier CM, Tyler BM, Grünwald NJ, Hamelin RC. Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum. mBio 2019; 10:e02452-18. [PMID: 30862749 PMCID: PMC6414701 DOI: 10.1128/mbio.02452-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR.IMPORTANCE Alien species are often successful invaders in new environments, despite the introduction of a few isolates with a reduced genetic pool. This is called the genetic paradox of invasion. We found two mechanisms by which the invasive forest pathogen causing sudden oak and sudden larch death can evolve. Extensive mitotic recombination producing runs of homozygosity generates genotypic diversity even in the absence of sexual reproduction, and rapid turnover of genes in the non-core, or nonessential portion of genome not shared by all isolates, allows pathogenicity genes to evolve rapidly or be eliminated while retaining essential genes. Mitotic recombination events occur in genomic hot spots, resulting in similar ROH patterns in different isolates or groups; one ROH, independently generated in two different groups, was enriched in pathogenicity genes and may be a target for selection. This provides important insights into the evolution of invasive alien pathogens and their potential for adaptation and future persistence.
Collapse
Affiliation(s)
- Angela L Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- GC-New Construction Materials, FPInnovations, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Braham Dhillon
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Wong
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Julie Sheppard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guillaume J Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Avneet Brar
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Javier F Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Clive M Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey, United Kingdom
| | - Brett M Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Faculté de Foresterie et Géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| |
Collapse
|