1
|
Yadav VK, Pramanik S, Alghamdi S, Atwah B, Qusty NF, Babalghith AO, Solanki VS, Agarwal N, Gupta N, Niazi P, Patel A, Choudhary N, Zairov R. Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes. Int J Nanomedicine 2025; 20:403-444. [PMID: 39816378 PMCID: PMC11734620 DOI: 10.2147/ijn.s462031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features. MTB and magnetosomes have gained popularity in cancer treatment and diagnosis, especially in magnetic resonance imaging. Distinctive features highlighted include advancements in extraction, characterization, and functionalization techniques, alongside breakthroughs in utilizing MTB-based magnetosomes as contrast agents in imaging, biocompatible drug carriers, and tools for minimally invasive therapies. The biocompatible nature, functionalizing of the surface of bacterial magnetosomes, and response to the external magnetic field make them a potential candidate for the theragnostic purpose of MTB and magnetosomes. In the present review, emphasis has been given to the foundation of magnetosomes at a genetic level, mass production of magnetosomes, etc. Further authors have reviewed the various functionalization methods of the magnetosomes for cancer treatment. Finally, the authors have reviewed the recent advancements in MTB and magnetosome-based cancer detection, diagnosis, and treatment. Challenges such as scalability, long-term safety, and clinical translation are also discussed, presenting a roadmap for future research exploiting MTBs and magnetosomes' unique properties.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Banan Atwah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vijendra Singh Solanki
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Neha Agarwal
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt Ltd, Ecotech-III, Greater Noida, U.p., India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Nisha Choudhary
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Rustem Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
2
|
Mao X, Egli R, Petersen N, Liu X. Combined response of polar magnetotaxis to oxygen and pH: Insights from hanging drop assays and microcosm experiments. Sci Rep 2024; 14:27331. [PMID: 39521854 PMCID: PMC11550849 DOI: 10.1038/s41598-024-78946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Magnetotactic bacteria (MTB) combine passive alignment with the Earth magnetic field with a chemotactic response (magneto-chemotaxis) to reach their optimal living depth in chemically stratified environments. Current magneto-aerotaxis models fail to explain the occurrence of MTB far below the oxic-anoxic interface and the coexistence of MTB cells with opposite magnetotactic polarity at depths that are unrelated with the redox gradient. Here we propose a modified model of polar magnetotaxis which explains these observations, as well as the distinct concentration profiles and magnetotactic advantages of two types of MTB inhabiting a freshwater sediment: a group of unidentified cocci (MC), and a giant rod-shaped bacterium (MB) apparently identical to M. bavaricum (MB). This model assumed that magnetotactic polarity is set by a threshold mechanism in counter gradients of oxygen and a second group of repellents, with, in case of MB, includes H+ ions. MTB possessing this type of polar magnetotaxis can shuttle between two limit depths across the redox gradient (redox taxis), as previously postulated for M. bavaricum and other members of the Nitrospirota group. The magnetotaxis of MB and MC is predominantly dipolar whenever the presence of a magnetic field ensures a magnetotactic advantage. In addition, MB can overcome unfavorable magnetic field configurations through a temporal sensing mechanism. The availability of threshold and temporal sensing mechanisms of different substances can generate a rich variety of responses by different types of MTB, enabling them to exploit multiple ecological niches.
Collapse
Affiliation(s)
- Xuegang Mao
- Key Laboratory for Humid Subtropical Ecogeographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China.
| | - Ramon Egli
- Department of General Geophysics and Conrad Observatory, GeoSphere Austria, Hohe Warte 38, 1190, Vienna, Austria.
| | - Nikolai Petersen
- Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Theresienstrasse 41, 80333, Munich, Germany
| | - Xiuming Liu
- Key Laboratory for Humid Subtropical Ecogeographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
3
|
Ji R, Wan J, Liu J, Zheng J, Xiao T, Pan Y, Lin W. Linking morphology, genome, and metabolic activity of uncultured magnetotactic Nitrospirota at the single-cell level. MICROBIOME 2024; 12:158. [PMID: 39182147 PMCID: PMC11344931 DOI: 10.1186/s40168-024-01837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Magnetotactic bacteria (MTB) are a unique group of microorganisms that sense and navigate through the geomagnetic field by biomineralizing magnetic nanoparticles. MTB from the phylum Nitrospirota (previously known as Nitrospirae) thrive in diverse aquatic ecosystems. They are of great interest due to their production of hundreds of magnetite (Fe3O4) magnetosome nanoparticles per cell, which far exceeds that of other MTB. The morphological, phylogenetic, and genomic diversity of Nitrospirota MTB have been extensively studied. However, the metabolism and ecophysiology of Nitrospirota MTB are largely unknown due to the lack of cultivation techniques. METHODS Here, we established a method to link the morphological, genomic, and metabolic investigations of an uncultured Nitrospirota MTB population (named LHC-1) at the single-cell level using nanoscale secondary-ion mass spectrometry (NanoSIMS) in combination with rRNA-based in situ hybridization and target-specific mini-metagenomics. RESULTS We magnetically separated LHC-1 from a freshwater lake and reconstructed the draft genome of LHC-1 using genome-resolved mini-metagenomics. We found that 10 LHC-1 cells were sufficient as a template to obtain a high-quality draft genome. Genomic analysis revealed that LHC-1 has the potential for CO2 fixation and NO3- reduction, which was further characterized at the single-cell level by combining stable-isotope incubations and NanoSIMS analyses over time. Additionally, the NanoSIMS results revealed specific element distributions in LHC-1, and that the heterogeneity of CO2 and NO3- metabolisms among different LHC-1 cells increased with incubation time. CONCLUSIONS To our knowledge, this study provides the first metabolic measurements of individual Nitrospirota MTB cells to decipher their ecophysiological traits. The procedure constructed in this study provides a promising strategy to simultaneously investigate the morphology, genome, and ecophysiology of uncultured microbes in natural environments. Video Abstract.
Collapse
Affiliation(s)
- Runjia Ji
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Wan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jia Liu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinbo Zheng
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Deep Resources Equipment and Technology, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tian Xiao
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, 100029, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Awal RP, Müller FD, Pfeiffer D, Monteil CL, Perrière G, Lefèvre CT, Schüler D. Experimental analysis of diverse actin-like proteins from various magnetotactic bacteria by functional expression in Magnetospirillum gryphiswaldense. mBio 2023; 14:e0164923. [PMID: 37823629 PMCID: PMC10653835 DOI: 10.1128/mbio.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants. Our results further indicate the existence of species-specific MamK interactors and shed light on the evolutionary relationships of one of the key proteins associated with bacterial magnetotaxis.
Collapse
Affiliation(s)
- Ram Prasad Awal
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Frank D. Müller
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Daniel Pfeiffer
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| | - Caroline L. Monteil
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Guy Perrière
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard-Lyon 1, Villeurbanne, France
| | - Christopher T. Lefèvre
- Aix-Marseille Université, CEA, CNRS, Institute of Biosciences and Biotechnologies of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Dirk Schüler
- Department of Microbiology, Universitat Bayreuth, Bayreuth, Germany
| |
Collapse
|
5
|
Shimoshige H, Kobayashi H, Shimamura S, Miyazaki M, Maekawa T. Fundidesulfovibrio magnetotacticus sp. nov., a sulphate-reducing magnetotactic bacterium, isolated from sediments and freshwater of a pond. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sulphate-reducing magnetotactic bacterium, designated strain FSS-1T, was isolated from sediments and freshwater of Suwa Pond located in Hidaka, Saitama, Japan. Strain FSS-1T was a motile, Gram-negative and curved rod-shaped bacterium that synthesizes bullet-shaped magnetite (Fe3O4) nanoparticles in each cell. Strain FSS-1T was able to grow in the range of pH 6.5–8.0 (optimum, pH 7.0), 22–34 °C (optimum, 28 °C) and with 0–8.0 g l−1 NaCl (optimum, 0–2.0 g l−1 NaCl). Strain FSS-1T grew well in the presence of 50 µM ferric quinate as an iron source. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 0. The major menaquinone was MK-7 (H2). Strain FSS-1T contained desulfoviridin, cytochrome c
3 and catalase, but did not contain oxidase. Strain FSS-1T used fumarate, lactate, pyruvate, malate, formate/acetate, succinate, tartrate, ethanol, 1-propanol, peptone, soytone and yeast extract as electron donors, while the strain used sulphate, thiosulphate and fumarate as electron acceptors. Fumarate was fermented in the absence of electron acceptors. Analysis of the 16S rRNA gene sequence showed that strain FSS-1T is a member of the genus
Fundidesulfovibrio
. The gene sequence showed 96.7, 95.0, 92.0, 91.2 and 91.4% similarities to the most closely related members of the genera
Fundidesulfovibrio putealis
B7-43T,
Fundidesulfovibrio butyratiphilus
BSYT,
Desulfolutivibrio sulfoxidireducens
DSM 107105T,
Desulfolutivibrio sulfodismutans
ThAc01T and
Solidesulfovibrio magneticus
RS-1T, respectively. The DNA G+C content of strain FSS-1T was 67.5 mol%. The average nucleotide identity value between strain FSS-1T and
F. putealis
B7-43T was 80.7 %. Therefore, strain FSS-1T represents a novel species within the genus
Fundidesulfovibrio
, for which the name Fundidesulfovibrio magnetotacticus sp. nov. is proposed (=JCM 32405T=DSM 110007T).
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Kanagawa 237-0061, Japan
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350- 15 8585, Japan
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| |
Collapse
|
6
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
A Novel Isolate of Spherical Multicellular Magnetotactic Prokaryotes Has Two Magnetosome Gene Clusters and Synthesizes Both Magnetite and Greigite Crystals. Microorganisms 2022; 10:microorganisms10050925. [PMID: 35630369 PMCID: PMC9145555 DOI: 10.3390/microorganisms10050925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Multicellular magnetotactic prokaryotes (MMPs) are a unique group of magnetotactic bacteria that are composed of 10–100 individual cells and show coordinated swimming along magnetic field lines. MMPs produce nanometer-sized magnetite (Fe3O4) and/or greigite (Fe3S4) crystals—termed magnetosomes. Two types of magnetosome gene cluster (MGC) that regulate biomineralization of magnetite and greigite have been found. Here, we describe a dominant spherical MMP (sMMP) species collected from the intertidal sediments of Jinsha Bay, in the South China Sea. The sMMPs were 4.78 ± 0.67 μm in diameter, comprised 14–40 cells helical symmetrically, and contained bullet-shaped magnetite and irregularly shaped greigite magnetosomes. Two sets of MGCs, one putatively related to magnetite biomineralization and the other to greigite biomineralization, were identified in the genome of the sMMP, and two sets of paralogous proteins (Mam and Mad) that may function separately and independently in magnetosome biomineralization were found. Phylogenetic analysis indicated that the sMMPs were affiliated with Deltaproteobacteria. This is the first direct report of two types of magnetosomes and two sets of MGCs being detected in the same sMMP. The study provides new insights into the mechanism of biomineralization of magnetosomes in MMPs, and the evolutionary origin of MGCs.
Collapse
|
8
|
Mao X, Egli R, Liu X, Zhao L. Magnetotactic advantage in stable sediment by long-term observations of magnetotactic bacteria in Earth’s field, zero field and alternating field. PLoS One 2022; 17:e0263593. [PMID: 35202421 PMCID: PMC8870540 DOI: 10.1371/journal.pone.0263593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/21/2022] [Indexed: 12/02/2022] Open
Abstract
Magnetotactic bacteria (MTB) rely on magnetotaxis to effectively reach their preferred living habitats, whereas experimental investigation of magnetotactic advantage in stable sediment is currently lacking. We studied two wild type MTB (cocci and rod-shaped M. bavaricum) in sedimentary environment under exposure to geomagnetic field in the laboratory, zero field and an alternating field whose polarity was switched every 24 hours. The mean concentration of M. bavaricum dropped by ~50% during 6 months in zero field, with no clear temporal trend suggesting an extinction. Cell numbers recovered to initial values within ~1.5 months after the Earth’s field was reset. Cocci displayed a larger temporal variability with no evident population changes in zero field. The alternating field experiment produced a moderate decrease of M. bavaricum concentrations and nearby extinction of cocci, confirming the active role of magnetotaxis in sediment and might point to a different magnetotactic mechanism for M. bavaricum which possibly benefited them to survive field reversals in geological periods. Our findings provide a first quantification of magnetotaxis advantage in sedimentary environment.
Collapse
Affiliation(s)
- Xuegang Mao
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- * E-mail:
| | - Ramon Egli
- Central institute for Meteorology and Geodynamics, Vienna, Austria
| | - Xiuming Liu
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Lijuan Zhao
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
9
|
Mickoleit F, Rosenfeldt S, Toro-Nahuelpan M, Schaffer M, Schenk AS, Plitzko JM, Schüler D. High-Yield Production, Characterization, and Functionalization of Recombinant Magnetosomes in the Synthetic Bacterium Rhodospirillum rubrum "magneticum". Adv Biol (Weinh) 2021; 5:e2101017. [PMID: 34296829 DOI: 10.1002/adbi.202101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/10/2021] [Indexed: 01/02/2023]
Abstract
Recently, the photosynthetic Rhodospirillum rubrum has been endowed with the ability of magnetosome biosynthesis by transfer and expression of biosynthetic gene clusters from the magnetotactic bacterium Magnetospirillum gryphiswaldense. However, the growth conditions for efficient magnetite biomineralization in the synthetic R. rubrum "magneticum", as well as the particles themselves (i.e., structure and composition), have so far not been fully characterized. In this study, different cultivation strategies, particularly the influence of temperature and light intensity, are systematically investigated to achieve optimal magnetosome biosynthesis. Reduced temperatures ≤16 °C and gradual increase in light intensities favor magnetite biomineralization at high rates, suggesting that magnetosome formation might utilize cellular processes, cofactors, and/or pathways that are linked to photosynthetic growth. Magnetosome yields of up to 13.6 mg magnetite per liter cell culture are obtained upon photoheterotrophic large-scale cultivation. Furthermore, it is shown that even more complex, i.e., oligomeric, catalytically active functional moieties like enzyme proteins can be efficiently expressed on the magnetosome surface, thereby enabling the in vivo functionalization by genetic engineering. In summary, it is demonstrated that the synthetic R. rubrum "magneticum" is a suitable host for high-yield magnetosome biosynthesis and the sustainable production of genetically engineered, bioconjugated magnetosomes.
Collapse
Affiliation(s)
- Frank Mickoleit
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute (BPI)/Physical Chemistry 1, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Mauricio Toro-Nahuelpan
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany.,Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Miroslava Schaffer
- Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Anna S Schenk
- Bavarian Polymer Institute (BPI)/Physical Chemistry - Colloidal Systems, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Jürgen M Plitzko
- Dept. Molecular Structural Biology, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany
| | - Dirk Schüler
- Dept. Microbiology, University of Bayreuth, D-95447, Bayreuth, Germany
| |
Collapse
|
10
|
Sesbanimide R, a Novel Cytotoxic Polyketide Produced by Magnetotactic Bacteria. mBio 2021; 12:mBio.00591-21. [PMID: 34006654 PMCID: PMC8262917 DOI: 10.1128/mbio.00591-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.
Collapse
|
11
|
Shimoshige H, Kobayashi H, Shimamura S, Mizuki T, Inoue A, Maekawa T. Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio. PLoS One 2021; 16:e0248313. [PMID: 33705469 PMCID: PMC7951924 DOI: 10.1371/journal.pone.0248313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) and/or greigite (Fe3S4) nanoparticles in the cells. It is known that the magnetotactic Deltaproteobacteria are ubiquitous and inhabit worldwide in the sediments of freshwater and marine environments. Mostly known MTB belonging to the Deltaproteobacteria are dissimilatory sulfate-reducing bacteria that biomineralize bullet-shaped magnetite nanoparticles, but only a few axenic cultures have been obtained so far. Here, we report the isolation, cultivation and characterization of a dissimilatory sulfate-reducing magnetotactic bacterium, which we designate “strain FSS-1”. We found that the strain FSS-1 is a strict anaerobe and uses casamino acids as electron donors and sulfate as an electron acceptor to reduce sulfate to hydrogen sulfide. The strain FSS-1 produced bullet-shaped magnetite nanoparticles in the cells and responded to external magnetic fields. On the basis of 16S rRNA gene sequence analysis, the strain FSS-1 is a member of the genus Desulfovibrio, showing a 96.7% sequence similarity to Desulfovibrio putealis strain B7-43T. Futhermore, the magnetosome gene cluster of strain FSS-1 was different from that of Desulfovibrio magneticus strain RS-1. Thus, the strain FSS-1 is considered to be a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio.
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Toru Mizuki
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Akira Inoue
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| |
Collapse
|
12
|
Abstract
Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth's magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.
Collapse
|
13
|
Amor M, Mathon FP, Monteil CL, Busigny V, Lefevre CT. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environ Microbiol 2020; 22:3611-3632. [PMID: 32452098 DOI: 10.1111/1462-2920.15098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - François P Mathon
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.,Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Vincent Busigny
- Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
14
|
Keren-Khadmy N, Zeytuni N, Kutnowski N, Perriere G, Monteil C, Zarivach R. From conservation to structure, studies of magnetosome associated cation diffusion facilitators (CDF) proteins in Proteobacteria. PLoS One 2020; 15:e0231839. [PMID: 32310978 PMCID: PMC7170241 DOI: 10.1371/journal.pone.0231839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that sense the geomagnetic field lines to geolocate and navigate in aquatic sediments. They are polyphyletically distributed in several bacterial divisions but are mainly represented in the Proteobacteria. In this phylum, magnetotactic Deltaproteobacteria represent the most ancestral class of MTB. Like all MTB, they synthesize membrane-enclosed magnetic nanoparticles, called magnetosomes, for magnetic sensing. Magnetosome biogenesis is a complex process involving a specific set of genes that are conserved across MTB. Two of the most conserved genes are mamB and mamM, that encode for the magnetosome-associated proteins and are homologous to the cation diffusion facilitator (CDF) protein family. In magnetotactic Alphaproteobacteria MTB species, MamB and MamM proteins have been well characterized and play a central role in iron-transport required for biomineralization. However, their structural conservation and their role in more ancestral groups of MTB like the Deltaproteobacteria have not been established. Here we studied magnetite cluster MamB and MamM cytosolic C-terminal domain (CTD) structures from a phylogenetically distant magnetotactic Deltaproteobacteria species represented by BW-1 strain, which has the unique ability to biomineralize magnetite and greigite. We characterized them in solution, analyzed their crystal structures and compared them to those characterized in Alphaproteobacteria MTB species. We showed that despite the high phylogenetic distance, MamBBW-1 and MamMBW-1 CTDs share high structural similarity with known CDF-CTDs and will probably share a common function with the Alphaproteobacteria MamB and MamM.
Collapse
Affiliation(s)
- Noa Keren-Khadmy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Natalie Zeytuni
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nitzan Kutnowski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guy Perriere
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Villeurbanne Cedex, France
| | - Caroline Monteil
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Villeurbanne Cedex, France
- CNRS, CEA, Aix-Marseille Université, UMR7265 Biosciences and Biotechnologies Institute of Aix-Marseille, Saint Paul lez Durance, France
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
15
|
Pohl A, Berger F, Sullan RMA, Valverde-Tercedor C, Freindl K, Spiridis N, Lefèvre CT, Menguy N, Klumpp S, Blank KG, Faivre D. Decoding Biomineralization: Interaction of a Mad10-Derived Peptide with Magnetite Thin Films. NANO LETTERS 2019; 19:8207-8215. [PMID: 31565946 DOI: 10.1021/acs.nanolett.9b03560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein-surface interactions play a pivotal role in processes as diverse as biomineralization, biofouling, and the cellular response to medical implants. In biomineralization processes, biomacromolecules control mineral deposition and architecture via complex and often unknown mechanisms. For studying these mechanisms, the formation of magnetite nanoparticles in magnetotactic bacteria has become an excellent model system. Most interestingly, nanoparticle morphologies have been discovered that defy crystallographic rules (e.g., in the species Desulfamplus magnetovallimortis strain BW-1). In certain conditions, this strain mineralizes bullet-shaped magnetite nanoparticles, which exhibit defined (111) crystal faces and are elongated along the [100] direction. We hypothesize that surface-specific protein interactions break the nanoparticle symmetry, inhibiting the growth of certain crystal faces and thereby favoring the growth of others. Screening the genome of BW-1, we identified Mad10 (Magnetosome-associated deep-branching) as a potential magnetite-binding protein. Using atomic force microscope (AFM)-based single-molecule force spectroscopy, we show that a Mad10-derived peptide, which represents the most conserved region of Mad10, binds strongly to (100)- and (111)-oriented single-crystalline magnetite thin films. The peptide-magnetite interaction is thus material- but not crystal-face-specific. It is characterized by broad rupture force distributions that do not depend on the retraction speed of the AFM cantilever. To account for these experimental findings, we introduce a three-state model that incorporates fast rebinding. The model suggests that the peptide-surface interaction is strong in the absence of load, which is a direct result of this fast rebinding process. Overall, our study sheds light on the kinetic nature of peptide-surface interactions and introduces a new magnetite-binding peptide with potential use as a functional coating for magnetite nanoparticles in biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Anna Pohl
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Florian Berger
- Laboratory of Sensory Neuroscience , The Rockefeller University , 1230 York Avenue , New York 10065 , United States
| | - Ruby M A Sullan
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Carmen Valverde-Tercedor
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Kinga Freindl
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , 30-239 Krakow , Poland
| | - Nika Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , 30-239 Krakow , Poland
| | | | - Nicolas Menguy
- Sorbonne Université , UMR CNRS 7590, IRD. MNHN, Institut de Minéralogie, Physique des Matériaux et Cosmochimie - IMPMC , 4 Place Jussieu , 75005 Paris , France
| | - Stefan Klumpp
- Department of Theory & Bio-Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Institute for the Dynamics of Complex Systems , University of Göttingen , Friedrich Hund Platz 1 , 37077 Göttingen , Germany
| | - Kerstin G Blank
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Damien Faivre
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Aix-Marseille Université , CEA, CNRS, BIAM, 13108 Saint Paul lez Durance , France
| |
Collapse
|
16
|
Pan H, Dong Y, Teng Z, Li J, Zhang W, Xiao T, Wu LF. A species of magnetotactic deltaproteobacterium was detected at the highest abundance during an algal bloom. FEMS Microbiol Lett 2019; 366:5681391. [PMID: 31855240 DOI: 10.1093/femsle/fnz253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of microorganisms that have the ability to synthesize intracellular magnetic crystals (magnetosomes). They prefer microaerobic or anaerobic aquatic sediments. Thus, there is growing interest in their ecological roles in various habitats. In this study we found co-occurrence of a large rod-shaped deltaproteobacterial magnetotactic bacterium (tentatively named LR-1) in the sediment of a brackish lagoon with algal bloom. Electron microscopy observations showed that they were ovoid to slightly curved rods having a mean length of 6.3 ± 1.1 μm and a mean width of 4.1 ± 0.4 μm. Each cell had a single polar flagellum. They contained hundreds of bullet-shaped intracellular magnetite magnetosomes. Phylogenetic analysis revealed that they were most closely related to Desulfamplus magnetovallimortis strain BW-1, and belonged to the Deltaproteobacteria. Our findings indicate that LR-1 may be a new species of MTB. We propose that deltaproteobacterial MTB may play an important role in iron cycling and so may represent a reservoir of iron, and be an indicator species for monitoring algal blooms in such eutrophic ecosystems. These observations provide new clues to the cultivation of magnetotactic Deltaproteobacteria and the control of algal blooms, although further studies are needed.
Collapse
Affiliation(s)
- Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Yi Dong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jinhua Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Beijing, 100029, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China.,LCB, Aix-Marseille Univ, CNRS, 31 Chemin Joseph Aiguier, Marseille, 13402, France
| |
Collapse
|
17
|
Qian XX, Liu J, Menguy N, Li J, Alberto F, Teng Z, Xiao T, Zhang W, Wu LF. Identification of novel species of marine magnetotactic bacteria affiliated with Nitrospirae phylum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:330-337. [PMID: 30980502 DOI: 10.1111/1758-2229.12755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative bacteria characterized by synthesizing magnetosomes and swimming along geomagnetic field lines. Phylogenetically, they belong to different taxonomic lineages including Proteobacteria, Nitrospirae, Omnitrophica, Latescibacteria and Planctomycetes phyla on the phylogenetic tree. To date, six Nitrospirae MTB phylotypes have been identified from freshwater or low-salinity environments and described in the literature. Here, we report the identification of two Nitrospirae MTB phylotypes collected, for the first time, from the marine environment. Both have a spherical morphology with a cell size of ~ 5 μM and similar motility but are different colours (black-brown and ivory-white) under the optic microscope. They synthesized bullet-shaped iron-oxide magnetosomes that were arranged in multiple bundles of chains. Moreover, the cytoplasm of the black-brown Nitrospirae MTB contained sulphur inclusions that conferred on cells a rough, granular appearance. Phylogenetic analysis based on their 16S rRNA gene sequences revealed that they are two novel species and cluster with the previously reported MTB affiliated with the phylum Nitrospirae, thus extending the distribution of Nitrospirae MTB from freshwater to the marine environment.
Collapse
Affiliation(s)
- Xin-Xin Qian
- Aix Marseille University, CNRS, LCB, Marseille, 13402, France
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
| | - Jia Liu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Nicolas Menguy
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS-Sorbonne Université, F-75005, Paris, France
| | - Jinhua Li
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - François Alberto
- Aix Marseille University, CNRS, LCB, Marseille, 13402, France
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
| | - Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Tian Xiao
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenyan Zhang
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Long-Fei Wu
- Aix Marseille University, CNRS, LCB, Marseille, 13402, France
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Marseille, 13402, France
| |
Collapse
|
18
|
Luckner M, Wanner G. From Light Microscopy to Analytical Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB)/SEM in Biology: Fixed Coordinates, Flat Embedding, Absolute References. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:526-544. [PMID: 30246679 PMCID: PMC6378657 DOI: 10.1017/s1431927618015015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/05/2018] [Accepted: 07/16/2018] [Indexed: 05/07/2023]
Abstract
Correlative light and electron microscopy (CLEM) has been in use for several years, however it has remained a costly method with difficult sample preparation. Here, we report a series of technical improvements developed for precise and cost-effective correlative light and scanning electron microscopy (SEM) and focused ion beam (FIB)/SEM microscopy of single cells, as well as large tissue sections. Customized coordinate systems for both slides and coverslips were established for thin and ultra-thin embedding of a wide range of biological specimens. Immobilization of biological samples was examined with a variety of adhesives. For histological sections, a filter system for flat embedding was developed. We validated ultra-thin embedding on laser marked slides for efficient, high-resolution CLEM. Target cells can be re-located within minutes in SEM without protracted searching and correlative investigations were reduced to a minimum of preparation steps, while still reaching highest resolution. The FIB/SEM milling procedure is facilitated and significantly accelerated as: (i) milling a ramp becomes needless, (ii) significant re-deposition of milled material does not occur; and (iii) charging effects are markedly reduced. By optimizing all technical parameters FIB/SEM stacks with 2 nm iso-voxels were achieved over thousands of sections, in a wide range of biological samples.
Collapse
Affiliation(s)
- Manja Luckner
- Department Biology I, Ultrastructural Research, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Gerhard Wanner
- Department Biology I, Ultrastructural Research, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Teng Z, Zhang Y, Zhang W, Pan H, Xu J, Huang H, Xiao T, Wu LF. Diversity and Characterization of Multicellular Magnetotactic Prokaryotes From Coral Reef Habitats of the Paracel Islands, South China Sea. Front Microbiol 2018; 9:2135. [PMID: 30271390 PMCID: PMC6142882 DOI: 10.3389/fmicb.2018.02135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 02/01/2023] Open
Abstract
While multicellular magnetotactic prokaryotes (MMPs) are ubiquitous in marine environments, the diversity of MMPs in sediments of coral reef ecosystems has rarely been reported. In this study, we made an investigation on the diversity and characteristics of MMPs in sediments at 11 stations in coral reef habitats of the Paracel Islands. The results showed that MMPs were present at nine stations, with spherical mulberry-like MMPs (s-MMPs) found at all stations and ellipsoidal pineapple-like MMPs (e-MMPs) found at seven stations. The maximum abundance of MMPs was 6 ind./cm3. Phylogenetic analysis revealed the presence of one e-MMP species and five s-MMP species including two species of a new genus. The results indicate that coral reef habitats of the Paracel Islands have a high diversity of MMPs that bio-mineralize multiple intracellular chains of iron crystals and play important role in iron cycling in such oligotrophic environment. These observations provide new perspective of the diversity of MMPs in general and expand knowledge of the occurrence of MMPs in coral reef habitats.
Collapse
Affiliation(s)
- Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyang Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Jianhong Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hui Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Long-Fei Wu
- Aix Marseille University, CNRS, LCB, Marseille, France.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| |
Collapse
|
20
|
Wirth R, Luckner M, Wanner G. Validation of a Hypothesis: Colonization of Black Smokers by Hyperthermophilic Microorganisms. Front Microbiol 2018; 9:524. [PMID: 29619021 PMCID: PMC5871681 DOI: 10.3389/fmicb.2018.00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/08/2018] [Indexed: 11/22/2022] Open
Abstract
Newly erupted black smokers (hydrothermal vent chimneys) are sterile during their formation, but house hyperthermophilic microorganisms in substantial amounts in later stages. No direct experimental data exist by which mechanisms hyperthermophiles colonize newly erupted black smokers, but a scenario was proposed recently how this might happen. Here we combine high temperature light microscopy with electron microscopy to show that two hyperthermophilic Archaea, namely Pyrococcus furiosus and Methanocaldococcus villosus are able to adhere onto authentic black smoker material (BSM). We especially are able to directly observe the adhesion process via video recordings taken at high temperatures. These data validate the hypothesis that hyperthermophiles are transferred by serendipitous water currents to the outside of newly formed black smokers and react within seconds to the there prevailing high temperatures by very fast movements. They scan the surface of the hydrothermal chimneys via a much slower zigzag seek-movement and adhere via their flagella at a suitable place, building up biofilms.
Collapse
Affiliation(s)
- Reinhard Wirth
- Faculty of Biology, Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Manja Luckner
- Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
| | - Gerhard Wanner
- Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
21
|
Bacterial community structure and novel species of magnetotactic bacteria in sediments from a seamount in the Mariana volcanic arc. Sci Rep 2017; 7:17964. [PMID: 29269894 PMCID: PMC5740136 DOI: 10.1038/s41598-017-17445-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Seamounts are undersea mountains rising abruptly from the sea floor and interacting dynamically with underwater currents. They represent unique biological habitats with various microbial community structures. Certain seamount bacteria form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend our knowledge of seamount ecosystems, we performed an integrated study on population structure and the occurrence of magnetotactic bacteria (MTB) that synthesize intracellular iron oxide nanocrystals in sediments of a seamount in the Mariana volcanic arc. We found Proteobacteria dominant at 13 of 14 stations, but ranked second in abundance to members of the phylum Firmicutes at the deep-water station located on a steep slope facing the Mariana-Yap Trench. Live MTB dwell in biogenic sediments from all 14 stations ranging in depth from 238 to 2,023 m. Some magnetotactic cocci possess the most complex flagellar apparatus yet reported; 19 flagella are arranged in a 3:4:5:4:3 array within a flagellar bundle. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. Together the results obtained indicate that geographic properties of the seamount stations are important in shaping the bacterial community structure and the MTB composition.
Collapse
|
22
|
Islam T, Peng C, Ali I. Morphological and cellular diversity of magnetotactic bacteria: A review. J Basic Microbiol 2017; 58:378-389. [PMID: 29112284 DOI: 10.1002/jobm.201700383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/12/2022]
Abstract
Magnetotactic bacteria (MTB) are getting much attention in the recent years due to the biomineralization in their magnetosomes (MS). MS are unique organelles that are bio-mineralized due to MTB. MS contains nanosized crystal minerals of magnetite or greigite covered by bilayer lipid membrane, which are originated from cytoplasmic membrane (CM). MS are organized as an ordered chain into the cell which acts as a miniature compass needle. Furthermore, the biodiversity of MTB and their distribution is principally linked with the characteristics and growths of the MS. MTB are often considered as a part of the bacterial biomass from all of the aquatic environments. There have been a lot of genes that control the functions of MTB by accumulating as clusters of genomes such as magnetosomes genomic island (MAI). Therefore, in the present review, the function of the genes and proteins has been highlighted, which are mainly associated with the construction and formation of MS. In addition, the biodiversity, morphology and cell biology of MTB is discussed in greater detail to understand the formation of MS crystals by MTB.
Collapse
Affiliation(s)
- Tariqul Islam
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
23
|
Lin W, Pan Y, Bazylinski DA. Diversity and ecology of and biomineralization by magnetotactic bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:345-356. [PMID: 28557300 DOI: 10.1111/1758-2229.12550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular, membrane-bounded crystals of magnetite (Fe3 O4 ) and/or greigite (Fe3 S4 ) called magnetosomes. MTB play important roles in the geochemical cycling of iron, sulfur, nitrogen and carbon. Significantly, they also represent an intriguing model system not just for the study of microbial biomineralization but also for magnetoreception, prokaryotic organelle formation and microbial biogeography. Here we review current knowledge on the ecology of and biomineralization by MTB, with an emphasis on more recent reports of unexpected ecological and phylogenetic findings regarding MTB. In this study, we conducted a search of public metagenomic databases and identified six novel magnetosome gene cluster-containing genomic fragments affiliated with the Deltaproteobacteria and Gammaproteobacteria classes of the Proteobacteria phylum, the Nitrospirae phylum and the Planctomycetes phylum from the deep subseafloor, marine oxygen minimum zone, groundwater biofilm and estuary sediment, thereby extending our knowledge on the diversity and distribution of MTB as well deriving important information as to their ecophysiology. We point out that the increasing availability of sequence data will facilitate researchers to systematically explore the ecology and biomineralization of MTB even further.
Collapse
Affiliation(s)
- Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
24
|
Origin of magnetotaxis: Vertical inheritance or horizontal transfer? Proc Natl Acad Sci U S A 2017; 114:E5016-E5018. [PMID: 28607039 DOI: 10.1073/pnas.1706937114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
26
|
Origin of microbial biomineralization and magnetotaxis during the Archean. Proc Natl Acad Sci U S A 2017; 114:2171-2176. [PMID: 28193877 DOI: 10.1073/pnas.1614654114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microbes that synthesize minerals, a process known as microbial biomineralization, contributed substantially to the evolution of current planetary environments through numerous important geochemical processes. Despite its geological significance, the origin and evolution of microbial biomineralization remain poorly understood. Through combined metagenomic and phylogenetic analyses of deep-branching magnetotactic bacteria from the Nitrospirae phylum, and using a Bayesian molecular clock-dating method, we show here that the gene cluster responsible for biomineralization of magnetosomes, and the arrangement of magnetosome chain(s) within cells, both originated before or near the Archean divergence between the Nitrospirae and Proteobacteria This phylogenetic divergence occurred well before the Great Oxygenation Event. Magnetotaxis likely evolved due to environmental pressures conferring an evolutionary advantage to navigation via the geomagnetic field. Earth's dynamo must therefore have been sufficiently strong to sustain microbial magnetotaxis in the Archean, suggesting that magnetotaxis coevolved with the geodynamo over geological time.
Collapse
|
27
|
Ji B, Zhang SD, Zhang WJ, Rouy Z, Alberto F, Santini CL, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho PM, Barbe V, Talla E, Wu LF. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of P
roteobacteria. Environ Microbiol 2017; 19:1103-1119. [DOI: 10.1111/1462-2920.13637] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Boyang Ji
- Aix Marseille Univ, CNRS, LCB; Marseille France
| | - Sheng-Da Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Wei-Jia Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Zoe Rouy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Claire-Lise Santini
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | | | - Nathalie Pradel
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- Aix Marseille Univ, Univ Toulon, CNRS, IRD; Marseille France
| | | | | | - Ying Li
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Claudine Médigue
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | | | | | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| |
Collapse
|
28
|
Lefèvre CT, Howse PA, Schmidt ML, Sabaty M, Menguy N, Luther GW, Bazylinski DA. Growth of magnetotactic sulfate-reducing bacteria in oxygen concentration gradient medium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:1003-1015. [PMID: 27701830 DOI: 10.1111/1758-2229.12479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Although dissimilatory sulfate-reducing bacteria (SRB) are generally described as strictly anaerobic organisms with regard to growth, several reports have shown that some SRB, particularly Desulfovibrio species, are quite resistant to O2 . For example, SRB remain viable in many aerobic environments while some even reduce O2 to H2 O. However, reproducible aerobic growth of SRB has not been unequivocally documented. Desulfovibrio magneticus is a SRB that is also a magnetotactic bacterium (MTB). MTB biomineralize magnetosomes which are intracellular, membrane-bounded, magnetic iron mineral crystals. The ability of D. magneticus to grow aerobically in several different media under air where an O2 concentration gradient formed, or under O2 -free N2 gas was tested. Under air, cells grew as a microaerophilic band of cells at the oxic-anoxic interface in media lacking sulfate. These results show that D. magneticus is capable of aerobic growth with O2 as a terminal electron acceptor. This is the first report of consistent, reproducible aerobic growth of SRB. This finding is critical in determining important ecological roles SRB play in the environment. Interestingly, the crystal structure of the magnetite crystals of D. magneticus grown under microaerobic conditions showed significant differences compared with those produced anaerobically providing more evidence that environmental parameters influence magnetosome formation.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Paul A Howse
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Marian L Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Monique Sabaty
- CNRS/CEA/Aix-Marseille Université UMR7265 Institut de biosciences et biotechnologies Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, 13108, France
| | - Nicolas Menguy
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, Université Pierre et Marie Curie, UMR 7590 CNRS, Institut de Recherche pour le Développement UMR 206, Museum National d'Histoire Naturelle, Paris Cedex 05, 75252, France
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd. Lewes, DE, 19958, USA
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, 89154-4004, USA
| |
Collapse
|
29
|
Wirth R, Ugele M, Wanner G. Motility and Ultrastructure of Spirochaeta thermophila. Front Microbiol 2016; 7:1609. [PMID: 27790206 PMCID: PMC5064287 DOI: 10.3389/fmicb.2016.01609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/19/2022] Open
Abstract
We analyze here for the first time the swimming behavior of a thermophilic, strictly anaerobic Spirochete, namely Spirochaeta thermophila using high temperature light microscopy. Our data show that S. thermophila very rapidly can change its morphology during swimming, resulting in cells appearing nearly linear, in cells possessing three different spiral forms, and in cells being linear at one end and spiral at the other end. In addition cells can rapidly bend by up to 180°, with their ends coming into close contact. We combine electron with light microscopy to explain these various cell morphologies. Swimming speeds for cells with the various morphologies did not differ significantly: the average speed was 33 (± 8) μm/s, with minimal and maximal speeds of 19 and 59 μm/s, respectively. Addition of gelling agents like polyvinylpyrrolidone or methyl cellulose to the growth medium resulted in lower and not higher swimming speeds, arguing against the idea that the highly unusual cell body plan of S. thermophila enables cells to swim more efficiently in gel-like habitats.
Collapse
Affiliation(s)
- Reinhard Wirth
- Faculty of Biology, University of Regensburg Regensburg, Germany
| | - Matthias Ugele
- In-Vitro DX and Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH Erlangen, Germany
| | - Gerhard Wanner
- Department of Biology I, Ludwig-Maximilian-University Munich, Germany
| |
Collapse
|
30
|
Core Amino Acid Residues in the Morphology-Regulating Protein, Mms6, for Intracellular Magnetite Biomineralization. Sci Rep 2016; 6:35670. [PMID: 27759096 PMCID: PMC5069546 DOI: 10.1038/srep35670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/15/2016] [Indexed: 01/15/2023] Open
Abstract
Living organisms produce finely tuned biomineral architectures with the aid of biomineral-associated proteins. The functional amino acid residues in these proteins have been previously identified using in vitro and in silico experimentation in different biomineralization systems. However, the investigation in living organisms is limited owing to the difficulty in establishing appropriate genetic techniques. Mms6 protein, isolated from the surface of magnetite crystals synthesized in magnetotactic bacteria, was shown to play a key role in the regulation of crystal morphology. In this study, we have demonstrated a defect in the specific region or substituted acidic amino acid residues in the Mms6 protein for observing their effect on magnetite biomineralization in vivo. Analysis of the gene deletion mutants and transformants of Magnetospirillum magneticum AMB-1 expressing partially truncated Mms6 protein revealed that deletions in the N-terminal or C-terminal regions disrupted proper protein localization to the magnetite surface, resulting in a change in the crystal morphology. Moreover, single amino acid substitutions at Asp123, Glu124, or Glu125 in the C-terminal region of Mms6 clearly indicated that these amino acid residues had a direct impact on magnetite crystal morphology. Thus, these consecutive acidic amino acid residues were found to be core residues regulating magnetite crystal morphology.
Collapse
|
31
|
Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions. Front Microbiol 2016; 7:964. [PMID: 27446006 PMCID: PMC4914600 DOI: 10.3389/fmicb.2016.00964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming “Candidatus Thiomargarita nelsonii Thio36”, and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. “Ca. T. nelsonii Thio36” is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that “Ca. T. nelsonii Thio36” can function as a chemolithoautotroph. Carbon can be fixed via the Calvin–Benson–Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, “Ca. T. nelsonii Thio36” also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae “Ca. T. nelsonii Thio36” encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of “Ca. T. nelsonii Thio36” provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.
Collapse
Affiliation(s)
- Matthias Winkel
- Molecular Ecology Group, Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Section Geomicrobiology, GFZ German Research Centre for Geoscience, Helmholtz Centre PotsdamPotsdam, Germany
| | - Verena Salman-Carvalho
- HGF MPG Joint Research Group for Deep-sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek CA, USA
| | - Michael Richter
- Microbial Genomics and Bioinformatics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | | | - Beverly E Flood
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Jake V Bailey
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Marc Mußmann
- Molecular Ecology Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
32
|
Deng A, Lin W, Shi N, Wu J, Sun Z, Sun Q, Bai H, Pan Y, Wen T. In vitro assembly of the bacterial actin protein MamK from ' Candidatus Magnetobacterium casensis' in the phylum Nitrospirae. Protein Cell 2016; 7:267-280. [PMID: 26960409 PMCID: PMC4818849 DOI: 10.1007/s13238-016-0253-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 10/29/2022] Open
Abstract
Magnetotactic bacteria (MTB), a group of phylogenetically diverse organisms that use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field, play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have revealed that the bacterial actin protein MamK plays essential roles in the linear arrangement of magnetosomes in MTB cells belonging to the Proteobacteria phylum. However, the molecular mechanisms of multiple-magnetosome-chain arrangements in MTB remain largely unknown. Here, we report that the MamK filaments from the uncultivated 'Candidatus Magnetobacterium casensis' (Mcas) within the phylum Nitrospirae polymerized in the presence of ATP alone and were stable without obvious ATP hydrolysis-mediated disassembly. MamK in Mcas can convert NTP to NDP and NDP to NMP, showing the highest preference to ATP. Unlike its Magnetospirillum counterparts, which form a single magnetosome chain, or other bacterial actins such as MreB and ParM, the polymerized MamK from Mcas is independent of metal ions and nucleotides except for ATP, and is assembled into well-ordered filamentous bundles consisted of multiple filaments. Our results suggest a dynamically stable assembly of MamK from the uncultivated Nitrospirae MTB that synthesizes multiple magnetosome chains per cell. These findings further improve the current knowledge of biomineralization and organelle biogenesis in prokaryotic systems.
Collapse
Affiliation(s)
- Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Nana Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaopeng Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinyun Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Bai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxin Pan
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Pradel N, Cayol JL, Fardeau ML, Karray F, Sayadi S, Alazard D, Ollivier B. Analysis of a population of magnetotactic bacteria of the Gulf of Gabès, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4046-4053. [PMID: 25772882 DOI: 10.1007/s11356-015-4314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
The occurrence of magnetotactic bacteria (MTB) on a Tunisian marine coast exposed to heavy metals pollution (Sfax, Gulf of Gabès, Mediterranean Sea) was investigated. The MTB population of this Southern Mediterranean coast was compared to the MTB populations previously investigated on the French Northern Mediterranean coast. A dominant MTB coccus morphotype was observed by microscopy analysis. By pyrosequencing technology, the analysis of the 16S ribosomal RNA (rDNA) revealed as much as 33 operational taxonomic sequence units (OTUs) close to sequences of MTB accessible in the databases. The majority were close to MTB sequences of the "Med group" of α-Proteobacteria. Among them, a dominant OTU_001 (99 % of the MTB sequences) affiliated within the Magnetococcales order was highlighted. Investigating the capacities of this novel bacterium to be used in bioremediation and/or depollution processes could be envisaged.
Collapse
Affiliation(s)
- Nathalie Pradel
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France.
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France.
| | - Jean-Luc Cayol
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
| | - Marie-Laure Fardeau
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, 3018, Tunisia
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Biotechnology Center of Sfax, Sfax, 3018, Tunisia
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France
| | - Didier Alazard
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
| | - Bernard Ollivier
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, 13288, Marseille, France
- Laboratoire Mixte International Contaminants et Ecosystèmes Marins Sud Méditerranéens (LMI COSYS-Med), Marseille, France
| |
Collapse
|
34
|
Faivre D, Godec TU. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. Angew Chem Int Ed Engl 2016; 54:4728-47. [PMID: 25851816 DOI: 10.1002/anie.201408900] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 01/28/2023]
Abstract
Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions.
Collapse
Affiliation(s)
- Damien Faivre
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Wissenschaftspark Golm, 14424 Potsdam (Germany) http://www.mpikg.mpg.de/135282/MBMB.
| | | |
Collapse
|
35
|
Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci 2015; 25:338-51. [PMID: 26457474 DOI: 10.1002/pro.2827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome-chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome-associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Noa Keren-Khadmy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
36
|
Tian M, Zhao F, Shen X, Chu K, Wang J, Chen S, Guo Y, Liu H. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. J Environ Sci (China) 2015; 35:181-190. [PMID: 26354707 DOI: 10.1016/j.jes.2014.12.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 06/05/2023]
Abstract
The anaerobic/anoxic/oxic (A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant. With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system. Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences (76.74%), followed by ammonification (15.77%), nitrogen fixation (3.88%) and nitrification (3.61%). In phylum Planctomycetes, four genera (Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge.
Collapse
Affiliation(s)
- Mei Tian
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Shen
- College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Kahou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jinfeng Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Chen
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Guo
- Lianyungang Jinzhao Water Co., Ltd., Lianyungang 222005, China
| | - Hanhu Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
37
|
Lefèvre CT. Genomic insights into the early-diverging magnetotactic bacteria. Environ Microbiol 2015; 18:1-3. [PMID: 26286101 DOI: 10.1111/1462-2920.12989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de Biologie Environnementale et Biotechnologie, Laboratoire de Bioénergétique Cellulaire, Saint Paul lez Durance, France
| |
Collapse
|
38
|
Li J, Menguy N, Gatel C, Boureau V, Snoeck E, Patriarche G, Leroy E, Pan Y. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum. J R Soc Interface 2015; 12:rsif.2014.1288. [PMID: 25566884 DOI: 10.1098/rsif.2014.1288] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral-octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum.
Collapse
Affiliation(s)
- Jinhua Li
- Paleomagnetism and Geochronology Lab, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle (MNHN), IRD UMR 206, 4 Place Jussieu, Paris 75005, France France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Nicolas Menguy
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités-UPMC Univ Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle (MNHN), IRD UMR 206, 4 Place Jussieu, Paris 75005, France
| | | | | | | | | | - Eric Leroy
- France Chimie Métallurgique des Terres Rares, ICMPE, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex 94320, France
| | - Yongxin Pan
- Paleomagnetism and Geochronology Lab, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| |
Collapse
|
39
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 2015; 18:21-37. [PMID: 26060021 DOI: 10.1111/1462-2920.12907] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Michael Richter
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Frank-Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany.,Department of Life Sciences & Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Andreas Brachmann
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Dirk Schüler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany.,Department of Microbiology, University Bayreuth, Bayreuth, Germany
| |
Collapse
|
40
|
Faivre D, Godec TU. Bakterien und Weichtiere: Prinzipien der Biomineralisation von Eisenoxid-Materialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Lin W, Pan Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:237-242. [PMID: 25382584 DOI: 10.1111/1758-2229.12234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | | |
Collapse
|
42
|
Orban M, Goedel A, Haas J, Sandrock-Lang K, Gärtner F, Jung CB, Zieger B, Parrotta E, Kurnik K, Sinnecker D, Wanner G, Laugwitz KL, Massberg S, Moretti A. Functional comparison of induced pluripotent stem cell- and blood-derived GPIIbIIIa deficient platelets. PLoS One 2015; 10:e0115978. [PMID: 25607928 PMCID: PMC4301811 DOI: 10.1371/journal.pone.0115978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a versatile tool to model genetic diseases and are a potential source for cell transfusion therapies. However, it remains elusive to which extent patient-specific hiPSC-derived cells functionally resemble their native counterparts. Here, we generated a hiPSC model of the primary platelet disease Glanzmann thrombasthenia (GT), characterized by dysfunction of the integrin receptor GPIIbIIIa, and compared side-by-side healthy and diseased hiPSC-derived platelets with peripheral blood platelets. Both GT-hiPSC-derived platelets and their peripheral blood equivalents showed absence of membrane expression of GPIIbIIIa, a reduction of PAC-1 binding, surface spreading and adherence to fibrinogen. We demonstrated that GT-hiPSC-derived platelets recapitulate molecular and functional aspects of the disease and show comparable behavior to their native counterparts encouraging the further use of hiPSC-based disease models as well as the transition towards a clinical application.
Collapse
Affiliation(s)
- Mathias Orban
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximillians-Universität, Munich, Germany
| | - Alexander Goedel
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jessica Haas
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Kirstin Sandrock-Lang
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Florian Gärtner
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximillians-Universität, Munich, Germany
| | - Christian Billy Jung
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Elvira Parrotta
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany; Department of Experimental and Clinical Medicine, University of Magna Graecia, Medical School, Catanzaro, Italy
| | - Karin Kurnik
- Paediatric Haemophilia Centre, Dr. von Hauner Children's Hospital, Ludwig-Maximillians-Universität, Munich, Germany
| | - Daniel Sinnecker
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Biozentrum, Ludwig-Maximillians-Universität, Planegg-Martinsried, Germany
| | - Karl-Ludwig Laugwitz
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximillians-Universität, Munich, Germany; DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- I. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
43
|
Keutner C, von Bohlen A, Berges U, Espeter P, Schneider CM, Westphal C. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum's magnetosome chains. Anal Chem 2014; 86:9590-4. [PMID: 25229674 DOI: 10.1021/ac502050j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.
Collapse
Affiliation(s)
- Christoph Keutner
- Experimentelle Physik 1, Technische Universität Dortmund , Otto-Hahn-Strasse 4, D-44221 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:524-531. [PMID: 25079475 DOI: 10.1111/1758-2229.12198] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
For magnetic orientation, magnetotactic bacteria biosynthesize magnetosomes, which consist of membrane-enveloped magnetic nanocrystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). While magnetite formation is increasingly well understood, much less is known about the genetic control of greigite biomineralization. Recently, two related yet distinct sets of magnetosome genes were discovered in a cultivated magnetotactic deltaproteobacterium capable of synthesizing either magnetite or greigite, or both minerals. This led to the conclusion that greigite and magnetite magnetosomes are synthesized by separate biomineralization pathways. Although magnetosomes of both mineral types co-occurred in uncultured multicellular magnetotactic prokaryotes (MMPs), so far only one type of magnetosome genes could be identified in the available genome data. The MMP Candidatus Magnetomorum strain HK-1 from coastal tidal sand flats of the North Sea (Germany) was analysed by a targeted single-cell approach. The draft genome assembly resulted in a size of 14.3 Mb and an estimated completeness of 95%. In addition to genomic features consistent with a sulfate-reducing lifestyle, we identified numerous genes putatively involved in magnetosome biosynthesis. Remarkably, most mam orthologues were present in two paralogous copies with highest similarity to either magnetite or greigite type magnetosome genes, supporting the ability to synthesize magnetite and greigite magnetosomes.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Ludwig-Maximilians-Universität Munich, Microbiology, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
45
|
Eder SHK, Gigler AM, Hanzlik M, Winklhofer M. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One 2014; 9:e107356. [PMID: 25233081 PMCID: PMC4169400 DOI: 10.1371/journal.pone.0107356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (<0.25 mW) to prevent laser induced damage of magnetite, we can identify and map magnetite by its characteristic Raman spectrum (303, 535, 665 cm(-1)) against a large autofluorescence background in our natural magnetotactic bacteria samples. While greigite (cubic Fe3S4; Raman lines of 253 and 351 cm(-1)) is often found in the Deltaproteobacteria class, it is not present in our samples. In intracellular sulfur globules of Candidatus Magnetobacterium bavaricum (Nitrospirae), we identified the sole presence of cyclo-octasulfur (S8: 151, 219, 467 cm(-1)), using green (532 nm), red (638 nm) and near-infrared excitation (785 nm). The Raman-spectra of phosphorous-rich intracellular accumulations point to orthophosphate in magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state.
Collapse
Affiliation(s)
- Stephan H. K. Eder
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander M. Gigler
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for NanoScience (CeNS), Munich, Germany
| | - Marianne Hanzlik
- Department of Chemistry, Elektronenmikroskopie, Technical University Munich, Munich, Germany
| | - Michael Winklhofer
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
46
|
Zhang R, Chen YR, Du HJ, Zhang WY, Pan HM, Xiao T, Wu LF. Characterization and phylogenetic identification of a species of spherical multicellular magnetotactic prokaryotes that produces both magnetite and greigite crystals. Res Microbiol 2014; 165:481-9. [DOI: 10.1016/j.resmic.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/01/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
|
47
|
Taoka A, Eguchi Y, Mise S, Oestreicher Z, Uno F, Fukumori Y. A magnetosome-associated cytochrome MamP is critical for magnetite crystal growth during the exponential growth phase. FEMS Microbiol Lett 2014; 358:21-9. [PMID: 25048532 DOI: 10.1111/1574-6968.12541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 01/20/2023] Open
Abstract
Magnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bacteria-specific conserved proteins named MamP that was recently reported as a new type of cytochrome c that has iron oxidase activity. We found that MamP is a membrane-bound cytochrome, and the MamP content increases during the exponential growth phase compared to two other magnetosome-associated proteins on the same operon, MamA and MamK. To assess the function of MamP, we overproduced MamP from plasmids in wild-type (WT) AMB-1 and found that during the exponential phase of growth, these cells contained more magnetite crystals that were the same size as crystals in WT cells. Conversely, when the heme c-binding motifs within the mamP on the plasmid was mutated, the cells produced the same number of crystals, but smaller crystals than in WT cells during exponential growth. These results strongly suggest that during the exponential phase of growth, MamP is crucial to the normal growth of magnetite crystals during biomineralization.
Collapse
Affiliation(s)
- Azuma Taoka
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan; Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Arakaki A, Yamagishi A, Fukuyo A, Tanaka M, Matsunaga T. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Mol Microbiol 2014; 93:554-67. [DOI: 10.1111/mmi.12683] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Ayana Yamagishi
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Ayumi Fukuyo
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Masayoshi Tanaka
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| |
Collapse
|
49
|
Genomic insights into the uncultured genus 'Candidatus Magnetobacterium' in the phylum Nitrospirae. ISME JOURNAL 2014; 8:2463-77. [PMID: 24914800 DOI: 10.1038/ismej.2014.94] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/27/2014] [Accepted: 05/08/2014] [Indexed: 11/09/2022]
Abstract
Magnetotactic bacteria (MTB) of the genus 'Candidatus Magnetobacterium' in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magnetosomes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named 'Ca. Magnetobacterium casensis' isolated from Lake Miyun, China. The genome sequence indicates an autotrophic lifestyle using the Wood-Ljungdahl pathway for CO2 fixation, which has not been described in any previously known MTB or Nitrospirae organisms. Pathways involved in the denitrification, sulfur oxidation and sulfate reduction have been predicted, indicating its considerable capacity for adaptation to variable geochemical conditions and roles in local biogeochemical cycles. Moreover, we have identified a complete magnetosome gene island containing mam, mad and a set of novel genes (named as man genes) putatively responsible for the formation of bullet-shaped magnetite magnetosomes and the arrangement of multiple magnetosome chains. This first comprehensive genomic analysis sheds light on the physiology, ecology and biomineralization of the poorly understood 'Ca. Magnetobacterium' genus.
Collapse
|
50
|
Abraçado LG, Wajnberg E, Esquivel DMS, Keim CN, Silva KT, Moreira ETS, Lins U, Farina M. Ferromagnetic resonance of intact cells and isolated crystals from cultured and uncultured magnetite-producing magnetotactic bacteria. Phys Biol 2014; 11:036006. [PMID: 24828297 DOI: 10.1088/1478-3975/11/3/036006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most magnetotactic bacteria (MB) produce stable, single-domain magnetite nanocrystals with species-specific size, shape and chain arrangement. In addition, most crystals are elongated along the [111] direction, which is the easy axis of magnetization in magnetite, chemically pure and structurally perfect. These special characteristics allow magnetite crystal chains from MB to be recognized in environmental samples including old sedimentary rocks. Ferromagnetic resonance (FMR) has been proposed as a powerful and practical tool for screening large numbers of samples possibly containing magnetofossils. Indeed, several studies were recently published on FMR of cultured MB, mainly Magnetospirillum gryphiswaldense. In this work, we examined both uncultured magnetotactic cocci and the cultured MB M. gryphiswaldense using transmission electron microscopy (TEM) and FMR from 10 K to room temperature (RT). The TEM data supported the FMR spectral characteristics of our samples. The FMR spectra of both bacteria showed the intrinsic characteristics of magnetite produced by MB, such as extended absorption at the low field region of the spectra and a Verwey transition around 100 K. As previously observed, the spectra of M. gryphiswaldense isolated crystals were more symmetrical than the spectra obtained from whole cells, reflecting the loss of chain arrangement due to the small size and symmetrical shape of the crystals. However, the FMR spectra of magnetic crystals isolated from magnetotactic cocci were very similar to the FMR spectra of whole cells, because the chain arrangement was maintained due to the large size and prismatic shape of the crystals. Our data support the use of FMR spectra to detect magnetotactic bacteria and magnetofossils in samples of present and past environments. Furthermore, the spectra suggest the use of the temperature transition of spectral peak-to-peak intensity to obtain the Verwey temperature for these systems.
Collapse
Affiliation(s)
- Leida G Abraçado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Bloco F, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil. Coordenação de Física Aplicada, Centro Brasileiro de Pesquisas Físicas, Rua Dr Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|