1
|
An Y, Chan D, Wallerstein R. Novel variant in OTOG gene in consanguineous family with sensorineural hearing loss. BMJ Case Rep 2025; 18:e262338. [PMID: 40389292 PMCID: PMC12093457 DOI: 10.1136/bcr-2024-262338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/27/2025] [Indexed: 05/21/2025] Open
Abstract
The case report investigates sensorineural hearing loss (SNHL) in three siblings from a consanguineous Afghani family, with a particular focus on the novel variant in the OTOG gene, c.1644+5 G>C. The homozygous OTOG variant is consistently observed in all three siblings. This intronic+5 splice site variant is rare and predicted to have a deleterious effect, suggesting a potential role in SNHL pathogenesis. The study highlights the significance of OTOG variants in autosomal recessive non-syndromic hearing loss and the challenges in variant interpretation. While further research is needed to fully elucidate the functional consequences of OTOG variants, this finding emphasises the importance of genetic testing in consanguineous families and under-represented populations and underscores the heterogeneous nature of SNHL.
Collapse
Affiliation(s)
- Yu An
- Medical Genetics, Department of Pediatrics, UCSF Medical Center, San Francisco, California, USA
| | - Dylan Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Robert Wallerstein
- Medical Genetics, Department of Pediatrics, UCSF Medical Center, San Francisco, California, USA
| |
Collapse
|
2
|
Dai X, Xu K, Dai L, Chen X, Xie H, Zhang Y, Zheng H, Wang Q, Zheng B, Tong Y. Newborn screening for deafness genes with cord blood-based multicolour melting curve analysis. Am J Otolaryngol 2025; 46:104530. [PMID: 39700758 DOI: 10.1016/j.amjoto.2024.104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/11/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The purpose of the research was to examine the prevalence rates of screening for genetics and hearing simultaneously in neonates and provide scientific evidence for the beneficial application of newborn screening in the Southeast China population. METHODS Between June 2015 and March 2023, 27,843 newborns were enrolled in the study. All participants were screened by otoacoustic emissions at 2 days of age. Fifteen variant hotspots in the four deafness genes (GJB2, GJB3, SLC26A4 and MTRNR1) were detected using multicolour melting curve analysis. Newborn screening data were also analysed. RESULTS In otoacoustic emissions testing, 244 newborns (0.88 %) failed the secondary screening. According to genetic testing, 1307 (4.69 %) newborns had at least one variant. GJB2 c.235delC (2.34 %) and SLC26A4 c.919-2 A > G (0.91 %) were the major deafness-related variants in the Wenzhou area of Southeast China. In addition, a difference in the number of newborns with variants was observed between the passed and failed groups. The difference in the positive rate between the two groups was statistically significant (χ2 = 274.969, P < 0.05). CONCLUSIONS Newborn screening for deafness genes by cord blood-based melting curve analysis can be applied to genetic counselling, prenatal diagnosis, and genetic screening of newborns with sensorineural hearing impairment with an unknown cause. The new PCR melting curve analysis approach is more effective and more convenient than SNaPshot and MS-based assay testing. Furthermore, it has a lower cost and is more suitable for clinical testing.
Collapse
Affiliation(s)
- Xianning Dai
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou Women and Children's Hospital, Zhejiang, China
| | - Kai Xu
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou Women and Children's Hospital, Zhejiang, China
| | - Liya Dai
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou Women and Children's Hospital, Zhejiang, China
| | - Xi Chen
- Department of Prevention and Health Care, Centers for Disease Control of Luchen, Zhejiang, China
| | - Haibin Xie
- Department of Prevention and Health Care, Centers for Disease Control of Luchen, Zhejiang, China
| | - Yu Zhang
- Department of ENT, Wenzhou People's Hospital, Wenzhou Women and Children's Hospital, Zhejiang, China
| | - Huizhen Zheng
- Department of ENT, Wenzhou People's Hospital, Wenzhou Women and Children's Hospital, Zhejiang, China
| | - Qian Wang
- Key Laboratory of Medical Genetics, College of Laboratory and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Binjiao Zheng
- Key Laboratory of Medical Genetics, College of Laboratory and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Yu Tong
- Department of Clinical Laboratory, Wenzhou People's Hospital, Wenzhou Women and Children's Hospital, Zhejiang, China.
| |
Collapse
|
3
|
Jung J, Joo SY, Min H, Roh JW, Kim KA, Ma JH, Rim JH, Kim JA, Kim SJ, Jang SH, Koh YI, Kim HY, Lee H, Kim BC, Gee HY, Bok J, Choi JY, Seong JK. MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss. Exp Mol Med 2024; 56:2423-2435. [PMID: 39482536 PMCID: PMC11612406 DOI: 10.1038/s12276-024-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
| | - Sun Young Joo
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyehyun Min
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Roh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Kyung Ah Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ah Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Jin Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Jang
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ik Koh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Byoung Choul Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Heon Yung Gee
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea.
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Li J, Zhou S, Pei J, Li W, Cui R, Ren X, Wei J, Li Q, Zhu B, Sa Y, Li Y. Spectrum of DNA variants for patients with hearing loss in 4 language families of 15 ethnicities from Southwestern China. Heliyon 2024; 10:e38802. [PMID: 39640791 PMCID: PMC11620035 DOI: 10.1016/j.heliyon.2024.e38802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/20/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
Hearing loss is a common disease. More than 100 genes have been reported to be associated with hereditary hearing loss. However, the distribution of these genes and their variants across diverse populations remains unclear. In this study, we gathered 347 hearing-impaired patients from four language families (Sinitic, Tibeto-Burman, Kra-Dai, and Hmong-Mien) in Southwestern China, excluding cases caused by common mutations in the GJB2 gene. By using next generation sequencing, 122 genes associated with hereditary hearing loss were analyzed on these patients. Rare candidate variants were identified in 71.93 % (264/347) of patients with hearing loss. The diagnostic rate varied around 10 % across different language families. The most frequently identified causative genes in successfully diagnosed cases were SLC26A4, MYO7A and TMPRSS3. Moreover, a substantial number of variants of unknown significance (VUS) were identified in our patient cohort. This underscores the critical need for establishing ethnicity-specific genomic databases for hearing loss. It will significantly improve the clinical diagnostic rate for hearing loss in this region.
Collapse
Affiliation(s)
- Jingyu Li
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Shiyu Zhou
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Jiahong Pei
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Wanzhen Li
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Rongjie Cui
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Xiaofei Ren
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Jingru Wei
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Qian Li
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Baosheng Zhu
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
- National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China
| | - Yaliang Sa
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Yunlong Li
- Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- the Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming, 650032, Yunnan, China
- National Health Commission Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming, Yunnan, China
| |
Collapse
|
5
|
Shearer AE. Genetic testing for pediatric sensorineural hearing loss in the era of gene therapy. Curr Opin Otolaryngol Head Neck Surg 2024; 32:352-356. [PMID: 39146193 DOI: 10.1097/moo.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW To summarize indications, methods, and diagnostic yields for genetic testing for pediatric hearing loss. RECENT FINDINGS Genetic testing has become a cornerstone of clinical care for children with sensorineural hearing loss. Recent studies have shown the efficacy of gene panels and exome sequencing for any child with sensorineural hearing loss. Recent findings have underscored the importance of a diagnosis in clinical care. Clinical trials for gene therapy for hearing loss have begun. SUMMARY Genetic testing has become critical for personalized care for children with hearing loss. Recent studies have shown a 43% overall diagnostic yield for genetic testing for pediatric hearing loss, though the diagnostic yield may range from 10 to 60% depending on clinical features. Syndromic diagnoses comprise 25% of positive genetic tests for pediatric sensorineural hearing loss. While diagnostic yield is lower for children with unilateral or asymmetric sensorineural hearing loss, the likelihood of syndromic hearing loss finding is higher. An early and accurate genetic diagnosis is required for participating in clinical trials for gene therapy for hearing loss.
Collapse
Affiliation(s)
- A Eliot Shearer
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School
- Boston Children's Hospital, Department of Otolaryngology & Communication Enhancement, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Gombojav B, Erdenechuluun J, Makhbal Z, Danshiitsoodol N, Purevdorj E, Jargalmaa M, Batsaikhan T, Lin PH, Lu YS, Lo MY, Tseng HY, Tsai CY, Wu CC. Genetic Basis of Hearing Loss in Mongolian Patients: A Next-Generation Sequencing Study. Genes (Basel) 2024; 15:1227. [PMID: 39336818 PMCID: PMC11431586 DOI: 10.3390/genes15091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVE The genetic landscape of sensorineural hearing impairment (SNHI) varies across populations. In Mongolia, previous studies have shown a lower prevalence of GJB2 mutations and a higher frequency of variants in other deafness-related genes. This study aimed to investigate the genetic variants associated with idiopathic SNHI in Mongolian patients. METHODS We utilized the next-generation sequencing for investigating the causative mutations in 99 Mongolian patients with SNHI. RESULTS We identified pathogenic variants in 53 of the 99 SNHI patients (54%), with SLC26A4 being the most frequently mutated gene. The c.919-2A>G variant in SLC26A4 was the most prevalent, accounting for 46.2% of the mutant alleles. In addition, we identified 19 other known and 21 novel mutations in a total of 21 SNHI genes in autosomal recessive or dominant inheritance patterns. CONCLUSIONS Our findings expand the understanding of the genetic landscape of SNHI in Mongolia and highlight the importance of considering population-specific variations in genetic testing and counseling for SNHI.
Collapse
Affiliation(s)
- Bayasgalan Gombojav
- Department of Epidemiology and Biostatistics, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
- Healthy Twin Registry of Mongolia, Ulaanbaatar 14210, Mongolia
| | - Jargalkhuu Erdenechuluun
- Department of Otolaryngology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14170, Mongolia
- The EMJJ Otolaryngology Hospital, Ulaanbaatar 14210, Mongolia
| | - Zaya Makhbal
- The EMJJ Otolaryngology Hospital, Ulaanbaatar 14210, Mongolia
| | - Narandalai Danshiitsoodol
- Healthy Twin Registry of Mongolia, Ulaanbaatar 14210, Mongolia
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 7348551, Japan
| | - Erkhembulgan Purevdorj
- Healthy Twin Registry of Mongolia, Ulaanbaatar 14210, Mongolia
- Department of Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | | | - Tserendulam Batsaikhan
- Department of Otolaryngology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14170, Mongolia
- The EMJJ Otolaryngology Hospital, Ulaanbaatar 14210, Mongolia
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yue-Sheng Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Ming-Yu Lo
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Hsin-Yi Tseng
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 30261, Taiwan
| |
Collapse
|
7
|
Raghuvanshi R, Panda KC, Ray CS, Ramchander PV. Targeted Next-Generation Sequencing Analysis Reveals a Novel Genetic Variant in MYO6 Gene in an Indian Family with Postlingual Nonsyndromic Hearing Loss. Genet Test Mol Biomarkers 2024. [PMID: 39019031 DOI: 10.1089/gtmb.2023.0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Background: Hereditary nonsyndromic hearing loss (NSHL) is an extremely heterogeneous disorder, both genetically and clinically. Myosin VI (MYO6) pathogenic variations have been reported to cause both prelingual and postlingual forms of NSHL. Postlingual autosomal dominant cases are often overlooked for genetic etiology in clinical setups. In this study, we used next-generation sequencing (NGS)-based targeted deafness gene panel assay to identify the cause of postlingual hearing loss in an Indian family. Methods: The proband and his father from a multigenerational Indian family affected by postlingual hearing loss were examined via targeted capture of 129 deafness genes, after excluding gap junction protein beta 2 (GJB2) pathogenic variants by Sanger sequencing. NGS data analysis and co-segregation of the candidate variants in the family were carried out. The variant effect was predicted by in silico tools and interpreted following American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. Results: A novel heterozygous transversion c.3225T>G, p.(Tyr1075*) in MYO6 gene was identified as the disease-causing variant in this family. This stop-gained variant is predicted to form a truncated myosin VI protein, which is devoid of crucial cargo-binding domain. PCR-RFLP screening in 200 NSHL cases and 200 normal-hearing controls showed the absence of this variant indicating its de novo nature in the population. Furthermore, we reviewed MYO6 variants reported from various populations to date. Conclusions: To the best of our knowledge, this is the first family with MYO6-associated hearing loss from an Indian population. The study also highlights the importance of deafness gene panels in molecular diagnosis of GJB2-negative pedigrees, contributing to genetic counseling in the affected families.
Collapse
Affiliation(s)
- Ruchika Raghuvanshi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Khirod Chandra Panda
- Ear, Nose, and Throat (ENT) Unit, Capital Hospital, Unit VI, Bhubaneswar, India
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack, India
| | - Chinmay Sundar Ray
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack, India
| | | |
Collapse
|
8
|
Duman D, Ramzan M, Subasioglu A, Mutlu A, Peart L, Seyhan S, Guo S, Ila K, Balta B, Kalcioglu MT, Bademci G, Tekin M. Identification of novel MYH14 variants in families with autosomal dominant sensorineural hearing loss. Am J Med Genet A 2024; 194:e63563. [PMID: 38352997 PMCID: PMC11060900 DOI: 10.1002/ajmg.a.63563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 05/02/2024]
Abstract
Autosomal dominant sensorineural hearing loss (ADSNHL) is a genetically heterogeneous disorder caused by pathogenic variants in various genes, including MYH14. However, the interpretation of pathogenicity for MYH14 variants remains a challenge due to incomplete penetrance and the lack of functional studies and large families. In this study, we performed exome sequencing in six unrelated families with ADSNHL and identified five MYH14 variants, including three novel variants. Two of the novel variants, c.571G > C (p.Asp191His) and c.571G > A (p.Asp191Asn), were classified as likely pathogenic using ACMG and Hearing Loss Expert panel guidelines. In silico modeling demonstrated that these variants, along with p.Gly1794Arg, can alter protein stability and interactions among neighboring molecules. Our findings suggest that MYH14 causative variants may be more contributory and emphasize the importance of considering this gene in patients with nonsyndromic mainly post-lingual severe form of hearing loss. However, further functional studies are needed to confirm the pathogenicity of these variants.
Collapse
Affiliation(s)
- Duygu Duman
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Audiology, Faculty of Health Sciences, Ankara University, Ankara 06100, Turkiye
| | - Memoona Ramzan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Asli Subasioglu
- Department of Medical Genetics, İzmir Katip Çelebi University, Ataturk Education and Research Hospital, 35360, Turkiye
| | - Ahmet Mutlu
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul 34720, Turkiye
- Otorhinolaryngology Clinic of Goztepe Prof.Dr. Suleyman Yalcin City Hospital, Istanbul, 34722 Turkiye
| | - LéShon Peart
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami. FL, 33136, USA
| | - Serhat Seyhan
- Memorial Şişli Hospital, Laboratory of Genetics, Istanbul 34385, Turkiye
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kadri Ila
- Department of Otorhinolaryngology, Umraniye Education and Research Hospital, Istanbul, 34760 Turkiye
| | - Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Mahmut Tayyar Kalcioglu
- Istanbul Medeniyet University, Faculty of Medicine, Department of Otorhinolaryngology, Istanbul 34720, Turkiye
- Otorhinolaryngology Clinic of Goztepe Prof.Dr. Suleyman Yalcin City Hospital, Istanbul, 34722 Turkiye
| | - Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami. FL, 33136, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami. FL, 33136, USA
| |
Collapse
|
9
|
Yun Y, Lee SY. Updates on Genetic Hearing Loss: From Diagnosis to Targeted Therapies. J Audiol Otol 2024; 28:88-92. [PMID: 38695053 PMCID: PMC11065549 DOI: 10.7874/jao.2024.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder, with a high Mendelian genetic contribution. Considering the genotypic and phenotypic heterogeneity of SNHL, the advent of next-generation sequencing technologies has revolutionized knowledge on its genomic architecture. Nonetheless, the conventional application of panel and exome sequencing in real-world practice is being challenged by the emerging need to explore the diagnostic capability of whole-genome sequencing, which enables the detection of both noncoding and structural variations. Small molecules and gene therapies represent good examples of how breakthroughs in genetic understanding can be translated into targeted therapies for SNHL. For example, targeted small molecules have been used to ameliorate autoinflammatory hearing loss caused by gain-of-function variants of NLRP3 and inner ear proteinopathy with OSBPL2 variants underlying dysfunctional autophagy. Strikingly, the successful outcomes of the first-in-human trial of OTOF gene therapy highlighted its potential in the treatment of various forms of genetic hearing loss. clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies are currently being developed for site-specific genome editing to treat human genetic disorders. These advancements have led to an era of genotype- and mechanism-based precision medicine in SNHL practice.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
10
|
Wu CC. Application of Genetic Information to Cochlear Implantation in Clinical Practice. J Audiol Otol 2024; 28:93-99. [PMID: 38695054 PMCID: PMC11065544 DOI: 10.7874/jao.2024.00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Cochlear implantation is currently the treatment of choice for children with severe-to-profound sensorineural hearing impairment (SNHI). However, the outcomes with cochlear implant (CI) vary significantly among recipients. Genetic diagnosis offers direct clues regarding the pathogenesis of SNHI, which facilitates the development of personalized medicine for potential candidates for CI. In this article, I present a comprehensive overview of the usefulness of genetic information in clinical decision-making for CI. Genetically confirmed diagnosis enables clinicians to: 1) monitor the evolution of SNHI and determine the optimal surgical timing, 2) predict the potential benefits of CI in patients with identified genetic etiology, and 3) select CI devices/electrodes tailored to patients with specific genetic mutations.
Collapse
Affiliation(s)
- Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University College of Medicine, Taipei, Taiwan
- Hearing and Speech Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
11
|
Abolhassani A, Fattahi Z, Beheshtian M, Fadaee M, Vazehan R, Ahangari F, Dehdahsi S, Faraji Zonooz M, Parsimehr E, Kalhor Z, Peymani F, Mozaffarpour Nouri M, Babanejad M, Noudehi K, Fatehi F, Zamanian Najafabadi S, Afroozan F, Yazdan H, Bozorgmehr B, Azarkeivan A, Sadat Mahdavi S, Nikuei P, Fatehi F, Jamali P, Ashrafi MR, Karimzadeh P, Habibi H, Kahrizi K, Nafissi S, Kariminejad A, Najmabadi H. Clinical application of next generation sequencing for Mendelian disease diagnosis in the Iranian population. NPJ Genom Med 2024; 9:12. [PMID: 38374194 PMCID: PMC10876633 DOI: 10.1038/s41525-024-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype-phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
Collapse
Affiliation(s)
- Ayda Abolhassani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zohreh Fattahi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mahsa Fadaee
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Ahangari
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Elham Parsimehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zahra Kalhor
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Peymani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Noudehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Fatehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Fariba Afroozan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Hilda Yazdan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Bita Bozorgmehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Azita Azarkeivan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Nasle Salem Genetic Counseling Center, Bandar Abbas, Iran
| | - Farzad Fatehi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payman Jamali
- Genetic Counseling Center, Shahroud Welfare Organization, Semnan, Iran
| | | | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Habibi
- Hamedan University of Medical Science, Hamedan, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran.
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Mohamed T, Melfi V, Colciago A, Magnaghi V. Hearing loss and vestibular schwannoma: new insights into Schwann cells implication. Cell Death Dis 2023; 14:629. [PMID: 37741837 PMCID: PMC10517973 DOI: 10.1038/s41419-023-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Hearing loss (HL) is the most common and heterogeneous disorder of the sensory system, with a large morbidity in the worldwide population. Among cells of the acoustic nerve (VIII cranial nerve), in the cochlea are present the hair cells, the spiral ganglion neurons, the glia-like supporting cells, and the Schwann cells (SCs), which alterations have been considered cause of HL. Notably, a benign SC-derived tumor of the acoustic nerve, named vestibular schwannoma (VS), has been indicated as cause of HL. Importantly, SCs are the main glial cells ensheathing axons and forming myelin in the peripheral nerves. Following an injury, the SCs reprogram, expressing some stemness features. Despite the mechanisms and factors controlling their biological processes (i.e., proliferation, migration, differentiation, and myelination) have been largely unveiled, their role in VS and HL was poorly investigated. In this review, we enlighten some of the mechanisms at the base of SCs transformation, VS development, and progression, likely leading to HL, and we pose great attention on the environmental factors that, in principle, could contribute to HL onset or progression. Combining the biomolecular bench-side approach to the clinical bedside practice may be helpful for the diagnosis, prediction, and therapeutic approach in otology.
Collapse
Affiliation(s)
- Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
13
|
Nisenbaum E, Yan D, Shearer AE, de Joya E, Thielhelm T, Russell N, Staecker H, Chen Z, Holt JR, Liu X. Genotype-Phenotype Correlations in TMPRSS3 (DFNB10/DFNB8) with Emphasis on Natural History. Audiol Neurootol 2023; 28:407-419. [PMID: 37331337 PMCID: PMC10857012 DOI: 10.1159/000528766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/20/2022] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Mutations in TMPRSS3 are an important cause of autosomal recessive non-syndromic hearing loss. The hearing loss associated with mutations in TMPRSS3 is characterized by phenotypic heterogeneity, ranging from mild to profound hearing loss, and is generally progressive. Clinical presentation and natural history of TMPRSS3 mutations vary significantly based on the location and type of mutation in the gene. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to DFNB8/10. The heterogeneous presentation of TMPRSS3-associated disease makes it difficult to identify patients clinically. As the body of literature on TMPRSS3-associated deafness grows, there is need for better categorization of the hearing phenotypes associated with specific mutations in the gene. SUMMARY In this review, we summarize TMPRSS3 genotype-phenotype relationships including a thorough description of the natural history of patients with TMPRSS3-associated hearing loss to lay the groundwork for the future of TMPRSS3 treatment using molecular therapy. KEY MESSAGES TMPRSS3 mutation is a significant cause of genetic hearing loss. All patients with TMPRSS3 mutation display severe-to-profound prelingual (DFNB10) or a postlingual (DFNB8) progressive sensorineural hearing loss. Importantly, TMPRSS3 mutations have not been associated with middle ear or vestibular deficits. The c.916G>A (p.Ala306Thr) missense mutation is the most frequently reported mutation across populations and should be further explored as a target for molecular therapy.
Collapse
Affiliation(s)
- Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA,
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - A Eliot Shearer
- Department of Otolaryngology-Head and Neck Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Torin Thielhelm
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicole Russell
- Department of Otolaryngology-Head and Neck Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas Health System, Kansas City, Kansas, USA
| | - Zhengyi Chen
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jeffrey R Holt
- Department of Otolaryngology-Head and Neck Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
Koh JY, Affortit C, Ranum PT, West C, Walls WD, Yoshimura H, Shao JQ, Mostaert B, Smith RJH. Single-cell RNA-sequencing of stria vascularis cells in the adult Slc26a4 -/- mouse. BMC Med Genomics 2023; 16:133. [PMID: 37322474 PMCID: PMC10268361 DOI: 10.1186/s12920-023-01549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.
Collapse
Affiliation(s)
- Jin-Young Koh
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul T Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Cody West
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jian Q Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Brian Mostaert
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J H Smith
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA.
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Tollefson MR, Gogal RA, Weaver AM, Schaefer AM, Marini RJ, Azaiez H, Kolbe DL, Wang D, Weaver AE, Casavant TL, Braun TA, Smith RJH, Schnieders MJ. Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome. Hum Genet 2023; 142:819-834. [PMID: 37086329 PMCID: PMC10182131 DOI: 10.1007/s00439-023-02559-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Collapse
Affiliation(s)
- Mallory R Tollefson
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Rose A Gogal
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - A Monique Weaver
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Amanda M Schaefer
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Robert J Marini
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Donghong Wang
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Amy E Weaver
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Thomas L Casavant
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Terry A Braun
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| | - Michael J Schnieders
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Verstappen G, Foulon I, Van den Houte K, Heuninck E, Van Overmeire B, Gordts F, Topsakal V. Analysis of congenital hearing loss after neonatal hearing screening. Front Pediatr 2023; 11:1153123. [PMID: 37255573 PMCID: PMC10226668 DOI: 10.3389/fped.2023.1153123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Neonates undergo neonatal hearing screening to detect congenital hearing loss at an early stage. Once confirmed, it is necessary to perform an etiological workup to start appropriate treatment. The study objective was to assess the different etiologies, risk factors, and hearing results of infants with permanent hearing loss and to evaluate the efficacy and consequences of the different screening devices over the last 21 years. Methods We conducted a single-center retrospective cohort analysis for all neonatal hearing screening program referrals and performed an etiological workup in case of confirmed hearing loss. We analyzed the evolution of the etiological protocols based on these results. Results The governmental neonatal hearing screening program referred 545 infants to our center. Hearing loss was confirmed in 362 (66.4%) infants and an audiological workup was performed in 458 (84%) cases. 133 (24.4%) infants were diagnosed with permanent hearing loss. Ninety infants (56 bilateral and 34 unilateral) had sensorineural hearing loss, and the degree was predominantly moderate or profound. The most common etiology in bilateral sensorineural hearing loss was a genetic etiology (32.1%), and in unilateral sensorineural hearing loss, an anatomical abnormality (26.5%). Familial history of hearing loss was the most frequently encountered risk factor. Conclusion There is a significant number of false positives after the neonatal hearing screening. Permanent hearing loss is found only in a limited number of infants. During the 21 years of this study, we noticed an increase in etiological diagnoses, especially genetic causes, due to more advanced techniques. Genetic causes and anatomical abnormalities are the most common etiology of bilateral and unilateral sensorineural hearing loss, respectively, but a portion remains unknown after extensive examinations.
Collapse
Affiliation(s)
- Gill Verstappen
- Department of Otorhinolaryngology—Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Health Campus, Brussels, Belgium
| | - Ina Foulon
- Department of Otorhinolaryngology—Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Health Campus, Brussels, Belgium
| | - Kelsey Van den Houte
- Department of Otorhinolaryngology—Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Health Campus, Brussels, Belgium
| | - Emilie Heuninck
- Department of Otorhinolaryngology—Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Health Campus, Brussels, Belgium
| | - Bart Van Overmeire
- Medical Department/Preventive Medicine, Kind en Gezin-Opgroeien, Vlaamse Overheid, Brussels, Belgium
| | - Frans Gordts
- Department of Otorhinolaryngology—Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Health Campus, Brussels, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology—Head and Neck Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Health Campus, Brussels, Belgium
| |
Collapse
|
17
|
Tollefson MR, Gogal RA, Weaver AM, Schaefer AM, Marini RJ, Azaiez H, Kolbe DL, Wang D, Weaver AE, Casavant TL, Braun TA, Smith RJH, Schnieders M. Assessing Variants of Uncertain Significance Implicated in Hearing Loss Using a Comprehensive Deafness Proteome. RESEARCH SQUARE 2023:rs.3.rs-2508462. [PMID: 36778238 PMCID: PMC9915777 DOI: 10.21203/rs.3.rs-2508462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.
Collapse
|
18
|
Abstract
Understanding the genetic basis of hearing loss is becoming increasingly relevant, as 50-70% of congenital hearing loss is hereditary and postlingual hearing loss is also often of hereditary origin. To date, more than 220 genes for hearing loss have been identified and more than 600 syndromes with hearing loss described. This review article explains the classification of genetic hearing loss into syndromic versus non-syndromic forms and the modes of inheritance involved. Some of the most common syndromes (Usher, Pendred, Jervell-Lange-Nielsen, Waardenburg, branchiootorenal, and Alport syndrome) are introductorily described. New sequencing technologies have significantly expanded the diagnostic options for genetic hearing loss and made them more accessible. This text aims to encourage initiation of genetic diagnosis in hearing-impaired patients with suspected hereditary genesis in order to provide the best possible counseling for affected individuals and their families.
Collapse
|
19
|
The Frequency of Common Deafness-Associated Variants Among 3,555,336 Newborns in China and 141,456 Individuals Across Seven Populations Worldwide. Ear Hear 2023; 44:232-241. [PMID: 36149380 DOI: 10.1097/aud.0000000000001274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Genetic screening can benefit early detection and intervention for hearing loss. The frequency of common deafness-associated variants in general populations is highly important for genetic screening and genetic counseling tailored to different ethnic backgrounds. We aimed to analyze the frequency of common deafness-associated variants in a large population-based Chinese newborn cohort and to explore the population-specific features in diverse populations worldwide. DESIGN This population-based cohort study analyzed the frequency of common deafness-associated variants in 3,555,336 newborns in the Chinese Newborn Concurrent Hearing and Genetic Screening cohort. Participants were newborn infants born between January 2007 and September 2020. Limited genetic screening for 20 variants in 4 common deafness-associated genes and newborn hearing screening were offered concurrently to all newborns in the Chinese Newborn Concurrent Hearing and Genetic Screening cohort. Sequence information of 141,456 individuals was also analyzed from seven ethnic populations from the Genome Aggregation Database for 20 common deafness-related variants. Statistical analysis was performed using R. RESULTS A total of 3,555,326 Chinese neonates completed the Newborn Concurrent Hearing and Genetic Screening were included for analysis. We reported the distinct landscape of common deafness-associated variants in this large population-based cohort. We found that the carrier frequencies of GJB2 , SLC26A4 , GJB3 , and MT-RNR were 2.53%, 2.05%, 0.37%, and 0.25%, respectively. Furthermore, GJB2 c.235delC was the most common variant with an allele frequency of 0.99% in the Chinese newborn population. We also demonstrated nine East-Asia-enriched variants, one Ashkenazi Jewish-enriched variant, and one European/American-enriched variant for hearing loss. CONCLUSIONS We showed the distinct landscape of common deafness-associated variants in the Chinese newborn population and provided insights into population-specific features in diverse populations. These data can serve as a powerful resource for otolaryngologists and clinical geneticists to inform population-adjusted genetic screening programs for hearing loss.
Collapse
|
20
|
Klimara MJ, Nishimura C, Wang D, Kolbe DL, Schaefer AM, Walls WD, Frees KL, Smith RJH, Azaiez H. De novo variants are a common cause of genetic hearing loss. Genet Med 2022; 24:2555-2567. [PMID: 36194208 PMCID: PMC9729384 DOI: 10.1016/j.gim.2022.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE De novo variants (DNVs) are a well-recognized cause of genetic disorders. The contribution of DNVs to hearing loss (HL) is poorly characterized. We aimed to evaluate the rate of DNVs in HL-associated genes and assess their contribution to HL. METHODS Targeted genomic enrichment and massively parallel sequencing were used for molecular testing of all exons and flanking intronic sequences of known HL-associated genes, with no exclusions on the basis of type of HL or clinical features. Segregation analysis was performed, and previous reports of DNVs in PubMed and ClinVar were reviewed to characterize the rate, distribution, and spectrum of DNVs in HL. RESULTS DNVs were detected in 10% (24/238) of trios for whom segregation analysis was performed. Overall, DNVs were causative in at least ∼1% of probands for whom a genetic diagnosis was resolved, with marked variability based on inheritance mode and phenotype. DNVs of MITF were most common (21% of DNVs), followed by GATA3 (13%), STRC (13%), and ACTG1 (8%). Review of reported DNVs revealed gene-specific variability in contribution of DNV to the mutational spectrum of HL-associated genes. CONCLUSION DNVs are a relatively common cause of genetic HL and must be considered in all cases of sporadic HL.
Collapse
Affiliation(s)
- Miles J Klimara
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA
| | - Carla Nishimura
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA
| | - Donghong Wang
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA
| | - Diana L Kolbe
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA
| | - Amanda M Schaefer
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA
| | - Kathy L Frees
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA.
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA.
| |
Collapse
|
21
|
Nie J, Ueda Y, Solivais AJ, Hashino E. CHD7 regulates otic lineage specification and hair cell differentiation in human inner ear organoids. Nat Commun 2022; 13:7053. [PMID: 36396635 PMCID: PMC9672366 DOI: 10.1038/s41467-022-34759-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Mutations in CHD7 cause CHARGE syndrome, affecting multiple organs including the inner ear in humans. We investigate how CHD7 mutations affect inner ear development using human pluripotent stem cell-derived organoids as a model system. We find that loss of CHD7 or its chromatin remodeling activity leads to complete absence of hair cells and supporting cells, which can be explained by dysregulation of key otic development-associated genes in mutant otic progenitors. Further analysis of the mutant otic progenitors suggests that CHD7 can regulate otic genes through a chromatin remodeling-independent mechanism. Results from transcriptome profiling of hair cells reveal disruption of deafness gene expression as a potential underlying mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-differentiating CHD7 knockout and wild-type cells in chimeric organoids partially rescues mutant phenotypes by restoring otherwise severely dysregulated otic genes. Taken together, our results suggest that CHD7 plays a critical role in regulating human otic lineage specification and hair cell differentiation.
Collapse
Affiliation(s)
- Jing Nie
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alexander J Solivais
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Kim Y, Choi BY. Precision Medicine Approach to Cochlear Implantation. Clin Exp Otorhinolaryngol 2022; 15:299-309. [PMID: 36397263 PMCID: PMC9723282 DOI: 10.21053/ceo.2022.01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
In the early days of cochlear implantation (CI) surgery, when the types of electrodes were limited and the etiology of sensorineural hearing loss (SNHL) was not well understood, the one-size-fits-all approach to CI held true, as in all other fields. However, in the era of personalized medicine, there have been attempts to associate CI performance with the etiology of SNHL and to establish customized surgical techniques that can maximize performance according to individual cochlear dimensions. Personalized genomic-driven assessments of CI candidates and a better understanding of genotype-phenotype correlations could provide clinically applicable diagnostic and prognostic information about questions such as who, how, and when to implant. Rigorous and strategic imaging assessments also provide better insights into the anatomic etiology of SNHL and cochlear dimensions, leading to individualized surgical techniques to augment CI outcomes. Furthermore, the precision medicine approach to CI is not necessarily limited to preoperative planning, but can be extended to either intraoperative electrode positioning or even the timing of the initial switch-on. In this review, we discuss the implications of personalized diagnoses (both genetic and nongenetic) on the planning and performance of CI in patients with prelingual and postlingual SNHL.
Collapse
Affiliation(s)
- Yehree Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
23
|
Steiert TA, Fuß J, Juzenas S, Wittig M, Hoeppner M, Vollstedt M, Varkalaite G, ElAbd H, Brockmann C, Görg S, Gassner C, Forster M, Franke A. High-throughput method for the hybridisation-based targeted enrichment of long genomic fragments for PacBio third-generation sequencing. NAR Genom Bioinform 2022; 4:lqac051. [PMID: 35855323 PMCID: PMC9278042 DOI: 10.1093/nargab/lqac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Hybridisation-based targeted enrichment is a widely used and well-established technique in high-throughput second-generation short-read sequencing. Despite the high potential to genetically resolve highly repetitive and variable genomic sequences by, for example PacBio third-generation sequencing, targeted enrichment for long fragments has not yet established the same high-throughput due to currently existing complex workflows and technological dependencies. We here describe a scalable targeted enrichment protocol for fragment sizes of >7 kb. For demonstration purposes we developed a custom blood group panel of challenging loci. Test results achieved > 65% on-target rate, good coverage (142.7×) and sufficient coverage evenness for both non-paralogous and paralogous targets, and sufficient non-duplicate read counts (83.5%) per sample for a highly multiplexed enrichment pool of 16 samples. We genotyped the blood groups of nine patients employing highly accurate phased assemblies at an allelic resolution that match reference blood group allele calls determined by SNP array and NGS genotyping. Seven Genome-in-a-Bottle reference samples achieved high recall (96%) and precision (99%) rates. Mendelian error rates were 0.04% and 0.13% for the included Ashkenazim and Han Chinese trios, respectively. In summary, we provide a protocol and first example for accurate targeted long-read sequencing that can be used in a high-throughput fashion.
Collapse
Affiliation(s)
- Tim Alexander Steiert
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius 02241, Lithuania
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Marc Patrick Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Melanie Vollstedt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Greta Varkalaite
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas 44307, Lithuania
| | - Hesham ElAbd
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Christian Brockmann
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Kiel 24105, Germany
| | - Siegfried Görg
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Kiel 24105, Germany
| | - Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen 9495, Liechtenstein
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| |
Collapse
|
24
|
Molecular diagnose of a large hearing loss population from China by targeted genome sequencing. J Hum Genet 2022; 67:643-649. [PMID: 35982127 PMCID: PMC9592555 DOI: 10.1038/s10038-022-01066-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Hereditary hearing loss is genetically heterogeneous, with diverse clinical manifestations. Here we performed targeted genome sequencing of 227 hearing loss related genes in 1027 patients with bilateral hearing loss and 520 healthy volunteers with normal hearing to comprehensively identify the molecular etiology of hereditary hearing loss in a large cohort from China. We obtained a diagnostic rate of 57.25% (588/1027) for the patients, while 4.67% (48/1027) of the patients were identified with uncertain diagnoses. Of the implicated 35 hearing loss genes, three common genes, including SLC26A4(278/588), GJB2(207/588), MT-RNR1(19/588), accounted for 85.54% (503/588) of the diagnosed cases, while 32 uncommon hearing loss genes, including MYO15A, MITF, OTOF, POU3F4, PTPN11, etc. accounted for the remaining diagnostic rate of 14.46% (85/588). Apart from Pendred syndrome, other eight types of syndromic hearing loss were also identified. Of the 64 uncertain significant variants and 244 pathogenic/likely pathogenic variants identified in the patients, 129 novel variants were also detected. Thus, the molecular etiology presented with high heterogeneity with the leading causes to be SLC26A4 and GJB2 genes in the Chinese hearing loss population. It’s urgent to develop a database of the ethnicity-matched healthy population as well as to perform functional studies for further classification of uncertain significant variants.
Collapse
|
25
|
Comprehensive Etiologic Analyses in Pediatric Cochlear Implantees and the Clinical Implications. Biomedicines 2022; 10:biomedicines10081846. [PMID: 36009393 PMCID: PMC9405031 DOI: 10.3390/biomedicines10081846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Cochlear implantation is the treatment of choice for children with profound sensorineural hearing impairment (SNHI), yet the outcomes of cochlear implants (CI) vary significantly across individuals. To investigate the CI outcomes in pediatric patients with SNHI due to various etiologies, we prospectively recruited children who underwent CI surgery at two tertiary referral CI centers from 2010 to 2021. All patients underwent comprehensive history taking, next generation sequencing (NGS)-based genetic examinations, and imaging studies. The CI outcomes were evaluated using Categories of Auditory Performance (CAP) and Speech Intelligibility Rating (SIR) scores. Of the 160 pediatric cochlear implantees (76 females and 84 males) included in this study, comprehensive etiological work-up helped achieve clinical diagnoses in 83.1% (133/160) of the patients, with genetic factors being the leading cause (61.3%). Imaging studies identified certain findings in 31 additional patients (19.3%). Four patients (2.5%) were identified with congenital cytomegalovirus infection (cCMV), and 27 patients (16.9%) remained with unknown etiologies. Pathogenic variants in the four predominant non-syndromic SNHI genes (i.e., SLC26A4, GJB2, MYO15A, and OTOF) were associated with favorable CI outcomes (Chi-square test, p = 0.023), whereas cochlear nerve deficiency (CND) on imaging studies was associated with unfavorable CI outcomes (Chi-square test, p < 0.001). Our results demonstrated a clear correlation between the etiologies and CI outcomes, underscoring the importance of thorough etiological work-up preoperatively in pediatric CI candidates.
Collapse
|
26
|
Imtiaz A. ARNSHL gene identification: past, present and future. Mol Genet Genomics 2022; 297:1185-1193. [DOI: 10.1007/s00438-022-01926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|
27
|
Li MM, Tayoun AA, DiStefano M, Pandya A, Rehm HL, Robin NH, Schaefer AM, Yoshinaga-Itano C. Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:1392-1406. [PMID: 35802133 DOI: 10.1016/j.gim.2022.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Hearing loss is a common and complex condition that can occur at any age, can be inherited or acquired, and is associated with a remarkably wide array of etiologies. The diverse causes of hearing loss, combined with the highly variable and often overlapping presentations of different forms of hearing loss, challenge the ability of traditional clinical evaluations to arrive at an etiologic diagnosis for many deaf and hard-of-hearing individuals. However, identifying the etiology of hearing loss may affect clinical management, improve prognostic accuracy, and refine genetic counseling and assessment of the likelihood of recurrence for relatives of deaf and hard-of-hearing individuals. Linguistic and cultural identities associated with being deaf or hard-of-hearing can complicate access to and the effectiveness of clinical care. These concerns can be minimized when genetic and other health care services are provided in a linguistically and culturally sensitive manner. This clinical practice resource offers information about the frequency, causes, and presentations of hearing loss and suggests approaches to the clinical and genetic evaluation of deaf and hard-of-hearing individuals aimed at identifying an etiologic diagnosis and providing informative and effective patient education and genetic counseling.
Collapse
Affiliation(s)
- Marilyn M Li
- Department of Pathology and Laboratory Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center, Al Jalila Children's Specialty Hospital, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Arti Pandya
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nathaniel H Robin
- Departments of Genetics and Pediatrics, University of Alabama at Birmingham, Birmingham, AL
| | - Amanda M Schaefer
- Department of Otolaryngology-Head & Neck Surgery, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA
| | | |
Collapse
|
28
|
Mighton C, Lerner‐Ellis J. Principles of molecular testing for hereditary cancer. Genes Chromosomes Cancer 2022; 61:356-381. [DOI: 10.1002/gcc.23048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chloe Mighton
- Laboratory Medicine and Pathology, Mount Sinai Hospital, Sinai Health Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health Toronto ON Canada
- Genomics Health Services Research Program Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto Toronto ON Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health University of Toronto Toronto ON Canada
| | - Jordan Lerner‐Ellis
- Laboratory Medicine and Pathology, Mount Sinai Hospital, Sinai Health Toronto ON Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health Toronto ON Canada
- Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON Canada
| |
Collapse
|
29
|
Smith RJH. The hearing-impaired patient: what the future holds. Hum Genet 2022; 141:307-310. [PMID: 35290517 PMCID: PMC9093598 DOI: 10.1007/s00439-022-02447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
30
|
AitRaise I, Amalou G, Bousfiha A, Charoute H, Rouba H, Abdelghaffar H, Bonnet C, Petit C, Barakat A. Genetic heterogeneity in GJB2, COL4A3, ATP6V1B1 and EDNRB variants detected among hearing impaired families in Morocco. Mol Biol Rep 2022; 49:3949-3954. [PMID: 35301649 DOI: 10.1007/s11033-022-07245-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Deafness is the most prevalent human sensorineural defect. It may occur as a result of an external auditory canal involvement, or a deficiency in the sound conduction mechanism, or an impairment of the cochlea, the cochlear nerve or central auditory perception. The genetic causes are the most common, as approximately 70% of hearing disorders are of hereditary origin, divided into two groups, syndromic (associated with other symptoms) and no syndromic (isolated deafness). METHODS A whole exome sequencing was performed to identify the genetic cause of hearing loss in six Moroccan families and Sanger sequencing was used to validate mutations in these genes. THE RESULTS The results of four out of the six families revealed four genetic variants in the genes GJB2, COL4A3, ATP6V1B1 and EDNRB responsible for non-syndromic and syndromic hearing loss. Multiple Bioinformatics programs and molecular modelling predicted the pathogenic effect of these mutations. CONCLUSIONS We identified in Moroccan deaf patients four homozygous mutations. These results show the importance of whole exome sequencing to identify pathogenic mutations in heterogeneous disorders with multiple genes responsible.
Collapse
Affiliation(s)
- Imane AitRaise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratoire de Biochimie, Environnement et Agroalimentaire, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Amale Bousfiha
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratoire de physiopathologie et génétique moléculaire, Faculté des Sciences Ben M'sik, Université Hassan II, Casablanca, Morocco
| | - Hicham Charoute
- Research unit of epidemiology, biostatistics and bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratoire de Biochimie, Environnement et Agroalimentaire, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Crystel Bonnet
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015, Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015, Paris, France.,Institut de l'Audition, 75012, Paris, France.,Collège de France, 75005, Paris, France
| | - Adbelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
31
|
Abstract
Hearing loss (HL) is an etiologically heterogeneous disorder that affects around 5% of the world's population. There has been an exponential increase in the identification of genes and variants responsible for hereditary HL over recent years. Iran, a country located in the Middle East, has a high prevalence of consanguineous marriages, so heterogeneous diseases such as HL are more common. Comprehensive studies using different strategies from linkage analysis to next-generation sequencing, especially exome-sequencing, have achieved significant success in identifying possible pathogens in deaf Iranian families. About 12% of non-syndromic autosomal recessive HL genes investigated to date, were first identified in families from Iran. Variations of 56 genes have been observed in families with NSHL in Iran. Variants in GJB2, SLC26A4, MYO15A, MYO7A, CDH23, and TMC1 account for 16.5%, 16.25%, 13.5%, 9.35%, 6.9% and 4.92%, cases of NSHL, respectively. In summary, there are also different diagnostic rates between studies conducted in Iran. In the comprehensive investigations conducted by the Genetic Research Center of the University of Social Welfare and Rehabilitation Sciences over the past 20 years, the overall diagnosis rate is about 80% while there are other studies with lower diagnostic rates which could reflect differences in project designs, sampling, and accuracy and validity of the methods used. Furthermore, there are several syndromic HHLs in Iran including, Waardenburg syndrome, BOR syndrome, Brown-Vialetto-Van Laere syndrome, Wolfram syndrome, among which Pendred and Usher syndromes are well-studied. These results are of importance for further investigation and elucidation of the molecular basis of HHL in Iran.
Collapse
|
32
|
Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear Hear 2021; 43:1049-1066. [PMID: 34753855 PMCID: PMC9007094 DOI: 10.1097/aud.0000000000001159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Hereditary hearing loss exhibits high degrees of genetic and clinical heterogeneity. To elucidate the population-specific and age-related genetic and clinical spectra of hereditary hearing loss, we investigated the sequencing data of causally associated hearing loss genes in a large cohort of hearing-impaired probands with a balanced age distribution from a single center in Southwest Germany. Design: Genetic testing was applied to 305 hearing-impaired probands/families with a suspected genetic hearing loss etiology and a balanced age distribution over a period of 8 years (2011–2018). These individuals were representative of the regional population according to age and sex distributions. The genetic testing workflow consisted of single-gene screening (n = 21) and custom-designed hearing loss gene panel sequencing (n = 284) targeting known nonsyndromic and syndromic hearing loss genes in a diagnostic setup. Retrospective reanalysis of sequencing data was conducted by applying the current American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. Results: A genetic diagnosis was established for 75 (25%) of the probands that involved 75 causal variants in 35 genes, including 16 novel causal variants and 9 medically significant variant reclassifications. Nearly half of the solved cases (47%; n = 35) were related to variants in the five most frequently affected genes: GJB2 (25%), MYO15A, WFS1, SLC26A4, and COL11A1 (all 5%). Nearly one-quarter of the cases (23%; n = 17) were associated with variants in seven additional genes (TMPRSS3, COL4A3, LOXHD1, EDNRB, MYO6, TECTA, and USH2A). The remaining one-third of single cases (33%; n = 25) were linked to variants in 25 distinct genes. Diagnostic rates and gene distribution were highly dependent on phenotypic characteristics. A positive family history of autosomal-recessive inheritance in combination with early onset and higher grades of hearing loss significantly increased the solve rate up to 60%, while late onset and lower grades of hearing loss yielded significantly fewer diagnoses. Regarding genetic diagnoses, autosomal-dominant genes accounted for 37%, autosomal-recessive genes for 60%, and X-linked genes for 3% of the solved cases. Syndromic/nonsyndromic hearing loss mimic genes were affected in 27% of the genetic diagnoses. Conclusions: The genetic epidemiology of the largest German cohort subjected to comprehensive targeted sequencing for hereditary hearing loss to date revealed broad causal gene and variant spectra in this population. Targeted hearing loss gene panel analysis proved to be an effective tool for ensuring an appropriate diagnostic yield in a routine clinical setting including the identification of novel variants and medically significant reclassifications. Solve rates were highly sensitive to phenotypic characteristics. The unique population-adapted and balanced age distribution of the cohort favoring late hearing loss onset uncovered a markedly large contribution of autosomal-dominant genes to the diagnoses which may be a representative for other age balanced cohorts in other populations.
Collapse
|
33
|
Liang P, Chen F, Wang S, Li Q, Li W, Wang J, Chen J, Zha D. Whole exome sequencing of six Chinese families with hereditary non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 2021; 148:110817. [PMID: 34265623 DOI: 10.1016/j.ijporl.2021.110817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with about 152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families. METHODS After excluding the pathogenic/likely pathogenic variants in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents. RESULTS Biallelic variants were identified in all deaf patients. Among these six families, 10 potentially causative variants, including 3 reported and 7 novel variants, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. These novel variants are thought to be pathogenic or likely pathogenic for theirs predicted damage function upon the protein as while as cosegregated with the deafness phenotype. The variants in MYO15A were frequent with 7/10 candidate ones. CONCLUSION Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the pathogenic/likely pathogenic variants spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.
Collapse
Affiliation(s)
- Pengfei Liang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Fengping Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Shujuan Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qiong Li
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jun Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
34
|
Cheatham MA. Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects. Hear Res 2021; 409:108314. [PMID: 34332206 DOI: 10.1016/j.heares.2021.108314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023]
Abstract
Cochlear function depends on the operation of a coupled feedback loop, incorporating outer hair cells (OHCs), and structured to assure that inner hair cells (IHCs) convey frequency specific acoustic information to the brain, even at very low sound levels. Although our knowledge of OHC function and its contribution to cochlear amplification has expanded, the importance of the tectorial membrane (TM) to the processing of mechanical inputs has not been fully elucidated. In addition, there are a surprising number of genetic mutations that affect TM structure and that produce hearing loss in humans. By synthesizing old and new results obtained on several mouse mutants, we learned that animals with abnormal TMs are prone to generate spontaneous otoacoustic emissions (SOAE), which are uncommon in most wildtype laboratory animals. Because SOAEs are not produced in TM mutants or in humans when threshold shifts exceed approximately 25 dB, some degree of cochlear amplification is required. However, amplification by itself is not sufficient because normal mice are rarely spontaneous emitters. Since SOAEs reflect active cochlear operation, TM mutants are valuable for studying the oscillatory nature of the amplification process and the structures associated with its stabilization. Inasmuch as the mouse models were selected to mirror human auditory disorders, using SOAEs as a noninvasive clinical tool may assist the classification of individuals with genetic defects that influence the active mechanisms responsible for sensitivity and frequency selectivity, the hallmarks of mammalian hearing.
Collapse
Affiliation(s)
- Mary Ann Cheatham
- The Knowles Hearing Center, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2-240 Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208, USA.
| |
Collapse
|
35
|
Colciago A, Audano M, Bonalume V, Melfi V, Mohamed T, Reid AJ, Faroni A, Greer PA, Mitro N, Magnaghi V. Transcriptomic Profile Reveals Deregulation of Hearing-Loss Related Genes in Vestibular Schwannoma Cells Following Electromagnetic Field Exposure. Cells 2021; 10:cells10071840. [PMID: 34360009 PMCID: PMC8307028 DOI: 10.3390/cells10071840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/23/2022] Open
Abstract
Hearing loss (HL) is the most common sensory disorder in the world population. One common cause of HL is the presence of vestibular schwannoma (VS), a benign tumor of the VIII cranial nerve, arising from Schwann cell (SC) transformation. In the last decade, the increasing incidence of VS has been correlated to electromagnetic field (EMF) exposure, which might be considered a pathogenic cause of VS development and HL. Here, we explore the molecular mechanisms underlying the biologic changes of human SCs and/or their oncogenic transformation following EMF exposure. Through NGS technology and RNA-Seq transcriptomic analysis, we investigated the genomic profile and the differential display of HL-related genes after chronic EMF. We found that chronic EMF exposure modified the cell proliferation, in parallel with intracellular signaling and metabolic pathways changes, mostly related to translation and mitochondrial activities. Importantly, the expression of HL-related genes such as NEFL, TPRN, OTOGL, GJB2, and REST appeared to be deregulated in chronic EMF exposure. In conclusion, we suggest that, at a preclinical stage, EMF exposure might promote the transformation of VS cells and contribute to HL.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Adam J. Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Center, Manchester M13 9NQ, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK; (A.J.R.); (A.F.)
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via G. Balzaretti 9, 20133 Milan, Italy; (A.C.); (M.A.); (V.B.); (V.M.); (T.M.); (N.M.)
- Correspondence: ; Tel.: +39-0250318414
| |
Collapse
|
36
|
Frohne A, Koenighofer M, Liu DT, Laccone F, Neesen J, Gstoettner W, Schoefer C, Lucas T, Frei K, Parzefall T. High Prevalence of MYO6 Variants in an Austrian Patient Cohort With Autosomal Dominant Hereditary Hearing Loss. Otol Neurotol 2021; 42:e648-e657. [PMID: 33710140 DOI: 10.1097/mao.0000000000003076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Genetic hearing loss (HL) is often monogenic. Whereas more than half of autosomal recessive (AR) cases in Austria are caused by mutations in a single gene, no disproportionately frequent contributing genetic factor has been identified in cases of autosomal dominant (AD) HL. The genetic characterization of HL continues to improve diagnosis, genetic counseling, and lays a foundation for the development of personalized medicine approaches. METHODS Diagnostic HL panel screening was performed in an Austrian multiplex family with AD HL, and segregation was tested with polymerase chain reaction and Sanger sequencing. In an independent approach, 18 unrelated patients with AD HL were screened for causative variants in all known HL genes to date and segregation was tested if additional family members were available. The pathogenicity of novel variants was assessed based on previous literature and bioinformatic tools such as prediction software and protein modeling. RESULTS In six of the 19 families under study, candidate pathogenic variants were identified in MYO6, including three novel variants (p.Gln441Pro, p.Ser612Tyr, and p.Gln650ValfsTer7). Some patients carried more than one likely pathogenic variant in known deafness genes. CONCLUSION These results suggest a potential high prevalence of MYO6 variants in Austrian cases of AD HL. The presence of multiple rare HL variants in some patients highlights the relevance of considering multiple-hit diagnoses for genetic counseling and targeted therapy design.
Collapse
Affiliation(s)
- Alexandra Frohne
- Department of Otorhinolaryngology, Head and Neck Surgery
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | | | | | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Juergen Neesen
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Christian Schoefer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | - Trevor Lucas
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology
| | - Klemens Frei
- Department of Otorhinolaryngology, Head and Neck Surgery
| | | |
Collapse
|
37
|
Machine learning-based genetic diagnosis models for hereditary hearing loss by the GJB2, SLC26A4 and MT-RNR1 variants. EBioMedicine 2021; 69:103322. [PMID: 34161886 PMCID: PMC8237285 DOI: 10.1016/j.ebiom.2021.103322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background Hereditary hearing loss (HHL) is the most common sensory deficit, which highly afflicts humans. With gene sequencing technology development, more variants will be identified and support genetic diagnoses, which is difficult for human experts to diagnose. This study aims to develop a machine learning-based genetic diagnosis model of HHL-related variants of GJB2, SLC26A4 and MT-RNR1. Methods This case-control study included 1898 subjects, among which 1354 were HHL patients and 544 were carriers. Risk assessment models were established based on variants at 144 sites in three genes related to HHL by building six machine learning (ML) models. We compared the ML models with the genetic risk score (GRS) and expert interpretation (EI) to verify the clinical performance. Findings Among the six ML models, the support vector machine (SVM) showed the best performance. For the prediction of HHL-related gene sites in subjects with variants, the area under the receiver operating characteristic (AUC) of the SVM model was 0.803 (0.680–0.814) in the 10-fold stratified cross-validation and 0.751 (0.635–0.779) in external validation. The predicted results were better than both EI and GRS. Furthermore, 11 sites were identified as the smallest feature set that can be accurately predicted. Interpretation The developed SVM model has great potential to be an efficient and effective tool for HHL prediction when high throughput sequencing data are available.
Collapse
|
38
|
Bowles B, Ferrer A, Nishimura CJ, Pinto E Vairo F, Rey T, Leheup B, Sullivan J, Schoch K, Stong N, Agolini E, Cocciadiferro D, Williams A, Cummings A, Loddo S, Genovese S, Roadhouse C, McWalter K, Wentzensen IM, Li C, Babovic-Vuksanovic D, Lanpher BC, Dentici ML, Ankala A, Hamm JA, Dallapiccola B, Radio FC, Shashi V, Gérard B, Bloch-Zupan A, Smith RJ, Klee EW. TSPEAR variants are primarily associated with ectodermal dysplasia and tooth agenesis but not hearing loss: A novel cohort study. Am J Med Genet A 2021; 185:2417-2433. [PMID: 34042254 PMCID: PMC8361973 DOI: 10.1002/ajmg.a.62347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022]
Abstract
Biallelic loss‐of‐function variants in the thrombospondin‐type laminin G domain and epilepsy‐associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype–phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel‐based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing‐loss‐associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.
Collapse
Affiliation(s)
- Bradley Bowles
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Carla J Nishimura
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tristan Rey
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic génétique, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Illkirch, France
| | - Bruno Leheup
- Département de Médecine Infantile, CHRU de Nancy, Nancy, France
| | - Jennifer Sullivan
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, New York, USA.,Brystol Myers Squibb, New York, New York, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dario Cocciadiferro
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Abigail Williams
- Department of Pediatrics, East Tennessee Children's Hospital, Knoxville, Tennessee, USA
| | - Alex Cummings
- Department of Pediatrics, East Tennessee Children's Hospital, Knoxville, Tennessee, USA.,University of Wisconsin Hospitals and Clinics, Madison, Wisconsin, USA
| | - Sara Loddo
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chelsea Roadhouse
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | - Chumei Li
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arun Ankala
- EGL Genetics LLC, Tucker, Georgia, USA.,Emory University School of Medicine, Atlanta, Georgia, USA
| | - J Austin Hamm
- Department of Pediatrics, East Tennessee Children's Hospital, Knoxville, Tennessee, USA
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Benedicte Gérard
- Laboratoires de Diagnostic génétique, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Agnes Bloch-Zupan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Centre de référence des maladies rares orales et dentaires O-Rares, Filière Santé Maladies rares TETE COU, European Reference Network CRANIO, Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Illkirch, France
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Fareed M, Sharma V, Singh I, Rehman SU, Singh G, Afzal M. Whole-Exome Sequencing Reveals a Rare Variant of OTOF Gene Causing Congenital Non-syndromic Hearing Loss Among Large Muslim Families Favoring Consanguinity. Front Genet 2021; 12:641925. [PMID: 34113375 PMCID: PMC8185570 DOI: 10.3389/fgene.2021.641925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is one of the most frequent auditory deficits in humans characterized by high clinical and genetic heterogeneity. Very few studies have reported the relationship between OTOF (Locus: DFNB9) and hereditary hearing loss in India. We aimed to decipher the genetic cause of prelingual NSHL in a large affected Muslim consanguineous families using whole-exome sequencing (WES). The study was performed following the guidelines and regulations of the Indian Council of Medical Research (ICMR), New Delhi. The population was identified from Jammu and Kashmir, the Northernmost part of India. Near about 100 individuals were born deaf-mute in the village of 3,000 inhabitants. A total of 103 individuals (with 52 cases and 51 controls) agreed to participate in this study. Our study revealed a rare non-sense homozygous mutation NC_000002.11:g.2:26702224G>A; NM_001287489.2:c.2122C>T; NP_001274418.1:p.(Arg708∗) in the 18th exon of the OTOF gene. Our study provides the first insight into this homozygous condition, which has not been previously reported in ExAC, 1,000 Genome and genomAD databases. Furthermore, the variant was confirmed in the population cohort (n = 103) using Sanger sequencing. In addition to the pathogenic OTOF variant, the WES data also revealed novel and recurrent mutations in CDH23, GJB2, MYO15A, OTOG, and SLC26A4 genes. The rare pathogenic and the novel variants observed in this study have been submitted to the ClinVar database and are publicly available online with the accessions SCV001448680.1, SCV001448682.1 and SCV001448681.1. We conclude that OTOF-related NSHL hearing loss is prevalent in the region due to successive inbreeding in its generations. We recommend premarital genetic testing and genetic counseling strategies to minimize and control the disease risk in future generations.
Collapse
Affiliation(s)
- Mohd Fareed
- PK-PD Formulation and Toxicology Division, CSIR Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varun Sharma
- Ancient DNA Laboratory, Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | | | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Gurdarshan Singh
- PK-PD Formulation and Toxicology Division, CSIR Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
40
|
Novel Variants in Hearing Loss Genes and Associations With Audiometric Thresholds in a Multi-ethnic Cohort of US Patients With Cochlear Implants. Otol Neurotol 2021; 41:978-985. [PMID: 32658404 DOI: 10.1097/mao.0000000000002671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To investigate novel variants in hearing loss genes and clinical factors affecting audiometric outcomes of cochlear implant (CI) patients. BACKGROUND Approximately 50% of hearing loss has a genetic etiology, with certain genetic variants more prevalent in specific ethnic groups. Different variants and some clinical variables including inner ear malformations result in different prognoses or clinical outcomes after CI. METHODS Medical and genetic testing records of pediatric CI patients were reviewed for clinical variables. Minor allele frequencies of variants were obtained from Genome Aggregation Database (gnomAD) and variants were classified for pathogenicity. Standard statistical testing was done using Fisher's exact, Wilcoxon, and Spearman correlation tests. RESULTS Eighteen CI patients with genetic test results had pathogenic variants, including six patients with syndromic hearing loss and six patients with known GJB2 variants. Novel pathogenic variants were noted in CHD7, ADGRV1, and ARID1B, with variants in the latter two genes identified in Hispanic patients. Overall, carriage of genetic variants was associated with better pre-CI audiometric thresholds at 2000 Hz (p = 0.048). On the other hand, post-CI thresholds were significantly worse in patients with inner ear malformations, particularly in patients with atretic cochlear nerve canals. CONCLUSION Four novel pathogenic variants were identified, which contributes to knowledge of allelic spectrum for hearing loss especially in Hispanic patients. In this cohort, carriage of pathogenic variants particularly of GJB2 variants was associated with better pre-CI audiometric thresholds, while patients with inner ear malformations had worse post-CI audiometric thresholds.
Collapse
|
41
|
Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis. Proc Natl Acad Sci U S A 2020; 117:31278-31289. [PMID: 33229591 DOI: 10.1073/pnas.2010782117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1 N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.
Collapse
|
42
|
Oh DY, Choi BY. Genetic Information and Precision Medicine in Hearing Loss. Clin Exp Otorhinolaryngol 2020; 13:315-317. [PMID: 33176397 PMCID: PMC7669315 DOI: 10.21053/ceo.2020.01606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Doo-Yi Oh
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
43
|
Morgan A, Lenarduzzi S, Spedicati B, Cattaruzzi E, Murru FM, Pelliccione G, Mazzà D, Zollino M, Graziano C, Ambrosetti U, Seri M, Faletra F, Girotto G. Lights and Shadows in the Genetics of Syndromic and Non-Syndromic Hearing Loss in the Italian Population. Genes (Basel) 2020; 11:genes11111237. [PMID: 33105617 PMCID: PMC7690429 DOI: 10.3390/genes11111237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Hearing loss (HL), both syndromic (SHL) and non-syndromic (NSHL), is the most common sensory disorder, affecting ~460 million people worldwide. More than 50% of the congenital/childhood cases are attributable to genetic causes, highlighting the importance of genetic testing in this class of disorders. Here we applied a multi-step strategy for the molecular diagnosis of HL in 125 patients, which included: (1) an accurate clinical evaluation, (2) the analysis of GJB2, GJB6, and MT-RNR1 genes, (3) the evaluation STRC-CATSPER2 and OTOA deletions via Multiplex Ligation Probe Amplification (MLPA), (4) Whole Exome Sequencing (WES) in patients negative to steps 2 and 3. Our approach led to the characterization of 50% of the NSHL cases, confirming both the relevant role of the GJB2 (20% of cases) and STRC deletions (6% of cases), and the high genetic heterogeneity of NSHL. Moreover, due to the genetic findings, 4% of apparent NSHL patients have been re-diagnosed as SHL. Finally, WES characterized 86% of SHL patients, supporting the role of already know disease-genes. Overall, our approach proved to be efficient in identifying the molecular cause of HL, providing essential information for the patients’ future management.
Collapse
Affiliation(s)
- Anna Morgan
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
- Correspondence:
| | - Stefania Lenarduzzi
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
| | - Beatrice Spedicati
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Elisabetta Cattaruzzi
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
| | - Flora Maria Murru
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
| | - Giulia Pelliccione
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
| | - Daniela Mazzà
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
| | - Marcella Zollino
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Genetica, 00168 Rome, Italy;
- Istituto di Medicina Genomica, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.G.); (M.S.)
| | - Umberto Ambrosetti
- Audiology and audiophonology, University of Milano/Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Marco Seri
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.G.); (M.S.)
| | - Flavio Faletra
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
| | - Giorgia Girotto
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (S.L.); (B.S.); (E.C.); (F.M.M.); (G.P.); (D.M.); (F.F.); (G.G.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| |
Collapse
|
44
|
Brownstein Z, Gulsuner S, Walsh T, Martins FTA, Taiber S, Isakov O, Lee MK, Bordeynik-Cohen M, Birkan M, Chang W, Casadei S, Danial-Farran N, Abu-Rayyan A, Carlson R, Kamal L, Arnþórsson ÁÖ, Sokolov M, Gilony D, Lipschitz N, Frydman M, Davidov B, Macarov M, Sagi M, Vinkler C, Poran H, Sharony R, Samara N, Zvi N, Baris-Feldman H, Singer A, Handzel O, Hertzano R, Ali-Naffaa D, Ruhrman-Shahar N, Madgar O, Sofrin E, Peleg A, Khayat M, Shohat M, Basel-Salmon L, Pras E, Lev D, Wolf M, Steingrimsson E, Shomron N, Kelley MW, Kanaan M, Allon-Shalev S, King MC, Avraham KB. Spectrum of genes for inherited hearing loss in the Israeli Jewish population, including the novel human deafness gene ATOH1. Clin Genet 2020; 98:353-364. [PMID: 33111345 PMCID: PMC8045518 DOI: 10.1111/cge.13817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022]
Abstract
Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.
Collapse
Affiliation(s)
- Zippora Brownstein
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Suleyman Gulsuner
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Fábio Tadeu Arrojo Martins
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Isakov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ming K. Lee
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Mor Bordeynik-Cohen
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Maria Birkan
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Weise Chang
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD, USA
| | - Silvia Casadei
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Nada Danial-Farran
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Amal Abu-Rayyan
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ryan Carlson
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Lara Kamal
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ásgeir Örn Arnþórsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Meirav Sokolov
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Dror Gilony
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Noga Lipschitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Moshe Frydman
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Bella Davidov
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Michal Macarov
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michal Sagi
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chana Vinkler
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Hana Poran
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Reuven Sharony
- Genetics Institute, Meir Medical Center, Kfar Saba and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Na’ama Zvi
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Amihood Singer
- Community Genetics Department, Public Health Services, Ministry of Health, Ramat Gan, Israel
| | - Ophir Handzel
- Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Doaa Ali-Naffaa
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Human Genetics Institute, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Noa Ruhrman-Shahar
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ory Madgar
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Efrat Sofrin
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Amir Peleg
- Human Genetics Institute, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Morad Khayat
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
| | - Mordechai Shohat
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Institute of Medical Genetics, Maccabi HMO, Rehovot, Israel
| | - Lina Basel-Salmon
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Elon Pras
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Dorit Lev
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Michael Wolf
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD, USA
| | - Moien Kanaan
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Stavit Allon-Shalev
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mary-Claire King
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Karen B. Avraham
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Thorpe RK, Smith RJH. Future directions for screening and treatment in congenital hearing loss. PRECISION CLINICAL MEDICINE 2020; 3:175-186. [PMID: 33209510 PMCID: PMC7653508 DOI: 10.1093/pcmedi/pbaa025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common neurosensory deficit. It results from a variety of heritable and acquired causes and is linked to multiple deleterious effects on a child's development that can be ameliorated by prompt identification and individualized therapies. Diagnosing hearing loss in newborns is challenging, especially in mild or progressive cases, and its management requires a multidisciplinary team of healthcare providers comprising audiologists, pediatricians, otolaryngologists, and genetic counselors. While physiologic newborn hearing screening has resulted in earlier diagnosis of hearing loss than ever before, a growing body of knowledge supports the concurrent implementation of genetic and cytomegalovirus testing to offset the limitations inherent to a singular screening modality. In this review, we discuss the contemporary role of screening for hearing loss in newborns as well as future directions in its diagnosis and treatment.
Collapse
Affiliation(s)
- Ryan K Thorpe
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, USA
- The Interdisciplinary Graduate Program in Genetics, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
- Iowa Institute of Human Genetics, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, USA
| |
Collapse
|
46
|
Wang M, Li Q, Deng A, Zhu X, Yang J. Identification of a novel mutation in CRYM in a Chinese family with hearing loss using whole-exome sequencing. Exp Ther Med 2020; 20:1447-1454. [PMID: 32742378 PMCID: PMC7388290 DOI: 10.3892/etm.2020.8890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
Previous studies have identified ~50 genes that contribute to non-syndromic autosomal dominant sensorineural deafness (DFNA). However, in numerous families with hearing loss, the specific gene mutation remains to be identified. In the present study, the clinical characteristics and gene mutations were analyzed in a Chinese pedigree with hereditary hearing loss. The clinical characteristics of the family members were assessed and a detailed audiology function examination was performed. Whole-exome sequencing (WES) was performed to identify the gene mutation responsible for the hearing loss. Sanger sequencing was used to verify the candidate mutation detected in the family. The family consisted of 31 members, seven of whom were diagnosed with sensorineural deafness of varying degrees. No mutation was identified by the general deafness gene chip. However, a novel heterozygous mutation in exon 3 (c.152C>T; Pro51Leu) of the gene crystallin µ (CRYM) was identified by WES. This result was further verified by Sanger sequencing. Co-segregation of genotypes and phenotypes suggested that this novel mutation was instrumental for the hearing loss/DFNA. In conclusion, the present study identified a novel pathogenic mutation, NM_001888.5(CRYM): c.152C>T(Pro51Leu), associated with DFNA. This mutation has not been reported previously and further functional studies are warranted.
Collapse
Affiliation(s)
- Min Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Qian Li
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Anchun Deng
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianbai Zhu
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Junjie Yang
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
47
|
Gene therapy development in hearing research in China. Gene Ther 2020; 27:349-359. [PMID: 32681137 DOI: 10.1038/s41434-020-0177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Sensorineural hearing loss, the most common form of hearing impairment, is mainly attributable to genetic mutations or acquired factors, such as aging, noise exposure, and ototoxic drugs. In the field of gene therapy, advances in genetic and physiological studies and profound increases in knowledge regarding the underlying mechanisms have yielded great progress in terms of restoring the auditory function in animal models of deafness. Nonetheless, many challenges associated with the translation from basic research to clinical therapies remain to be overcome before a total restoration of auditory function can be expected. In recent years, Chinese research teams have promoted various developmental efforts in this field, including gene sequencing to identify additional potential loci that cause deafness, studies to elucidate the underlying molecular mechanisms, and research to optimize vectors and delivery routes. In this review, we summarize the state of the field and focus mainly on the progress of gene therapy in animal model studies and the optimization of therapeutic strategies in China.
Collapse
|
48
|
Ramzan M, Bashir R, Salman M, Mujtaba G, Sobreira N, Witmer PD, Naz S. Spectrum of genetic variants in moderate to severe sporadic hearing loss in Pakistan. Sci Rep 2020; 10:11902. [PMID: 32681043 PMCID: PMC7368073 DOI: 10.1038/s41598-020-68779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023] Open
Abstract
Hearing loss affects 380 million people worldwide due to environmental or genetic causes. Determining the cause of deafness in individuals without previous family history of hearing loss is challenging and has been relatively unexplored in Pakistan. We investigated the spectrum of genetic variants in hearing loss in a cohort of singleton affected individuals born to consanguineous parents. Twenty-one individuals with moderate to severe hearing loss were recruited. We performed whole-exome sequencing on DNA samples from the participants, which identified seventeen variants in ten known deafness genes and one novel candidate gene. All identified variants were homozygous except for two. Eleven of the variants were novel, including one multi-exonic homozygous deletion in OTOA. A missense variant in ESRRB was implicated for recessively inherited moderate to severe hearing loss. Two individuals were heterozygous for variants in MYO7A and CHD7, respectively, consistent with de novo variants or dominant inheritance with incomplete penetrance as the reason for their hearing loss. Our results indicate that similar to familial cases of deafness, variants in a large number of genes are responsible for moderate to severe hearing loss in sporadic individuals born to consanguineous couples.
Collapse
Affiliation(s)
- Memoona Ramzan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan
| | - Rasheeda Bashir
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.,Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Midhat Salman
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.,Virtual University of Pakistan, Lahore, Pakistan
| | - Ghulam Mujtaba
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.,Institute of Nuclear Medicine and Oncology (INMOL), Lahore, Pakistan
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Genomics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.
| |
Collapse
|
49
|
Fang BX, Cen JT, Yuan T, Yin GD, Gu J, Zhang SQ, Li ZC, Liang YF, Zeng XL. Etiology of newborn hearing impairment in Guangdong province: 10-year experience with screening, diagnosis, and follow-up. World J Pediatr 2020; 16:305-313. [PMID: 31912317 DOI: 10.1007/s12519-019-00325-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hearing impairment is one of the most common birth defects in children. Universal newborn hearing screenings have been performed for 19 years in Guangdong province, China. A screening/diagnosis/intervention system has gradually been put in place. Over the past 10 years, a relatively complete data management system had been established. In the present study, an etiological analysis of newborn cases that failed the initial and follow-up screenings was performed. METHODS The nature and degree of hearing impairment in newborns were confirmed by a set of procedures performed at the time of initial hearing screening, rescreening and final hearing diagnosis. Then, multiple examinations were performed to explore the associated etiology. RESULTS Over a period of 10 years, 720 children were diagnosed with newborn hearing loss. Among these children, 445 (61.81%) children had a clearly identified cause, which included genetic factor(s) (30.56%), secretory otitis media (13.30%), maternal rubella virus infection during pregnancy (5.83%), inner ear malformations (4.86%), maternal human cytomegalovirus infection during pregnancy (2.92%), malformation of the middle ear ossicular chain (2.50%) and auditory neuropathy (1.81%). In addition, 275 cases of sensorineural hearing loss of unknown etiology accounted for 38.19% of the children surveyed. CONCLUSIONS Long-term follow-up is needed to detect delayed hearing impairment and auditory development in children. The need for long-term follow-up should be taken into account when designing an intervention strategy. Furthermore, the use of the deafness gene chip should further elucidate the etiology of neonatal hearing impairment.
Collapse
Affiliation(s)
- Bi-Xing Fang
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin-Tian Cen
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tao Yuan
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gen-Di Yin
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Gu
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shu-Qi Zhang
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Cheng Li
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yin-Fei Liang
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Li Zeng
- Division of Otology, Department of Otorhinolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
50
|
|