1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Ballerini C, Amoriello R, Maghrebi O, Bellucci G, Addazio I, Betti M, Aprea MG, Masciulli C, Caporali A, Penati V, Ballerini C, De Meo E, Portaccio E, Salvetti M, Amato MP. Exploring the role of EBV in multiple sclerosis pathogenesis through EBV interactome. Front Immunol 2025; 16:1557483. [PMID: 40242760 PMCID: PMC11999961 DOI: 10.3389/fimmu.2025.1557483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV) is a known risk factor for multiple sclerosis (MS), even though the underlying molecular mechanisms are unclear and engage multiple immune pathways. Furthermore, the ultimate role of EBV in MS pathogenesis is still elusive. In contrast, Cytomegalovirus (CMV) has been identified as a protective factor for MS. Objectives This study aims to identify MS-associated genes that overlap with EBV interactome and to examine their expression in immune and glial cell subtypes. Methods We used P-HIPSTer, GWAS, and the Human Protein Atlas (HPA) to derive data on the EBV interactome, MS-associated genes and single-cell gene expression in immune and glial cells. The geneOverlap and dplyr R packages identified overlapping genes. A similar analysis was done for CMV and Adenovirus as negative control. Metascape and GTEx analyzed biological pathways and brain-level gene expression; transcriptomic analysis was performed on glial cells and peripheral blood in MS and controls. All the analyses performed in this study were generated using publicly available data sets. Results We identified a "core" group of 21 genes shared across EBV interactome, MS genes, and immune and glial cells (p<0.001). Pathway analysis revealed expected associations, such as immune system activation, and unforeseen results, like the prolactin signaling pathway. BCL2 in astrocytes, MINK1 in microglia were significantly upregulated while AHI1 was downregulated in MS compared to controls. Conclusions Our findings offer novel insights into EBV and CMV interaction with immune and glial cells in MS, that may shed light on mechanisms involved in disease pathophysiology.
Collapse
Affiliation(s)
- Chiara Ballerini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olfa Maghrebi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianmarco Bellucci
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ilaria Addazio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Betti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Maria Grazia Aprea
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Camilla Masciulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Arianna Caporali
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Valeria Penati
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ermelinda De Meo
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Emilio Portaccio
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
- Neuromed, IRCCS Istituto Neurologico Mediterraneo (INM), Pozzilli, Italy
| | - Maria Pia Amato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Don Carlo Gnocchi, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Wang B, Zhu Y, Wei B, Zeng H, Zhang P, Li L, Wang H, Wu X, Zheng Y, Sun M. miR-377-3p Regulates Hippocampal Neurogenesis via the Zfp462-Pbx1 Pathway and Mediates Anxiety-Like Behaviors in Prenatal Hypoxic Offspring. Mol Neurobiol 2024; 61:1920-1935. [PMID: 37817032 DOI: 10.1007/s12035-023-03683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
Prenatal hypoxia (PH) is one of the most common complications of obstetrics and is closely associated with many neurological disorders such as depression, anxiety, and cognitive impairment. Our previous study found that Zfp462 heterozygous (Het) mice exhibit significant anxiety-like behavior. Interestingly, offspring mice with PH also have anxiety-like behaviors in adulthood, accompanied by reduced expression of Zfp462 and increased expression of miR-377-3p; however, the exact regulatory mechanisms remain unclear. In this study, western blotting, gene knockdown, immunofluorescence, dual-luciferase reporter assay, immunoprecipitation, cell transfection with miR-377-3p mimics or inhibitors, quantitative real-time PCR, and rescue assay were used to detect changes in the miR-377-3p-Zfp462-Pbx1 (pre-B-cell leukemia homeobox1) pathway in the brains of prenatal hypoxic offspring to explain the pathogenesis of anxiety-like behaviors. We found that Zfp462 deficiency promoted Pbx1 protein degradation through ubiquitination and that Zfp462 Het mice showed downregulation of the protein kinase B (PKB, also called Akt)-glycogen synthase kinase-3β (GSK3β)-cAMP response element-binding protein (CREB) pathway and hippocampal neurogenesis with anxiety-like behavior. In addition, PH mice exhibited upregulation of miR-377-3p, downregulation of Zfp462/Pbx1-Akt-GSK3β-CREB pathway activity, reduced hippocampal neurogenesis, and an anxiety-like phenotype. Intriguingly, miR-377-3p directly targets the 3'UTR of Zfp462 mRNA to regulate Zfp462 expression. Importantly, microinjection of miR-377-3p antagomir into the hippocampal dentate gyrus of PH mice upregulated Zfp462/Pbx1-Akt-GSK3β-CREB pathway activity, increased hippocampal neurogenesis, and improved anxiety-like behaviors. Collectively, our findings demonstrated a crucial role for miR-377-3p in the regulation of hippocampal neurogenesis and anxiety-like behaviors via the Zfp462/Pbx1-Akt-GSK3β-CREB pathway. Therefore, miR-377-3p could be a potential therapeutic target for anxiety-like behavior in prenatal hypoxic offspring.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| | - Yichen Zhu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Suzhou Medical College of Soochow University, Jiangsu, 215123, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| |
Collapse
|
5
|
Wei B, Shi H, Yu X, Shi Y, Zeng H, Zhao Y, Zhao Z, Song Y, Sun M, Wang B. GR/Ahi1 regulates WDR68-DYRK1A binding and mediates cognitive impairment in prenatally stressed offspring. Cell Mol Life Sci 2024; 81:20. [PMID: 38195774 PMCID: PMC11073104 DOI: 10.1007/s00018-023-05075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Accumulating research shows that prenatal exposure to maternal stress increases the risk of behavioral and mental health problems for offspring later in life. However, how prenatal stress affects offspring behavior remains unknown. Here, we found that prenatal stress (PNS) leads to reduced Ahi1, decreased synaptic plasticity and cognitive impairment in offspring. Mechanistically, Ahi1 and GR stabilize each other, inhibit GR nuclear translocation, promote Ahi1 and WDR68 binding, and inhibit DYRK1A and WDR68 binding. When Ahi1 deletion or prenatal stress leads to hyperactivity of the HPA axis, it promotes the release of GC, leading to GR nuclear translocation and Ahi1 degradation, which further inhibits the binding of Ahi1 and WDR68, and promotes the binding of DYRK1A and WDR68, leading to elevated DYRK1A, reduced synaptic plasticity, and cognitive impairment. Interestingly, we identified RU486, an antagonist of GR, which increased Ahi1/GR levels and improved cognitive impairment and synaptic plasticity in PNS offspring. Our study contributes to understanding the signaling mechanisms of prenatal stress-mediated cognitive impairment in offspring.
Collapse
Affiliation(s)
- Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zejun Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yueyang Song
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Bin Wang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
6
|
Wang B, Shi H, Yang B, Miao Z, Sun M, Yang H, Xu X. The mitochondrial Ahi1/GR participates the regulation on mtDNA copy numbers and brain ATP levels and modulates depressive behaviors in mice. Cell Commun Signal 2023; 21:21. [PMID: 36691038 PMCID: PMC9869592 DOI: 10.1186/s12964-022-01034-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Previous studies have shown that depression is often accompanied by an increase in mtDNA copy number and a decrease in ATP levels; however, the exact regulatory mechanisms remain unclear. METHODS In the present study, Western blot, cell knockdown, immunofluorescence, immunoprecipitation and ChIP-qPCR assays were used to detect changes in the Ahi1/GR-TFAM-mtDNA pathway in the brains of neuronal Abelson helper integration site-1 (Ahi1) KO mice and dexamethasone (Dex)-induced mice to elucidate the pathogenesis of depression. In addition, a rescue experiment was performed to determine the effects of regular exercise on the Ahi1/GR-TFAM-mtDNA-ATP pathway and depression-like behavior in Dex-induced mice and Ahi1 KO mice under stress. RESULTS In this study, we found that ATP levels decreased and mitochondrial DNA (mtDNA) copy numbers increased in depression-related brain regions in Dex-induced depressive mice and Ahi1 knockout (KO) mice. In addition, Ahi1 and glucocorticoid receptor (GR), two important proteins related to stress and depressive behaviors, were significantly decreased in the mitochondria under stress. Intriguingly, GR can bind to the D-loop control region of mitochondria and regulate mitochondrial replication and transcription. Importantly, regular exercise significantly increased mitochondrial Ahi1/GR levels and ATP levels and thus improved depression-like behaviors in Dex-induced depressive mice but not in Ahi1 KO mice under stress. CONCLUSIONS In summary, our findings demonstrated that the mitochondrial Ahi1/GR complex and TFAM coordinately regulate mtDNA copy numbers and brain ATP levels by binding to the D-loop region of mtDNA Regular exercise increases the levels of the mitochondrial Ahi1/GR complex and improves depressive behaviors. Video Abstract.
Collapse
Affiliation(s)
- Bin Wang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Miao Sun
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Yang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
7
|
Affiliation(s)
- Weili Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Zhang HG, Wang B, Yang Y, Liu X, Wang J, Xin N, Li S, Miao Y, Wu Q, Guo T, Yuan Y, Zuo Y, Chen X, Ren T, Dong C, Wang J, Ruan H, Sun M, Xu X, Zheng H. Depression compromises antiviral innate immunity via the AVP-AHI1-Tyk2 axis. Cell Res 2022; 32:897-913. [PMID: 35821088 PMCID: PMC9274186 DOI: 10.1038/s41422-022-00689-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Depression is a serious public-health issue. Recent reports have suggested higher susceptibility to viral infections in depressive patients. However, how depression affects antiviral innate immune signaling remains unknown. Here, we revealed a reduction in expression of Abelson helper integration site 1 (AHI1) in the peripheral blood mononuclear cells (PBMCs) and macrophages from the patients with major depressive disorder (MDD), which leads to attenuated antiviral immune response. We found that depression-related arginine vasopressin (AVP) induces reduction of AHI1 in macrophages. Further studies demonstrated that AHI1 is a critical stabilizer of basal type-I-interferon (IFN-I) signaling. Mechanistically, AHI1 recruits OTUD1 to deubiquitinate and stabilize Tyk2, while AHI1 reduction downregulates Tyk2 and IFN-I signaling activity in macrophages from both MDD patients and depression model mice. Interestingly, we identified a clinical analgesic meptazinol that effectively stimulates AHI1 expression, thus enhancing IFN-I antiviral defense in depression model mice. Our study promotes the understanding of the signaling mechanisms of depression-mediated antiviral immune dysfunction, and reveals meptazinol as an enhancer of antiviral innate immunity in depressive patients.
Collapse
Affiliation(s)
- Hong-Guang Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yong Yang
- Department of Psychiatry, the Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuan Liu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junjie Wang
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Ning Xin
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shifeng Li
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qiuyu Wu
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Guo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tengfei Ren
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Chunsheng Dong
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Jun Wang
- Department of Intensive Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hang Ruan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Wang B, Shi H, Ren L, Miao Z, Wan B, Yang H, Fan X, Gustafsson JA, Sun M, Xu X. Ahi1 regulates serotonin production by the GR/ERβ/TPH2 pathway involving sexual differences in depressive behaviors. Cell Commun Signal 2022; 20:74. [PMID: 35643536 PMCID: PMC9148486 DOI: 10.1186/s12964-022-00894-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression is one of the most common psychiatric diseases. The monoamine transmitter theory suggests that neurotransmitters are involved in the mechanism of depression; however, the regulation on serotonin production is still unclear. We previously showed that Ahi1 knockout (KO) mice exhibited depression-like behavior accompanied by a significant decrease in brain serotonin. METHODS In the present study, western blot, gene knockdown, immunofluorescence, dual-luciferase reporter assay, and rescue assay were used to detect changes in the Ahi1/GR/ERβ/TPH2 pathway in the brains of male stressed mice and male Ahi1 KO mice to explain the pathogenesis of depression-like behaviors. In addition, E2 levels in the blood and brain of male and female mice were measured to investigate the effect on the ERβ/TPH2 pathway and to reveal the mechanisms for the phenomenon of gender differences in depression-like behaviors. RESULTS We found that the serotonin-producing pathway-the ERβ/TPH2 pathway was inhibited in male stressed mice and male Ahi1 KO mice. We further demonstrated that glucocorticoid receptor (GR) as a transcription factor bound to the promoter of ERβ that contains glucocorticoid response elements and inhibited the transcription of ERβ. Our recent study had indicated that Ahi1 regulates the nuclear translocation of GR upon stress, thus proposing the Ahi1/GR/ERβ/TPH2 pathway for serotonin production. Interestingly, female Ahi1 KO mice did not exhibit depressive behaviors, indicating sexual differences in depressive behaviors compared with male mice. Furthermore, we found that serum 17β-estradiol (E2) level was not changed in male and female mice; however, brain E2 level significantly decreased in male but not female Ahi1 KO mice. Further, ERβ agonist LY-500307 increased TPH2 expression and 5-HT production. Therefore, both Ahi1 and E2 regulate the ERβ/TPH2 pathway and involve sexual differences in brain serotonin production and depressive behaviors. CONCLUSIONS In conclusion, although it is unclear how Ahi1 controls E2 secretion in the brain, our findings demonstrate that Ahi1 regulates serotonin production by the GR/ERβ/TPH2 pathway in the brain and possibly involves the regulation on sex differences in depressive behaviors. Video Abstract.
Collapse
Affiliation(s)
- Bin Wang
- Department of Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Liyan Ren
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hao Yang
- Department of Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jan-Ake Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Miao Sun
- Department of Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
10
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
11
|
Zhang Q, Hu Q, Wang J, Miao Z, Li Z, Zhao Y, Wan B, Allen EG, Sun M, Jin P, Xu X. Stress modulates Ahi1-dependent nuclear localization of Ten-Eleven Translocation Protein 2. Hum Mol Genet 2021; 30:2149-2160. [PMID: 34218273 DOI: 10.1093/hmg/ddab179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Major depression disorder (MDD) is one of the most common psychiatric diseases. Recent evidence supports that environmental stress affects gene expression and promotes the pathological process of depression through epigenetic mechanisms. Three Ten-Eleven Translocation (Tet) enzymes are epigenetic regulators of gene expression that promote 5-hydroxymethylcytosine (5hmC) modification of genes. Here, we show that the loss of Tet2 can induce depression-like phenotypes in mice. Paradoxically, using the paradigms of chronic stress, such as chronic mild stress (CMS) and chronic social defeat stress (CSDS), we found that depressive behaviors were associated with increased Tet2 expression but decreased global 5hmC level in hippocampus. We examined the genome-wide 5hmC profile in the hippocampus of Tet2 knockout mice and identified 651 dynamically hydroxymethylated regions, some of which overlapped with known depression-associated loci. We further showed that chronic stress could induce the abnormal nuclear translocation of Tet2 protein from cytosol. Through Tet2 immunoprecipitation and mass spectrum analyses, we identified a cellular trafficking protein, Abelson helper integration site-1 (Ahi1), which could interact with Tet2 protein. Ahi1 knockout or knockdown caused the accumulation of Tet2 in cytosol. The reduction of Ahi1 protein under chronic stress explained the abnormal Ahi1-dependent nuclear translocation of Tet2. These findings together provide the evidence for a critical role of modulating Tet2 nuclear translocation in regulating stress response.
Collapse
Affiliation(s)
- Qian Zhang
- Departments of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Qicheng Hu
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Junjie Wang
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuwen Zhao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Miao Sun
- The Institute of Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Xingshun Xu
- Departments of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Wang B, Xin N, Qian X, Zhai L, Miao Z, Yang Y, Li S, Sun M, Xu X, Li XJ. Ahi1 regulates the nuclear translocation of glucocorticoid receptor to modulate stress response. Transl Psychiatry 2021; 11:188. [PMID: 33782379 PMCID: PMC8007735 DOI: 10.1038/s41398-021-01305-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Stress activates the nuclear translocation of glucocorticoid receptors (GR) to trigger gene expression. Abnormal GR levels can alter the stress responses in animals and therapeutic effects of antidepressants. Here, we reported that stress-mediated nuclear translocation of GR reduced Ahi1 in the stressed cells and mouse brains. Ahi1 interacts with GR to stabilize each other in the cytoplasm. Importantly, Ahi1 deficiency promotes the degradation of GR in the cytoplasm and reduced the nuclear translocation of GR in response to stress. Genetic depletion of Ahi1 in mice caused hyposensitivity to antidepressants under the stress condition. These findings suggest that AHI1 is an important regulator of GR level and may serve as a therapeutic target for stress-related disorders.
Collapse
Affiliation(s)
- Bin Wang
- grid.429222.d0000 0004 1798 0228Institute for Fetology, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Ning Xin
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China ,grid.413389.4Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu China
| | - Xuanchen Qian
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Lijing Zhai
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Zhigang Miao
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, 215123 Suzhou, China
| | - Yong Yang
- grid.263761.70000 0001 0198 0694Department of Psychiatry, The Affiliated Guangji Hospital of Soochow University, 215008 Suzhou, China
| | - Shihua Li
- grid.258164.c0000 0004 1790 3548Guangdong Key Laboratory of non-human primate models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632 Guangzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, 215123, Suzhou, China. .,Department of Neurology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of non-human primate models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
13
|
Hou B, Ji L, Chen Z, An L, Zhang N, Ren D, Yuan F, Liu L, Bi Y, Guo Z, Ma G, Xu F, Yang F, Yu S, Yi Z, Xu Y, He L, Liu C, Bai B, Yu T, Wu S, Zhao L, Cai C, Wu X, Li X, He G. Interaction of CEND1 gene and life events in susceptibility to depressive symptoms in Chinese Han college students. J Affect Disord 2021; 278:570-575. [PMID: 33027701 DOI: 10.1016/j.jad.2020.09.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/12/2020] [Accepted: 09/18/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND . The development of depressive symptoms (DSs) is a complex process caused by both genetic and environmental factors. CEND1 gene coordinates cell division, differentiation and maturation of neural precursor cells, which affects brain structure and function. Our study investigated whether CEND1 was a genetic factor for DSs, particularly under negative life events. METHODS . 272 freshmen with DSs and 467 healthy controls were recruited via the Center for Epidemiologic Studies Depression Scale (CES-D). The adolescent Self-rating Life Event Checklist (ASLEC) was adopted to assess stressful life events during the past 12 months. Two SNPs (rs7946354, rs6597982) within the CEND1 gene were genotyped using Agena MassARRAY iPLEX technology. We combined generalized multifactor dimensionality reduction (GMDR) with RStudio programming to assess the direct association and gene-environment interaction (G × E). RESULTS . Rs7946354 was associated with DSs in an overdominant model (GT vs. GG+TT). In addition, both rs7946354 and rs6597982 had considerable impacts on negative life events. GMDR showed a statistical G × E that the AG genotype of rs6597982 and GT genotype of rs7946354 contribute to the maximum risk of DSs under high negative life events. LIMITATIONS . Only two single nucleotide polymorphisms (SNPs) were examined. Verification studies with bigger sample size and more varied demographic background information could be adopted to further support the generalization of these findings. CONCLUSIONS .CEND1 can potentially cause high sensitivity to life events and affect DSs especially in the presence of negative life events, which contribute to the field of depression prevention and treatment.
Collapse
Affiliation(s)
- Binyin Hou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhixuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lin An
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Naixin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Gaini Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zhenghui Yi
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, 16 Hehua Rd, Taibaihu New District, Jining, Shandong 272067, China
| | - Bo Bai
- School of Mental Health, Jining Medical University, 16 Hehua Rd, Taibaihu New District, Jining, Shandong 272067, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Shaochang Wu
- Lishui No.2 People's Hospital, 69 Beihuan Rd, Liandu District, Lishui, Zhejiang 323000, China
| | - Longyou Zhao
- Lishui No.2 People's Hospital, 69 Beihuan Rd, Liandu District, Lishui, Zhejiang 323000, China
| | - Changqun Cai
- Wuhu No.4 People's Hospital, 1 Xuxiashan Rd, Wuhu, Anhui 241002,China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| |
Collapse
|
14
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
15
|
Kim Y, Kim SH. WD40-Repeat Proteins in Ciliopathies and Congenital Disorders of Endocrine System. Endocrinol Metab (Seoul) 2020; 35:494-506. [PMID: 32894826 PMCID: PMC7520596 DOI: 10.3803/enm.2020.302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
WD40-repeat (WDR)-containing proteins constitute an evolutionarily conserved large protein family with a broad range of biological functions. In human proteome, WDR makes up one of the most abundant protein-protein interaction domains. Members of the WDR protein family play important roles in nearly all major cellular signalling pathways. Mutations of WDR proteins have been associated with various human pathologies including neurological disorders, cancer, obesity, ciliopathies and endocrine disorders. This review provides an updated overview of the biological functions of WDR proteins and their mutations found in congenital disorders. We also highlight the significant role of WDR proteins in ciliopathies and endocrine disorders. The new insights may help develop therapeutic approaches targeting WDR motifs.
Collapse
Affiliation(s)
- Yeonjoo Kim
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, UK
| | - Soo-Hyun Kim
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London, UK
- Corresponding author: Soo-Hyun Kim Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, UK Tel: +44-208-266-6198, E-mail:
| |
Collapse
|
16
|
Sheu JJ, Yang LY, Sanotra MR, Wang ST, Lu HT, Kam RSY, Hsu IU, Kao SH, Lee CK, Shieh JCC, Lin YF. Reduction of AHI1 in the serum of Taiwanese with probable Alzheimer's disease. Clin Biochem 2019; 76:24-30. [PMID: 31786207 DOI: 10.1016/j.clinbiochem.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The development of blood-based biomarkers for early diagnosis and treatment of Alzheimer's disease (AD) is desirable. In AD model mouse brain and neuronal cells, Abelson helper integration site-1 (AHI1) protein is reduced. AHI1 facilitates intracellular amyloid precursor protein (APP) translocation to inhibit amyloidogenic pathology of AD, and thus may be an AD biomarker. METHODS This study was conducted among 32 AD patients and 54 healthy control (HC) subjects. AHI1-related protein levels from initially collected serum samples in each group were screened using Western blotting. The protein concentrations of AHI1 and amyloid-β (Aβ), peptide(s) derived from APP, from all serum samples were analyzed using ELISA. RESULTS In AD serum, AHI1 and a large truncated C-terminal APP fragment were significantly reduced. The average concentrations of serum AHI1 and Aβ in AD were significantly lower than those in HC. Notably, AHI1 concentration in HC serum was decreased in an age-dependent manner, while it was consistently low in AD serum and had no correlation with Aβ or mini-mental state examination score. The receiver operating characteristic analysis on all subjects demonstrated an area under curve (AUC) value of 0.7 for AHI1 on AD diagnosis, while the AUC increased to 0.82 on the subjects younger than 77 years old, suggesting a good diagnostic performance of serum AHI1 for AD especially at relatively young age. CONCLUSION An early event of AHI1 reduction in the body of AD patients was observed. Serum AHI1 may be valuable for early diagnosis of AD.
Collapse
Affiliation(s)
- Jau-Jiuan Sheu
- Department of Neurology, Taipei Medical University Hospital, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Yu Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Sen-Te Wang
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hsien-Tsung Lu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Rachel Sook Yee Kam
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - I-Uen Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
17
|
Shepard CJ, Cline SG, Hinds D, Jahanbakhsh S, Prokop JW. Breakdown of multiple sclerosis genetics to identify an integrated disease network and potential variant mechanisms. Physiol Genomics 2019; 51:562-577. [PMID: 31482761 DOI: 10.1152/physiolgenomics.00120.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetics of multiple sclerosis (MS) are highly polygenic with few insights into mechanistic associations with pathology. In this study, we assessed MS genetics through linkage disequilibrium and missense variant interpretation to yield a MS gene network. This network of 96 genes was taken through pathway analysis, tissue expression profiles, single cell expression segregation, expression quantitative trait loci (eQTLs), genome annotations, transcription factor (TF) binding profiles, structural genome looping, and overlap with additional associated genetic traits. This work revealed immune system dysfunction, nerve cell myelination, energetic control, transcriptional regulation, and variants that overlap multiple autoimmune disorders. Tissue-specific expression and eQTLs of MS genes implicate multiple immune cell types including macrophages, neutrophils, and T cells, while the genes in neural cell types enrich for oligodendrocyte and myelin sheath biology. There are eQTLs in linkage with lead MS variants in 25 genes including the multitissue eQTL, rs9271640, for HLA-DRB1/DRB5. Using multiple functional genomic databases, we identified noncoding variants that disrupt TF binding for GABPA, CTCF, EGR1, YY1, SPI1, CLOCK, ARNTL, BACH1, and GFI1. Overall, this paper suggests multiple genetic mechanisms for MS associated variants while highlighting the importance of a systems biology and network approach when elucidating intersections of the immune and nervous system.
Collapse
Affiliation(s)
- C Joy Shepard
- Department of Biology, Athens State University, Athens, Alabama.,Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sara G Cline
- Department of Biology, Athens State University, Athens, Alabama
| | - David Hinds
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Seyedehameneh Jahanbakhsh
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
Karunakaran KB, Chaparala S, Ganapathiraju MK. Potentially repurposable drugs for schizophrenia identified from its interactome. Sci Rep 2019; 9:12682. [PMID: 31481665 PMCID: PMC6722087 DOI: 10.1038/s41598-019-48307-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
We previously presented the protein-protein interaction network of schizophrenia associated genes, and from it, the drug-protein interactome which showed the drugs that target any of the proteins in the interactome. Here, we studied these drugs further to identify whether any of them may potentially be repurposable for schizophrenia. In schizophrenia, gene expression has been described as a measurable aspect of the disease reflecting the action of risk genes. We studied each of the drugs from the interactome using the BaseSpace Correlation Engine, and shortlisted those that had a negative correlation with differential gene expression of schizophrenia. This analysis resulted in 12 drugs whose differential gene expression (drug versus normal) had an anti-correlation with differential expression for schizophrenia (disorder versus normal). Some of these drugs were already being tested for their clinical activity in schizophrenia and other neuropsychiatric disorders. Several proteins in the protein interactome of the targets of several of these drugs were associated with various neuropsychiatric disorders. The network of genes with opposite drug-induced versus schizophrenia-associated expression profiles were significantly enriched in pathways relevant to schizophrenia etiology and GWAS genes associated with traits or diseases that had a pathophysiological overlap with schizophrenia. Drugs that targeted the same genes as the shortlisted drugs, have also demonstrated clinical activity in schizophrenia and other related disorders. This integrated computational analysis will help translate insights from the schizophrenia drug-protein interactome to clinical research - an important step, especially in the field of psychiatric drug development which faces a high failure rate.
Collapse
Affiliation(s)
- Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Indian Institute of Science, Bengaluru, India
| | | | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, USA.
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
19
|
Expression of AHI1 Rescues Amyloidogenic Pathology in Alzheimer's Disease Model Cells. Mol Neurobiol 2019; 56:7572-7582. [PMID: 31062249 DOI: 10.1007/s12035-019-1587-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/27/2019] [Indexed: 01/03/2023]
Abstract
A hallmark of Alzheimer's disease (AD) pathogenesis is the accumulation of extracellular plaques mainly composed of amyloid-β (Aβ) derived from amyloid precursor protein (APP) cleavage. Recent reports suggest that transport of APP in vesicles with huntingtin-associated protein-1 (HAP1) negatively regulates Aβ production. In neurons, HAP1 forms a stable complex with Abelson helper integration site-1 (AHI1), in which mutations cause neurodevelopmental and psychiatric disorders. HAP1 and AHI1 interact with tropomyosin receptor kinases (Trks), which are also associated with APP and mediate neurotrophic signaling. In this study, we hypothesize that AHI1 participates in APP trafficking and processing to rescue AD pathology. Indeed, AHI1 was significantly reduced in mouse neuroblastoma N2a cells expressing human Swedish and Indiana APP (designed as AD model cells) and in 3xTg-AD mouse brain. The AD model cells as well as Ahi1-knockdown cells expressing wild-type APP-695 exhibited a significant reduction in viability. In addition, the AD model cells were reduced in neurite outgrowth. APP C-terminal fragment-β (CTFβ) and Aβ42 were increased in the AD cell lysates and the culture media, respectively. To investigate the mechanism how AHI1 alters APP activities, we overexpressed human AHI1 in the AD model cells. The results showed that AHI1 interacted with APP physically in mouse brain and transfected N2a cells despite APP genotypes. AHI1 expression facilitated intracellular translocation of APP and inhibited APP amyloidogenic process to reduce the level of APP-CTFβ in the total lysates of AD model cells as well as Aβ in the culture media. Consequently, AHI1-APP interactions enhanced neurotrophic signaling through Erk activation and led to restored cell survival and differentiation.
Collapse
|
20
|
Loss of the neurodevelopmental Joubert syndrome causing protein, Ahi1, causes motor and muscle development delays independent of central nervous system involvement. Dev Biol 2019; 448:36-47. [PMID: 30695685 DOI: 10.1016/j.ydbio.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
Joubert syndrome (JBTS) is a predominantly autosomal recessive neurodevelopmental disorder that presents with characteristic malformations of the cerebellar vermis, superior cerebellar peduncles and midbrain in humans. Accompanying these malformations are a heterogeneous set of clinical symptoms, which frequently include deficits in motor and muscle function, such as hypotonia (low muscle tone) and ataxia (clumsiness). These symptoms are attributed to improper development of the hindbrain, but no direct evidence has been reported linking these in JBTS. Here, we describe muscle developmental defects in a mouse with a targeted deletion of the Abelson helper integration site 1 gene, Ahi1, one of the genes known to cause JBTS in humans. While FVB/NJ Ahi1-/- mice display no gross malformations of the cerebellum, deficits are observed in several measures of motor function, strength, and body development. Specifically, Ahi1-/- mice show delayed physical development, delays in surface reflex righting as neonates, and reductions in grip strength and spontaneous locomotor activity as adults. Additionally, Ahi1-/- mice showed evidence of muscle-specific contributions to this phenotype, such as reductions in 1) myoblast differentiation potential in vitro, 2) muscle desmin expression, and 3) overall muscle mass, myonuclear domain, and muscle fiber cross-sectional area. Together, these data suggest that loss of Ahi1 may cause abnormalities in the differentiation of myoblasts to mature muscle cells. Moreover, Ahi1 loss impacts muscle development directly, outside of any indirect impact of cerebellar malformations, revealing a novel myogenic cause for hypotonia in JBTS.
Collapse
|
21
|
Wang B, Zhang Y, Dong H, Gong S, Wei B, Luo M, Wang H, Wu X, Liu W, Xu X, Zheng Y, Sun M. Loss of Tctn3 causes neuronal apoptosis and neural tube defects in mice. Cell Death Dis 2018; 9:520. [PMID: 29725084 PMCID: PMC5938703 DOI: 10.1038/s41419-018-0563-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Tctn3 belongs to the Tectonic (Tctn) family and is a single-pass membrane protein localized at the transition zone of primary cilia as an important component of ciliopathy-related protein complexes. Previous studies showed that mutations in Tctn1 and Tctn2, two members of the tectonic family, have been reported to disrupt neural tube development in humans and mice, but the functions of Tctn3 in brain development remain elusive. In this study, Tctn3 knockout (KO) mice were generated by utilizing the piggyBac (PB) transposon system. We found that Tctn3 KO mice exhibited abnormal global development, including prenatal lethality, microphthalmia, polysyndactyly, and abnormal head, sternum, and neural tube, whereas Tctn3 heterozygous KO mice did not show abnormal development or behaviors. Further, we found that the mRNA levels of Gli1 and Ptch1, downstream signaling components of the Shh pathway, were significantly reduced. Likewise, neural tube patterning-related proteins, such as Shh, Foxa2, and Nkx2.2, were altered in their distribution. Interestingly, Tctn3 KO led to significant changes in apoptosis-related proteins, including Bcl-2, Bax, and cleaved PARP1, resulting in reduced numbers of neuronal cells in embryonic brains. Tctn3 KO inhibited the PI3K/Akt signaling pathway but not the mTOR-dependent pathway. The small molecule SC79, a specific Akt activator, blocked apoptotic cell death in primary mouse embryonic fibroblasts from Tctn3 KO mice. Finally, NPHP1, a protein with anti-apoptotic ability, was found to form a complex with Tctn3, and its levels were decreased in Tctn3 KO mice. In conclusion, our results show that Tctn3 KO disrupts the Shh signaling pathway and neural tube patterning, resulting in abnormal embryonic development, cellular apoptosis, and prenatal death in mice.
Collapse
Affiliation(s)
- Bin Wang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Yingying Zhang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Hongli Dong
- Department of Neurology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou City, 215123, Jiangsu, China
| | - Siyi Gong
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.,Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Man Luo
- Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China
| | - Wei Liu
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou City, 215123, Jiangsu, China.
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China. .,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| |
Collapse
|
22
|
Guo D, Zhang S, Sun H, Xu X, Hao Z, Mu C, Xu X, Wang G, Ren H. Tyrosine hydroxylase down-regulation after loss of Abelson helper integration site 1 (AHI1) promotes depression via the circadian clock pathway in mice. J Biol Chem 2018; 293:5090-5101. [PMID: 29449373 PMCID: PMC5892572 DOI: 10.1074/jbc.ra117.000618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Abelson helper integration site 1 (AHI1) is associated with several neuropsychiatric and brain developmental disorders, such as schizophrenia, depression, autism, and Joubert syndrome. Ahi1 deficiency in mice leads to behaviors typical of depression. However, the mechanisms by which AHI1 regulates behavior remain to be elucidated. Here, we found that down-regulation of expression of the rate-limiting enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), in the midbrains of Ahi1-knockout (KO) mice is responsible for Ahi1-deficiency-mediated depressive symptoms. We also found that Rev-Erbα, a TH transcriptional repressor and circadian regulator, is up-regulated in the Ahi1-KO mouse midbrains and Ahi1-knockdown Neuro-2a cells. Moreover, brain and muscle Arnt-like protein 1 (BMAL1), the Rev-Erbα transcriptional regulator, is also increased in the Ahi1-KO mouse midbrains and Ahi1-knockdown cells. Our results further revealed that AHI1 decreases BMAL1/Rev-Erbα expression by interacting with and repressing retinoic acid receptor-related orphan receptor α, a nuclear receptor and transcriptional regulator of circadian genes. Of note, Bmal1 deficiency reversed the reduction in TH expression induced by Ahi1 deficiency. Moreover, microinfusion of the Rev-Erbα inhibitor SR8278 into the ventral midbrain of Ahi1-KO mice significantly increased TH expression in the ventral tegmental area and improved their depressive symptoms. These findings provide a mechanistic explanation for a link between AHI1-related behaviors and the circadian clock pathway, indicating an involvement of circadian regulatory proteins in AHI1-regulated mood and behavior.
Collapse
Affiliation(s)
- Dongkai Guo
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun Zhang
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongyang Sun
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xingyun Xu
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xingshun Xu
- the Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu 215123, China, and
- the Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guanghui Wang
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China,
| | - Haigang Ren
- From the Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China,
| |
Collapse
|
23
|
Wang Y, Wang B, Lu J, Shi H, Gong S, Wang Y, Hamdy RC, Chua BHL, Yang L, Xu X. Fisetin provides antidepressant effects by activating the tropomyosin receptor kinase B signal pathway in mice. J Neurochem 2017; 143:561-568. [PMID: 28945929 DOI: 10.1111/jnc.14226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Depression has been associated with a low-grade chronic inflammatory state, suggesting a potential therapeutic role for anti-inflammatory agents. Fisetin is a naturally occurring flavonoid in strawberries that has anti-inflammatory activities, but whether fisetin has antidepressant effects is unknown. In this study, we exposed mice to spatial restraint for 2 weeks with or without treatment with fisetin. Immobility time in the forced swimming and tail suspension test after this restraint increased in the untreated group, but this increase did not occur in the fisetin group. We administered fisetin to Abelson helper integration site-1 (Ahi1) knockout mice, which have depressive phenotypes. We found that fisetin attenuated the depressive phenotype of these Ahi1 knockout mice. We further investigated the potential mechanism of fisetin's antidepressant effects. Because TrkB is a critical signaling pathway in the mechanisms of depression, we examined whether phosphorylated TrkB was involved in the antidepressant effects of fisetin. We found that fisetin increased phosphorylated TrkB level without altering total TrkB; this increase was attenuated by K252a, a specific TrkB inhibitor. Taken together, our results demonstrated that fisetin may have therapeutic potential for treating depression and that this antidepressant effect may be mediated by the activation of the TrkB signaling pathway.
Collapse
Affiliation(s)
- Yamin Wang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Jiaqi Lu
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Siyi Gong
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Yufan Wang
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Ronald C Hamdy
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Balvin H L Chua
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Lingli Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xingshun Xu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
24
|
Graves JS, Barcellos LF, Simpson S, Belman A, Lin R, Taylor BV, Ponsonby AL, Dwyer T, Krupp L, Waubant E, van der Mei IAF. The multiple sclerosis risk allele within the AHI1 gene is associated with relapses in children and adults. Mult Scler Relat Disord 2017; 19:161-165. [PMID: 29409597 DOI: 10.1016/j.msard.2017.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/12/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND While common variant non-HLA (human leukocyte antigen) alleles have been associated with MS risk, their role in disease course is less clear. We sought to determine whether established multiple sclerosis (MS) genetic susceptibility factors are associated with relapse rate in children and an independent cohort of adults with MS. METHODS Genotyping was performed for 182 children with MS or clinically isolated syndrome with high risk for MS from two Pediatric MS Centers. They were prospectively followed for relapses. Fifty-two non-HLA MS susceptibility single nucleotide polymorphisms (SNPs) were evaluated for association with relapse rate. Cox regression models were adjusted for sex, genetic ancestry, disease-modifying therapy (DMT), 25-OH vitamin D level and HLA-DRB1*15:01/03 status. Investigation of pediatric subject SNP results was performed using a second cohort of 141 adult MS subjects of Northern European ancestry from the Southern Tasmanian Multiple Sclerosis Longitudinal Study. RESULTS For pediatric subjects, 408 relapses were captured over 622 patient-years of follow-up. Four non-HLA risk SNPs (rs11154801, rs650258, rs12212193, rs2303759) were associated with relapses (p < 0.01) in the pediatric subjects. After adjustment for genetic ancestry, sex, age, vitamin D level, DMT use and HLA-DRB1*15 status, having two copies of the MS risk allele within AHI1 (rs11154801) was associated with increased relapses among children (HR = 1.75,95%CI = 1.18-2.48, p = 0.006) and this result was also observed among adults (HR = 1.81,95%CI = 1.05-3.03, p = 0.026). CONCLUSIONS Our results suggest that the MS genetic risk variant within the gene AHI1 may contribute to disease course in addition to disease susceptibility.
Collapse
Affiliation(s)
- Jennifer S Graves
- UCSF Pediatric MS Center, San Francisco, CA, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Lisa F Barcellos
- Genetic Epidemiology and Genomics Lab, School of Public Health, and California Institute of Quantitative Biosciences, UC Berkeley, Berkeley, CA, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Steve Simpson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Anita Belman
- National Pediatric MS Center, Stonybrook, NY, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Rui Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; Guangxi Center for Disease Prevention and Control, Nanning, China; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Terence Dwyer
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Lauren Krupp
- National Pediatric MS Center, Stonybrook, NY, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Emmanuelle Waubant
- UCSF Pediatric MS Center, San Francisco, CA, USA; School of Medicine, University of Tasmania, Hobart, Australia.
| | - Ingrid A F van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; School of Medicine, University of Tasmania, Hobart, Australia.
| |
Collapse
|
25
|
Alterations in the expression of a neurodevelopmental gene exert long-lasting effects on cognitive-emotional phenotypes and functional brain networks: translational evidence from the stress-resilient Ahi1 knockout mouse. Mol Psychiatry 2017; 22:884-899. [PMID: 27021817 PMCID: PMC5444025 DOI: 10.1038/mp.2016.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/29/2015] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
Many psychiatric disorders are highly heritable and may represent the clinical outcome of early aberrations in the formation of neural networks. The placement of brain connectivity as an 'intermediate phenotype' renders it an attractive target for exploring its interaction with genomics and behavior. Given the complexity of genetic make up and phenotypic heterogeneity in humans, translational studies are indicated. Recently, we demonstrated that a mouse model with heterozygous knockout of the key neurodevelopmental gene Ahi1 displays a consistent stress-resilient phenotype. Extending these data, the current research describes our multi-faceted effort to link early variations in Ahi1 expression with long-term consequences for functional brain networks and cognitive-emotional phenotypes. By combining behavioral paradigms with graph-based analysis of whole-brain functional networks, and then cross-validating the data with robust neuroinformatic data sets, our research suggests that physiological variation in gene expression during neurodevelopment is eventually translated into a continuum of global network metrics that serve as intermediate phenotypes. Within this framework, we suggest that organization of functional brain networks may result, in part, from an adaptive trade-off between efficiency and resilience, ultimately culminating in a phenotypic diversity that encompasses dimensions such as emotional regulation and cognitive function.
Collapse
|
26
|
Wang B, Zheng Y, Shi H, Du X, Zhang Y, Wei B, Luo M, Wang H, Wu X, Hua X, Sun M, Xu X. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. GENES BRAIN AND BEHAVIOR 2016; 16:296-307. [PMID: 27621227 DOI: 10.1111/gbb.12339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022]
Abstract
Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462+/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462+/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462+/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462+/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462+/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs.
Collapse
Affiliation(s)
- B Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Shanghai, China.,Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China.,Institute of Neuroscience, Soochow University, Shanghai, China
| | - Y Zheng
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - H Shi
- Institute of Neuroscience, Soochow University, Shanghai, China
| | - X Du
- Department of Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou City, China
| | - Y Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China
| | - B Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China
| | - M Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Shanghai, China
| | - H Wang
- Obstetrics and Gynecology Hospital Research Center, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - X Wu
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, MOE Key Laboratory of Contemporary Anthropology, and Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - X Hua
- Department of Emergency, Emory University Hospital, Atlanta, GA, USA
| | - M Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Shanghai, China
| | - X Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Shanghai, China.,Institute of Neuroscience, Soochow University, Shanghai, China
| |
Collapse
|
27
|
Ren Z, Qiu A, Zhang A, Huang L, Rao S. A cis-eQTL in AHI1 confers risk to schizophrenia in European populations. Neurosci Lett 2016; 632:130-5. [PMID: 27585752 DOI: 10.1016/j.neulet.2016.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/21/2016] [Accepted: 08/28/2016] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a devastating mental disorder, with heritability as high as 80%. Although genome-wide association studies have identified multiple promising risk variants of schizophrenia, they could only explain a small portion of the disease heritability, and other variants with low to moderate effect remain to be identified. Abelson helper integration site 1 (AHI1) is highly expressed in mammals throughout the developing brain, with lower expression continuing into adulthood. Besides, previous evidence suggested that AHI1 expression was changed in schizophrenia patients. Furthermore, association signal between AHI1 variants and schizophrenia has been reported in several European samples. In the present study, we first analyzed two expression quantitative trait loci (eQTL) datasets in healthy individuals and investigated the associations of eQTL of AHI1 with schizophrenia in independent European samples. We observed that a cis-eQTL of AHI1, rs11154801, showed significant association with AHI1 expression in both datasets (P<5E-05). Genetic evidence exhibited that rs11154801 was significantly associated with schizophrenia risk in both the discovery sample (9394 cases and 12462 controls, P=0.046, OR=0.958, 95% CI=0.918-0.999) and the replication sample (3240 cases and 14786 controls, P=0.024, OR=0.949, 95% CI=0.870-0.990). When the discovery and replication samples were pooled together, this association was further strengthened (P=0.004, OR=0.949, 95% CI=0.916-0.983). These results suggested that AHI1 is likely a risk gene for schizophrenia, at least in European populations.
Collapse
Affiliation(s)
- Zhimin Ren
- Pediatrics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Anli Qiu
- Department of respiration, Harbin Children's Hospital, Harbin, 150086, China
| | - Aiqi Zhang
- Pediatrics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lijun Huang
- Pharmacy Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
28
|
Xu Z, Guo X, Yang Y, Tucker D, Lu Y, Xin N, Zhang G, Yang L, Li J, Du X, Zhang Q, Xu X. Low-Level Laser Irradiation Improves Depression-Like Behaviors in Mice. Mol Neurobiol 2016; 54:4551-4559. [PMID: 27379735 DOI: 10.1007/s12035-016-9983-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is one of the leading forms of psychiatric disorders, characterized by aversion to mobility, neurotransmitter deficiency, and energy metabolic decline. Low-level laser therapy (LLLT) has been investigated in a variety of neurodegenerative disorders associated with mitochondrial dysfunction and functional impairments. The goal of this study was to examine the effect of LLLT on depression-like behaviors and to explore the potential mechanism by detecting mitochondrial function following LLLT. Depression models in space restriction mice and Abelson helper integration site-1 (Ahi1) knockout (KO) mice were employed in this work. Our results revealed that LLLT effectively improved depression-like behaviors, in the two depression mice models, by decreasing immobility duration in behavioral despair tests. In addition, ATP biosynthesis and the level of mitochondrial complex IV expression and activity were significantly elevated in prefrontal cortex (PFC) following LLLT. Intriguingly, LLLT has no effects on ATP content and mitochondrial complex I-IV levels in other tested brain regions, hippocampus and hypothalamus. As a whole, these findings shed light on a novel strategy of transcranial LLLT on depression improvement by ameliorating neurotransmitter abnormalities and promoting mitochondrial function in PFC. The present work provides concrete groundwork for further investigation of LLLT for depression treatment.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China
| | - Xiaobo Guo
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China
| | - Yong Yang
- Department of Psychiatry, Guangji Hospital, Suzhou City, Jiangsu, 215000, China
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ning Xin
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China
| | - Gaocai Zhang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China
| | - Lingli Yang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China
| | - Jizhen Li
- Department of Neurology, Suzhou Kowloon Hospital, Suzhou City, 215028, China
| | - Xiangdong Du
- Department of Psychiatry, Guangji Hospital, Suzhou City, Jiangsu, 215000, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Xingshun Xu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou City, Jiangsu, 215004, China. .,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu, 215123, China.
| |
Collapse
|
29
|
Patak J, Zhang-James Y, Faraone SV. Endosomal system genetics and autism spectrum disorders: A literature review. Neurosci Biobehav Rev 2016; 65:95-112. [PMID: 27048963 PMCID: PMC4866511 DOI: 10.1016/j.neubiorev.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted.
Collapse
Affiliation(s)
- Jameson Patak
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States.
| | - Yanli Zhang-James
- Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States.
| | - Stephen V Faraone
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States; Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
30
|
Xiang J, Yan S, Li SH, Li XJ. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice. PLoS Genet 2015; 11:e1005175. [PMID: 25875952 PMCID: PMC4398408 DOI: 10.1371/journal.pgen.1005175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. Although the majority of the neurons in the brain are generated during embryonic stage, new neurons are continuously being produced postnatally, and at a much lower rate in adulthood. As postnatal neurogenesis is a key component of the brain maturation process that creates dynamic ‘wirings’ in the brain necessary for an individual to grow, learn, and cope with the external world, attenuated postnatal neurogenesis may affect an individual’s mental stability, rendering a higher susceptibility to depression later in life. In the current study, we genetically ablated the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions, and found that early loss of Hap1 significantly reduces postnatal hippocampal neurogenesis, and leads to adult depressive-like behavior. We also found c-kit as an effector to mediate the neurogenesis defect and adult depressive-like phenotype in mice lacking Hap1. The results provide the first genetic evidence to demonstrate the importance of postnatal neurogenesis in adult depression, and may offer new avenues in the prevention and treatment of depression. Our study also has potential implications to other adult-onset mental disorders.
Collapse
Affiliation(s)
- Jianxing Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sen Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Hua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (SHL); (XJL)
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SHL); (XJL)
| |
Collapse
|
31
|
Porcelli S, Pae CU, Han C, Lee SJ, Patkar AA, Masand PS, Balzarro B, Alberti S, De Ronchi D, Serretti A. The influence of AHI1 variants on the diagnosis and treatment outcome in schizophrenia. Int J Mol Sci 2015; 16:2517-29. [PMID: 25622261 PMCID: PMC4346849 DOI: 10.3390/ijms16022517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to explore whether four single nucleotide polymorphisms (SNPs) within the AHI1 gene could be associated with schizophrenia (SCZ) and whether they could predict the clinical outcomes in SCZ patients treated with antipsychotics. Four hundred twenty-six (426) in-patients with SCZ and 345 controls were genotyped for four AHI1 SNPs (rs11154801, rs7750586, rs9647635 and rs9321501). Baseline and clinical measures for SCZ patients were assessed through the Positive and Negative Syndrome Scale (PANSS). Allelic and genotypic frequencies in SCZ subjects were compared with those of controls using the χ2 statistics. The repeated-measure ANOVA was used for the assessment of treatment outcomes measured by PANSS changes. The case-control analysis did not show any difference in the genotypic distribution of the SNPs, while in the allelic analysis, a weak association was found between the rs9647635 A allele and SCZ. Furthermore, in the haplotype analysis, three haplotypes resulted in being associated with SCZ. On the other hand, two SNPs (rs7750586 and rs9647635) were associated with clinical improvement of negative symptoms in the allelic analysis, although in the genotypic analysis, only trends of association were found for the same SNPs. Our findings suggest a possible influence of AHI1 variants on SCZ susceptibility and antipsychotic response, particularly concerning negative symptomatology. Subsequent well-designed studies would be mandatory to confirm our results due to the methodological shortcomings of the present study.
Collapse
Affiliation(s)
- Stefano Porcelli
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Chi-Un Pae
- Department of Psychiatry, the Catholic University of Korea College of Medicine, Seoul 137701, Korea.
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul 136701, Korea.
| | - Soo-Jung Lee
- Department of Psychiatry, the Catholic University of Korea College of Medicine, Seoul 137701, Korea.
| | - Ashwin A Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | | | - Beatrice Balzarro
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Siegfried Alberti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Diana De Ronchi
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Alessandro Serretti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna 40123, Italy.
| |
Collapse
|
32
|
Lotan A, Fenckova M, Bralten J, Alttoa A, Dixson L, Williams RW, van der Voet M. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci 2014; 8:331. [PMID: 25414627 PMCID: PMC4222236 DOI: 10.3389/fnins.2014.00331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022] Open
Abstract
Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders-attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10(-5)). 22% of genes overlapped two or more disorders. The most widely shared subset of genes-common to five of six disorders-included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20-30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Amit Lotan
- Department of Adult Psychiatry and the Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center Jerusalem, Israel
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Janita Bralten
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands ; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| | - Aet Alttoa
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Neurobiology Program, University of Würzburg Würzburg, Germany
| | - Luanna Dixson
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg Mannheim, Germany
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center Memphis, TN, USA
| | - Monique van der Voet
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
33
|
Porcelli S, Pae CU, Han C, Lee SJ, Patkar AA, Masand PS, Balzarro B, Alberti S, De Ronchi D, Serretti A. Abelson helper integration site-1 gene variants on major depressive disorder and bipolar disorder. Psychiatry Investig 2014; 11:481-6. [PMID: 25395981 PMCID: PMC4225214 DOI: 10.4306/pi.2014.11.4.481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The present study aimed to explore whether 4 single nucleotide polymorphisms (SNPs) within the AHI1 gene could be associated with major depressive disorder (MD) and bipolar disorder (BD), and whether they could predict clinical outcomes in mood disorders. METHODS One hundred and eighty-four (184) patients with MD, 170 patients with BD and 170 healthy controls were genotyped for 4 AHI1 SNPs (rs11154801, rs7750586, rs9647635 and rs9321501). Baseline and final clinical measures for MD patients were assessed through the Hamilton Rating Scale for Depression (HAM-D). Allelic and genotypic frequencies in MD and BD subjects were compared with those of each disorder and healthy group using the χ(2) statistics. Repeated measures ANOVA was used to test possible influences of SNPs on treatment efficacy. RESULTS The rs9647635 A/A was more represented in subjects with BD as compared with MD and healthy subjects together. The rs9647635 A/A was also more presented in patients with MD than in healthy subjects. With regard to the allelic analysis, rs9647635 A allele was more represented in subjects with BD compared with healthy subjects, while it was not observed between patients with MD and healthy subjects. CONCLUSION Our findings provide potential evidence of an association between some variants of AHI1 and mood disorders susceptibility but not with clinical outcomes. However, we will need to do more adequately-powered and advanced association studies to draw any conclusion due to clear limitations.
Collapse
Affiliation(s)
- Stefano Porcelli
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Chi-Un Pae
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | - Changsu Han
- Department of Psychiatry, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Soo-Jung Lee
- Department of Psychiatry, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Ashwin A. Patkar
- Department of Psychiatry and Behavioural Sciences, Duke University Medical Center, Durham, NC, USA
| | | | - Beatrice Balzarro
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Siegfried Alberti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Giusti SA, Vercelli CA, Vogl AM, Kolarz AW, Pino NS, Deussing JM, Refojo D. Behavioral phenotyping of Nestin-Cre mice: implications for genetic mouse models of psychiatric disorders. J Psychiatr Res 2014; 55:87-95. [PMID: 24768109 DOI: 10.1016/j.jpsychires.2014.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022]
Abstract
Genetic mouse models based on the Cre-loxP system have been extensively used to explore the influence of specific gene deletions on different aspects of behavioral neurobiology. However, the interpretation of the effects attributed to the gene deletion might be obscured by potential side effects secondary to the Cre recombinase transgene insertion or Cre activity, usually neither controlled nor reported. Here, we performed a comprehensive behavioral analysis of endophenotypes of neuropsychiatric disorders in the extensively used Nestin(Cre) mouse line, commonly employed to restrict genetic modifications to the CNS. We observed no alterations in locomotion, general exploratory activity, learning and memory, sociability, startle response and sensorimotor gating. Although the overall response to stimuli triggering anxiety-like behaviors remained unaltered in Nestin(Cre) mice, a strong impairment in the acquisition of both contextual- and cued-conditioned fear was observed. These results underline the importance of adequately controlling the behavioral performance of the employed Cre-lines per-se in pre-clinical neurobehavioral research.
Collapse
Affiliation(s)
- Sebastian A Giusti
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Claudia A Vercelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Annette M Vogl
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Adam W Kolarz
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S Pino
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Damian Refojo
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
35
|
Ren L, Qian X, Zhai L, Sun M, Miao Z, Li J, Xu X. Loss of Ahi1 impairs neurotransmitter release and causes depressive behaviors in mice. PLoS One 2014; 9:e93640. [PMID: 24691070 PMCID: PMC3972168 DOI: 10.1371/journal.pone.0093640] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/05/2014] [Indexed: 11/27/2022] Open
Abstract
Major depression is becoming one of the most prevalent forms of psychiatric disorders. However, the mechanisms of major depression are still not well-understood. Most antidepressants are only effective in some patients and produce some serious side effects. Animal models of depression are therefore essential to unravel the mechanisms of depression and to develop novel therapeutic strategies. Our previous studies showed that Abelson helper integration site-1 (Ahi1) deficiency causes depression-like behaviors in mice. In this study, we characterized the biochemical and behavioral changes in Ahi1 knockout (KO) mice. In Ahi1 KO mice, neurotransmitters including serotonin and dopamine were significantly decreased in different brain regions. However, glutamate and GABA levels were not affected by Ahi1 deficiency. The antidepressant imipramine attenuated depressive behaviors and partially restored brain serotonin level in Ahi1 KO mice. Our findings suggest that Ahi1 KO mice can be used for studying the mechanisms of depression and screening therapeutic targets.
Collapse
Affiliation(s)
- Liyan Ren
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Xuanchen Qian
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Lijing Zhai
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Miao Sun
- The Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Jizhen Li
- Department of Neurology, Suzhou Kowloon Hospital, Suzhou City, Jiangsu Province, China
| | - Xingshun Xu
- Department of Neurology and Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, the Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
- The Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
36
|
Fibroblast growth factor 4 is required but not sufficient for the astrocyte dedifferentiation. Mol Neurobiol 2014; 50:997-1012. [PMID: 24510312 DOI: 10.1007/s12035-014-8649-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 01/20/2014] [Indexed: 01/17/2023]
Abstract
Our recent studies demonstrated that mature astrocytes from spinal cord can be reprogrammed in vitro and in vivo to generate neural stem/progenitor cells (NSPCs) following treatment with conditioned medium collected from mechanically injured astrocytes. However, little is known regarding the molecular mechanisms underlying the reprogramming of astrocytes. Here, we show that fibroblast growth factor 4 (FGF4) exerts a critical role in synergistically converting astrocytes into NSPCs that can express multiple neural stem cell markers (nestin and CD133) and are capable of both self-renewal and differentiation into neurons and glia. Lack of FGF4 signals fails to elicit the dedifferentiation of astrocytes towards NSPCs, displaying a substantially lower efficiency in the reprogramming of astrocytes and a slower transition through fate-determined state. These astrocyte-derived NSPCs displayed relatively poor self-renewal and multipotency. More importantly, further investigation suggested that FGF4 is a key molecule necessary for activating PI3K/Akt/p21 signaling cascades, as well as their downstream effectors responsible for directing cell reprogramming towards NSPCs. Collectively, these findings provide a molecular basis for astrocyte dedifferentiation into NSPCs after central nervous system (CNS) injury and imply that FGF4 may be a clinically applicable molecule for in situ neural repair in the CNS disorders.
Collapse
|
37
|
Lotan A, Lifschytz T, Slonimsky A, Broner EC, Greenbaum L, Abedat S, Fellig Y, Cohen H, Lory O, Goelman G, Lerer B. Neural mechanisms underlying stress resilience in Ahi1 knockout mice: relevance to neuropsychiatric disorders. Mol Psychiatry 2014; 19:243-52. [PMID: 24042478 DOI: 10.1038/mp.2013.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
The Abelson helper integration site 1 (AHI1) gene has a pivotal role in brain development. Studies by our group and others have demonstrated association of AHI1 with schizophrenia and autism. To elucidate the mechanism whereby alteration in AHI1 expression may be implicated in the pathogenesis of neuropsychiatric disorders, we studied Ahi1 heterozygous knockout (Ahi1(+/-)) mice. Although their performance was not different from wild-type mice on tests that model classical schizophrenia-related endophenotypes, Ahi1(+/-) mice displayed an anxiolytic-like phenotype across different converging modalities. Using behavioral paradigms that involve exposure to environmental and social stress, significantly decreased anxiety was evident in the open field, elevated plus maze and dark-light box, as well as during social interaction in pairs. Assessment of core temperature and corticosterone secretion revealed a significantly blunted response of the autonomic nervous system and the hypothalamic-pituitary-adrenal axis in Ahi1(+/-) mice exposed to environmental and visceral stress. However, response to centrally acting anxiogenic compounds was intact. On resting-state functional MRI, connectivity of the amygdala with other brain regions involved in processing of anxiogenic stimuli and inhibitory avoidance learning, such as the lateral entorhinal cortex, ventral hippocampus and ventral tegmental area, was significantly reduced in the mutant mice. Taken together, our data link Ahi1 under-expression with a defect in the process of threat detection. Alternatively, the results could be interpreted as representing an anxiety-related endophenotype, possibly granting the Ahi1(+/-) mouse relative resilience to various types of stress. The current knockout model highlights the contribution of translational approaches to understanding the genetic basis of emotional regulation and its associated neurocircuitry, with possible relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- A Lotan
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - T Lifschytz
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Slonimsky
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E C Broner
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - L Greenbaum
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Abedat
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Y Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - H Cohen
- Anxiety and Stress Research Unit, Ben-Gurion University of the Negev, Beersheba, Israel
| | - O Lory
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - G Goelman
- MRI Lab, Medical Biophysics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - B Lerer
- Biological Psychiatry Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
38
|
Xiang J, Yang H, Zhao T, Sun M, Xu X, Zhou XF, Li SH, Li XJ. Huntingtin-associated protein 1 regulates postnatal neurogenesis and neurotrophin receptor sorting. J Clin Invest 2013; 124:85-98. [PMID: 24355921 DOI: 10.1172/jci69206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023] Open
Abstract
Defective neurogenesis in the postnatal brain can lead to many neurological and psychiatric disorders, yet the mechanism behind postnatal neurogenesis remains to be investigated. Huntingtin-associated protein 1 (HAP1) participates in intracellular trafficking in neurons, and its absence leads to postnatal death in mice. Here, we used tamoxifen-induced (TM-induced) Cre recombination to deplete HAP1 in mice at different ages. We found that HAP1 reduction selectively affects survival and growth of postnatal mice, but not adults. Neurogenesis, but not gliogenesis, was affected in HAP1-null neurospheres and mouse brain. In the absence of HAP1, postnatal hypothalamic neurons exhibited reduced receptor tropomyosin-related kinase B (TRKB) levels and decreased survival. HAP1 stabilized the association of TRKB with the intracellular sorting protein sortilin, prevented TRKB degradation, and promoted its anterograde transport. Our findings indicate that intracellular sorting of neurotrophin receptors is critical for postnatal neurogenesis and could provide a therapeutic target for defective postnatal neurogenesis.
Collapse
|
39
|
Loss of Ahi1 affects early development by impairing BM88/Cend1-mediated neuronal differentiation. J Neurosci 2013; 33:8172-84. [PMID: 23658157 DOI: 10.1523/jneurosci.0119-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mutations in the Abelson helper integration site-1 (AHI1) gene result in N-terminal Ahi1 fragments and cause Joubert syndrome, an autosomal recessive brain malformation disorder associated with delayed development. How AHI1 mutations lead to delayed development remains unclear. Here we report that full-length, but not N-terminal, Ahi1 binds Hap1, a huntingtin-associated protein that is essential for the postnatal survival of mice and that this binding is regulated during neuronal differentiation by nerve growth factor. Nerve growth factor induces dephosphorylation of Hap1A and decreases its association with Ahi1, correlating with increased Hap1A distribution in neurite tips. Consistently, Ahi1 associates with phosphorylated Hap1A in cytosolic, but not in synaptosomal, fractions isolated from mouse brain, suggesting that Ahi1 functions mainly in the soma of neurons. Mass spectrometry analysis of cytosolic Ahi1 immunoprecipitates reveals that Ahi1 also binds Cend1 (cell cycle exit and neuronal differentiation protein 1)/BM88, a neuronal protein that mediates neuronal differentiation and is highly expressed in postnatal mouse brain. Loss of Ahi1 reduces the levels of Cend1 in the hypothalamus of Ahi1 KO mice, which show retarded growth during postnatal days. Overexpressed Ahi1 can stabilize Cend1 in cultured cells. Furthermore, overexpression of Cend1 can rescue the neurite extension defects of hypothalamic neurons from Ahi1 KO mice. Our findings suggest that Cend1 is involved in Ahi1-associated hypothalamic neuronal differentiation in early development, giving us fresh insight into the mechanism behind the delayed development in Joubert syndrome.
Collapse
|
40
|
Goris A, Pauwels I, Dubois B. Progress in multiple sclerosis genetics. Curr Genomics 2013; 13:646-63. [PMID: 23730204 PMCID: PMC3492804 DOI: 10.2174/138920212803759695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/06/2023] Open
Abstract
A genetic component in the susceptibility to multiple sclerosis (MS) has long been known, and the first and major genetic risk factor, the HLA region, was identified in the 1970’s. However, only with the advent of genome-wide association studies in the past five years did the list of risk factors for MS grow from 1 to over 50. In this review, we summarize the search for MS risk genes and the latest results. Comparison with data from other autoimmune and neurological diseases and from animal models indicates parallels and differences between diseases. We discuss how these translate into an improved understanding of disease mechanisms, and address current challenges such as genotype-phenotype correlations, functional mechanisms of risk variants and the missing heritability.
Collapse
Affiliation(s)
- An Goris
- Laboratory for Neuroimmunology, Section of Experimental Neurology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
41
|
Tuz K, Hsiao YC, Juárez O, Shi B, Harmon EY, Phelps IG, Lennartz MR, Glass IA, Doherty D, Ferland RJ. The Joubert syndrome-associated missense mutation (V443D) in the Abelson-helper integration site 1 (AHI1) protein alters its localization and protein-protein interactions. J Biol Chem 2013; 288:13676-94. [PMID: 23532844 DOI: 10.1074/jbc.m112.420786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Missense mutations in AHI1 result in the neurodevelopmental ciliopathy called Joubert syndrome. RESULTS Mutations in AHI1 decrease cilia formation, alter its localization and stability, and change its binding to HAP1 and NPHP1. CONCLUSION Mutations in AHI1 affect ciliogenesis, AHI1 protein localization, and AHI1-protein interactions. SIGNIFICANCE This study begins to describe how missense mutations in AHI1 can cause Joubert syndrome. Mutations in AHI1 cause Joubert syndrome (JBTS), a neurodevelopmental ciliopathy, characterized by midbrain-hindbrain malformations and motor/cognitive deficits. Here, we show that primary cilia (PC) formation is decreased in fibroblasts from individuals with JBTS and AHI1 mutations. Most missense mutations in AHI1, causing JBTS, occur in known protein domains, however, a common V443D mutation in AHI1 is found in a region with no known protein motifs. We show that cells transfected with AHI1-V443D, or a new JBTS-causing mutation, AHI1-R351L, have aberrant localization of AHI1 at the basal bodies of PC and at cell-cell junctions, likely through decreased binding of mutant AHI1 to NPHP1 (another JBTS-causing protein). The AHI1-V443D mutation causes decreased AHI1 stability because there is a 50% reduction in AHI1-V443D protein levels compared with wild type AHI1. Huntingtin-associated protein-1 (Hap1) is a regulatory protein that binds Ahi1, and Hap1 knock-out mice have been reported to have JBTS-like phenotypes, suggesting a role for Hap1 in ciliogenesis. Fibroblasts and neurons with Hap1 deficiency form PC with normal growth factor-induced ciliary signaling, indicating that the Hap1 JBTS phenotype is likely not through effects at PC. These results also suggest that the binding of Ahi1 and Hap1 may not be critical for ciliary function. However, we show that HAP1 has decreased binding to AHI1-V443D indicating that this altered binding could be responsible for the JBTS-like phenotype through an unknown pathway. Thus, these JBTS-associated missense mutations alter their subcellular distribution and protein interactions, compromising functions of AHI1 in cell polarity and cilium-mediated signaling, thereby contributing to JBTS.
Collapse
Affiliation(s)
- Karina Tuz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Esmailzadeh S, Jiang X. AHI-1: a novel signaling protein and potential therapeutic target in human leukemia and brain disorders. Oncotarget 2012; 2:918-34. [PMID: 22248740 PMCID: PMC3282096 DOI: 10.18632/oncotarget.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Progress in the understanding of the molecular and cellular mechanisms of human cancer, including human leukemia and lymphomas, has been spurred by cloning of fusion genes created by chromosomal translocations or by retroviral insertional mutagenesis; a number of oncogenes and tumor suppressors involved in development of a number of malignancies have been identified in this manner. The BCR-ABL fusion gene, originating in a multipotent hematopoietic stem cell, is the molecular signature of chronic myeloid leukemia (CML). Discovery of this fusion gene has led to the development of one of the first successful targeted molecular therapies for cancer (Imatinib). It illustrates the advances that can result from an understanding of the molecular basis of disease. However, there still remain many as yet unidentified mutations that may influence the initiation or progression of human diseases. Thus, identification and characterization of the mechanism of action of genes that contribute to human diseases is an important and opportune area of current research. One promising candidate as a potential therapeutic target is Abelson helper integration site-1(Ahi-1/AHI-1) that was identified by retroviral insertional mutagenesis in murine models of leukemia/lymphomas and is highly elevated in certain human lymphoma and leukemia stem/progenitor cells. It encodes a unique protein with a SH3 domain, multiple SH3 binding sites and a WD40-repeat domain, suggesting that the normal protein has novel signaling activities. A new AHI-1-BCR-ABL-JAK2 interaction complex has recently been identified and this complex regulates transforming activities and drug resistance in CML stem/progenitor cells. Importantly, AHI-1 has recently been identified as a susceptibility gene involved in a number of brain disorders, including Joubert syndrome. Therefore, understanding molecular functions of the AHI-1 gene could lead to important and novel insights into disease processes involved in specific types of diseases. Ultimately, this knowledge will set the stage for translation into new and more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Sharmin Esmailzadeh
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
43
|
Kvajo M, McKellar H, Gogos JA. Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience 2011; 211:136-64. [PMID: 21821099 DOI: 10.1016/j.neuroscience.2011.07.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 01/31/2023]
Abstract
Schizophrenia is one of the most common psychiatric disorders, but despite progress in identifying the genetic factors implicated in its development, the mechanisms underlying its etiology and pathogenesis remain poorly understood. Development of mouse models is critical for expanding our understanding of the causes of schizophrenia. However, translation of disease pathology into mouse models has proven to be challenging, primarily due to the complex genetic architecture of schizophrenia and the difficulties in the re-creation of susceptibility alleles in the mouse genome. In this review we highlight current research on models of major susceptibility loci and the information accrued from their analysis. We describe and compare the different approaches that are necessitated by diverse susceptibility alleles, and discuss their advantages and drawbacks. Finally, we discuss emerging mouse models, such as second-generation pathophysiology models based on innovative approaches that are facilitated by the information gathered from the current genetic mouse models.
Collapse
Affiliation(s)
- M Kvajo
- Department of Physiology and Cellular Biophysics, College of Physicians & Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|