1
|
Tominaga FK, Brito RS, Oliveira do Nascimento J, Giannocco G, Monteiro de Barros Maciel R, Kummrow F, Pereira BF. Pyriproxyfen toxicity to fish and crustaceans: A literature review. ENVIRONMENTAL RESEARCH 2025; 274:121295. [PMID: 40049357 DOI: 10.1016/j.envres.2025.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Pyriproxyfen (PPF) is an insect growth regulator (IGR) that acts as a juvenile hormone agonist (JHA). It is widely used as a larvicide to control insect vectors, as antiparasitic medicines, and for pest control in domestic and agricultural environments. Reports in the literature show that PPF is toxic to fish and non-target crustaceans. Therefore, this review aimed to compile and analyze the state of the art on PPF toxicity to fish and crustaceans. We conducted a comprehensive and critical review by searching combinations of English keywords on the main scientific databases. The articles were selected based on inclusion and exclusion criteria. The findings demonstrated that exposure to different concentrations of PPF can have toxic effects on fish and crustaceans, resulting in histopathological damage to vital organs, reproductive dysfunction, and genetic changes. In crustaceans, PPF caused changes in fecundity, increased male production, and induced changes in offspring. In fish, histopathological changes were identified in organs such as the heart, liver, kidneys, brain, and gonads. Regarding reproduction, an increase in spermatogonial cysts in the testicles was reported, as well as the occurrence of atresia of oocytes in the female gonads. Furthermore, changes in the activity of antioxidant enzymes, the presence of reactive oxygen species indicating oxidative stress and alterations in the expression of genes related to thyroid and growth hormones were induced by exposure of fish to PPF.
Collapse
Affiliation(s)
- Flavio Kiyoshi Tominaga
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Rafaella Silva Brito
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Gisele Giannocco
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Department of Biological Sciences, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| | - Rui Monteiro de Barros Maciel
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Fábio Kummrow
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil.
| | - Bruno Fiorelini Pereira
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil; Department of Biological Sciences, Universidade Federal de São Paulo - Campus Diadema, Diadema, São Paulo, Brazil
| |
Collapse
|
2
|
Li Y, Lang M, He Q, Hu Y, Shi H, Zheng S, Wu Z, Zhou S. Nutritional and hormonal regulation of mitochondrial biogenesis drives fat body remodeling for reproductive competence. J Adv Res 2025:S2090-1232(25)00285-1. [PMID: 40306618 DOI: 10.1016/j.jare.2025.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025] Open
Abstract
INTRODUCTION Insect fat body serves as a central hub for energy mobilization and protein synthesis. During larval metamorphosis, fat body undergoes programmed cell death and tissue disassembly. Following adult eclosion, fat body reconstructs with cell proliferation and becomes competent for large-scale vitellogenin (Vg) synthesis required for the maturation of dozens of eggs. OBJECTIVES This study aims to uncover the molecular mechanisms underlying the remodeling of fat body in acquisition of competence for massive Vg production. METHODS RNA-seq and metabolomics were used for identification of differentially expressed genes and metabolites. RNAi was applied for gene knockdown. Transmission electron microscope, MitoTracker staining, mitochondrial DNA quantification, ATP and citrate synthase assays were employed for examining mitochondrial biogenesis. Dual-luciferase reporter assay and EMSA were performed for transcriptional regulation. qRT-PCR and western blot were performed for measuring Vg synthesis. RESULTS Transcriptomic and metabolomic analyses revealed significant upregulation of genes and metabolites involved in mitochondrial biogenesis in the fat body of adult locusts. PGC-1α was highly expressed in adult fat body. Knockdown of PGC-1α reduced mitochondrial biogenesis, fat body cell number, Vg synthesis and ovarian development. CREBB bound to PGC-1α promoter and activated its transcription. CREBB depletion impaired mitochondrial biogenesis and fat body remodeling. Moreover, loss of TORC1 function suppressed CREBB function and PGC-1α expression, subsequently disrupting mitochondrial biogenesis and fat body remodeling. Juvenile hormone (JH) deprivation also decreased CREBB function and PGC-1α expression, which was reversible with JH treatment. Our results suggest that TORC1 and JH coordinate CREBB-upregulated PGC-1α expression, which promotes mitochondrial biogenesis and fat body remodeling for Vg synthesis and egg production. CONCLUSION The findings provide new insights into the molecular mechanisms of post-metamorphic fat body development, and highlight the role of JH/TORC1/CREBB/PGC-1α/mitochondrial biogenesis axis in insect reproduction. The data also offer potential targets for insect pest control.
Collapse
Affiliation(s)
- Yiying Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengyao Lang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiongjie He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Huanhuan Shi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Siqian Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongxia Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Ito-Harashima S, Sano E, Takada E, Nakashima M, Kawanishi M, Yagi T. Development of a New Reporter Gene Assay for Detecting Juvenile Hormone Agonists Using Yeast Expressing Methoprene-Tolerant of the Freshwater Cladoceran Daphnia magna. J Appl Toxicol 2025. [PMID: 40223157 DOI: 10.1002/jat.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Juvenile hormones (JHs) play crucial roles in regulating growth, metamorphosis, and reproduction in arthropods. Synthetic JH agonists (JHAs), categorized as insect growth regulators, have been widely employed as insecticides. Natural JHs and synthetic JHAs both exert their physiological effects by binding to the JH receptor methoprene-tolerant (Met), forming a functional heterodimer complex with steroid receptor coactivators (SRCs). These juvenoids induce male offspring production in various daphnids, including Daphnia magna, highlighting the significance of the Met-mediated signaling in environmental sex determination. As a representative invertebrate model for assessing aquatic endocrine-disrupting chemicals, D. magna is incorporated in the test guidelines of the Organization for Economic Corporation and Development. We herein introduced a newly developed yeast-based reporter gene assay (RGA) for easy and rapid screening of JH-like ligands for D. magna Met (Dapma-Met). Dapma-Met was expressed alongside the SRC of D. magna (Dapma-SRC) in yeast cells carrying the lacZ reporter plasmid with a JH-responsive element derived from the Bombyx mori Krüppel homolog 1 gene. The yeast RGA system for Dapma-Met revealed a dose-dependent response to various juvenoids. The rank order of the ligand potencies of natural JHs and synthetic JHAs examined in yeast RGA strongly correlated with those previously observed in RGAs for Daphnia Met proteins established in Chinese hamster ovary cells and positively correlated with the male neonate-inducing activity in vivo. Our novel yeast RGA offers a rapid, easy-to-handle, and cost-effective solution that will be valuable for discriminating Dapma-Met ligands among chemicals with male offspring-inducing activity.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Erika Sano
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mayuko Nakashima
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
4
|
Qin Q, Zhang B, Fang B, Chang Y, Li X, An S, Zhao W. Juvenile hormone controls trehalose metabolism by regulating trehalase 2 activity in ovarian development of Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2025; 34:249-262. [PMID: 39503533 DOI: 10.1111/imb.12969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/15/2024] [Indexed: 03/05/2025]
Abstract
Trehalase (Treh) is crucial for ovarian development as it directly regulates the energy supply by hydrolyzing trehalose into glucose. Juvenile hormone (JH) is also essential for ovarian development, but how it affects Treh2 activity remains unclear. This study, which employed Helicoverpa armigera as a model, showed that HaTreh2 transcription and enzymatic activity peaks coincided with the peak of JH titers (the 2 and 3 days after emergence). Compared to the dsGFP control, knockdown of HaTreh2 transcription severely impaired ovarian development. LC-MS/MS and site mutation experiments demonstrated that JH triggered the serine 345 phosphorylation of HaTreh2 via the GPCR-cAMP-PKA pathway, thereby activating its enzymatic activity. Additionally, HaTreh2 is directly bound with trehalose transporter (HaTreT) under JH induction, thus controlling intracellular trehalose and glucose contents as well as the transcription of HaTreT. TreT controls the amount of trehalose, which serves as a substrate for Treh1, entering the cell. Treh2, on the other hand, uses extracellular trehalose as substrate, and the hydrolysis product glucose is further transported into the cell. Here, HaTreh2 regulated the substrate that HaTreh1 can act upon in the cell by directly binding with HaTreT during ovarian development when JH is induced. Therefore, JH systematically regulated trehalose metabolism during ovarian development through regulating the activity of HaTreh2. This study sheds light on the coordinated interplay between JH pathway and sugar metabolism in ovarian development.
Collapse
Affiliation(s)
- Qianyue Qin
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bo Zhang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bin Fang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Chang
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiang Li
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenli Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Depintor TS, Freitas FCP, Hernandes N, Nunes FMF, Simões ZLP. Interactions of juvenile hormone, 20-hydroxyecdysone, developmental genes, and miRNAs during pupal development in Apis mellifera. Sci Rep 2025; 15:10354. [PMID: 40133508 PMCID: PMC11937373 DOI: 10.1038/s41598-025-93580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Insect development is primarily controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E), which regulate gene cascades leading to changes in phenotype, physiology, and behavior. Besides these hormones, microRNAs play a crucial role in insect development by regulating gene expression at the post-transcriptional level. To advance the molecular understanding of holometabolous developmental events, we investigate the pupal phase in the honeybee, Apis mellifera. In this study, we assessed the expression profiles of genes components of JH and 20E cascades - Usp, ftz-f1, EcR, Met, Chd64, InR-2, Kr-h1 and Tai - as well as the microRNAs miRNA-34 and miRNA-281 during pupal development of A. mellifera. We then analyzed the impact of JH and 20E treatments on the expression of these developmental genes and their putative regulators, the microRNAs. Overall, the selected genes and miRNAs remained stable or were downregulated following 20E treatment, while treatments with JH, upregulated most of our candidate developmental genes and microRNAs. Notably, the expression profile of Met, an intracellular receptor of JH, showed a strong correlation with fluctuations in 20E titers during pupal development. Furthermore, a computational analysis, followed by experimental assays, points to both miR-34 and miR-281 as potential regulators of pupal development in A. mellifera. This study paves the way for a better understanding of how JH and 20E hormones interact with developmental genes and microRNAs (miR-34 and miR-281) to regulate pupal development in honeybees, elucidating a piece of this complex network of interactions.
Collapse
Affiliation(s)
- T S Depintor
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - F C P Freitas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - N Hernandes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - F M F Nunes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Genetics and Evolution, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Z L P Simões
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Li YX, Kang XL, Li YL, Wang XP, Yan Q, Wang JX, Zhao XF. Receptor tyrosine kinases CAD96CA and FGFR1 function as the cell membrane receptors of insect juvenile hormone. eLife 2025; 13:RP97189. [PMID: 40085503 PMCID: PMC11908783 DOI: 10.7554/elife.97189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| |
Collapse
|
7
|
Force E, Alvarez C, Fuentes A, Maria A, Bozzolan F, Debernard S. Diet influence on male sexual maturation through interplay between insulin signaling and juvenile hormone in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104252. [PMID: 39701395 DOI: 10.1016/j.ibmb.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals. We turned to the male moth Agrotis ipsilon for which sexual maturation, including accessory sex glands (ASGs) development concomitantly with antennal lobes (ALs) maturation for female sex pheromone processing and display of sexual behavior, is known to be JH- and diet-dependent. Indeed, a diet rich in sugars with sodium was previously shown to accelerate sexual maturation, which was achieved from the third day of adult life. In this study, we demonstrated that such a diet raised i) the expression of JH signaling actors (Methoprene-tolerant, Taiman, and Krüppel homolog 1) in ALs and ASGs, ii) the biosynthesis and circulating levels of JH, and iii) the expression of both insulin receptor (InR) and insulin-like peptides (ILPs) in corpora allata (CAs) and brain respectively. Insulin injection raised JH biosynthesis following increased HMG-CoA reductase expression in CAs; opposite effects were induced in InR-deficient males. Thus, we highlighted that promoting effects of a diet composed of sugars with sodium on male sexual maturation results from an early induction of ISP causing an increase in JH biosynthesis followed by a potentiation of JH actions on the development of ASGs and ALs in A. ipsilon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| | | | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| |
Collapse
|
8
|
Han S, Wang X, Han H, Wang D, He Y. Hairy and Krüppel homolog 1 Comediate the Action of Juvenile Hormone/ Methoprene-Tolerant Signaling Pathway in Vitellogenesis of Spodoptera frugiperda (J.E. Smith). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1122-1130. [PMID: 39745858 DOI: 10.1021/acs.jafc.4c08653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Spodoptera frugiperda is a major migratory invasive pest and is of global concern. Vitellogenesis, a crucial process for population multiplication in oviparous insects, is regulated by endocrine hormones. In this study, three primary responders to JH signaling, the JH receptor gene Met, and the downstream transcription factor Kr-h1 and Hairy, were first cloned and identified. RNA interference results showed that silencing SfMet significantly down-regulated the transcription levels of SfKr-h1 and SfHairy, as well as the key reproductive genes Vitellogenin (SfVg) and Vitellogenin receptor (SfVgR). Similarly, silencing SfKr-h1 and SfHairy also inhibited the transcription of SfVg and SfVgR. Silencing of SfMet, SfKr-h1, and SfHairy genes resulted in blocked ovarian development and a significant decrease in reproduction. These findings confirm that Hairy and Kr-h1 comediate the action of the JH-Met signaling pathway in vitellogenesis of S. frugiperda, providing new targets and insights for pest control.
Collapse
Affiliation(s)
- Shipeng Han
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271000, P. R. China
| | - Xiaoqi Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Hui Han
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong 277000, P. R. China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| |
Collapse
|
9
|
Sedlak D, Tuma R, Kolla JN, Mokhamatam RB, Bahrova L, Lisova M, Bittova L, Jindra M. Unique and Common Agonists Activate the Insect Juvenile Hormone Receptor and the Human AHR. J Mol Biol 2025; 437:168883. [PMID: 39608634 DOI: 10.1016/j.jmb.2024.168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Transcription factors of the bHLH-PAS family play vital roles in animal development, physiology, and disease. Two members of the family require binding of low-molecular weight ligands for their activity: the vertebrate aryl hydrocarbon receptor (AHR) and the insect juvenile hormone receptor (JHR). In the fly Drosophila melanogaster, the paralogous proteins GCE and MET constitute the ligand-binding component of JHR complexes. Whilst GCE/MET and AHR are phylogenetically heterologous, their mode of action is similar. JHR is targeted by several synthetic agonists that serve as insecticides disrupting the insect endocrine system. AHR is an important regulator of human endocrine homeostasis, and it responds to environmental pollutants and endocrine disruptors. Whether AHR signaling is affected by compounds that can activate JHR has not been reported. To address this question, we screened a chemical library of 50,000 compounds to identify 93 novel JHR agonists in a reporter system based on Drosophila cells. Of these compounds, 26% modulated AHR signaling in an analogous reporter assay in a human cell line, indicating a significant overlap in the agonist repertoires of the two receptors. To explore the structural features of agonist-dependent activation of JHR and AHR, we compared the ligand-binding cavities and their interactions with selective and common ligands of AHR and GCE. Molecular dynamics modeling revealed ligand-specific as well as conserved side chains within the respective cavities. Significance of predicted interactions was supported through site-directed mutagenesis. The results have indicated that synthetic insect juvenile hormone agonists might interfere with AHR signaling in human cells.
Collapse
Affiliation(s)
- David Sedlak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic.
| | - Roman Tuma
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | | | | | - Liliia Bahrova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Michaela Lisova
- CZ-OPENSCREEN, Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Lenka Bittova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic; Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
10
|
Zhao W, Liu P, Saunders TR, Zhu J. Juvenile hormone induces phosphorylation of insulin/insulin-like growth factor signaling proteins in previtellogenic Aedes aegypti mosquitoes. INSECT SCIENCE 2024. [PMID: 39663731 DOI: 10.1111/1744-7917.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Juvenile hormone (JH) plays a pivotal role in regulating post-emergence development and metabolism in previtellogenic female Aedes aegypti mosquitoes. In contrast, yolk protein precursor production and egg maturation after a blood meal are regulated by the steroid hormone 20-hydroxyecdysone, the insulin-like growth factor (IGF)/insulin signaling (IIS) pathway, and the mammalian target of rapamycin (mTOR) pathway. The role of IIS/mTOR signaling in female adults prior to blood feeding has not been thoroughly investigated. In this study, we identified a significant increase in the phosphorylation of key effector proteins in the IIS/mTOR signaling pathway, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K) and forkhead box protein O1 (FoxO1), in previtellogenic females. In vitro fat body culture experiments suggest that JH induces these phosphorylations through rapid nongenomic signaling mediated by the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mTOR network. RNA interference experiments demonstrated that activation of IIS/mTOR signaling in previtellogenic females modulate metabolic gene expression, promoting the accumulation of energy reserves (glycogen and triglycerides), which influence mosquito fecundity. Additionally, depletion of either the insulin receptor (InR) or the JH receptor Methoprene-tolerant (Met) in adult mosquitoes abolished the phosphorylation of these proteins, indicating that both receptors are involved in JH-induced membrane-initiated signal transduction. Although the precise mechanisms remain unclear, this study uncovers a novel function of the IIS/mTOR pathway in adult mosquitoes before blood feeding, as well as a new mode of JH action through its crosstalk with the IIS pathway.
Collapse
Affiliation(s)
- Wenhao Zhao
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
- Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Thomas R Saunders
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Kurogi Y, Mizuno Y, Hayashi R, Goyins K, Okamoto N, Barton L, Niwa R. The seminal vesicle is a juvenile hormone-responsive tissue in adult male Drosophila melanogaster. Open Biol 2024; 14:240315. [PMID: 39689858 DOI: 10.1098/rsob.240315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Juvenile hormone (JH) is one of the most essential hormones controlling insect metamorphosis and physiology. While it is well known that JH affects many tissues throughout the insect life cycle, the difference in JH responsiveness and the repertoire of JH-inducible genes among different tissues has not been fully investigated. In this study, we monitored JH responsiveness in vivo using transgenic Drosophila melanogaster flies carrying a JH response element-GFP (JHRE-GFP) construct. Our data highlight the high responsiveness of the epithelial cells within the seminal vesicle, a component of the male reproductive tract, to JH. Specifically, we observe an elevation in the JHRE-GFP signal within the seminal vesicle epithelium upon JH analogue administration, while suppression occurs upon knockdown of a gene encoding the intracellular JH receptor, germ cell-expressed. Starting from published transcriptomic and proteomics datasets, we next identified Lactate dehydrogenase as a JH-response gene expressed in the seminal vesicle epithelium, suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this study sheds new light on the biology of the insect reproductive regulatory system.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Ryosuke Hayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Krystal Goyins
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lacy Barton
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
12
|
Yu X, Wang X, Ma K, Gao D, Deng Y, Zhou D, Ding W, Zhao Y, Liu Q, Zhou Z. Tai/NCOA2 suppresses the Hedgehog pathway by directly targeting the transcription factor Ci/GLI. Proc Natl Acad Sci U S A 2024; 121:e2409380121. [PMID: 39531503 PMCID: PMC11588115 DOI: 10.1073/pnas.2409380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The Hedgehog (Hh) pathway plays diverse roles in cellular processes by activating the transcription factor Cubitus interruptus (Ci). Abnormal regulation of this pathway has been linked to various human diseases. While previous studies have focused on how Ci is regulated in the cytoplasm, the control of nuclear Ci remains poorly understood. In this study, we have found that the transcriptional cofactor Taiman (Tai) functions as an inhibitor of the Hh pathway. Tai interferes with the response of Hh signal, rather than Hh secretion. Our epistatic analyses reveal that Tai works in parallel with Ci to reduce its activity, thereby counteracting organ overgrowth and the activation of target genes caused by Ci overexpression. Specifically, Tai interacts with Ci to decrease its binding to target gene promoters. The Hh signal weakens the interaction between Ci and Tai, releasing the inhibition on Ci. Importantly, this regulatory mechanism is conserved from Drosophila to mammalian cells. Moreover, NCOA1-3 are the mammalian ortholog of Drosophila protein Tai, but only NCOA2 plays a similar role in inhibiting the Hh pathway. These findings reveal an additional way to modulate the transcriptional activity of nuclear Ci.
Collapse
Affiliation(s)
- Xuan Yu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Xinyu Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Kaize Ma
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Dongqing Gao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| |
Collapse
|
13
|
Zhang T, Xu K, Liu D, Ma H, Liu W, Yang W. Dual roles of methoprene-tolerant gene TaMet in male molting and female reproduction of the tomato leafminer, Tuta absoluta (meyrick). Front Physiol 2024; 15:1500391. [PMID: 39611077 PMCID: PMC11603827 DOI: 10.3389/fphys.2024.1500391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
The tomato leafminer (Tuta absoluta) is a highly destructive global quarantine pest. The methoprene-tolerant (Met) protein, a member of the bHLH/PAS family of transcription factors, forms complexes with other family members to transduce the juvenile hormone signal, which regulates insect growth and development. However, the functions of the TaMet gene have rarely been studied in T. absoluta. Herein, we investigated the significance of TaMet in T. absoluta. Spatiotemporal expression analysis revealed that TaMet exhibited comparable expression patterns in males and females, with high expression levels during the early pupal and early adult stages. TaMet was predominantly expressed in the female ovary and male wing. TaMet knockdown impaired ovarian development in female adults, causing irregular arrangement and increased spacing of the egg epithelial cells in the ovary. Silencing TaMet also led to a 67.25% reduction in female spawning and a 67.21% decrease in the offspring hatching rate. Furthermore, the vitellogenin content was significantly diminished, and the expression levels of vitellogenin (Vg) and vitellogenin receptor (VgR) genes were significantly downregulated. In contrast, silencing TaMet in 3-day-old male pupae resulted in an 80% mortality rate and various phenotypic abnormalities, including body melanism, molting defects, and wing deformities. Moreover, the expression levels of wing development and chitin metabolism genes decreased significantly after knocking down TaMet. Our results indicate that TaMet plays a significant dual role in male molting and female reproduction of T. absoluta.
Collapse
Affiliation(s)
- Tingwei Zhang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Kai Xu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Deqian Liu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Hang Ma
- Yunnan Yuantianhua Co., Ltd Research and Development Center, Kunming, China
| | - Wenbiao Liu
- Yunnan Yuantianhua Co., Ltd Research and Development Center, Kunming, China
| | - Wenjia Yang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
14
|
Li N, Xu X, Li J, Hull JJ, Chen L, Liang G. A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. Int J Biol Macromol 2024; 281:136503. [PMID: 39395517 DOI: 10.1016/j.ijbiomac.2024.136503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Although RNAi-based pest management holds great potential as an alternative to traditional chemical control, its efficiency is restricted by dsRNA instability and limited cellular uptake. Using nanomaterials to facilitate dsRNA delivery has shown promise in solving these challenges. In this study, we firstly used RNAi to investigate the role of the juvenile hormone and ecdysteroid signaling pathways genes in reproduction of Spodoptera frugiperda, the fall armyworm. Females in knocked-down treatments of any of the Met, EcR, and USP genes had greatly reduced fertility with the most pronounced inhibitory effects on oviposition observed following EcR knockdown, and thus the dsEcR could be a candidate target for RNAi-based oviposition inhibitory agency. Then a combinatorial spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) approach that targeted EcR was conducted. At 72 h post-spay, the transcript levels of EcR and the oviposition were successfully reduced and inhibited. These findings support the groundwork for further developing novel RNAi-based pest management strategies for S. frugiperda.
Collapse
Affiliation(s)
- Ningning Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaona Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jiwen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Maricopa, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
Jindra M, Tumova S, Bittova L, Tuma R, Sedlak D. Agonist-dependent action of the juvenile hormone receptor. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101234. [PMID: 39025365 DOI: 10.1016/j.cois.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Juvenile hormone (JH) signaling is realized at the gene regulatory level by receptors of the bHLH-PAS transcription factor family. The sesquiterpenoid hormones and their synthetic mimics are agonist ligands of a unique JH receptor (JHR) protein, methoprene-tolerant (MET). Upon binding an agonist to its PAS-B cavity, MET dissociates from a cytoplasmic chaperone complex including HSP83 and concomitantly switches to a bHLH-PAS partner taiman, forming a nuclear, transcriptionally active JHR heterodimer. This course of events resembles the vertebrate aryl hydrocarbon receptor (AHR), activated by a plethora of endogenous and synthetic compounds. Like in AHR, the pliable PAS-B cavity of MET adjusts to diverse ligands and binds them through similar mechanisms. Despite recent progress, we only begin to discern agonist-induced conformational shifts within the PAS-B domain, with the ultimate goal of understanding how these localized changes stimulate the assembly of the active JHR complex and, thus, fully grasp the mechanism of JHR signaling.
Collapse
Affiliation(s)
- Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic.
| | - Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Lenka Bittova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Roman Tuma
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | - David Sedlak
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| |
Collapse
|
16
|
Li YX, Yan Q, Liu TW, Wang JX, Zhao XF. Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development. BMC Biol 2024; 22:171. [PMID: 39135168 PMCID: PMC11321213 DOI: 10.1186/s12915-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
17
|
Zheng W, Xu X, Huang X, Peng J, Ma W, Hull JJ, Hua H, Chen L. Spray-induced and nanocarrier-delivered gene silencing system targeting juvenile hormone receptor components: potential application as fertility inhibitors for Adelphocoris suturalis management. PEST MANAGEMENT SCIENCE 2024; 80:3743-3751. [PMID: 38469958 DOI: 10.1002/ps.8077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Adelphocoris suturalis is a destructive pest that attacks > 270 plants, including cotton, maize, soybean, and fruit trees. Adelphocoris suturalis can cause tremendous crop losses when the density exceeds economic thresholds, but because it can be both phytophagous and zoophytophagous it can serve as a natural enemy of other pests when the density is below the economic threshold. Effective control of its population is beneficial for maximizing yield and profits. RNA interference (RNAi) has potential to be a viable alternative to conventional pesticide-based pest management, but the lack of efficient double-stranded RNA (dsRNA) delivery systems and candidate genes are currently limiting factors for field applications. RESULTS In this study, RNAi of juvenile hormone (JH) receptor components methoprene-tolerant (Met)/Taiman (Tai) in Adelphocoris suturalis reduced fertility. Based on this reproductive role, we targeted Adelphocoris suturalis Met and Tai for knockdown by coupling nanomaterial-dsRNA complexes with a transdermal spray delivery system. Within 12 h of adult emergence, females were sprayed with star polycation (SPc)-dsRNA formulations and the RNAi effects were assessed over time. RNAi knockdown efficiencies of 39-58% were observed at 5 days post-treatment and abnormal ovarian development was apparent by 10 days post-treatment. CONCLUSION Our results show that spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) system targeting JH signal genes effectively impaired oviposition, thus developing a novel RNA fertility inhibitor to control Adelphocoris suturalis populations. These results give new perspective on pest management and suggest broad prospects for field applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wanying Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaona Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingxing Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Peng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, USA
| | - Hongxia Hua
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lizhen Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Jang D, Kim CJ, Shin BH, Lim DH. The Biological Roles of microRNAs in Drosophila Development. INSECTS 2024; 15:491. [PMID: 39057224 PMCID: PMC11277110 DOI: 10.3390/insects15070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Drosophila is a well-established insect model system for studying various physiological phenomena and developmental processes, with a focus on gene regulation. Drosophila development is controlled by programmed regulatory mechanisms specific to individual tissues. When key developmental processes are shared among various insects, the associated regulatory networks are believed to be conserved across insects. Thus, studies of developmental regulation in Drosophila have substantially contributed to our understanding of insect development. Over the past two decades, studies on microRNAs (miRNAs) in Drosophila have revealed their crucial regulatory roles in various developmental processes. This review focuses on the biological roles of miRNAs in specific tissues and processes associated with Drosophila development. Additionally, as a future direction, we discuss sequencing technologies that can analyze the interactions between miRNAs and their target genes, with the aim of enhancing miRNA studies in Drosophila development.
Collapse
Affiliation(s)
| | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (D.J.); (C.J.K.); (B.H.S.)
| |
Collapse
|
19
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
20
|
Kurogi Y, Mizuno Y, Okamoto N, Barton L, Niwa R. The seminal vesicle is a juvenile hormone-responsive tissue in adult male Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585833. [PMID: 38562788 PMCID: PMC10983971 DOI: 10.1101/2024.03.20.585833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Juvenile hormone (JH) is one of the most essential hormones controlling insect metamorphosis and physiology. While it is well known that JH affects many tissues throughout the insects life cycle, the difference in JH responsiveness and the repertoire of JH-inducible genes among different tissues has not been fully investigated. In this study, we monitored JH responsiveness in vivo using transgenic Drosophila melanogaster flies carrying a JH response element-GFP (JHRE-GFP) construct. Our data highlight the high responsiveness of the epithelial cells within the seminal vesicle, a component of the male reproductive tract, to JH. Specifically, we observe an elevation in the JHRE-GFP signal within the seminal vesicle epithelium upon JH analog administration, while suppression occurs upon knockdown of genes encoding the intracellular JH receptors, Methoprene-tolerant and germ cell-expressed. Starting from published transcriptomic and proteomics datasets, we next identified Lactate dehydrogenase as a JH-response gene expressed in the seminal vesicle epithelium, suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this study sheds new light on biology of the insect reproductive regulatory system.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lacy Barton
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
21
|
Geng DQ, Wang XL, Lyu XY, Raikhel AS, Zou Z. Ecdysone-controlled nuclear receptor ERR regulates metabolic homeostasis in the disease vector mosquito Aedes aegypti. PLoS Genet 2024; 20:e1011196. [PMID: 38466721 PMCID: PMC10957079 DOI: 10.1371/journal.pgen.1011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/21/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.
Collapse
Affiliation(s)
- Dan-Qian Geng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, California, United States of America
- Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Jeon JH, Jeong SA, Park DS, Park HH, Shin SW, Oh HW. Disruptive Effects of Two Curcuminoids (Demethoxycurcumin and Bisdemethoxycurcumin) on the Larval Development of Drosophila melanogaster. INSECTS 2023; 14:959. [PMID: 38132632 PMCID: PMC10744261 DOI: 10.3390/insects14120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Juvenile hormones (JHs) play a central role in insect development, reproduction, and various physiological functions. Curcuminoids generally exhibit a wide range of biological activities, such as antioxidant, anti-inflammatory, antibacterial, and insecticidal, and they exhibit insect growth inhibitory effects. However, research on insecticidal properties of curcuminoids has been limited. Moreover, to the best of our knowledge, studies on JHs of insects and curcuminoids are lacking. Therefore, this study aimed to identify the substances that act as JH disruptors (JHDs) from edible plants. Demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), two curcuminoids from the turmeric plant Curcuma longa L. inhibited the formation of a methoprene-tolerant (Met)-Taiman (Tai) heterodimer complex in Drosophila melanogaster, as shown through in vitro yeast two-hybrid assays. An artificial diet containing 1% (w/v) DMC or BDMC significantly reduced the number of D. melanogaster larvae in a concentration-dependent manner; larval development was disrupted, preventing the progression of larvae to pupal stages, resulting in an absence of adults. Building on the results obtained in this study on curcuminoids, researchers can use our study as a reference to develop eco-friendly pesticides.
Collapse
Affiliation(s)
- Jun-Hyoung Jeon
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; (J.-H.J.); (S.-A.J.); (D.-S.P.)
| | - Seon-Ah Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; (J.-H.J.); (S.-A.J.); (D.-S.P.)
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; (J.-H.J.); (S.-A.J.); (D.-S.P.)
| | - Hong-Hyun Park
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Sang-Woon Shin
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
24
|
Smykal V, Chodakova L, Hejnikova M, Briedikova K, Wu BCH, Vaneckova H, Chen P, Janovska A, Kyjakova P, Vacha M, Dolezel D. Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock. PLoS Genet 2023; 19:e1010924. [PMID: 37683015 PMCID: PMC10511111 DOI: 10.1371/journal.pgen.1010924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Lenka Chodakova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Marketa Hejnikova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | | | - Bulah Chia-Hsiang Wu
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Hana Vaneckova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ping Chen
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Anna Janovska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavlina Kyjakova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Vacha
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Dolezel
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
25
|
Kolonko-Adamska M, Zawadzka-Kazimierczuk A, Bartosińska-Marzec P, Koźmiński W, Popowicz G, Krężel A, Ożyhar A, Greb-Markiewicz B. Interaction patterns of methoprene-tolerant and germ cell-expressed Drosophila JH receptors suggest significant differences in their functioning. Front Mol Biosci 2023; 10:1215550. [PMID: 37654797 PMCID: PMC10465699 DOI: 10.3389/fmolb.2023.1215550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Methoprene-tolerant (Met) and germ cell-expressed (Gce) proteins were shown to be juvenile hormone (JH) receptors of Drosophila melanogaster with partially redundant functions. We raised the question of where the functional differentiation of paralogs comes from. Therefore, we tested Met and Gce interaction patterns with selected partners. In this study, we showed the ability of Gce and its C-terminus (GceC) to interact with 14-3-3 in the absence of JH. In contrast, Met or Met C-terminus (MetC) interactions with 14-3-3 were not observed. We also performed a detailed structural analysis of Met/Gce interactions with the nuclear receptor fushi tarazu factor-1 (Ftz-F1) ligand-binding domain. We showed that GceC comprising an Ftz-F1-binding site and full-length protein interacts with Ftz-F1. In contrast to Gce, only MetC (not full-length Met) can interact with Ftz-F1 in the absence of JH. We propose that the described differences result from the distinct tertiary structure and accessibility of binding sites in the full-length Met/Gce. Moreover, we hypothesize that each interacting partner can force disordered MetC and GceC to change the structure in a partner-specific manner. The observed interactions seem to determine the subcellular localization of Met/Gce by forcing their translocation between the nucleus and the cytoplasm, which may affect the activity of the proteins. The presented differences between Met and Gce can be crucial for their functional differentiation during D. melanogaster development and indicate Gce as a more universal and more active paralog. It is consistent with the theory indicating gce as an ancestor gene.
Collapse
Affiliation(s)
- M. Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - A. Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - P. Bartosińska-Marzec
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - W. Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - G. Popowicz
- Helmholtz Zentrum München, Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - A. Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - A. Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - B. Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
26
|
Palli SR. Juvenile hormone receptor Methoprene tolerant: Functions and applications. VITAMINS AND HORMONES 2023; 123:619-644. [PMID: 37718000 DOI: 10.1016/bs.vh.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
During the past 15years, after confirming Methoprene tolerant (Met) as a juvenile hormone (JH) receptor, tremendous progress has been made in understanding the function of Met in supporting JH signal transduction. Met role in JH regulation of development, including metamorphosis, reproduction, diapause, cast differentiation, behavior, im`munity, sleep and epigenetic modifications, have been elucidated. Met's Heterodimeric partners involved in performing some of these functions were discovered. The availability of JH response elements (JHRE) and JH receptor allowed the development of screening assays in cell lines and yeast. These screening assays facilitated the identification of new chemicals that function as JH agonists and antagonists. These new chemicals and others that will likely be discovered in the near future by using JH receptor and JHRE will lead to highly effective species-specific environmentally friendly insecticides for controlling pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
27
|
He Q, Hou T, Fan X, Wang S, Wang Y, Chen S. Juvenile hormone suppresses sensory organ precursor determination to block Drosophila adult abdomen morphogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103957. [PMID: 37192726 DOI: 10.1016/j.ibmb.2023.103957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Juvenile hormone (JH) has a classic "status quo" action at both the pupal and adult molts when administrated exogenously. In Drosophila, treatment with JH at pupariation inhibits the formation of abdominal bristles, which are derived from the histoblasts. However, the mechanism via which JH exerts this effect remains poorly understood. In this study, we analyzed the effect of JH on histoblast proliferation, migration, and differentiation. Our results indicated that whereas the proliferation and migration of histoblasts remained unaffected following treatment with a JH mimic (JHM), their differentiation, particularly the specification of sensor organ precursor (SOP) cells, was inhibited. This effect was attributable to downregulated proneural genes achaete (ac) and Scute (sc) expression levels, which prevented the specification of SOP cells in proneural clusters. Moreover, Kr-h1 was found to mediate this effect of JHM. Histoblast-specific overexpression or knockdown of Kr-h1, respectively mimicked or attenuated the effects exerted by JHM on abdominal bristle formation, SOP determination, and transcriptional regulation of ac and sc. These results indicated that the defective SOP determination was responsible for the inhibition of abdominal bristle formation by JHM, which, in turn, was mainly mediated via the transducing action of Kr-h1.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaochun Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhong Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
28
|
Zhao J, Tan Y, Jiang Y, Zhu-Salzman K, Xiao L. CRISPR/Cas9-mediated methoprene-tolerant 1 knockout results in precocious metamorphosis of beet armyworm (Spodoptera exigua) only at the late larval stage. INSECT MOLECULAR BIOLOGY 2023; 32:132-142. [PMID: 36371609 DOI: 10.1111/imb.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormone (JH) controls almost every aspect of an insect, especially metamorphosis. Since RNA interference works on transcripts and is often insufficient in Lepidoptera, how JH affects larval development in these insects is not well studied. Using the CRISPR/Cas9 technique, we knocked out Spodoptera exigua methoprene-tolerant 1 (SeMet1) gene of beet armyworm by modifying two sites in the coding region. However, SeMet1 knockout did not affect egg hatch rate or larval development at L1-L3 stages. In contrast to the consistent five larval instars of the control group, L4 SeMet1 mutants began to show signs of precocious metamorphosis, that is, small patches of pupal cuticle. Most L4 and all L5 SeMet1 mutants died for failing to shed their mosaic cuticles. RNA-seq indicated that most genes encoding pupal cuticle proteins and chitinase genes were altered in SeMet1 mutant L4 larvae. SeKr-h1, a key transcription factor in JH action was significantly down-regulated in L3-L5 larvae, while SeBR-C, a pupal indicator was only upregulated in L4-L5 larvae. These results suggested that S. exigua larvae may initially develop independently of JH, and involve SeMet1 in transducing JH signalling, leading to controlled larval metamorphosis at the late larval stage. We believe our findings will enhance better understanding of JH regulation of larval development.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A & MUniversity, College Station, Texas, USA
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
29
|
Jones BM, Rubin BER, Dudchenko O, Kingwell CJ, Traniello IM, Wang ZY, Kapheim KM, Wyman ES, Adastra PA, Liu W, Parsons LR, Jackson SR, Goodwin K, Davidson SM, McBride MJ, Webb AE, Omufwoko KS, Van Dorp N, Otárola MF, Pham M, Omer AD, Weisz D, Schraiber J, Villanea F, Wcislo WT, Paxton RJ, Hunt BG, Aiden EL, Kocher SD. Convergent and complementary selection shaped gains and losses of eusociality in sweat bees. Nat Ecol Evol 2023; 7:557-569. [PMID: 36941345 PMCID: PMC11610481 DOI: 10.1038/s41559-023-02001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2023]
Abstract
Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin E R Rubin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Callum J Kingwell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Ian M Traniello
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Karen M Kapheim
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Biology, Utah State University, Logan, UT, USA
| | - Eli S Wyman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Per A Adastra
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - S RaElle Jackson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Matthew J McBride
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kennedy S Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Nikki Van Dorp
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Mauricio Fernández Otárola
- Biodiversity and Tropical Ecology Research Center (CIBET) and School of Biology, University of Costa Rica, San José, Costa Rica
| | - Melanie Pham
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joshua Schraiber
- Department of Biology, Temple University, Philadelphia, PA, USA
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Fernando Villanea
- Department of Biology, Temple University, Philadelphia, PA, USA
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Robert J Paxton
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
30
|
Aguilar P, Bourgeois T, Maria A, Couzi P, Demondion E, Bozzolan F, Gassias E, Force E, Debernard S. Methoprene-tolerant and Krüppel homolog 1 are actors of juvenile hormone-signaling controlling the development of male sexual behavior in the moth Agrotis ipsilon. Horm Behav 2023; 150:105330. [PMID: 36791650 DOI: 10.1016/j.yhbeh.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
In insects, juvenile hormone (JH) is critical for the orchestration of male reproductive maturation. For instance, in the male moth, Agrotis ipsilon, the behavioral response and the neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs), to the female-emitted sex pheromone increase with fertility during adulthood and the coordination between these events is governed by JH. However, the molecular basis of JH action in the development of sexual behavior remains largely unknown. Here, we show that the expression of the paralogous JH receptors, Methoprene-tolerant 1 and 2 (Met1, Met2) and of the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) within ALs raised from the third day of adult life and this dynamic is correlated with increased behavioral responsiveness to sex pheromone. Met1-, Met2- and Kr-h1-depleted sexually mature males exhibited altered sex pheromone-guided orientation flight. Moreover, injection of JH-II into young males enhanced the behavioral response to sex pheromone with increased AL Met1, Met2 and Kr-h1 mRNA levels. By contrast, JH deficiency suppressed the behavioral response to sex pheromone coupled with reduced AL Met1, Met2 and Kr-h1 mRNA levels in allatectomized old males and these inhibitions were compensated by an injection of JH-II in operated males. Our results demonstrated that JH acts through Met-Kr-h1 signaling pathway operating in ALs, to promote the pheromone information processing and consequently the display of sexual behavior in synchronization with fertility to optimize male reproductive fitness. Thus, this study provides insights into the molecular mechanisms underlying the hormonal regulation of reproductive behavior in insects.
Collapse
Affiliation(s)
- Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Evan Force
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France.
| |
Collapse
|
31
|
Li X, Wang X, Ma Q, Zhong Y, Zhang Y, Zhang P, Li Y, He R, Zhou Y, Li Y, Cheng M, Yan X, Li Y, He J, Iqbal MZ, Rong T, Tang Q. Integrated single-molecule real-time sequencing and RNA sequencing reveal the molecular mechanisms of salt tolerance in a novel synthesized polyploid genetic bridge between maize and its wild relatives. BMC Genomics 2023; 24:55. [PMID: 36717785 PMCID: PMC9887930 DOI: 10.1186/s12864-023-09148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Tripsacum dactyloides (2n = 4x = 72) and Zea perennis (2n = 4x = 40) are tertiary gene pools of Zea mays L. and exhibit many abiotic adaptations absent in modern maize, especially salt tolerance. A previously reported allopolyploid (hereafter referred to as MTP, 2n = 74) synthesized using Zea mays, Tripsacum dactyloides, and Zea perennis has even stronger salt tolerance than Z. perennis and T. dactyloides. This allopolyploid will be a powerful genetic bridge for the genetic improvement of maize. However, the molecular mechanisms underlying its salt tolerance, as well as the key genes involved in regulating its salt tolerance, remain unclear. RESULTS Single-molecule real-time sequencing and RNA sequencing were used to identify the genes involved in salt tolerance and reveal the underlying molecular mechanisms. Based on the SMRT-seq results, we obtained 227,375 reference unigenes with an average length of 2300 bp; most of the unigenes were annotated to Z. mays sequences (76.5%) in the NR database. Moreover, a total of 484 and 1053 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Functional enrichment analysis of DEGs revealed that multiple pathways responded to salt stress, including "Flavonoid biosynthesis," "Oxidoreductase activity," and "Plant hormone signal transduction" in the leaves and roots, and "Iron ion binding," "Acetyl-CoA carboxylase activity," and "Serine-type carboxypeptidase activity" in the roots. Transcription factors, such as those in the WRKY, B3-ARF, and bHLH families, and cytokinin negatively regulators negatively regulated the salt stress response. According to the results of the short time series-expression miner analysis, proteins involved in "Spliceosome" and "MAPK signal pathway" dynamically responded to salt stress as salinity changed. Protein-protein interaction analysis revealed that heat shock proteins play a role in the large interaction network regulating salt tolerance. CONCLUSIONS Our results reveal the molecular mechanism underlying the regulation of MTP in the response to salt stress and abundant salt-tolerance-related unigenes. These findings will aid the retrieval of lost alleles in modern maize and provide a new approach for using T. dactyloides and Z. perennis to improve maize.
Collapse
Affiliation(s)
- Xiaofeng Li
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Xingyu Wang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiangqiang Ma
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yunfeng Zhong
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yibo Zhang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Ping Zhang
- grid.452857.9Chengdu Research Base of Giant Panda Breeding, Chengdu, 61130 China
| | - Yingzheng Li
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Ruyu He
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Zhou
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Yang Li
- Mianyang Teachers’ College School of Urban and Rural Construction and Planning, Mianyany, 621000 China
| | - Mingjun Cheng
- grid.412723.10000 0004 0604 889XInstitute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041 China
| | - Xu Yan
- grid.465230.60000 0004 1777 7721Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000 China
| | - Yan Li
- grid.465230.60000 0004 1777 7721Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611041 China
| | - Jianmei He
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Muhammad Zafar Iqbal
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Tingzhao Rong
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| | - Qilin Tang
- grid.80510.3c0000 0001 0185 3134Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
32
|
Yang B, Miao S, Lu Y, Wang S, Wang Z, Zhao Y. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-mediated vitellogenesis of female Liposcelis entomophila (End.) (Psocoptera: Liposcelididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21973. [PMID: 36193599 PMCID: PMC10078567 DOI: 10.1002/arch.21973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.
Collapse
Affiliation(s)
- Bin‐Bin Yang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Shi‐Yuan Miao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yu‐Jie Lu
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sui‐Sui Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Zheng‐Yan Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Ya‐Ru Zhao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| |
Collapse
|
33
|
Morthorst JE, Holbech H, De Crozé N, Matthiessen P, LeBlanc GA. Thyroid-like hormone signaling in invertebrates and its potential role in initial screening of thyroid hormone system disrupting chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:63-82. [PMID: 35581168 PMCID: PMC10083991 DOI: 10.1002/ieam.4632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/30/2022] [Accepted: 05/12/2022] [Indexed: 05/07/2023]
Abstract
This review examines the presence and evolution of thyroid-like systems in selected aquatic invertebrates to determine the potential use of these organisms in screens for vertebrate thyroid hormone axis disrupting chemicals (THADCs). Such a screen might support the phasing out of some vertebrate testing. Although arthropods including crustaceans do not contain a functional thyroid signaling system, elements of such a system exist in the aquatic phyla mollusks, echinoderms, tunicates, and cephalochordates. These phyla can synthesize thyroid hormone, which has been demonstrated in some groups to induce the nuclear thyroid hormone receptor (THR). Thyroid hormone may act in these phyla through interaction with a membrane integrin receptor. Thyroid hormone regulates inter alia metamorphosis but, unlike in vertebrates, this does not occur via receptor activation by the ligands triiodothyronine (T3) and thyroxine (T4). Instead, the unliganded nuclear receptor itself controls metamorphosis in mollusks, echinoderms, and tunicates, whereas the T3 derivative tri-iodothyroacetic acid (TRIAC) acts as a THR ligand in cephalochordates. In view of this, it may be possible to develop an invertebrate-based screen that is sensitive to vertebrate THADCs that interfere with thyroid hormone synthesis or metabolism along with interaction with membrane receptors. The review makes some recommendations for the need to develop an appropriate test method. Integr Environ Assess Manag 2023;19:63-82. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Henrik Holbech
- Department of BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Noémie De Crozé
- Laboratoire Recherche Environnementale, L'ORÉAL Recherche & InnovationAulnay‐sous‐BoisFrance
| | | | - Gerald A. LeBlanc
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
34
|
Chen X, Palli SR. Identification of species-specific juvenile hormone response elements in the fall armyworm, Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103860. [PMID: 36374778 DOI: 10.1016/j.ibmb.2022.103860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormones (JH) regulate insect development and reproduction. The JH analogs (JHA) are used as insecticides. However, JHAs are rarely used in managing pests such as the fall armyworm, Spodoptera frugiperda that cause damage during larval stages. The insecticides that antagonize JH action and induce stoppage of feeding and precocious metamorphosis might work better to control these pests. Treating insects with JHA insecticides induces the expression of an early JH response gene, Krüppel homolog 1 (Kr-h1) by working through JH response elements (JHRE) present in its promoter. In this study, we identified JHREs present in the promoter of Kr-h1 gene of a global pest, S. frugiperda, and used them to develop a JHRE-reporter cell platform to screen for JH analogs. JHA, methoprene induced the expression of SfKr-h1 both in vitro and in vivo. JHRE present in the promoters of two SfKr-h1 isoforms, SfKr-h1α and SfKr-h1β were identified. In Sf9 cells, the knockout of isoform-specific JHRE affected JH response in an isoform-specific manner. We also found that S. frugiperda JHRE (SfJHRE) did not function in the mosquito Aedes aegypti Aag2 cells and Tribolium castaneum TcA cells. Similarly, Ae. aegypti AaJHRE and T. castaneum TcJHRE were only functional in cells derived from these insects. The nucleotide sequence at the 3'end to the conserved core JHRE E-box sequence seems to be responsible for the species specificity observed. Two stable cell lines expressing the luciferase and enhanced green fluorescent protein genes under the control of SfJHRE were established. These cell lines responded well to JHA; these two JHRE-reporter cell lines could be used in screening assays to identify insecticides to manage S. frugiperda and other major pests.
Collapse
Affiliation(s)
- Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
35
|
Cho H, Jeong CB, Lee YM. Modulation of ecdysteroid and juvenile hormone signaling pathways by bisphenol analogues and polystyrene beads in the brackish water flea Diaphanosoma celebensis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109462. [PMID: 36087704 DOI: 10.1016/j.cbpc.2022.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Owing to its high production and world-wide usage, plastic pollution is an increasing concern in marine environments. Plastic is decomposed into nano- and micro-sized debris, which negative affect reproduction and development in aquatic organisms. Bisphenol A (BPA), an additive of plastic, is released into the water column upon plastic degradation, and is known as a representative endocrine-disrupting chemical. However, the reproductive effects of plastics and bisphenols at the molecular level have not yet been explored in small marine crustaceans. In this study, we investigated the effects of polystyrene (PS) beads (0.05, 0.5, and 6 - μm) and bisphenol analogues (BPs; BPA, BPS, and BPF) on reproduction and development of small marine crustaceans. Effects on transcriptional changes in ecdysteroid and juvenile hormone (JH) signaling pathway-related genes were examined in the brackish water flea Diaphanosoma celebensis exposed to PS beads and BPs for 48 h. As results, BPs and PS beads delayed emergence time of first offspring, and increased fecundity in a concentration-dependent manner. BPs differentially modulated the expression of ecdysteroid and JH signaling pathway-related genes, indicating that BP analogs can disrupt endocrine systems via mechanisms different from those of BPA. PS beads was also changed the gene expression of both pathway, depending on their size and concentration. Our findings suggest that BP analogues and PS beads disrupt the endocrine system by modulating the hormonal pathways, affecting reproduction negatively. This study provides a better understanding of the molecular mode of action of BPs and PS beads in the reproduction of small crustaceans.
Collapse
Affiliation(s)
- Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
36
|
Unique peptidic agonists of a juvenile hormone receptor with species-specific effects on insect development and reproduction. Proc Natl Acad Sci U S A 2022; 119:e2215541119. [PMID: 36409882 PMCID: PMC9889882 DOI: 10.1073/pnas.2215541119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Juvenile hormones (JHs) control insect metamorphosis and reproduction. JHs act through a receptor complex consisting of methoprene-tolerant (Met) and taiman (Tai) proteins to induce transcription of specific genes. Among chemically diverse synthetic JH mimics (juvenoids), some of which serve as insecticides, unique peptidic juvenoids stand out as being highly potent yet exquisitely selective to a specific family of true bugs. Their mode of action is unknown. Here we demonstrate that, like established JH receptor agonists, peptidic juvenoids act upon the JHR Met to halt metamorphosis in larvae of the linden bug, Pyrrhocoris apterus. Peptidic juvenoids induced ligand-dependent dimerization between Met and Tai proteins from P. apterus but, consistent with their selectivity, not from other insects. A cell-based split-luciferase system revealed that the Met-Tai complex assembled within minutes of agonist presence. To explore the potential of juvenoid peptides, we synthesized 120 new derivatives and tested them in Met-Tai interaction assays. While many substituents led to loss of activity, improved derivatives active at sub-nanomolar range outperformed hitherto existing peptidic and classical juvenoids including fenoxycarb. Their potency in inducing Met-Tai interaction corresponded with the capacity to block metamorphosis in P. apterus larvae and to stimulate oogenesis in reproductively arrested adult females. Molecular modeling demonstrated that the high potency correlates with high affinity. This is a result of malleability of the ligand-binding pocket of P. apterus Met that allows larger peptidic ligands to maximize their contact surface. Our data establish peptidic juvenoids as highly potent and species-selective novel JHR agonists.
Collapse
|
37
|
Leyria J, Orchard I, Lange AB. Impact of JH Signaling on Reproductive Physiology of the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 23:ijms232213832. [PMID: 36430311 PMCID: PMC9692686 DOI: 10.3390/ijms232213832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago.
Collapse
|
38
|
Wu JJ, Chen F, Yang R, Shen CH, Ze LJ, Jin L, Li GQ. Knockdown of Ecdysone-Induced Protein 93F Causes Abnormal Pupae and Adults in the Eggplant Lady Beetle. BIOLOGY 2022; 11:1640. [PMID: 36358341 PMCID: PMC9687827 DOI: 10.3390/biology11111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 05/11/2025]
Abstract
Ecdysone-induced protein 93F (E93) plays triple roles during post-embryonic development in insects whose juvenile instars are more than four. However, it only acts as a specifier of adult structures in Drosophila flies whose larval instars are fixed at three. In this study, we determined the functions of E93 in the eggplant lady beetle (Henosepilachna vigintioctopunctata), which has four larval instars. We uncovered that E93 was abundantly expressed at the prepupal and pupal stages. A precocious inhibition of the juvenile hormone signal by RNA interference (RNAi) of HvKr-h1 or HvHairy, two vital downstream developmental effectors, at the penultimate instar larval stage increased the expression of E93, Conversely, ingestion of JH by the third-instar larvae stimulated the expression of HvKr-h1 but repressed the transcription of either HvE93X1 or HvE93X2. However, disturbance of the JH signal neither drove premature metamorphosis nor caused supernumerary instars. In contrast, depletion of E93 at the third- and fourth-instar larval and prepupal stages severely impaired pupation and caused a larval-pupal mixed phenotype: pupal spines and larval scoli were simultaneously presented on the cuticle. RNAi of E93 at the pupal stage affected adult eclosion. When the beetles had suffered from a dsE93 injection at the fourth-instar larval and pupal stages, a few resultant adults emerged, with separated elytra, abnormally folded hindwings, a small body size and short appendages. Taken together, our results suggest the larval instars are fixed in H. vigintioctopunctata; E93 serves as a repressor of larval characters and a specifier of adult structures during the larval-pupal-adult transition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Ramos FO, Nouzova M, Fruttero LL, Leyria J, Ligabue-Braun R, Noriega FG, Canavoso LE. Role of Methoprene-tolerant in the regulation of oogenesis in Dipetalogaster maxima. Sci Rep 2022; 12:14195. [PMID: 35988007 PMCID: PMC9392760 DOI: 10.1038/s41598-022-18384-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
Juvenile hormone (JH) signalling, via its receptor Methoprene-tolerant (Met), controls metamorphosis and reproduction in insects. Met belongs to a superfamily of transcription factors containing the basic Helix Loop Helix (bHLH) and Per Arnt Sim (PAS) domains. Since its discovery in 1986, Met has been characterized in several insect species. However, in spite of the importance as vectors of Chagas disease, our knowledge on the role of Met in JH signalling in Triatominae is limited. In this study, we cloned and sequenced the Dipetalogaster maxima Met transcript (DmaxMet). Molecular modelling was used to build the structure of Met and identify the JH binding site. To further understand the role of the JH receptor during oogenesis, transcript levels were evaluated in two main target organs of JH, fat body and ovary. Functional studies using Met RNAi revealed significant decreases of transcripts for vitellogenin (Vg) and lipophorin (Lp), as well as their receptors. Lp and Vg protein amounts in fat body, as well as Vg in hemolymph were also decreased, and ovarian development was impaired. Overall, these studies provide additional molecular insights on the roles of JH signalling in oogenesis in Triatominae; and therefore are relevant for the epidemiology of Chagas´ disease.
Collapse
Affiliation(s)
- Fabian O Ramos
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
- Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences and Graduate Program in Biosciences (PPGBio), Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
- Department of Parasitology, University of South Bohemia, Ceske Budejovice, Czech Republic.
| | - Lilian E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
40
|
Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.). INSECTS 2022; 13:insects13080701. [PMID: 36005325 PMCID: PMC9409390 DOI: 10.3390/insects13080701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The tobacco cutworm, Spodoptera litura (F.), exemplifies strong reproductive capacities and damages many agricultural crops. The insulin signaling pathway is known as a key determinant of female reproduction in insects. However, the detailed molecular mechanisms in these processes are poorly studied. Here, we injected bovine insulin into the newly emerged moth, resulting in gene expression changes in the insulin pathway, while knockdown of SlInR caused an inverse gene expression change involved in the insulin pathway. Further studies indicated that the content of JH-III, Vg, total proteins and triacylgycerol could be suppressed by SlInR dsRNA injection. Furthermore, stunted ovaries and lower fecundity were observed by RNAi. Our studies indicated that SlInR plays a key role in JH-III synthesis and the ovarian development in S. litura. Abstract Insulin signaling can regulate various physiological functions, such as energy metabolism and reproduction and so on, in many insects, including mosquito and locust. However, the molecular mechanism of this physiological process remains elusive. The tobacco cutworm, Spodoptera litura, is one of the most important pests of agricultural crops around the world. In this study, phosphoinositide 3-kinase (SlPI3K), protein kinase B (SlAKT), target of rapamycin (SlTOR), ribosomal protein S6 kinase (SlS6K) and transcription factor cAMP-response element binding protein (SlCREB) genes, except transcription factor forkhead box class O (SlFoxO), can be activated by bovine insulin injection. Then, we studied the influence of the insulin receptor gene (SlInR) on the reproduction of S. litura using RNA interference technology. qRT-PCR analysis revealed that SlInR was most abundant in the head. The SlPI3K, SlAKT, SlTOR, SlS6K and SlCREB genes were decreased, except SlFoxO, after the SlInR gene knockdown. Further studies revealed that the expression of vitellogenin mRNA and protein, Methoprene-tolerant gene (SlMet), could be down-regulated by the injection of dsRNA of SlInR significantly. Furthermore, a depletion in the insulin receptor by RNAi significantly decreased the content of juvenile hormone III (JH-III), total proteins and triacylgycerol. These changes indicated that a lack of SlInR could impair ovarian development and decrease fecundity in S. litura. Our studies contribute to a comprehensive insight into reproduction, regulated by insulin and the juvenile hormone signaling pathway through nutrition, and a provide theoretical basis for the reproduction process in pest insects.
Collapse
|
41
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
42
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Shin SW, Jeon JH, Kim JA, Park DS, Shin YJ, Oh HW. Inducible Expression of Several Drosophila melanogaster Genes Encoding Juvenile Hormone Binding Proteins by a Plant Diterpene Secondary Metabolite, Methyl Lucidone. INSECTS 2022; 13:420. [PMID: 35621756 PMCID: PMC9144306 DOI: 10.3390/insects13050420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023]
Abstract
Juvenile hormones prevent molting and metamorphosis in the juvenile stages of insects. There are multiple genes encoding a conserved juvenile hormone binding protein (JHBP) domain in a single insect species. Although some JHBPs have been reported to serve as carriers to release hormones to target tissues, the molecular functions of the other members of the diverse JHBP family of proteins remain unclear. We characterized 16 JHBP genes with conserved JHBP domains in Drosophila melanogaster. Among them, seven JHBP genes were induced by feeding the flies with methyl lucidone, a plant diterpene secondary metabolite (PDSM). Induction was also observed upon feeding the juvenile hormone (JH) analog methoprene. Considering that methyl lucidone and methoprene perform opposite functions in JH-mediated regulation, specifically the heterodimeric binding between a JH receptor (JHR) and steroid receptor coactivator (SRC), the induction of these seven JHBP genes is independent of JH-mediated regulation by the JHR/SRC heterodimer. Tissue-specific gene expression profiling through the FlyAtlas 2 database indicated that some JHBP genes are mainly enriched in insect guts and rectal pads, indicating their possible role during food uptake. Hence, we propose that JHBPs are induced by PDSMs and respond to toxic plant molecules ingested during feeding.
Collapse
Affiliation(s)
- Sang-Woon Shin
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jun-Hyoung Jeon
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (J.-H.J.); (D.-S.P.)
| | - Ji-Ae Kim
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (J.-H.J.); (D.-S.P.)
| | - Young-Joo Shin
- Department of Radiation Oncology, Sanggye Paik Hospital, Inje University, Seoul 01757, Korea;
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| |
Collapse
|
44
|
Gao Y, Chen N, Zhang X, Li EY, Luo W, Zhang J, Zhang W, Li S, Wang J, Liu S. Juvenile Hormone Membrane Signaling Enhances its Intracellular Signaling Through Phosphorylation of Met and Hsp83. Front Physiol 2022; 13:872889. [PMID: 35574494 PMCID: PMC9091338 DOI: 10.3389/fphys.2022.872889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Juvenile hormone (JH) regulates insect development and reproduction through both intracellular and membrane signaling, and the two pathways might crosstalk with each other. Recent studies have reported that JH membrane signaling induces phosphorylation of the JH intracellular receptor Met, thus enhancing its transcriptional activity. To gain more insights into JH-induced Met phosphorylation, we here performed phosphoproteomics to identify potential phosphorylation sites of Met and its paralog Germ-cell expressed (Gce) in Drosophila Kc cells. In vitro experiments demonstrate that JH-induced phosphorylation sites in the basic helix-loop-helix (bHLH) domain, but not in the Per-Arnt-Sim-B (PAS-B) domain, are required for maximization of Met transcriptional activity. Moreover, phosphoproteomics analysis reveale that JH also induces the phosphorylation of Hsp83, a chaperone protein involved in JH-activated Met nuclear import. The JH-induced Hsp83 phosphorylation at S219 facilitates Hsp83-Met binding, thus promoting Met nuclear import and its transcription. By using proteomics, subcellular distribution, and co-immunoprecipitation approaches, we further characterized 14-3-3 proteins as negative regulators of Met nuclear import through physical interaction with Hsp83. These results show that JH membrane signaling induces phosphorylation of the key components in JH intracellular signaling, such as Met and Hsp83, and consequently facilitating JH intracellular signaling.
Collapse
Affiliation(s)
- Yue Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiangle Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Emma Y. Li
- International Department, The Affiliated High School of South China Normal University, Guangzhou, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenqiang Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, United States
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
45
|
Harrison RE, Chen K, South L, Lorenzi A, Brown MR, Strand MR. Ad libitum consumption of protein- or peptide-sucrose solutions stimulates egg formation by prolonging the vitellogenic phase of oogenesis in anautogenous mosquitoes. Parasit Vectors 2022; 15:127. [PMID: 35413939 PMCID: PMC9004051 DOI: 10.1186/s13071-022-05252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Anautogenous mosquitoes commonly consume nectars and other solutions containing sugar but are thought to only produce eggs in discrete gonadotrophic cycles after blood-feeding on a vertebrate host. However, some anautogenous species are known to produce eggs if amino acids in the form of protein are added to a sugar solution. Unclear is how different sources of amino acids in sugar solutions affect the processes that regulate egg formation and whether responses vary among species. In this study, we addressed these questions by focusing on Aedes aegypti and conducting some comparative assays with Aedes albopictus, Anopheles gambiae, Anopheles stephensi and Culex quinquefasciatus. METHODS Adult female mosquitoes were fed sugar solutions containing amino acids, peptides or protein. Markers for activation of a gonadotrophic cycle including yolk deposition into oocytes, oviposition, ovary ecdysteroidogenesis, expression of juvenile hormone and 20-hydroxyecdysone-responsive genes, and adult blood-feeding behavior were then measured. RESULTS The five anautogenous species we studied produced eggs when fed two proteins (bovine serum albumin, hemoglobin) or a mixture of peptides (tryptone) in 10% sucrose but deposited only small amounts of yolk into oocytes when fed amino acids in 10% sucrose. Focusing on Ae. aegypti, cultures were maintained for multiple generations by feeding adult females protein- or tryptone-sugar meals. Ad libitum access to protein- or tryptone-sugar solutions protracted production of ecdysteroids by the ovaries, vitellogenin by the fat body and protease activity by the midgut albeit at levels that were lower than in blood-fed females. Females also exhibited semi-continual oogenesis and repressed host-seeking behavior. CONCLUSIONS Several anautogenous mosquitoes produce eggs when provided ad libitum access to protein- or peptide-sugar meals, but several aspects of oogenesis also differ from females that blood-feed.
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Kangkang Chen
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lilith South
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Ange Lorenzi
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
46
|
Hejníková M, Nouzova M, Ramirez CE, Fernandez-Lima F, Noriega FG, Doležel D. Sexual dimorphism of diapause regulation in the hemipteran bug Pyrrhocoris apterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103721. [PMID: 35007710 DOI: 10.1016/j.ibmb.2022.103721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Diapause is one of the major strategies for insects to prepare for and survive harsh seasons. In females, the absence of juvenile hormone (JH) is a hallmark of adult reproductive diapause, a developmental arrest, which is much less characterized in males. Here we show that juvenile hormone III skipped bisepoxide (JHSB3) titers in hemolymph remarkably differ between reproductive males and females of the linden bug Pyrrhocoris apterus, whereas no JH was detected in diapausing adults of both sexes. Like in females, ectopic application of JH mimic effectively terminated male diapause through the canonical JH receptor components, Methoprene-tolerant and Taiman. In contrast to females, long photoperiod induced reproduction even in males with silenced JH reception or in males with removed corpus allatum (CA), the JH-producing gland. JHSB3 was detected in the accessory glands (MAG) of reproductive males, unexpectedly, even in males without CA. If there is a source of JHSB3 outside CA or a long-term storage of JHSB3 in MAGs remains to be elucidated. These sex-related idiosyncrasies are further manifested in different dynamics of diapause termination in P. apterus by low temperature. We would like to propose that this sexual dimorphism of diapause regulation might be explained by the different reproductive costs for each sex.
Collapse
Affiliation(s)
- Markéta Hejníková
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005, Ceske Budejovice, Czech Republic
| | - Marcela Nouzova
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Parasitology, 37005, Ceske Budejovice, Czech Republic; Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - Fernando Gabriel Noriega
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - David Doležel
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
47
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|
48
|
Toyota K, Watanabe H, Hirano M, Abe R, Miyakawa H, Song Y, Sato T, Miyagawa S, Tollefsen KE, Yamamoto H, Tatarazako N, Iguchi T. Juvenile hormone synthesis and signaling disruption triggering male offspring induction and population decline in cladocerans (water flea): Review and adverse outcome pathway development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106058. [PMID: 34965494 DOI: 10.1016/j.aquatox.2021.106058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/21/2023]
Abstract
Juvenile hormone (JH) are a family of multifunctional hormones regulating larval development, molting, metamorphosis, reproduction, and phenotypic plasticity in arthropods. Based on its importance in arthropod life histories, many insect growth regulators (IGRs) mimicking JH have been designed to control harmful insects in agriculture and aquaculture. These JH analogs (JHAs) may also pose hazards to nontarget species by causing unexpected endocrine-disrupting (ED) effects such as molting and metamorphosis defects, larval lethality, and disruption of the sexual identity. This critical review summarizes the current knowledge of the JH-mediated effects in the freshwater cladoceran crustaceans such as Daphnia species on JHA-triggered endocrine disruptive outputs to establish a systematic understanding of JHA effects. Based on the current knowledge, adverse outcome pathways (AOPs) addressing the JHA-mediated ED effects in cladoceran leading to male offspring production and subsequent population decline were developed. The weight of evidence (WoE) of AOPs was assessed according to established guidelines. The review and AOP development aim to present the current scientific understanding of the JH pathway and provide a robust reference for the development of tiered testing strategies and new risk assessment approaches for JHAs in future ecotoxicological research and regulatory processes.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, 87 Tassha, Sado, Niigata 952-2135, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Masashi Hirano
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto City, Kumamoto 862-8652, Japan
| | - Ryoko Abe
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Ås, Norway
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.
| |
Collapse
|
49
|
Zhu J. Non-genomic action of juvenile hormone modulates the synthesis of 20-hydroxyecdysone in Drosophila. Sci Bull (Beijing) 2022; 67:117-118. [PMID: 35036034 PMCID: PMC8751977 DOI: 10.1016/j.scib.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061, USA
| |
Collapse
|
50
|
Gao Y, Liu S, Jia Q, Wu L, Yuan D, Li EY, Feng Q, Wang G, Palli SR, Wang J, Li S. Juvenile hormone membrane signaling phosphorylates USP and thus potentiates 20-hydroxyecdysone action in Drosophila. Sci Bull (Beijing) 2022; 67:186-197. [PMID: 36546012 DOI: 10.1016/j.scib.2021.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E) coordinately regulate development and metamorphosis in insects. Two JH intracellular receptors, methoprene-tolerant (Met) and germ-cell expressed (Gce), have been identified in the fruit fly Drosophila melanogaster. To investigate JH membrane signaling pathway without the interference from JH intracellular signaling, we characterized phosphoproteome profiles of the Met gce double mutant in the absence or presence of JH in both chronic and acute phases. Functioning through a potential receptor tyrosine kinase and phospholipase C pathway, JH membrane signaling activated protein kinase C (PKC) which phosphorylated ultraspiracle (USP) at Ser35, the PKC phosphorylation site required for the maximal action of 20E through its nuclear receptor complex EcR-USP. The uspS35A mutant, in which Ser was replaced with Ala at position 35 by genome editing, showed decreased expression of Halloween genes that are responsible for ecdysone biosynthesis and thus attenuated 20E signaling that delayed developmental timing. The uspS35A mutant also showed lower Yorkie activity that reduced body size. Altogether, JH membrane signaling phosphorylates USP at Ser35 and thus potentiates 20E action that regulates the normal fly development. This study helps better understand the complex JH signaling network.
Collapse
Affiliation(s)
- Yue Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lixian Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Emma Y Li
- International Department, The Affiliated High School of South China Normal University, Guangzhou 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington 40546, USA
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park 20742, USA.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|