1
|
Baatz F, Ghosh A, Herbst J, Polten S, Meyer J, Rhiel M, Maetzig T, Geffers R, Rothe M, Bastone AL, John-Neek P, Frühauf J, Eiz-Vesper B, Bonifacius A, Falk CS, Kaisenberg CV, Cathomen T, Schambach A, van den Brink MRM, Hust M, Sauer MG. Targeting BCL11B in CAR-engineered lymphoid progenitors drives NK-like cell development with prolonged anti-leukemic activity. Mol Ther 2025; 33:1584-1607. [PMID: 39955618 PMCID: PMC11997514 DOI: 10.1016/j.ymthe.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/26/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Chimeric antigen receptor (CAR)-induced suppression of the transcription factor B cell CLL/lymphoma 11B (BCL11B) propagates CAR-induced killer (CARiK) cell development from lymphoid progenitors. Here, we show that CRISPR-Cas9-mediated Bcl11b knockout in human and murine early lymphoid progenitors distinctively modulates this process either alone or in combination with a CAR. Upon adoptive transfer into hematopoietic stem cell recipients, Bcl11b-edited progenitors mediated innate-like antigen-independent anti-leukemic immune responses. With CAR expression allowing for additional antigen-specific responses, the progeny of double-edited lymphoid progenitors acquired prolonged anti-leukemic activity in vivo. These findings give important insights into how Bcl11b targeting can be used to tailor anti-leukemia functionality of CAR-engineered lymphoid progenitor cells.
Collapse
Affiliation(s)
- Franziska Baatz
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnab Ghosh
- Adult BMT Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica Herbst
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Saskia Polten
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jörg Frühauf
- Clinic for Radiation Therapy and special Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Constantin V Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael Hust
- Department of Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology, Department of Oncology and Blood Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
3
|
Patterson AR, Needle GA, Sugiura A, Jennings EQ, Chi C, Steiner KK, Fisher EL, Robertson GL, Bodnya C, Markle JG, Sheldon RD, Jones RG, Gama V, Rathmell JC. Functional overlap of inborn errors of immunity and metabolism genes defines T cell metabolic vulnerabilities. Sci Immunol 2024; 9:eadh0368. [PMID: 39151020 PMCID: PMC11590014 DOI: 10.1126/sciimmunol.adh0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Inborn errors of metabolism (IEMs) and immunity (IEIs) are Mendelian diseases in which complex phenotypes and patient rarity have limited clinical understanding. Whereas few genes have been annotated as contributing to both IEMs and IEIs, immunometabolic demands suggested greater functional overlap. Here, CRISPR screens tested IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable previously unappreciated crossover. Analysis of IEMs showed that N-linked glycosylation and the hexosamine pathway enzyme Gfpt1 are critical for T cell expansion and function. Further, T helper (TH1) cells synthesized uridine diphosphate N-acetylglucosamine more rapidly and were more impaired by Gfpt1 deficiency than TH17 cells. Screening IEI genes found that Bcl11b promotes the CD4 T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. Thus, a high degree of functional overlap exists between IEM and IEI genes, and immunometabolic mechanisms may underlie a previously underappreciated intersection of these disorders.
Collapse
Affiliation(s)
- Andrew R. Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel A. Needle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin Q. Jennings
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - KayLee K. Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emilie L. Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Caroline Bodnya
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Janet G. Markle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan D. Sheldon
- Mass Spectrometry Core, Core Technologies and Services, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Matsumoto K, Okuyama K, Sidwell T, Yamashita M, Endo T, Satoh-Takayama N, Ohno H, Morio T, Rothenberg EV, Taniuchi I. A Bcl11b N797K variant isolated from an immunodeficient patient inhibits early thymocyte development in mice. Front Immunol 2024; 15:1363704. [PMID: 38495886 PMCID: PMC10940544 DOI: 10.3389/fimmu.2024.1363704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
BCL11B is a transcription factor with six C2H2-type zinc-finger domains. Studies in mice have shown that Bcl11b plays essential roles in T cell development. Several germline heterozygous BCL11B variants have been identified in human patients with inborn errors of immunity (IEI) patients. Among these, two de novo mis-sense variants cause asparagine (N) to lysine (K) replacement in distinct zinc-finger domains, BCL11BN441K and BCL11BN807K. To elucidate the pathogenesis of the BCL11BN807K variant, we generated a mouse model of BCL11BN807K by inserting the corresponding mutation, Bcl11bN797K, into the mouse genome. In Bcl11b+/N797K mice, the proportion of immature CD4-CD8+ single-positive thymocytes was increased, and the development of invariant natural killer cells was severely inhibited in a T-cell-intrinsic manner. Under competitive conditions, γδT cell development was outcompeted by control cells. Bcl11bN797K/N797K mice died within one day of birth. Recipient mice reconstituted with Bcl11bN797K/N797K fetal liver cells nearly lacked CD4+CD8+ double-positive thymocytes, which was consistent with the lack of their emergence in culture from Bcl11bN797K/N797K fetal liver progenitors. Interestingly, Bcl11bN797K/N797K progenitors gave rise to aberrant c-Kit+ and CD44+ cells both in vivo and in vitro. The increase in the proportion of immature CD8 single-positive thymocytes in the Bcl11bN797K mutants is caused, in part, by the inefficient activation of the Cd4 gene due to the attenuated function of the two Cd4 enhancers via distinct mechanisms. Therefore, we conclude that immunodeficient patient-derived Bcl11bN797K mutant mice elucidated a novel role for Bcl11b in driving the appropriate transition of CD4-CD8- into CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
- Kazuaki Matsumoto
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaho Endo
- Genome Platform, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama Kanagawa, Japan
| |
Collapse
|
5
|
You M, Liu J, Li J, Ji C, Ni H, Guo W, Zhang J, Jia W, Wang Z, Zhang Y, Yao Y, Yu G, Ji H, Wang X, Han D, Du X, Xu MM, Yu S. Mettl3-m 6A-Creb1 forms an intrinsic regulatory axis in maintaining iNKT cell pool and functional differentiation. Cell Rep 2023; 42:112584. [PMID: 37267102 DOI: 10.1016/j.celrep.2023.112584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.
Collapse
Affiliation(s)
- Menghao You
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjing Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiarui Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajiao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingpeng Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guotao Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huanyu Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Shuyang Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Helm EY, Zelenka T, Cismasiu VB, Islam S, Silvane L, Zitti B, Holmes TD, Drashansky TT, Kwiatkowski AJ, Tao C, Dean J, Obermayer AN, Chen X, Keselowsky BG, Zhang W, Huo Z, Zhou L, Sheridan BS, Conejo-Garcia JR, Shaw TI, Bryceson YT, Avram D. Bcl11b sustains multipotency and restricts effector programs of intestinal-resident memory CD8 + T cells. Sci Immunol 2023; 8:eabn0484. [PMID: 37115913 DOI: 10.1126/sciimmunol.abn0484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The networks of transcription factors (TFs) that control intestinal-resident memory CD8+ T (TRM) cells, including multipotency and effector programs, are poorly understood. In this work, we investigated the role of the TF Bcl11b in TRM cells during infection with Listeria monocytogenes using mice with post-activation, conditional deletion of Bcl11b in CD8+ T cells. Conditional deletion of Bcl11b resulted in increased numbers of intestinal TRM cells and their precursors as well as decreased splenic effector and circulating memory cells and precursors. Loss of circulating memory cells was in part due to increased intestinal homing of Bcl11b-/- circulating precursors, with no major alterations in their programs. Bcl11b-/- TRM cells had altered transcriptional programs, with diminished expression of multipotent/multifunctional (MP/MF) program genes, including Tcf7, and up-regulation of the effector program genes, including Prdm1. Bcl11b also limits the expression of Ahr, another TF with a role in intestinal CD8+ TRM cell differentiation. Deregulation of TRM programs translated into a poor recall response despite TRM cell accumulation in the intestine. Reduced expression of MP/MF program genes in Bcl11b-/- TRM cells was linked to decreased chromatin accessibility and a reduction in activating histone marks at these loci. In contrast, the effector program genes displayed increased activating epigenetic status. These findings demonstrate that Bcl11b is a frontrunner in the tissue residency program of intestinal memory cells upstream of Tcf1 and Blimp1, promoting multipotency and restricting the effector program.
Collapse
Affiliation(s)
- Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tomas Zelenka
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Valeriu B Cismasiu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Shamima Islam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Leonardo Silvane
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Beatrice Zitti
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joseph Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Alyssa N Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, S-14186 Stockholm, Sweden
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL 33612, USA
| |
Collapse
|
7
|
Patterson AR, Needle GA, Sugiura A, Chi C, Steiner KK, Fisher EL, Robertson GL, Bodnya C, Markle JG, Gama V, Rathmell JC. Functional Overlap of Inborn Errors of Immunity and Metabolism Genes Define T Cell Immunometabolic Vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525419. [PMID: 36747715 PMCID: PMC9900827 DOI: 10.1101/2023.01.24.525419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inborn Errors of Metabolism (IEM) and Immunity (IEI) are Mendelian diseases in which complex phenotypes and patient rarity can limit clinical annotations. Few genes are assigned to both IEM and IEI, but immunometabolic demands suggest functional overlap is underestimated. We applied CRISPR screens to test IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable crossover. Analysis of IEM showed N-linked glycosylation and the de novo hexosamine synthesis enzyme, Gfpt1 , are critical for T cell expansion and function. Interestingly, Gfpt1 -deficient T H 1 cells were more affected than T H 17 cells, which had increased Nagk for salvage UDP-GlcNAc synthesis. Screening IEI genes showed the transcription factor Bcl11b promotes CD4 + T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. These data illustrate a high degree of functional overlap of IEM and IEI genes and point to potential immunometabolic mechanisms for a previously unappreciated set of these disorders. HIGHLIGHTS Inborn errors of immunity and metabolism have greater overlap than previously known Gfpt1 deficiency causes an IEM but also selectively regulates T cell subset fate Loss of Bcl11b causes a T cell deficiency IEI but also harms mitochondrial function Many IEM may have immune defects and IEI may be driven by metabolic mechanisms.
Collapse
|
8
|
Morgan RC, Kee BL. Genomic and Transcriptional Mechanisms Governing Innate-like T Lymphocyte Development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:208-216. [PMID: 35821098 DOI: 10.4049/jimmunol.2200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
Innate-like lymphocytes are a subset of lymphoid cells that function as a first line of defense against microbial infection. These cells are activated by proinflammatory cytokines or broadly expressed receptors and are able to rapidly perform their effector functions owing to a uniquely primed chromatin state that is acquired as a part of their developmental program. These cells function in many organs to protect against disease, but they release cytokines and cytotoxic mediators that can also lead to severe tissue pathologies. Therefore, harnessing the capabilities of these cells for therapeutic interventions will require a deep understanding of how these cells develop and regulate their effector functions. In this review we discuss recent advances in the identification of the transcription factors and the genomic regions that guide the development and function of invariant NKT cells and we highlight related mechanisms in other innate-like lymphocytes.
Collapse
Affiliation(s)
- Roxroy C Morgan
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL; and
| | - Barbara L Kee
- Cancer Biology and Immunology, Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Gao J, Huo S, Zhang Y, Zhao Z, Pan H, Liu X. Construction of ovarian metastasis-related immune signature predicting prognosis of gastric cancer patients. Cancer Med 2022; 12:913-929. [PMID: 35621244 PMCID: PMC9844635 DOI: 10.1002/cam4.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Ovarian metastasis (OM) results in poor survival of gastric cancer (GC) patients. While immunotherapy has emerged as a promising approach for late-stage GC, validated immune-related prognostic signatures still remain in need. In this study, we constructed an ovarian metastasis- and immune-related prognostic signature (OMIRPS), characterized the molecular and immune features of OMIRPS-categorized subgroups and predicted their potential response to immunotherapy. METHODS Three individual cohorts were used to construct and evaluate OMIRPS: RNA-seq of matched primary GC and OM from Fudan University Shanghai Cancer Center (FUSCC) (discovery cohort, n = 4), The Cancer Genome Atlas (TCGA) (training cohort, n = 544) and GSE84437 (validation cohort, n = 433). Differentially expressed genes (DEGs) identified between primary GC and OM and immune-related genes (IRGs) from the ImmPort and InnateDB databases were used to identify immune-related prognostic hub genes, which were further used to construct OMIRPS by using LASSO regression analysis. Prognosis, molecular characteristics, immune features, and differential immunotherapy efficacy between different OMIRPS subgroups were analyzed. RESULTS Functional analyses of DEGs revealed the significance of immune-related signatures and pathways in the OM. Immune-related prognostic hub genes including TNFRSF18, CARD11, BCL11B, NRP1, BNIP3L, and ATF3 were utilized to construct OMIRPS, which was identified as an independent prognostic factor. Comprehensive analyses unveiled the distinctive molecular and immune characteristics of OMIRPS-high and -low subgroup in regard to enriched pathways, mutation rate, tumor mutation burden, microsatellite instability status, infiltrated immune cell, immune exclusion score, and the prediction of immunotherapy efficacy. Additionally, OMIRPS was associated with Immune Subtypes with borderline significance. CONCLUSIONS RNA-seq of paired primary and ovarian metastatic tumors unveiled the significance of immune-related pathways and tumor immune microenvironment in OM. OMIRPS served as a promising biomarker to predict the prognosis of GC patients and distinguish the molecular features, immune characteristics, and efficacy of immunotherapy between different subgroups.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shiying Huo
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zhang
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zhenxiong Zhao
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Hongda Pan
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xiaowen Liu
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
10
|
Stamos DB, Clubb LM, Mitra A, Chopp LB, Nie J, Ding Y, Das A, Venkataganesh H, Lee J, El-Khoury D, Li L, Bhandoola A, Bosselut R, Love PE. The histone demethylase Lsd1 regulates multiple repressive gene programs during T cell development. J Exp Med 2021; 218:e20202012. [PMID: 34726730 PMCID: PMC8570297 DOI: 10.1084/jem.20202012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022] Open
Abstract
Analysis of the transcriptional profiles of developing thymocytes has shown that T lineage commitment is associated with loss of stem cell and early progenitor gene signatures and the acquisition of T cell gene signatures. Less well understood are the epigenetic alterations that accompany or enable these transcriptional changes. Here, we show that the histone demethylase Lsd1 (Kdm1a) performs a key role in extinguishing stem/progenitor transcriptional programs in addition to key repressive gene programs during thymocyte maturation. Deletion of Lsd1 caused a block in late T cell development and resulted in overexpression of interferon response genes as well as genes regulated by the Gfi1, Bcl6, and, most prominently, Bcl11b transcriptional repressors in CD4+CD8+ thymocytes. Transcriptional overexpression in Lsd1-deficient thymocytes was not always associated with increased H3K4 trimethylation at gene promoters, indicating that Lsd1 indirectly affects the expression of many genes. Together, these results identify a critical function for Lsd1 in the epigenetic regulation of multiple repressive gene signatures during T cell development.
Collapse
Affiliation(s)
- Daniel B. Stamos
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Lauren M. Clubb
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Apratim Mitra
- Bioinformatics and Scientific Programing Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Laura B. Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Harini Venkataganesh
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Dalal El-Khoury
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - LiQi Li
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Remy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
11
|
Drashansky TT, Helm EY, Curkovic N, Cooper J, Cheng P, Chen X, Gautam N, Meng L, Kwiatkowski AJ, Collins WO, Keselowsky BG, Sant'Angelo D, Huo Z, Zhang W, Zhou L, Avram D. BCL11B is positioned upstream of PLZF and RORγt to control thymic development of mucosal-associated invariant T cells and MAIT17 program. iScience 2021; 24:102307. [PMID: 33870128 PMCID: PMC8042176 DOI: 10.1016/j.isci.2021.102307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/02/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells recognize microbial riboflavin metabolites presented by MR1 and play role in immune responses to microbial infections and tumors. We report here that absence of the transcription factor (TF) Bcl11b in mice alters predominantly MAIT17 cells in the thymus and further in the lung, both at steady state and following Salmonella infection. Transcriptomics and ChIP-seq analyses show direct control of TCR signaling program and position BCL11B upstream of essential TFs of MAIT17 program, including RORγt, ZBTB16 (PLZF), and MAF. BCL11B binding at key MAIT17 and at TCR signaling program genes in human MAIT cells occurred mostly in regions enriched for H3K27Ac. Unexpectedly, in human MAIT cells, BCL11B also bound at MAIT1 program genes, at putative active enhancers, although this program was not affected in mouse MAIT cells in the absence of Bcl11b. These studies endorse BCL11B as an essential TF for MAIT cells both in mice and humans. BCL11B controls MAIT cell development in mice, predominantly MAIT17 lineage BCL11B sustains MAIT17 and TCR signaling programs at steady state and in infection BCL11B binds at MAIT17 and TCR program genes in human MAIT cells Many BCL11B binding sites at MAIT17 and TCR genes are at putative active enhancers
Collapse
Affiliation(s)
- Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nina Curkovic
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jaimee Cooper
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Namrata Gautam
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | - Lingsong Meng
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - William O Collins
- Department of Otolaryngology, College of Medicine, University of Florida, Gainesville, FL 32605, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Derek Sant'Angelo
- Department of Pediatrics, The Child Health Institute of NJ, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health & Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Liang Zhou
- UF Health Cancer Center, Gainesville, FL 32610, USA.,Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL 33612, USA.,UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Holmes TD, Pandey RV, Helm EY, Schlums H, Han H, Campbell TM, Drashansky TT, Chiang S, Wu CY, Tao C, Shoukier M, Tolosa E, Von Hardenberg S, Sun M, Klemann C, Marsh RA, Lau CM, Lin Y, Sun JC, Månsson R, Cichocki F, Avram D, Bryceson YT. The transcription factor Bcl11b promotes both canonical and adaptive NK cell differentiation. Sci Immunol 2021; 6:6/57/eabc9801. [PMID: 33712472 DOI: 10.1126/sciimmunol.abc9801] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic landscapes can provide insight into regulation of gene expression and cellular diversity. Here, we examined the transcriptional and epigenetic profiles of seven human blood natural killer (NK) cell populations, including adaptive NK cells. The BCL11B gene, encoding a transcription factor (TF) essential for T cell development and function, was the most extensively regulated, with expression increasing throughout NK cell differentiation. Several Bcl11b-regulated genes associated with T cell signaling were specifically expressed in adaptive NK cell subsets. Regulatory networks revealed reciprocal regulation at distinct stages of NK cell differentiation, with Bcl11b repressing RUNX2 and ZBTB16 in canonical and adaptive NK cells, respectively. A critical role for Bcl11b in driving NK cell differentiation was corroborated in BCL11B-mutated patients and by ectopic Bcl11b expression. Moreover, Bcl11b was required for adaptive NK cell responses in a murine cytomegalovirus model, supporting expansion of these cells. Together, we define the TF regulatory circuitry of human NK cells and uncover a critical role for Bcl11b in promoting NK cell differentiation and function.
Collapse
Affiliation(s)
- Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway. .,Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Ram Vinay Pandey
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Heinrich Schlums
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Hongya Han
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tessa M Campbell
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Samuel Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Cheng-Ying Wu
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Miao Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yin Lin
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75246, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert Månsson
- Centre for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway. .,Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| |
Collapse
|
13
|
Gaillard L, Goverde A, van den Bosch QCC, Jehee FS, Brosens E, Veenma D, Magielsen F, de Klein A, Mathijssen IMJ, van Dooren MF. Case Report and Review of the Literature: Congenital Diaphragmatic Hernia and Craniosynostosis, a Coincidence or Common Cause? Front Pediatr 2021; 9:772800. [PMID: 34900871 PMCID: PMC8662985 DOI: 10.3389/fped.2021.772800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect that presents as either an isolated diaphragm defect or as part of a complex disorder with a wide array of anomalies (complex CDH). Some patients with complex CDH display distinct craniofacial anomalies such as craniofrontonasal dysplasia or craniosynostosis, defined by the premature closure of cranial sutures. Using clinical whole exome sequencing (WES), we found a BCL11B missense variant in a patient with a left-sided congenital diaphragmatic hernia as well as sagittal suture craniosynostosis. We applied targeted sequencing of BCL11B in patients with craniosynostosis or with a combination of craniosynostosis and CDH. This resulted in three additional BCL11B missense mutations in patients with craniosynostosis. The phenotype of the patient with both CDH as well as craniosynostosis was similar to the phenotype of previously reported patients with BCL11B missense mutations. Although these findings imply that both craniosynostosis as well as CDH may be associated with BCL11B mutations, further studies are required to establish whether BCL11B variants are causative mutations for both conditions or if our finding was coincidental.
Collapse
Affiliation(s)
- Linda Gaillard
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anne Goverde
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Quincy C C van den Bosch
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernanda S Jehee
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Danielle Veenma
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Irene M J Mathijssen
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
14
|
Daher MT, Bausero P, Agbulut O, Li Z, Parlakian A. Bcl11b/Ctip2 in Skin, Tooth, and Craniofacial System. Front Cell Dev Biol 2020; 8:581674. [PMID: 33363142 PMCID: PMC7758212 DOI: 10.3389/fcell.2020.581674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Ctip2/Bcl11b is a zinc finger transcription factor with dual action (repression/activation) that couples epigenetic regulation to gene transcription during the development of various tissues. It is involved in a variety of physiological responses under healthy and pathological conditions. Its role and mechanisms of action are best characterized in the immune and nervous systems. Furthermore, its implication in the development and homeostasis of other various tissues has also been reported. In the present review, we describe its role in skin development, adipogenesis, tooth formation and cranial suture ossification. Experimental data from several studies demonstrate the involvement of Bcl11b in the control of the balance between cell proliferation and differentiation during organ formation and repair, and more specifically in the context of stem cell self-renewal and fate determination. The impact of mutations in the coding sequences of Bcl11b on the development of diseases such as craniosynostosis is also presented. Finally, we discuss genome-wide association studies that suggest a potential influence of single nucleotide polymorphisms found in the 3’ regulatory region of Bcl11b on the homeostasis of the cardiovascular system.
Collapse
Affiliation(s)
- Marie-Thérèse Daher
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Pedro Bausero
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Ara Parlakian
- Biological Adaptation and Ageing, Inserm ERL U1164, UMR CNRS 8256, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Abstract
A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αβ T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan;
| |
Collapse
|
16
|
Goos JAC, Vogel WK, Mlcochova H, Millard CJ, Esfandiari E, Selman WH, Calpena E, Koelling N, Carpenter EL, Swagemakers SMA, van der Spek PJ, Filtz TM, Schwabe JWR, Iwaniec UT, Mathijssen IMJ, Leid M, Twigg SRF. A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis. Hum Mol Genet 2019; 28:2501-2513. [PMID: 31067316 PMCID: PMC6644156 DOI: 10.1093/hmg/ddz072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Departments of Plastic and Reconstructive Surgery and Hand Surgery
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Walter K Vogel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Hana Mlcochova
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christopher J Millard
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Elahe Esfandiari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Wisam H Selman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nils Koelling
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Evan L Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Sigrid M A Swagemakers
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Bioinformatics, Erasmus MC, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - John W R Schwabe
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR, USA
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
17
|
Drashansky TT, Helm E, Huo Z, Curkovic N, Kumar P, Luo X, Parthasarathy U, Zuniga A, Cho JJ, Lorentsen KJ, Xu Z, Uddin M, Moshkani S, Zhou L, Avram D. Bcl11b prevents fatal autoimmunity by promoting T reg cell program and constraining innate lineages in T reg cells. SCIENCE ADVANCES 2019; 5:eaaw0480. [PMID: 31457080 PMCID: PMC6685710 DOI: 10.1126/sciadv.aaw0480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/28/2019] [Indexed: 05/15/2023]
Abstract
Regulatory T (Treg) cells are essential for peripheral tolerance and rely on the transcription factor (TF) Foxp3 for their generation and function. Several other TFs are critical for the Treg cell program. We found that mice deficient in Bcl11b TF solely in Treg cells developed fatal autoimmunity, and Bcl11b-deficient Treg cells had severely altered function. Bcl11b KO Treg cells showed decreased functional marker levels in homeostatic conditions, inflammation, and tumors. Bcl11b controlled expression of essential Treg program genes at steady state and in inflammation. Bcl11b bound to genomic regulatory regions of Treg program genes in both human and mouse Treg cells, overlapping with Foxp3 binding; these genes showed altered chromatin accessibility in the absence of Bcl11b. Additionally, Bcl11b restrained myeloid and NK cell programs in Treg cells. Our study provides new mechanistic insights on the Treg cell program and identity control, with major implications for therapies in autoimmunity and cancer.
Collapse
MESH Headings
- Animals
- Autoimmunity
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Lineage
- Colitis/etiology
- Colitis/immunology
- Colitis/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/mortality
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fetus/immunology
- Forkhead Transcription Factors/metabolism
- Humans
- Kaplan-Meier Estimate
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Binding
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Skin/pathology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Theodore T. Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
| | - Nina Curkovic
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Preet Kumar
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoping Luo
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Upasana Parthasarathy
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ashley Zuniga
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan J. Cho
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kyle J. Lorentsen
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiwei Xu
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohammad Uddin
- Department of Microbiology and Immunology, Albany Medical College, Albany, NY 12208, USA
| | | | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
- Corresponding author.
| |
Collapse
|
18
|
Wang H, Hogquist KA. How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets. Front Immunol 2018; 9:1450. [PMID: 29997620 PMCID: PMC6028555 DOI: 10.3389/fimmu.2018.01450] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
In contrast to peptide-recognizing T cells, invariant natural killer T (iNKT) cells express a semi-invariant T cell receptor that specifically recognizes self- or foreign-lipids presented by CD1d molecules. There are three major functionally distinct effector states for iNKT cells. Owning to these innate-like effector states, iNKT cells have been implicated in early protective immunity against pathogens. Yet, growing evidence suggests that iNKT cells play a role in tissue homeostasis as well. In this review, we discuss current knowledge about the underlying mechanisms that regulate the effector states of iNKT subsets, with a highlight on the roles of a variety of transcription factors and describe how each subset influences different facets of thymus homeostasis.
Collapse
Affiliation(s)
- Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
19
|
He Z, Liao Z, Chen S, Li B, Yu Z, Luo G, Yang L, Zeng C, Li Y. Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2018; 14:e259-e265. [PMID: 29749698 DOI: 10.1111/ajco.12979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
AIM BCL11B overexpression is a characteristic of most T cell acute lymphoblastic leukemia (T-ALL) cases, and downregulated BCL11B in leukemic T cells inhibits cell proliferation and induces apoptosis. The purpose of this study was to analyze the miRNA expression pattern that may be related to BCL11B regulation in T-ALL. METHODS Quantitative real-time PCR was used to detect the miRNAs miR-17-3p, miR-17-5p, miR-29c-3p, miR-92a-3p, miR-214-3p and miR-214-5p, the BCL11B expression level in peripheral blood mononuclear cells which was obtained from 17 de novo and untreated T-ALL patients, and 15 healthy individuals (HIs) served as control. Correlations between the relative miRNA expression levels and BCL11B were analyzed. RESULTS Based on the computational prediction that certain miRNAs bind the BCL11B 3'-UTR, miR-17-3p, miR-17-5p, miR-29c-3p, miR-92a-3p, miR-214-3p and miR-214-5p were found to be candidates for regulating BCL11B. The expression levels of the six miRNAs were decreased compared with HIs, and with the exception of miR-17-5p, statistically significant differences in expression levels were found in the T-ALL group. Moreover, while significantly higher BCL11B expression was found in the T-ALL group, a negative trend in the correlation level for all six miRNAs could be found in all groups; however, statistical significance was only found for miR-214-3p in the T-ALL group. CONCLUSION miRNA downregulation together with BCL11B upregulation suggests that miR-17, miR-29c, miR-92a and miR-214 might be involved in BCL11B regulation. The therapeutic promise of regulating the expression of these miRNAs for T-ALL therapy may be considered in the future.
Collapse
Affiliation(s)
- Zifan He
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziwei Liao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Bo Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhi Yu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lijian Yang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Lorentsen KJ, Cho JJ, Luo X, Zuniga AN, Urban JF, Zhou L, Gharaibeh R, Jobin C, Kladde MP, Avram D. Bcl11b is essential for licensing Th2 differentiation during helminth infection and allergic asthma. Nat Commun 2018; 9:1679. [PMID: 29700302 PMCID: PMC5920086 DOI: 10.1038/s41467-018-04111-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
During helminth infection and allergic asthma, naive CD4+ T-cells differentiate into cytokine-producing Type-2 helper (Th2) cells that resolve the infection or induce asthma-associated pathology. Mechanisms regulating the Th2 differentiation in vivo remain poorly understood. Here we report that mice lacking Bcl11b in mature T-cells have a diminished capacity to mount Th2 responses during helminth infection and allergic asthma, showing reduced Th2 cytokines and Gata3, and elevated Runx3. We provide evidence that Bcl11b is required to maintain chromatin accessibility at Th2-cytokine promoters and locus-control regions, and binds the Il4 HS IV silencer, reducing its accessibility. Bcl11b also binds Gata3-intronic and downstream-noncoding sites, sustaining the Gata3 expression. In addition, Bcl11b binds and deactivates upstream enhancers at Runx3 locus, restricting the Runx3 expression and its availability to act at the Il4 HS IV silencer. Thus, our results establish novel roles for Bcl11b in the regulatory loop that licenses Th2 program in vivo.
Collapse
Affiliation(s)
- Kyle J Lorentsen
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Jonathan J Cho
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Xiaoping Luo
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Ashley N Zuniga
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Joseph F Urban
- Beltsville Human Nutrition Research Center, Agricultural Research Service, Diet, Genomic and Immunology Laboratory, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA.,UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Raad Gharaibeh
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, 2033 Mowry Rd., CGRC 461, Gainesville, FL, 32610, USA
| | - Christian Jobin
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, Division of Gastroenterology, College of Medicine, University of Florida, 2033 Mowry Rd., CGRC 461, Gainesville, FL, 32610, USA
| | - Michael P Kladde
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 2033 Mowry Rd., CGRC 359, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32610, USA. .,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA. .,UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
21
|
Kojo S, Tanaka H, Endo TA, Muroi S, Liu Y, Seo W, Tenno M, Kakugawa K, Naoe Y, Nair K, Moro K, Katsuragi Y, Kanai A, Inaba T, Egawa T, Venkatesh B, Minoda A, Kominami R, Taniuchi I. Priming of lineage-specifying genes by Bcl11b is required for lineage choice in post-selection thymocytes. Nat Commun 2017; 8:702. [PMID: 28951542 PMCID: PMC5615048 DOI: 10.1038/s41467-017-00768-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/27/2017] [Indexed: 12/05/2022] Open
Abstract
T-lineage committed precursor thymocytes are screened by a fate-determination process mediated via T cell receptor (TCR) signals for differentiation into distinct lineages. However, it remains unclear whether any antecedent event is required to couple TCR signals with the transcriptional program governing lineage decisions. Here we show that Bcl11b, known as a T-lineage commitment factor, is essential for proper expression of ThPOK and Runx3, central regulators for the CD4-helper/CD8-cytotoxic lineage choice. Loss of Bcl11b results in random expression of these factors and, thereby, lineage scrambling that is disconnected from TCR restriction by MHC. Initial Thpok repression by Bcl11b prior to the pre-selection stage is independent of a known silencer for Thpok, and requires the last zinc-finger motif in Bcl11b protein, which by contrast is dispensable for T-lineage commitment. Collectively, our findings shed new light on the function of Bcl11b in priming lineage-specifying genes to integrate TCR signals into subsequent transcriptional regulatory mechanisms. CD4 and CD8 T cells develop in the thymus with their transcription programs controlled by ThPOK and Runx3, respectively. Here the authors show that a pre-commitment event modulated by the transcription factor, Bcl11b, is required for the proper expression of ThPOK and Runx3 and correct CD4/CD8 lineage commitment.
Collapse
Affiliation(s)
- Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hirokazu Tanaka
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ye Liu
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kiyokazu Kakugawa
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yoshinori Naoe
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Krutula Nair
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yoshinori Katsuragi
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University School of Medicine, 660 S Euclid, Saint Louis, 63110, MO, USA
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, 138673, Singapore
| | - Aki Minoda
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ryo Kominami
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
22
|
Abboud G, Stanfield J, Tahiliani V, Desai P, Hutchinson TE, Lorentsen KJ, Cho JJ, Avram D, Salek-Ardakani S. Transcription Factor Bcl11b Controls Effector and Memory CD8 T cell Fate Decision and Function during Poxvirus Infection. Front Immunol 2016; 7:425. [PMID: 27790219 PMCID: PMC5061747 DOI: 10.3389/fimmu.2016.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023] Open
Abstract
CD8+ T cells play an important role in host resistance to many viral infections, but the underlying transcriptional mechanisms governing their differentiation and functionality remain poorly defined. By using a highly virulent systemic and respiratory poxvirus infection in mice, we show that the transcription factor Bcl11b provides a dual trigger that sustains the clonal expansion of virus-specific effector CD8+ T cells, while simultaneously suppressing the expression of surface markers associated with short-lived effector cell (SLEC) differentiation. Additionally, we demonstrate that Bcl11b supports the acquisition of memory precursor effector cell (MPEC) phenotype and, thus, its absence causes near complete loss of lymphoid and lung-resident memory cells. Interestingly, despite having normal levels of T-bet and Eomesodermin, Bcl11b-deficient CD8+ T cells failed to execute effector differentiation needed for anti-viral cytokine production and degranulation, suggesting a non-redundant role of Bcl11b in regulation of this program. Thus, Bcl11b is a critical player in fate decision of SLECs and MPECs, as well as effector function and memory formation.
Collapse
Affiliation(s)
- Georges Abboud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Jessica Stanfield
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Vikas Tahiliani
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Pritesh Desai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Tarun E Hutchinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Kyle J Lorentsen
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Jonathan J Cho
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Dorina Avram
- Department of Medicine, Division of Pulmonary Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| | - Shahram Salek-Ardakani
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida , Gainesville, FA , USA
| |
Collapse
|
23
|
Transcription factor Bcl11b sustains iNKT1 and iNKT2 cell programs, restricts iNKT17 cell program, and governs iNKT cell survival. Proc Natl Acad Sci U S A 2016; 113:7608-13. [PMID: 27330109 DOI: 10.1073/pnas.1521846113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T cells that recognize glycolipid antigens and play critical roles in regulation of immune responses. Based on expression of the transcription factors (TFs) Tbet, Plzf, and Rorγt, iNKT cells have been classified in effector subsets that emerge in the thymus, namely, iNKT1, iNKT2, and iNKT17. Deficiency in the TF Bcl11b in double-positive (DP) thymocytes has been shown to cause absence of iNKT cells in the thymus and periphery due to defective self glycolipid processing and presentation by DP thymocytes and undefined intrinsic alterations in iNKT precursors. We used a model of cre-mediated postselection deletion of Bcl11b in iNKT cells to determine its intrinsic role in these cells. We found that Bcl11b is expressed equivalently in all three effector iNKT subsets, and its removal caused a reduction in the numbers of iNKT1 and iNKT2 cells, but not in the numbers of iNKT17 cells. Additionally, we show that Bcl11b sustains subset-specific cytokine production by iNKT1 and iNKT2 cells and restricts expression of iNKT17 genes in iNKT1 and iNKT2 subsets, overall restraining the iNKT17 program in iNKT cells. The total numbers of iNKT cells were reduced in the absence of Bcl11b both in the thymus and periphery, associated with the decrease in iNKT1 and iNKT2 cell numbers and decrease in survival, related to changes in survival/apoptosis genes. Thus, these results extend our understanding of the role of Bcl11b in iNKT cells beyond their selection and demonstrate that Bcl11b is a key regulator of iNKT effector subsets, their function, identity, and survival.
Collapse
|
24
|
Rothenberg EV, Ungerbäck J, Champhekar A. Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control. Adv Immunol 2015; 129:109-74. [PMID: 26791859 DOI: 10.1016/bs.ai.2015.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Jonas Ungerbäck
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Clinical and Experimental Medicine, Experimental Hematopoiesis Unit, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
25
|
Berga-Bolaños R, Zhu WS, Steinke FC, Xue HH, Sen JM. Cell-autonomous requirement for TCF1 and LEF1 in the development of Natural Killer T cells. Mol Immunol 2015; 68:484-9. [PMID: 26490636 DOI: 10.1016/j.molimm.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
Natural killer T (NKT) cells develop from common CD4(+) CD8(+) thymocyte precursors. Transcriptional programs that regulate the development of NKT cells in the thymus development remain to be fully delineated. Here, we demonstrate a cell-intrinsic requirement for transcription factors TCF1 and LEF1 for the development of all subsets of NKT cells. Conditional deletion of TCF1 alone results in a substantial reduction in NKT cells. The remaining NKT cells are eliminated when TCF1 and LEF1 are both deleted. These data reveal an essential role for TCF1 and LEF1 in development of NKT cells.
Collapse
Affiliation(s)
- Rosa Berga-Bolaños
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Wandi S Zhu
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Farrah C Steinke
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, United States
| | - Hai-Hui Xue
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, United States
| | - Jyoti Misra Sen
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
26
|
Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q, Bhandoola A, Li H, Avram D. Transcription Factor Bcl11b Controls Identity and Function of Mature Type 2 Innate Lymphoid Cells. Immunity 2015; 43:354-68. [PMID: 26231117 DOI: 10.1016/j.immuni.2015.07.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022]
Abstract
Type 2 innate lymphoid cells (ILC2s) promote anti-helminth responses and contribute to allergies. Here, we report that Bcl11b, previously considered a T-cell-specific transcription factor, acted directly upstream of the key ILC2 transcription factor Gfi1 to maintain its expression in mature ILC2s. Consequently, Bcl11b(-/-) ILC2s downregulated Gata3 and downstream genes, including Il1rl1 (encoding IL-33 receptor), and upregulated Rorc and type 3 ILC (ILC3) genes. Additionally, independent of Gfi1, Bcl11b directly repressed expression of the gene encoding the ILC3 transcription factor Ahr, further contributing to silencing of ILC3 genes in ILC2s. Thus, Bcl11b(-/-) ILC2s lost their functions and gained ILC3 functions, and although they expanded in response to the protease allergen papain, they produced ILC3 but not ILC2 cytokines and caused increased airway infiltration of neutrophils instead of eosinophils. Our results demonstrate that Bcl11b is more than just a T-cell-only transcription factor and establish that Bcl11b sustains mature ILC2 genetic and functional programs and lineage fidelity.
Collapse
Affiliation(s)
- Danielle Califano
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA
| | - Jonathan J Cho
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA
| | - Mohammad N Uddin
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA
| | - Kyle J Lorentsen
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA
| | - Qi Yang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avinash Bhandoola
- T-Cell Biology and Development Section, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical Center, 47 New Scotland Avenue, MC-165, Albany, NY 12208, USA; Department of Medicine, College of Medicine, University of Florida, 1600 Southwest Archer Road, MSB, Gainesville, FL 32610-0225, USA.
| |
Collapse
|
27
|
Abstract
Over the last two decades, it has been established that peptides are not the only antigens recognized by T lymphocytes. Here, we review information on two T lymphocyte populations that recognize nonpeptide antigens: invariant natural killer T cells (iNKT cells), which respond to glycolipids, and mucosal associated invariant T cells (MAIT cells), which recognize microbial metabolites. These two populations have a number of striking properties that distinguish them from the majority of T cells. First, their cognate antigens are presented by nonclassical class I antigen-presenting molecules; CD1d for iNKT cells and MR1 for MAIT cells. Second, these T lymphocyte populations have a highly restricted diversity of their T cell antigen receptor α chains. Third, these cells respond rapidly to antigen or cytokine stimulation by producing copious amounts of cytokines, such as IFNγ, which normally are only made by highly differentiated effector T lymphocytes. Because of their response characteristics, iNKT and MAIT cells act at the interface of innate and adaptive immunity, participating in both types of responses. In this review, we will compare these two subsets of innate-like T cells, with an emphasis on the various ways that lead to their activation and their participation in antimicrobial responses.
Collapse
Affiliation(s)
- Shilpi Chandra
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | |
Collapse
|
28
|
Abstract
During blood cell development, hematopoietic stem cells generate diverse mature populations via several rounds of binary fate decisions. At each bifurcation, precursors adopt one fate and inactivate the alternative fate either stochastically or in response to extrinsic stimuli and stably maintain the selected fates. Studying of these processes would contribute to better understanding of etiology of immunodeficiency and leukemia, which are caused by abnormal gene regulation during the development of hematopoietic cells. The CD4(+) helper versus CD8(+) cytotoxic T-cell fate decision serves as an excellent model to study binary fate decision processes. These two cell types are derived from common precursors in the thymus. Positive selection of their TCRs by self-peptide presented on either MHC class I or class II triggers their fate decisions along with mutually exclusive retention and silencing of two coreceptors, CD4 and CD8. In the past few decades, extensive effort has been made to understand the T-cell fate decision processes by studying regulation of genes encoding the coreceptors and selection processes. These studies have identified several key transcription factors and gene regulatory networks. In this chapter, I will discuss recent advances in our understanding of the binary cell fate decision processes of T cells.
Collapse
Affiliation(s)
- Takeshi Egawa
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
29
|
Avram D, Califano D. The multifaceted roles of Bcl11b in thymic and peripheral T cells: impact on immune diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:2059-65. [PMID: 25128552 DOI: 10.4049/jimmunol.1400930] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transcription factor Bcl11b is expressed in all T cell subsets and progenitors, starting from the DN2 stage of T cell development, and it regulates critical processes implicated in the development, function, and survival of many of these cells. Among the common roles of Bcl11b in T cell progenitors and mature T cell subsets are the repression of the innate genetic program and, to some extent, expression maintenance of TCR-signaling components. However, Bcl11b also has unique roles in specific T cell populations, suggesting that its functions depend on cell type and activation state of the cell. In this article, we provide a comprehensive review of the roles of Bcl11b in progenitors, effector T cells, regulatory T cells, and invariant NKT cells, as well as its impact on immune diseases. While emphasizing common themes, including some that might be extended to skin and neurons, we also describe the control of specific functions in different T cell subsets.
Collapse
Affiliation(s)
- Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Danielle Califano
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| |
Collapse
|
30
|
Hirose S, Touma M, Go R, Katsuragi Y, Sakuraba Y, Gondo Y, Abe M, Sakimura K, Mishima Y, Kominami R. Bcl11b prevents the intrathymic development of innate CD8 T cells in a cell intrinsic manner. Int Immunol 2014; 27:205-15. [PMID: 25422283 DOI: 10.1093/intimm/dxu104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
If Bcl11b activity is compromised, CD4(+)CD8(+) double-positive (DP) thymocytes produce a greatly increased fraction of innate CD8(+) single-positive (SP) cells highly producing IFN-γ, which are also increased in mice deficient of genes such as Itk, Id3 and NF-κB1 that affect TCR signaling. Of interest, the increase in the former two is due to the bystander effect of IL-4 that is secreted by promyelocytic leukemia zinc finger-expressing NKT and γδT cells whereas the increase in the latter is cell intrinsic. Bcl11b zinc-finger proteins play key roles in T cell development and T cell-mediated immune response likely through TCR signaling. We examined thymocytes at and after the DP stage in Bcl11b (F/S826G) CD4cre, Bcl11b (F/+) CD4cre and Bcl11b (+/S826G) mice, carrying the allele that substituted serine for glycine at the position of 826. Here we show that Bcl11b impairment leads to an increase in the population of TCRαβ(high)CD44(high)CD122(high) innate CD8SP thymocytes, together with two different developmental abnormalities: impaired positive and negative selection accompanying a reduction in the number of CD8SP cells, and developmental arrest of NKT cells at multiple steps. The innate CD8SP thymocytes express Eomes and secrete IFN-γ after stimulation with PMA and ionomycin, and in this case their increase is not due to a bystander effect of IL-4 but cell intrinsic. Those results indicate that Bcl11b regulates development of different thymocyte subsets at multiple stages and prevents an excess of innate CD8SP thymocytes.
Collapse
Affiliation(s)
- Satoshi Hirose
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Maki Touma
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Rieka Go
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshinori Katsuragi
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshiyuki Sakuraba
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaragi 305-0074, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaragi 305-0074, Japan
| | - Manabu Abe
- Basic Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| | - Kenji Sakimura
- Basic Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| | - Yukio Mishima
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Ryo Kominami
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
31
|
Son EY, Crabtree GR. The role of BAF (mSWI/SNF) complexes in mammalian neural development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:333-49. [PMID: 25195934 DOI: 10.1002/ajmg.c.31416] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The BAF (mammalian SWI/SNF) complexes are a family of multi-subunit ATP-dependent chromatin remodelers that use ATP hydrolysis to alter chromatin structure. Distinct BAF complex compositions are possible through combinatorial assembly of homologous subunit families and can serve non-redundant functions. In mammalian neural development, developmental stage-specific BAF assemblies are found in embryonic stem cells, neural progenitors and postmitotic neurons. In particular, the neural progenitor-specific BAF complexes are essential for controlling the kinetics and mode of neural progenitor cell division, while neuronal BAF function is necessary for the maturation of postmitotic neuronal phenotypes as well as long-term memory formation. The microRNA-mediated mechanism for transitioning from npBAF to nBAF complexes is instructive for the neuronal fate and can even convert fibroblasts into neurons. The high frequency of BAF subunit mutations in neurological disorders underscores the rate-determining role of BAF complexes in neural development, homeostasis, and plasticity.
Collapse
|
32
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
33
|
Uddin MN, Zhang Y, Harton JA, MacNamara KC, Avram D. TNF-α-dependent hematopoiesis following Bcl11b deletion in T cells restricts metastatic melanoma. THE JOURNAL OF IMMUNOLOGY 2014; 192:1946-53. [PMID: 24446520 DOI: 10.4049/jimmunol.1301976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using several tumor models, we demonstrate that mice deficient in Bcl11b in T cells, although having reduced numbers of T cells in the peripheral lymphoid organs, developed significantly less tumors compared with wild-type mice. Bcl11b(-/-) CD4(+) T cells, with elevated TNF-α levels, but not the Bcl11b(-/-) CD8(+) T cells, were required for the reduced tumor burden, as were NK1.1(+) cells, found in increased numbers in Bcl11b(F/F)/CD4-Cre mice. Among NK1.1(+) cells, the NK cell population was predominant in number and was the only population displaying elevated granzyme B levels and increased degranulation, although not increased proliferation. Although the number of myeloid-derived suppressor cells was increased in the lungs with metastatic tumors of Bcl11b(F/F)/CD4-Cre mice, their arginase-1 levels were severely reduced. The increase in NK cell and myeloid-derived suppressor cell numbers was associated with increased bone marrow and splenic hematopoiesis. Finally, the reduced tumor burden, increased numbers of NK cells in the lung, and increased hematopoiesis in Bcl11b(F/F)/CD4-Cre mice were all dependent on TNF-α. Moreover, TNF-α treatment of wild-type mice also reduced the tumor burden and increased hematopoiesis and the numbers and activity of NK cells in the lung. In vitro treatment with TNF-α of lineage-negative hematopoietic progenitors increased NK and myeloid differentiation, further supporting a role of TNF-α in promoting hematopoiesis. These studies reveal a novel role for TNF-α in the antitumor immune response, specifically in stimulating hematopoiesis and increasing the numbers and activity of NK cells.
Collapse
Affiliation(s)
- Mohammad N Uddin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | | | | | | | | |
Collapse
|
34
|
Engel I, Kronenberg M. Transcriptional control of the development and function of Vα14i NKT cells. Curr Top Microbiol Immunol 2014; 381:51-81. [PMID: 24839184 DOI: 10.1007/82_2014_375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of T lymphocytes, sometimes referred to as as mainstream or conventional T cells, are characterized by a diverse T cell antigen receptor (TCR) repertoire. They require antigen priming in order to become memory cells capable of mounting a rapid effector response. It has become established, however, that there are several distinct T cell lineages that exhibit a memory phenotype in the absence of antigen priming, even as they differentiate in the thymus. These lymphocytes typically express a markedly restricted TCR repertoire and their rapid response kinetics has led to their being described as innate-like T cells. In addition, several of these subsets typically express surface markers commonly found on natural killer cells, which has led to the moniker natural killer T cells (NKT cells). This review will describe our current understanding of the unique ways whereby transcription factors control the development and function of an abundant and widely studied lineage of NKT cells that recognizes glycolipid antigens.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | |
Collapse
|
35
|
Califano D, Sweeney KJ, Le H, VanValkenburgh J, Yager E, O'Connor W, Kennedy JS, Jones DM, Avram D. Diverting T helper cell trafficking through increased plasticity attenuates autoimmune encephalomyelitis. J Clin Invest 2013; 124:174-87. [PMID: 24316973 DOI: 10.1172/jci70103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/03/2013] [Indexed: 01/05/2023] Open
Abstract
Naive T helper cells differentiate into functionally distinct effector subsets that drive specialized immune responses. Recent studies indicate that some of the effector subsets have plasticity. Here, we used an EAE model and found that Th17 cells deficient in the transcription factor BCL11B upregulated the Th2-associated proteins GATA3 and IL-4 without decreasing RAR-related orphan receptor γ (RORγt), IL-17, and GM-CSF levels. Surprisingly, abnormal IL-4 production affected Th17 cell trafficking, diverting migration from the draining lymph nodes/CNS route to the mesenteric lymph nodes/gut route, which ameliorated EAE without overt colitis. T helper cell rerouting in EAE was dependent on IL-4, which enhanced retinoic acid (RA) production by dendritic cells, which further induced expression of gut-homing receptors CCR9 and α4β7 on Bcl11b-deficient CD4+ T cells. Furthermore, IL-4 treatment or Th2 immunization of wild-type mice with EAE caused no alteration in Th17 cytokines or RORγt, but diverted T helper cell trafficking to the gut, which improved EAE outcome without overt colitis. Our data demonstrate that Th17 cells are permissive to Th2 gene expression without affecting Th17 gene expression. This Th17 plasticity has an impact on trafficking, which is a critical component of the immune response and may represent a possible avenue for treating multiple sclerosis.
Collapse
MESH Headings
- Animals
- Cell Movement
- Cell Polarity
- Cells, Cultured
- Dendritic Cells/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/metabolism
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Immunotherapy
- Interleukin-17/metabolism
- Interleukin-4/metabolism
- Mice
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Repressor Proteins/physiology
- Th1 Cells/immunology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th2 Cells/immunology
- Tretinoin/metabolism
- Tumor Suppressor Proteins/physiology
Collapse
|
36
|
Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C, Dequiedt F, Goumon Y, Paillart JC, Mericskay M, Parlakian A, Bausero P, Abbas W, Herbein G, Kurdistani SK, Grana X, Van Driessche B, Schwartz C, Candolfi E, Benecke AG, Van Lint C, Rohr O. CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci U S A 2013; 110:12655-60. [PMID: 23852730 PMCID: PMC3732990 DOI: 10.1073/pnas.1220136110] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb- and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the β-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Thomas Cherrier
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
- Laboratory of Protein Signaling and Interactions, University of Liège, Liège, Belgium
| | - Valentin Le Douce
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Sebastian Eilebrecht
- Vaccine Research Institute, Institut National de la Santé et de la Recherche Médicale, Unité 955, 94010 Créteil, France
- Institut des Hautes Études Scientifiques, Centre National de la Recherche Scientifique, 91440 Bures sur Yvette, France
| | - Raphael Riclet
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Céline Marban
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
- Department of Biological Chemistry, University of California, Los Angeles, CA 92093
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, University of Liège, Liège, Belgium
| | - Yannick Goumon
- Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, Centre National de la Recherche Scientifique Unité Propre de Recherche 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Mathias Mericskay
- Unité de Recherche 4, Aging, Stress, Inflammation Department, Université Pierre et Marie Curie Université Paris 6, 75005 Paris, France
| | - Ara Parlakian
- Unité de Recherche 4, Aging, Stress, Inflammation Department, Université Pierre et Marie Curie Université Paris 6, 75005 Paris, France
| | - Pedro Bausero
- Unité de Recherche 4, Aging, Stress, Inflammation Department, Université Pierre et Marie Curie Université Paris 6, 75005 Paris, France
| | - Wasim Abbas
- Department of Virology, Institut Fédératif de Recherche 133, Institut National de la Santé et de la Recherche Médicale, University of Franche-Comté, 25000 Besançon, France
| | - Georges Herbein
- Department of Virology, Institut Fédératif de Recherche 133, Institut National de la Santé et de la Recherche Médicale, University of Franche-Comté, 25000 Besançon, France
| | | | - Xavier Grana
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140
| | - Benoit Van Driessche
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Christian Schwartz
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Ermanno Candolfi
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
| | - Arndt G. Benecke
- Vaccine Research Institute, Institut National de la Santé et de la Recherche Médicale, Unité 955, 94010 Créteil, France
- Institut des Hautes Études Scientifiques, Centre National de la Recherche Scientifique, 91440 Bures sur Yvette, France
| | - Carine Van Lint
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium; and
| | - Olivier Rohr
- Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, University of Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
37
|
Huang X, Du X, Li Y. The role of BCL11B in hematological malignancy. Exp Hematol Oncol 2012; 1:22. [PMID: 23211040 PMCID: PMC3514087 DOI: 10.1186/2162-3619-1-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022] Open
Abstract
The B-cell leukemia/lymphoma 11B (BCL11B) gene is a member of the BCL family which plays a crucial role in the development, proliferation, differentiation and subsequent survival of T cells. BCL11B gene alterations are related to malignant T cell transformation that occurs in hematological malignancies. Remarkably, the BCL11B gene is responsible for the regulation of the apoptotic process and cell proliferation. This review summarizes current data and knowledge concerning the alteration of BCL11B in hematological malignancies and its role as a potential target for therapies directed against T cell malignancies.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Hematology, Medical College, Jinan University, Guangzhou, 510632, China.
| | | | | |
Collapse
|
38
|
Impairment in differentiation and cell cycle of thymocytes by loss of a Bcl11b tumor suppressor allele that contributes to leukemogenesis. Leuk Res 2012; 36:1035-40. [PMID: 22640496 DOI: 10.1016/j.leukres.2012.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/28/2012] [Accepted: 04/28/2012] [Indexed: 02/03/2023]
Abstract
Genetic changes in T-ALL are classified into type A abnormalities leading to arrest at a specific stage of T-cell differentiation and type B abnormalities that target cellular processes including cell cycle regulation. Mutations and deletion of a BCL11B haploinsuffiecient tumor suppressor allele have been found in 10-16% of T-ALL subgroups. Analysis of Bcl11b(KO/+) mice revealed impaired T-cell differentiation at two different stages and attenuation of γ-ray induced cell-cycle arrest at S/G2/M phase in immature CD8 single positive cells. Hence, those phenotypes provided by loss of a Bcl11b allele favor that Bcl11b mutation belongs to type B abnormalities.
Collapse
|
39
|
|
40
|
The role of BCL11B in regulating the proliferation of human naive T cells. Hum Immunol 2012; 73:456-64. [PMID: 22426257 DOI: 10.1016/j.humimm.2012.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/11/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
Abstract
The effect of the B-cell chronic lymphocytic leukemia/lymphoma 11B gene (BCL11B) on human T-cell regulation remains unclear. To characterize the functions of BCL11B, recombinant BCL11B and BCL11B siRNA were transfected into human naive T cells to overexpress or knock down BCL11B expression, respectively. After BCL11B overexpression, the proliferation ability and the T-helper (Th) subset were increased, whereas no significant alteration in the expression pattern and clonality of the T-cell receptor Vβ subfamilies was observed. After BCL11B knockdown, a similar distribution of Vβ subfamilies was detected in the naive T cells; however, the proliferation capacity substantially decreased. Global gene expression profiling revealed that the dysregulated genes were mainly involved in T-cell activation and proliferation. BCL11B could selectively promote Th-cell differentiation because of increased CXCL10 and CXCL11 expression. BCL11B suppression may inhibit proliferation and induce apoptosis, which may relate to changes in the expression of CFLAR-CASP8-CASP10 in the mitochondrial pathways. In conclusion, BCL11B is required for T-cell survival; its overexpression could effectively increase the T-cell activation and proliferation abilities and Th-cell differentiation as well.
Collapse
|
41
|
Engel I, Kronenberg M. Making memory at birth: understanding the differentiation of natural killer T cells. Curr Opin Immunol 2012; 24:184-90. [PMID: 22305304 DOI: 10.1016/j.coi.2012.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/05/2012] [Accepted: 01/15/2012] [Indexed: 01/14/2023]
Abstract
Glycolipid reactive natural killer T cells with an invariant TCR α-chain (iNKT cells) are a conserved population of T lymphocytes with a distinct anatomical distribution and functional properties. The differentiation pathway of iNKT cells branches off from mainstream thymocyte differentiation at the double positive stage, and recent work has revealed how signaling events early in the iNKT cell pathway imprint a memory-like behavior on these cells. Additionally, unique molecular interactions governing iNKT cell development and tissue distribution have been uncovered recently, building up our knowledge of the complex network of interactions that form this population. Novel autologous antigens for these cells have been identified, although it has not yet been resolved if there is single endogenous antigen responsible for both positive selection and/or peripheral activation.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Kominami R. Role of the transcription factor Bcl11b in development and lymphomagenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:72-87. [PMID: 22450536 PMCID: PMC3365246 DOI: 10.2183/pjab.88.72] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
Bcl11b is a lineage-specific transcription factor expressed in various cell types and its expression is important for development of T cells, neurons and others. On the other hand, Bcl11b is a haploinsufficient tumor suppressor and loss of a Bcl11b allele provides susceptibility to mouse thymic lymphoma and human T-cell acute lymphoblastic leukemia. Although there are many transcription factors affecting both cell differentiation and cancer development, Bcl11b has several unique properties. This review describes phenotypes given by loss of Bcl11b and roles of Bcl11b in cell proliferation, differentiation and apoptosis, taking tissue development and lymphomagenesis into consideration.
Collapse
Affiliation(s)
- Ryo Kominami
- Department of Molecular Genetics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|