1
|
Stockmann L, Kabbech H, Kremers GJ, van Herk B, Dille B, van den Hout M, van IJcken WF, Dekkers DH, Demmers JA, Smal I, Huylebroeck D, Basu S, Galjart N. KIF2A stabilizes intercellular bridge microtubules to maintain mouse embryonic stem cell cytokinesis. J Cell Biol 2025; 224:e202409157. [PMID: 40353778 PMCID: PMC12077228 DOI: 10.1083/jcb.202409157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/12/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Cytokinesis, the final stage of cell division, serves to physically separate daughter cells. In cultured naïve mouse embryonic stem cells, cytokinesis lasts unusually long. Here, we describe a novel function for the kinesin-13 member KIF2A in this process. In genome-engineered mouse embryonic stem cells, we find that KIF2A localizes to spindle poles during metaphase and regulates spindle length in a manner consistent with its known role as a microtubule minus-end depolymerase. In contrast, during cytokinesis we observe tight binding of KIF2A to intercellular bridge microtubules. At this stage, KIF2A maintains microtubule length and number and controls microtubule acetylation. We propose that the conversion of KIF2A from a depolymerase to a stabilizer is driven by both the inhibition of its ATPase activity, which increases lattice affinity, and a preference for compacted lattices. In turn, KIF2A might maintain the compacted microtubule state at the intercellular bridge, thereby dampening acetylation. As KIF2A depletion causes pluripotency problems and affects mRNA homeostasis, our results furthermore indicate that KIF2A-mediated microtubule stabilization prolongs cytokinesis to maintain pluripotency.
Collapse
Affiliation(s)
- Lieke Stockmann
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brent van Herk
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bas Dille
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mirjam van den Hout
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilfred F.J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H.W. Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A.A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sreya Basu
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Agarwala KL, Kubara K, Seletsky BM, Sagane K, Littlefield BA. Eribulin's exclusive binding to microtubule plus ends results from discrimination between GTP and GDP forms of β-tubulin. Arch Biochem Biophys 2025:110482. [PMID: 40449645 DOI: 10.1016/j.abb.2025.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/12/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The clinically approved anticancer agent eribulin (Halaven®) exerts cytotoxic antimitotic effects by binding to high affinity sites on exposed plus ends of growing microtubules (MT). Despite X-ray crystallographic mapping of eribulin's binding pocket within β-tubulin's vinca domain, the biophysical basis for eribulin's MT plus end binding exclusivity remains unknown. We performed surface plasmon resonance (SPR) studies of tubulin binding to biotinylated eribulin probes to ask if eribulin discriminates between GTP and GDP forms of β-tubulin, which characterize growing MT plus ends and MT sides, respectively. Tubulin binding to biotin-eribulin proceeded via a single state binding reaction, while binding to biotin-vinblastine occurred via a two-state reaction incorporating a conformational change. Biochemical approaches confirmed tubulin conformational changes induced by vinblastine but not eribulin. SPR competition studies using free eribulin and vinblastine confirmed tubulin binding specificity to cognate biotinylated probes, showing that eribulin binding within the β-tubulin vinca domain is physically and functionally distinct from vinblastine. SPR studies using tubulin containing only GTP or GDP forms of β-tubulin showed that while biotin-eribulin has only slightly higher overall affinity for GTP-tubulin, dissociation from GTP-tubulin was ∼7-fold slower than from GDP-tubulin, establishing that eribulin discriminates between GTP and GDP forms of β-tubulin. In contrast, vinblastine fails to discriminate between these two tubulin forms, consistent with its known binding to both MT ends and sides. Overall, our results establish, for the first time, the biophysical basis for eribulin's MT plus end binding exclusivity as resulting from the ability to discriminate between GTP and GDP forms of β-tubulin.
Collapse
Affiliation(s)
- Kishan Lal Agarwala
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Boris M Seletsky
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, USA
| | - Koji Sagane
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | | |
Collapse
|
3
|
Estévez-Gallego J, Blum TB, Ruhnow F, Gili M, Speroni S, García-Castellanos R, Steinmetz MO, Surrey T. Hydrolysis-deficient mosaic microtubules as faithful mimics of the GTP cap. Nat Commun 2025; 16:2396. [PMID: 40064882 PMCID: PMC11893814 DOI: 10.1038/s41467-025-57555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
A critical feature of microtubules is their GTP cap, a stabilizing GTP-tubulin rich region at growing microtubule ends. Microtubules polymerized in the presence of GTP analogs or from GTP hydrolysis-deficient tubulin mutants have been used as GTP-cap mimics for structural and biochemical studies. However, these analogs and mutants generate microtubules with diverse biochemical properties and lattice structures, leaving it unclear what is the most faithful GTP mimic and hence the structure of the GTP cap. Here, we generate a hydrolysis-deficient human tubulin mutant, αE254Q, with the smallest possible modification. We show that αE254Q-microtubules are stable, but still exhibit mild mutation-induced growth abnormalities. However, mixing two GTP hydrolysis-deficient tubulin mutants, αE254Q and αE254N, at an optimized ratio eliminates growth and lattice abnormalities, indicating that these 'mosaic microtubules' are faithful GTP cap mimics. Their cryo-electron microscopy structure reveals that longitudinal lattice expansion, but not protofilament twist, is the primary structural feature distinguishing the GTP-tubulin containing cap from the GDP-tubulin containing microtubule shaft. However, alterations in protofilament twist may be transiently needed to allow lattice compaction and GTP hydrolysis. Together, our results provide insights into the structural origin of GTP cap stability, the pathway of GTP hydrolysis and hence microtubule dynamic instability.
Collapse
Affiliation(s)
- Juan Estévez-Gallego
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.
| | - Thorsten B Blum
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Felix Ruhnow
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Gili
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Speroni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raquel García-Castellanos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
- University of Basel, Biozentrum, Basel, Switzerland
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
4
|
Troman L, de Gaulejac E, Biswas A, Stiens J, Kuropka B, Moores CA, Reber S. Mechanistic basis of temperature adaptation in microtubule dynamics across frog species. Curr Biol 2025; 35:612-628.e6. [PMID: 39798564 DOI: 10.1016/j.cub.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025]
Abstract
Cellular processes are remarkably effective across diverse temperature ranges, even with highly conserved proteins. In the context of the microtubule cytoskeleton, which is critically involved in a wide range of cellular activities, this is particularly striking, as tubulin is one of the most conserved proteins while microtubule dynamic instability is highly temperature sensitive. Here, we leverage the diversity of natural tubulin variants from three closely related frog species that live at different temperatures. We determine the microtubule structure across all three species at between 3.0 and 3.6 Å resolution by cryo-electron microscopy and find small differences at the β-tubulin lateral interactions. Using in vitro reconstitution assays and quantitative biochemistry, we show that tubulin's free energy scales inversely with temperature. The observed weakening of lateral contacts and the low apparent activation energy for tubulin incorporation provide an explanation for the overall stability and higher growth rates of microtubules in cold-adapted frog species. This study thus broadens our conceptual framework for understanding microtubule dynamics and provides insights into how conserved cellular processes are tailored to different ecological niches.
Collapse
Affiliation(s)
- Luca Troman
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Ella de Gaulejac
- IRI Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | - Abin Biswas
- Max Planck Institute for Infection Biology, Virchowweg 12, 10117 Berlin, Germany; Marine Biological Laboratory, 7 Mbl St., Woods Hole, MA 02543, USA; Max-Planck-Zentrum für Physik und Medizin, Kussmaulallee 2, 91054 Erlangen, Germany
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Benno Kuropka
- Freie Universität Berlin, Core Facility BioSupraMol, Thielallee 63, 14195 Berlin, Germany
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| | - Simone Reber
- Max Planck Institute for Infection Biology, Virchowweg 12, 10117 Berlin, Germany; Marine Biological Laboratory, 7 Mbl St., Woods Hole, MA 02543, USA; Berliner Hochschule für Technik, Luxemburger Straße 10, 13353 Berlin, Germany.
| |
Collapse
|
5
|
Kok M, Huber F, Kalisch SM, Dogterom M. EB3-informed dynamics of the microtubule stabilizing cap during stalled growth. Biophys J 2025; 124:227-244. [PMID: 39604262 PMCID: PMC11788501 DOI: 10.1016/j.bpj.2024.11.3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Microtubule stability is known to be governed by a stabilizing GTP/GDP-Pi cap, but the exact relation between growth velocity, GTP hydrolysis, and catastrophes remains unclear. We investigate the dynamics of the stabilizing cap through in vitro reconstitution of microtubule dynamics in contact with microfabricated barriers, using the plus-end binding protein GFP-EB3 as a marker for the nucleotide state of the tip. The interaction of growing microtubules with steric objects is known to slow down microtubule growth and accelerate catastrophes. We show that the lifetime distributions of stalled microtubules, as well as the corresponding lifetime distributions of freely growing microtubules, can be fully described with a simple phenomenological 1D model based on noisy microtubule growth and a single EB3-dependent hydrolysis rate. This same model is furthermore capable of explaining both the previously reported mild catastrophe dependence on microtubule growth rates and the catastrophe statistics during tubulin washout experiments.
Collapse
Affiliation(s)
- Maurits Kok
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Florian Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands; Netherlands eScience Center, Amsterdam, the Netherlands; Center for Digitalisation and Digitality, Düsseldorf University of Applied Sciences, Düsseldorf, Germany
| | - Svenja-Marei Kalisch
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
6
|
Sun Z, Wang X, Peng C, Dai L, Wang T, Zhang Y. Regulation of cytoskeleton dynamics and its interplay with force in plant cells. BIOPHYSICS REVIEWS 2024; 5:041307. [PMID: 39606182 PMCID: PMC11596143 DOI: 10.1063/5.0201899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The plant cytoskeleton is an intricate network composed of actin filaments and microtubules. The cytoskeleton undergoes continuous dynamic changes that provide the basis for rapidly responding to intrinsic and extrinsic stimuli, including mechanical stress. Microtubules can respond to alterations of mechanical stress and reorient along the direction of maximal tensile stress in plant cells. The cytoskeleton can also generate driving force for cytoplasmic streaming, organelle movement, and vesicle transportation. In this review, we discuss the progress of how the plant cytoskeleton responds to mechanical stress. We also summarize the roles of the cytoskeleton in generating force that drive organelles and nuclear transportation in plant cells. Finally, some hypotheses concerning the link between the roles of the cytoskeleton in force response and organelle movement, as well as several key questions that remain to be addressed in the field, are highlighted.
Collapse
Affiliation(s)
- Zhenping Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xueqing Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chaoyong Peng
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Henkin G, Brito C, Plückthun A, Surrey T. Preparation of Polarity-Marked Microtubules Using a Plus-End Capping DARPin. Bio Protoc 2024; 14:e5109. [PMID: 39600974 PMCID: PMC11588424 DOI: 10.21769/bioprotoc.5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 11/29/2024] Open
Abstract
The eukaryotic cytoskeleton is formed in part by microtubules, which are relatively rigid filaments with inherent structural polarity. One consequence of this polarity is that the two ends of a microtubule have different properties with important consequences for their cellular roles. These differences are often challenging to probe within the crowded environment of the cell. Fluorescence microscopy-based in vitro assays with purified proteins and stabilized microtubules have been used to characterize polarity-dependent and end-specific behaviors. These assays require ways to visualize the polarity of the microtubules, which has previously been achieved either by the addition of fluorescently tagged motor proteins with known directionality or by fluorescently polarity marking the microtubules themselves. However, classical polarity-marking protocols require a particular chemically modified tubulin and generate microtubules with chemically different plus and minus segments. These chemical differences in the segments may affect the behavior of interacting proteins of interest in an undesirable manner. We present here a new protocol that uses a previously characterized, reversibly binding microtubule plus-end capping protein, a designed ankyrin repeat protein (DARPin), to efficiently produce polarity-marked microtubules with different fluorescently labeled, but otherwise biochemically identical, plus- and minus-end segments. Key features • Produces polarity-marked microtubules with biochemically identical segments • Allows analysis of end-specific and polarity-dependent activities of purified microtubule-associated proteins • Requires purified microtubule plus-end capping DARPin (D1)2 • Concentrations optimized for porcine brain tubulin.
Collapse
Affiliation(s)
- Gil Henkin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Andreas Plückthun
- University of Zurich, Department of Biochemistry, Zurich, Switzerland
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, Barcelona, Spain
| |
Collapse
|
8
|
Yon WJ, Ha T, Zheng Y, Pedersen RTA. A tubulin-binding protein that preferentially binds to GDP-tubulin and promotes GTP exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.539990. [PMID: 37214866 PMCID: PMC10197657 DOI: 10.1101/2023.05.09.539990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
α- and β-tubulin form heterodimers, with GTPase activity, that assemble into microtubules. Like other GTPases, the nucleotide-bound state of tubulin heterodimers controls whether the molecules are in a biologically active or inactive state. While α-tubulin in the heterodimer is constitutively bound to GTP, β-tubulin can be bound to either GDP (GDP-tubulin) or GTP (GTP-tubulin). GTP-tubulin hydrolyzes its GTP to GDP following assembly into a microtubule and, upon disassembly, must exchange its bound GDP for GTP to participate in subsequent microtubule polymerization. Tubulin dimers have been shown to exhibit rapid intrinsic nucleotide exchange in vitro, leading to a commonly accepted belief that a tubulin guanine nucleotide exchange factor (GEF) may be unnecessary in cells. Here, we use quantitative binding assays to show that BuGZ, a spindle assembly factor, binds tightly to GDP-tubulin, less tightly to GTP-tubulin, and weakly to microtubules. We further show that BuGZ promotes the incorporation of GTP into tubulin using a nucleotide exchange assay. The discovery of a tubulin GEF suggests a mechanism that may aid rapid microtubule assembly dynamics in cells.
Collapse
Affiliation(s)
- Wesley J Yon
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
- Cell, Molecular, Developmental Biology, and Biophysics Program, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Cell, Molecular, Developmental Biology, and Biophysics Program, Johns Hopkins University, Baltimore, MD, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
- Cell, Molecular, Developmental Biology, and Biophysics Program, Johns Hopkins University, Baltimore, MD, USA
| | - Ross T A Pedersen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| |
Collapse
|
9
|
Gonzalez SJ, Heckel JM, Goldblum RR, Reid TA, McClellan M, Gardner MK. Rapid binding to protofilament edge sites facilitates tip tracking of EB1 at growing microtubule plus-ends. eLife 2024; 13:e91719. [PMID: 38385657 PMCID: PMC10883673 DOI: 10.7554/elife.91719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
EB1 is a key cellular protein that delivers regulatory molecules throughout the cell via the tip-tracking of growing microtubule plus-ends. Thus, it is important to understand the mechanism for how EB1 efficiently tracks growing microtubule plus-ends. It is widely accepted that EB1 binds with higher affinity to GTP-tubulin subunits at the growing microtubule tip, relative to GDP-tubulin along the microtubule length. However, it is unclear whether this difference in affinity alone is sufficient to explain the tip-tracking of EB1 at growing microtubule tips. Previously, we found that EB1 binds to exposed microtubule protofilament-edge sites at a ~70 fold faster rate than to closed-lattice sites, due to diffusional steric hindrance to binding. Thus, we asked whether rapid protofilament-edge binding could contribute to efficient EB1 tip tracking. A computational simulation with differential EB1 on-rates based on closed-lattice or protofilament-edge binding, and with EB1 off-rates that were dependent on the tubulin hydrolysis state, robustly recapitulated experimental EB1 tip tracking. To test this model, we used cell-free biophysical assays, as well as live-cell imaging, in combination with a Designed Ankyrin Repeat Protein (DARPin) that binds exclusively to protofilament-edge sites, and whose binding site partially overlaps with the EB1 binding site. We found that DARPin blocked EB1 protofilament-edge binding, which led to a decrease in EB1 tip tracking on dynamic microtubules. We conclude that rapid EB1 binding to microtubule protofilament-edge sites contributes to robust EB1 tip tracking at the growing microtubule plus-end.
Collapse
Affiliation(s)
- Samuel J Gonzalez
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Julia M Heckel
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Rebecca R Goldblum
- Department of Biophysics, Molecular Biology, and Biochemistry, University of MinnesotaMinneapolisUnited States
- Medical Scientist Training Program, University of MinnesotaMinneapolisUnited States
| | - Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
10
|
Glover HL, Mendes M, Gomes-Neto J, Rusilowicz-Jones EV, Rigden DJ, Dittmar G, Urbé S, Clague MJ. Microtubule association of TRIM3 revealed by differential extraction proteomics. J Cell Sci 2024; 137:jcs261522. [PMID: 38149663 PMCID: PMC10917062 DOI: 10.1242/jcs.261522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
The microtubule network is formed from polymerised tubulin subunits and associating proteins, which govern microtubule dynamics and a diverse array of functions. To identify novel microtubule-binding proteins, we have developed an unbiased biochemical assay, which relies on the selective extraction of cytosolic proteins from U2OS cells, while leaving behind the microtubule network. Candidate proteins are linked to microtubules by their sensitivities to the depolymerising drug nocodazole or the microtubule-stabilising drug taxol, which is quantitated by mass spectrometry. Our approach is benchmarked by co-segregation of tubulin and previously established microtubule-binding proteins. We then identify several novel candidate microtubule-binding proteins, from which we have selected the ubiquitin E3 ligase tripartite motif-containing protein 3 (TRIM3) for further characterisation. We map TRIM3 microtubule binding to its C-terminal NHL-repeat region. We show that TRIM3 is required for the accumulation of acetylated tubulin, following treatment with taxol. Furthermore, loss of TRIM3 partially recapitulates the reduction in nocodazole-resistant microtubules characteristic of α-tubulin acetyltransferase 1 (ATAT1) depletion. These results can be explained by a decrease in ATAT1 following depletion of TRIM3 that is independent of transcription.
Collapse
Affiliation(s)
- Hannah L. Glover
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Marta Mendes
- Proteomics of Cellular Signalling, Department of Infection and Immunity,Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Joana Gomes-Neto
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Emma V. Rusilowicz-Jones
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Daniel J. Rigden
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Gunnar Dittmar
- Proteomics of Cellular Signalling, Department of Infection and Immunity,Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, 2 Avenue de l'Université, Campus Belval, L-4365 Esch-sur-Alzette, Luxembourg
| | - Sylvie Urbé
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael J. Clague
- Department of Biochemistry, Cell and Systems Biology, ISMIB, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
11
|
Zhao Q, Haga R, Tamura S, Shimada I, Nishida N. Real-time monitoring of the reaction of KRAS G12C mutant specific covalent inhibitor by in vitro and in-cell NMR spectroscopy. Sci Rep 2023; 13:19253. [PMID: 37935773 PMCID: PMC10630485 DOI: 10.1038/s41598-023-46623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
KRAS mutations are major drivers of various cancers. Recently, allele-specific inhibitors of the KRAS G12C mutant were developed that covalently modify the thiol of Cys12, thereby trapping KRAS in an inactive GDP-bound state. To study the mechanism of action of the covalent inhibitors in both in vitro and intracellular environments, we used real-time NMR to simultaneously observe GTP hydrolysis and inhibitor binding. In vitro NMR experiments showed that the rate constant of ARS-853 modification is identical to that of GTP hydrolysis, indicating that GTP hydrolysis is the rate-limiting step for ARS-853 modification. In-cell NMR analysis revealed that the ARS-853 reaction proceeds significantly faster than that in vitro, reflecting acceleration of GTP hydrolysis by endogenous GTPase proteins. This study demonstrated that the KRAS covalent inhibitor is as effective in the cell as in vitro and that in-cell NMR is a valuable validation tool for assessing the pharmacological properties of the drug in the intracellular context.
Collapse
Affiliation(s)
- Qingci Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Ryoka Haga
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Satoko Tamura
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ichio Shimada
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
12
|
Abstract
Taxol is a small molecule effector that allosterically locks tubulin into the microtubule lattice. We show here that taxol has different effects on different single-isotype microtubule lattices. Using in vitro reconstitution, we demonstrate that single-isotype α1β4 GDP-tubulin lattices are stabilised and expanded by 10 µM taxol, as reported by accelerated microtubule gliding in kinesin motility assays, whereas single-isotype α1β3 GDP-tubulin lattices are stabilised but not expanded. This isotype-specific action of taxol drives gliding of segmented-isotype GDP-taxol microtubules along convoluted, sinusoidal paths, because their expanded α1β4 segments try to glide faster than their compacted α1β3 segments. In GMPCPP, single-isotype α1β3 and α1β4 lattices both show accelerated gliding, indicating that both can in principle be driven to expand. We therefore propose that taxol-induced lattice expansion requires a higher taxol occupancy than taxol-induced stabilisation, and that higher taxol occupancies are accessible to α1β4 but not α1β3 single-isotype lattices.
Collapse
Affiliation(s)
- Yean Ming Chew
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, CV4 7LA, UK
| | - Robert A Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry, CV4 7LA, UK.
| |
Collapse
|
13
|
Yang S, Cai M, Huang J, Zhang S, Mo X, Jiang K, Cui H, Yuan J. EB1 decoration of microtubule lattice facilitates spindle-kinetochore lateral attachment in Plasmodium male gametogenesis. Nat Commun 2023; 14:2864. [PMID: 37208365 DOI: 10.1038/s41467-023-38516-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
Faithful chromosome segregation of 8 duplicated haploid genomes into 8 daughter gametes is essential for male gametogenesis and mosquito transmission of Plasmodium. Plasmodium undergoes endomitosis in this multinucleated cell division, which is highly reliant on proper spindle-kinetochore attachment. However, the mechanisms underlying the spindle-kinetochore attachment remain elusive. End-binding proteins (EBs) are conserved microtubule (MT) plus-end binding proteins and play an important role in regulating MT plus-end dynamics. Here, we report that the Plasmodium EB1 is an orthologue distinct from the canonical eukaryotic EB1. Both in vitro and in vivo assays reveal that the Plasmodium EB1 losses MT plus-end tracking but possesses MT-lattice affinity. This MT-binding feature of Plasmodium EB1 is contributed by both CH domain and linker region. EB1-deficient parasites produce male gametocytes that develop to the anucleated male gametes, leading to defective mosquito transmission. EB1 is localized at the nucleoplasm of male gametocytes. During the gametogenesis, EB1 decorates the full-length of spindle MTs and regulates spindle structure. The kinetochores attach to spindle MTs laterally throughout endomitosis and this attachment is EB1-dependent. Consequently, impaired spindle-kinetochore attachment is observed in EB1-deficient parasites. These results indicate that a parasite-specific EB1 with MT-lattice binding affinity fulfills the spindle-kinetochore lateral attachment in male gametogenesis.
Collapse
Affiliation(s)
- Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Mengya Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Junjie Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shengnan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
14
|
McHugh T, Welburn JPI. Potent microtubule-depolymerizing activity of a mitotic Kif18b-MCAK-EB network. J Cell Sci 2023; 136:275263. [PMID: 35502670 DOI: 10.1242/jcs.260144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
The precise regulation of microtubule length during mitosis is essential to assemble and position the mitotic spindle and segregate chromosomes. The kinesin-13 Kif2C or MCAK acts as a potent microtubule depolymerase that diffuses short distances on microtubules, whereas the kinesin-8 Kif18b is a processive motor with weak depolymerase activity. However, the individual activities of these factors cannot explain the dramatic increase in microtubule dynamics in mitosis. Using in vitro reconstitution and single-molecule imaging, we demonstrate that Kif18b, MCAK and the plus-end tracking protein EB3 (also known as MAPRE3) act in an integrated manner to potently promote microtubule depolymerization at very low concentrations. We find that Kif18b can transport EB3 and MCAK and promotes their accumulation to microtubule plus ends through multivalent weak interactions. Together, our work defines the mechanistic basis for a cooperative Kif18b-MCAK-EB network at microtubule plus ends, that acts to efficiently shorten and regulate microtubules in mitosis, essential for correct chromosome segregation.
Collapse
Affiliation(s)
- Toni McHugh
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| |
Collapse
|
15
|
Farmer VJ, Zanic M. Beyond the GTP-cap: Elucidating the molecular mechanisms of microtubule catastrophe. Bioessays 2023; 45:e2200081. [PMID: 36398561 PMCID: PMC10648283 DOI: 10.1002/bies.202200081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Almost 40 years since the discovery of microtubule dynamic instability, the molecular mechanisms underlying microtubule dynamics remain an area of intense research interest. The "standard model" of microtubule dynamics implicates a "cap" of GTP-bound tubulin dimers at the growing microtubule end as the main determinant of microtubule stability. Loss of the GTP-cap leads to microtubule "catastrophe," a switch-like transition from microtubule growth to shrinkage. However, recent studies, using biochemical in vitro reconstitution, cryo-EM, and computational modeling approaches, challenge the simple GTP-cap model. Instead, a new perspective on the mechanisms of microtubule dynamics is emerging. In this view, highly dynamic transitions between different structural conformations of the growing microtubule end - which may or may not be directly linked to the nucleotide content at the microtubule end - ultimately drive microtubule catastrophe.
Collapse
Affiliation(s)
- Veronica J. Farmer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomolecular and Chemical Engineering, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Cushion TD, Leca I, Keays DA. MAPping tubulin mutations. Front Cell Dev Biol 2023; 11:1136699. [PMID: 36875768 PMCID: PMC9975266 DOI: 10.3389/fcell.2023.1136699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Microtubules are filamentous structures that play a critical role in a diverse array of cellular functions including, mitosis, nuclear translocation, trafficking of organelles and cell shape. They are composed of α/β-tubulin heterodimers which are encoded by a large multigene family that has been implicated in an umbrella of disease states collectively known as the tubulinopathies. De novo mutations in different tubulin genes are known to cause lissencephaly, microcephaly, polymicrogyria, motor neuron disease, and female infertility. The diverse clinical features associated with these maladies have been attributed to the expression pattern of individual tubulin genes, as well as their distinct Functional repertoire. Recent studies, however, have highlighted the impact of tubulin mutations on microtubule-associated proteins (MAPs). MAPs can be classified according to their effect on microtubules and include polymer stabilizers (e.g., tau, MAP2, doublecortin), destabilizers (e.g., spastin, katanin), plus-end binding proteins (e.g., EB1-3, XMAP215, CLASPs) and motor proteins (e.g., dyneins, kinesins). In this review we analyse mutation-specific disease mechanisms that influence MAP binding and their phenotypic consequences, and discuss methods by which we can exploit genetic variation to identify novel MAPs.
Collapse
Affiliation(s)
- Thomas D Cushion
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ines Leca
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - David A Keays
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.,Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
17
|
APC couples neuronal mRNAs to multiple kinesins, EB1, and shrinking microtubule ends for bidirectional mRNA motility. Proc Natl Acad Sci U S A 2022; 119:e2211536119. [PMID: 36469763 PMCID: PMC9897468 DOI: 10.1073/pnas.2211536119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding where in the cytoplasm mRNAs are translated is increasingly recognized as being as important as knowing the timing and level of protein expression. mRNAs are localized via active motor-driven transport along microtubules (MTs) but the underlying essential factors and dynamic interactions are largely unknown. Using biochemical in vitro reconstitutions with purified mammalian proteins, multicolor TIRF-microscopy, and interaction kinetics measurements, we show that adenomatous polyposis coli (APC) enables kinesin-1- and kinesin-2-based mRNA transport, and that APC is an ideal adaptor for long-range mRNA transport as it forms highly stable complexes with 3'UTR fragments of several neuronal mRNAs (APC-RNPs). The kinesin-1 KIF5A binds and transports several neuronal mRNP components such as FMRP, PURα and mRNA fragments weakly, whereas the transport frequency of the mRNA fragments is significantly increased by APC. APC-RNP-motor complexes can assemble on MTs, generating highly processive mRNA transport events. We further find that end-binding protein 1 (EB1) recruits APC-RNPs to dynamically growing MT ends and APC-RNPs track shrinking MTs, producing MT minus-end-directed RNA motility due to the high dwell times of APC on MTs. Our findings establish APC as a versatile mRNA-kinesin adaptor and a key factor for the assembly and bidirectional movement of neuronal transport mRNPs.
Collapse
|
18
|
Siahaan V, Tan R, Humhalova T, Libusova L, Lacey SE, Tan T, Dacy M, Ori-McKenney KM, McKenney RJ, Braun M, Lansky Z. Microtubule lattice spacing governs cohesive envelope formation of tau family proteins. Nat Chem Biol 2022; 18:1224-1235. [PMID: 35996000 PMCID: PMC9613621 DOI: 10.1038/s41589-022-01096-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/24/2022] [Indexed: 01/28/2023]
Abstract
Tau is an intrinsically disordered microtubule-associated protein (MAP) implicated in neurodegenerative disease. On microtubules, tau molecules segregate into two kinetically distinct phases, consisting of either independently diffusing molecules or interacting molecules that form cohesive 'envelopes' around microtubules. Envelopes differentially regulate lattice accessibility for other MAPs, but the mechanism of envelope formation remains unclear. Here we find that tau envelopes form cooperatively, locally altering the spacing of tubulin dimers within the microtubule lattice. Envelope formation compacted the underlying lattice, whereas lattice extension induced tau envelope disassembly. Investigating other members of the tau family, we find that MAP2 similarly forms envelopes governed by lattice spacing, whereas MAP4 cannot. Envelopes differentially biased motor protein movement, suggesting that tau family members could spatially divide the microtubule surface into functionally distinct regions. We conclude that the interdependent allostery between lattice spacing and cooperative envelope formation provides the molecular basis for spatial regulation of microtubule-based processes by tau and MAP2.
Collapse
Affiliation(s)
- Valerie Siahaan
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Tereza Humhalova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Libusova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Samuel E Lacey
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Human Technopole, Milan, Italy
| | - Tracy Tan
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA, USA
| | - Mariah Dacy
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA, USA
| | | | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, Davis, CA, USA.
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic.
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic.
| |
Collapse
|
19
|
Zhong Y, Yan W, Ruan J, Fang M, Yu C, Du S, Rai G, Tao D, Henderson MJ, Fang S. XBP1 variant 1 promotes mitosis of cancer cells involving upregulation of the polyglutamylase TTLL6. Hum Mol Genet 2022; 31:2639-2654. [PMID: 35333353 PMCID: PMC9396943 DOI: 10.1093/hmg/ddac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1β. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pulmonary Medicine, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Mike Fang
- Population and Quantitative Health Sciences Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Changjun Yu
- Department of General surgery, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Castrogiovanni C, Inchingolo AV, Harrison JU, Dudka D, Sen O, Burroughs NJ, McAinsh AD, Meraldi P. Evidence for a HURP/EB free mixed-nucleotide zone in kinetochore-microtubules. Nat Commun 2022; 13:4704. [PMID: 35948594 PMCID: PMC9365851 DOI: 10.1038/s41467-022-32421-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Current models infer that the microtubule-based mitotic spindle is built from GDP-tubulin with small GTP caps at microtubule plus-ends, including those that attach to kinetochores, forming the kinetochore-fibres. Here we reveal that kinetochore-fibres additionally contain a dynamic mixed-nucleotide zone that reaches several microns in length. This zone becomes visible in cells expressing fluorescently labelled end-binding proteins, a known marker for GTP-tubulin, and endogenously-labelled HURP - a protein which we show to preferentially bind the GDP microtubule lattice in vitro and in vivo. We find that in mitotic cells HURP accumulates on the kinetochore-proximal region of depolymerising kinetochore-fibres, whilst avoiding recruitment to nascent polymerising K-fibres, giving rise to a growing "HURP-gap". The absence of end-binding proteins in the HURP-gaps leads us to postulate that they reflect a mixed-nucleotide zone. We generate a minimal quantitative model based on the preferential binding of HURP to GDP-tubulin to show that such a mixed-nucleotide zone is sufficient to recapitulate the observed in vivo dynamics of HURP-gaps.
Collapse
Affiliation(s)
- Cédric Castrogiovanni
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
| | - Alessio V Inchingolo
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jonathan U Harrison
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Damian Dudka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Onur Sen
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Nigel J Burroughs
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
21
|
Liao M, Kuo YW, Howard J. Counting fluorescently labeled proteins in tissues in the spinning disk microscope using single-molecule calibrations. Mol Biol Cell 2022; 33:ar48. [PMID: 35323029 PMCID: PMC9265152 DOI: 10.1091/mbc.e21-12-0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantification of molecular numbers and concentrations in living cells is critical for testing models of complex biological phenomena. Counting molecules in cells requires estimation of the fluorescence intensity of single molecules, which is generally limited to imaging near cell surfaces, in isolated cells, or where motions are diffusive. To circumvent this difficulty, we have devised a calibration technique for spinning–disk confocal microscopy, commonly used for imaging in tissues, that uses single–step bleaching kinetics to estimate the single–fluorophore intensity. To cross–check our calibrations, we compared the brightness of fluorophores in the SDC microscope to those in the total internal reflection and epifluorescence microscopes. We applied this calibration method to quantify the number of end–binding protein 1 (EB1)–eGFP in the comets of growing microtubule ends and to measure the cytoplasmic concentration of EB1–eGFP in sensory neurons in fly larvae. These measurements allowed us to estimate the dissociation constant of EB1–eGFP from the microtubules as well as the GTP–tubulin cap size. Our results show the unexplored potential of single–molecule imaging using spinning–disk confocal microscopy and provide a straightforward method to count the absolute number of fluorophores in tissues that can be applied to a wide range of biological systems and imaging techniques.
Collapse
Affiliation(s)
- Maijia Liao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yin-Wei Kuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Cross-linkers at growing microtubule ends generate forces that drive actin transport. Proc Natl Acad Sci U S A 2022; 119:e2112799119. [PMID: 35271394 PMCID: PMC8931237 DOI: 10.1073/pnas.2112799119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex cellular processes such as cell migration require coordinated remodeling of both the actin and the microtubule cytoskeleton. The two networks for instance exert forces on each other via active motor proteins. Here we show that, surprisingly, coupling via passive cross-linkers can also result in force generation. We specifically study the transport of actin filaments by growing microtubule ends. We show by cell-free reconstitution experiments, computer simulations, and theoretical modeling that this transport is driven by the affinity of the cross-linker for the chemically distinct microtubule tip region. Our work predicts that growing microtubules could potentially rapidly relocate newly nucleated actin filaments to the leading edge of the cell and thus boost migration. The actin and microtubule cytoskeletons form active networks in the cell that can contract and remodel, resulting in vital cellular processes such as cell division and motility. Motor proteins play an important role in generating the forces required for these processes, but more recently the concept of passive cross-linkers being able to generate forces has emerged. So far, these passive cross-linkers have been studied in the context of separate actin and microtubule systems. Here, we show that cross-linkers also allow actin and microtubules to exert forces on each other. More specifically, we study single actin filaments that are cross-linked to growing microtubule ends, using in vitro reconstitution, computer simulations, and a minimal theoretical model. We show that microtubules can transport actin filaments over large (micrometer-range) distances and find that this transport results from two antagonistic forces arising from the binding of cross-linkers to the overlap between the actin and microtubule filaments. The cross-linkers attempt to maximize the overlap between the actin and the tip of the growing microtubules, creating an affinity-driven forward condensation force, and simultaneously create a competing friction force along the microtubule lattice. We predict and verify experimentally how the average transport time depends on the actin filament length and the microtubule growth velocity, confirming the competition between a forward condensation force and a backward friction force. In addition, we theoretically predict and experimentally verify that the condensation force is of the order of 0.1 pN. Thus, our results reveal an active mechanism for local actin remodeling by growing microtubules that relies on passive cross-linkers.
Collapse
|
23
|
Molines AT, Lemière J, Gazzola M, Steinmark IE, Edrington CH, Hsu CT, Real-Calderon P, Suhling K, Goshima G, Holt LJ, Thery M, Brouhard GJ, Chang F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Dev Cell 2022; 57:466-479.e6. [PMID: 35231427 PMCID: PMC9319896 DOI: 10.1016/j.devcel.2022.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/01/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Morgan Gazzola
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France
| | | | | | - Chieh-Ting Hsu
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Klaus Suhling
- Department of Physics, King's College London, London, UK
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory and Division of Biological Science, Graduate School of Science, Nagoya University, Toba City, Mie, Japan; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Manuel Thery
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France; Université de Paris, INSERM, CEA, Institut de Recherche Saint Louis, U 976, CytoMorpho Lab, 75010 Paris, France
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
24
|
Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate dynamic instability. Proc Natl Acad Sci U S A 2022; 119:2108046119. [PMID: 35173049 PMCID: PMC8872730 DOI: 10.1073/pnas.2108046119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
Kinesin-14 motors represent an essential class of molecular motors that bind to microtubules and then walk toward the microtubule minus-end. However, whether these motors can interact with growing plus-ends of microtubules to impact the lengthening of microtubules remains unknown. We found that Kinesin-14 motors could bind to a protein that resides at growing microtubule plus-ends and then pull this protein away from the growing end. This interaction acted to disrupt microtubule growth and decrease microtubule lengths in cells, likely by exerting minus-end–directed forces at the microtubule tip to alter the configuration of the growing microtubule plus-end. This work demonstrates general principles for the diverse roles that force-generating molecular motors can play in regulating cellular processes. Kinesin-14 molecular motors represent an essential class of proteins that bind microtubules and walk toward their minus-ends. Previous studies have described important roles for Kinesin-14 motors at microtubule minus-ends, but their role in regulating plus-end dynamics remains controversial. Kinesin-14 motors have been shown to bind the EB family of microtubule plus-end binding proteins, suggesting that these minus-end–directed motors could interact with growing microtubule plus-ends. In this work, we explored the role of minus-end–directed Kinesin-14 motor forces in controlling plus-end microtubule dynamics. In cells, a Kinesin-14 mutant with reduced affinity to EB proteins led to increased microtubule lengths. Cell-free biophysical microscopy assays were performed using Kinesin-14 motors and an EB family marker of growing microtubule plus-ends, Mal3, which revealed that when Kinesin-14 motors bound to Mal3 at growing microtubule plus-ends, the motors subsequently walked toward the minus-end, and Mal3 was pulled away from the growing microtubule tip. Strikingly, these interactions resulted in an approximately twofold decrease in the expected postinteraction microtubule lifetime. Furthermore, generic minus-end–directed tension forces, generated by tethering growing plus-ends to the coverslip using λ-DNA, led to an approximately sevenfold decrease in the expected postinteraction microtubule growth length. In contrast, the inhibition of Kinesin-14 minus-end–directed motility led to extended tip interactions and to an increase in the expected postinteraction microtubule lifetime, indicating that plus-ends were stabilized by nonmotile Kinesin-14 motors. Together, we find that Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate microtubule lengths in cells.
Collapse
|
25
|
Kliuchnikov E, Klyshko E, Kelly MS, Zhmurov A, Dima RI, Marx KA, Barsegov V. Microtubule assembly and disassembly dynamics model: Exploring dynamic instability and identifying features of Microtubules' Growth, Catastrophe, Shortening, and Rescue. Comput Struct Biotechnol J 2022; 20:953-974. [PMID: 35242287 PMCID: PMC8861655 DOI: 10.1016/j.csbj.2022.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Microtubules (MTs), a cellular structure element, exhibit dynamic instability and can switch stochastically from growth to shortening; but the factors that trigger these processes at the molecular level are not understood. We developed a 3D Microtubule Assembly and Disassembly DYnamics (MADDY) model, based upon a bead-per-monomer representation of the αβ-tubulin dimers forming an MT lattice, stabilized by the lateral and longitudinal interactions between tubulin subunits. The model was parameterized against the experimental rates of MT growth and shortening, and pushing forces on the Dam1 protein complex due to protofilaments splaying out. Using the MADDY model, we carried out GPU-accelerated Langevin simulations to access dynamic instability behavior. By applying Machine Learning techniques, we identified the MT characteristics that distinguish simultaneously all four kinetic states: growth, catastrophe, shortening, and rescue. At the cellular 25 μM tubulin concentration, the most important quantities are the MT length L , average longitudinal curvatureκ long , MT tip width w , total energy of longitudinal interactions in MT latticeU long , and the energies of longitudinal and lateral interactions required to complete MT to full cylinderU long add andU lat add . At high 250 μM tubulin concentration, the most important characteristics are L ,κ long , number of hydrolyzed αβ-tubulin dimersn hyd and number of lateral interactions per helical pitchn lat in MT lattice, energy of lateral interactions in MT latticeU lat , and energy of longitudinal interactions in MT tipu long . These results allow greater insights into what brings about kinetic state stability and the transitions between states involved in MT dynamic instability behavior.
Collapse
Affiliation(s)
| | - Eugene Klyshko
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Maria S. Kelly
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Artem Zhmurov
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
26
|
Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules. Proc Natl Acad Sci U S A 2022; 119:2114994119. [PMID: 34996871 PMCID: PMC8764682 DOI: 10.1073/pnas.2114994119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 01/27/2023] Open
Abstract
Microtubules (MTs) are polymers of αβ-tubulin heterodimers that stochastically switch between growth and shrinkage phases. This dynamic instability is critically important for MT function. It is believed that GTP hydrolysis within the MT lattice is accompanied by destabilizing conformational changes and that MT stability depends on a transiently existing GTP cap at the growing MT end. Here, we use cryo-electron microscopy and total internal reflection fluorescence microscopy of GTP hydrolysis-deficient MTs assembled from mutant recombinant human tubulin to investigate the structure of a GTP-bound MT lattice. We find that the GTP-MT lattice of two mutants in which the catalytically active glutamate in α-tubulin was substituted by inactive amino acids (E254A and E254N) is remarkably plastic. Undecorated E254A and E254N MTs with 13 protofilaments both have an expanded lattice but display opposite protofilament twists, making these lattices distinct from the compacted lattice of wild-type GDP-MTs. End-binding proteins of the EB family have the ability to compact both mutant GTP lattices and to stabilize a negative twist, suggesting that they promote this transition also in the GTP cap of wild-type MTs, thereby contributing to the maturation of the MT structure. We also find that the MT seam appears to be stabilized in mutant GTP-MTs and destabilized in GDP-MTs, supporting the proposal that the seam plays an important role in MT stability. Together, these structures of catalytically inactive MTs add mechanistic insight into the GTP state of MTs, the stability of the GTP- and GDP-bound lattice, and our overall understanding of MT dynamic instability.
Collapse
|
27
|
Diao L, Liu MY, Song YL, Zhang X, Liang X, Bao L. α1A and α1C form microtubules to display distinct properties mainly mediated by their C-terminal tails. J Mol Cell Biol 2021; 13:864-875. [PMID: 34609491 PMCID: PMC8800519 DOI: 10.1093/jmcb/mjab062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Microtubules consisting of α/β-tubulin dimers play critical roles in cells. More than seven genes encode α-tubulin in vertebrates. However, the property of microtubules composed of different α-tubulin isotypes is largely unknown. Here, we purified recombinant tubulin heterodimers of mouse α-tubulin isotypes including α1A and α1C with β-tubulin isotype β2A. In vitro microtubule reconstitution assay detected that α1C/β2A microtubules grew faster and underwent catastrophe less frequently than α1A/β2A microtubules. Generation of chimeric tail-swapped and point-mutation tubulins revealed that the carboxyl-terminal (C-terminal) tails of α-tubulin isotypes largely accounted for the differences in polymerization dynamics of α1A/β2A and α1C/β2A microtubules. Kinetics analysis showed that in comparison to α1A/β2A microtubules, α1C/β2A microtubules displayed higher on-rate, lower off-rate, and similar GTP hydrolysis rate at the plus-end, suggesting a contribution of higher plus-end affinity to faster growth and less frequent catastrophe of α1C/β2A microtubules. Furthermore, EB1 had a higher binding ability to α1C/β2A microtubules than to α1A/β2A ones, which could also be attributed to the difference in the C-terminal tails of these two α-tubulin isotypes. Thus, α-tubulin isotypes diversify microtubule properties, which, to a great extent, could be accounted by their C-terminal tails.
Collapse
Affiliation(s)
- Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Yi Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yin-Long Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
28
|
Vaishali, Dimitrova-Paternoga L, Haubrich K, Sun M, Ephrussi A, Hennig J. Validation and classification of RNA binding proteins identified by mRNA interactome capture. RNA (NEW YORK, N.Y.) 2021; 27:1173-1185. [PMID: 34215685 PMCID: PMC8456996 DOI: 10.1261/rna.078700.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
RNA binding proteins (RBPs) take part in all steps of the RNA life cycle and are often essential for cell viability. Most RBPs have a modular organization and comprise a set of canonical RNA binding domains. However, in recent years a number of high-throughput mRNA interactome studies on yeast, mammalian cell lines, and whole organisms have uncovered a multitude of novel mRNA interacting proteins that lack classical RNA binding domains. Whereas a few have been confirmed to be direct and functionally relevant RNA binders, biochemical and functional validation of RNA binding of most others is lacking. In this study, we used a combination of NMR spectroscopy and biochemical studies to test the RNA binding properties of six putative RBPs. Half of the analyzed proteins showed no interaction, whereas the other half displayed weak chemical shift perturbations upon titration with RNA. One of the candidates we found to interact weakly with RNA in vitro is Drosophila melanogaster end binding protein 1 (EB1), a master regulator of microtubule plus-end dynamics. Further analysis showed that EB1's RNA binding occurs on the same surface as that with which EB1 interacts with microtubules. RNA immunoprecipitation and colocalization experiments suggest that EB1 is a rather nonspecific, opportunistic RNA binder. Our data suggest that care should be taken when embarking on an RNA binding study involving these unconventional, novel RBPs, and we recommend initial and simple in vitro RNA binding experiments.
Collapse
Affiliation(s)
- Vaishali
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg 69120, Germany
| | - Lyudmila Dimitrova-Paternoga
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Kevin Haubrich
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Mai Sun
- Genome Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
29
|
Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 2021; 22:777-795. [PMID: 34408299 DOI: 10.1038/s41580-021-00399-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.
Collapse
|
30
|
Goldblum RR, McClellan M, White K, Gonzalez SJ, Thompson BR, Vang HX, Cohen H, Higgins L, Markowski TW, Yang TY, Metzger JM, Gardner MK. Oxidative stress pathogenically remodels the cardiac myocyte cytoskeleton via structural alterations to the microtubule lattice. Dev Cell 2021; 56:2252-2266.e6. [PMID: 34343476 DOI: 10.1016/j.devcel.2021.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 04/07/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022]
Abstract
In the failing heart, the cardiac myocyte microtubule network is remodeled, which contributes to cellular contractile failure and patient death. However, the origins of this deleterious cytoskeletal reorganization are unknown. We now find that oxidative stress, a condition characteristic of heart failure, leads to cysteine oxidation of microtubules. Our electron and fluorescence microscopy experiments revealed regions of structural damage within the microtubule lattice that occurred at locations of oxidized tubulin. The incorporation of GTP-tubulin into these damaged, oxidized regions led to stabilized "hot spots" within the microtubule lattice, which suppressed the shortening of dynamic microtubules. Thus, oxidative stress may act inside of cardiac myocytes to facilitate a pathogenic shift from a sparse microtubule network into a dense, aligned network. Our results demonstrate how a disease condition characterized by oxidative stress can trigger a molecular oxidation event, which likely contributes to a toxic cellular-scale transformation of the cardiac myocyte microtubule network.
Collapse
Affiliation(s)
- Rebecca R Goldblum
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kyle White
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Samuel J Gonzalez
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hluechy X Vang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Houda Cohen
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
31
|
Farmer V, Arpağ G, Hall SL, Zanic M. XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end. J Cell Biol 2021; 220:212518. [PMID: 34324632 PMCID: PMC8327381 DOI: 10.1083/jcb.202012144] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023] Open
Abstract
The GTP-tubulin cap is widely accepted to protect microtubules against catastrophe. The GTP-cap size is thought to increase with the microtubule growth rate, presumably endowing fast-growing microtubules with enhanced stability. It is unknown what GTP-cap properties permit frequent microtubule catastrophe despite fast growth. Here, we investigate microtubules growing in the presence and absence of the polymerase XMAP215. Using EB1 as a GTP-cap marker, we find that GTP-cap size increases regardless of whether growth acceleration is achieved by increasing tubulin concentration or by XMAP215. Despite increased mean GTP-cap size, microtubules grown with XMAP215 display increased catastrophe frequency, in contrast to microtubules grown with more tubulin, for which catastrophe is abolished. However, microtubules polymerized with XMAP215 have large fluctuations in growth rate; display tapered and curled ends; and undergo catastrophe at faster growth rates and with higher EB1 end-localization. Our results suggest that structural perturbations induced by XMAP215 override the protective effects of the GTP-cap, ultimately driving microtubule catastrophe.
Collapse
Affiliation(s)
- Veronica Farmer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Göker Arpağ
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Sarah L Hall
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN.,Department of Biochemistry, Vanderbilt University, Nashville, TN
| |
Collapse
|
32
|
Zhang L, Smertenko T, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Novák D, Manoilov E, Smertenko P, Galva C, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A. Analysis of formin functions during cytokinesis using specific inhibitor SMIFH2. PLANT PHYSIOLOGY 2021; 186:945-963. [PMID: 33620500 PMCID: PMC8195507 DOI: 10.1093/plphys/kiab085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
The phragmoplast separates daughter cells during cytokinesis by constructing the cell plate, which depends on interaction between cytoskeleton and membrane compartments. Proteins responsible for these interactions remain unknown, but formins can link cytoskeleton with membranes and several members of formin protein family localize to the cell plate. Progress in functional characterization of formins in cytokinesis is hindered by functional redundancies within the large formin gene family. We addressed this limitation by employing Small Molecular Inhibitor of Formin Homology 2 (SMIFH2), a small-molecule inhibitor of formins. Treatment of tobacco (Nicotiana tabacum) tissue culture cells with SMIFH2 perturbed localization of actin at the cell plate; slowed down both microtubule polymerization and phragmoplast expansion; diminished association of dynamin-related proteins with the cell plate independently of actin and microtubules; and caused cell plate swelling. Another impact of SMIFH2 was shortening of the END BINDING1b (EB1b) and EB1c comets on the growing microtubule plus ends in N. tabacum tissue culture cells and Arabidopsis thaliana cotyledon epidermis cells. The shape of the EB1 comets in the SMIFH2-treated cells resembled that of the knockdown mutant of plant Xenopus Microtubule-Associated protein of 215 kDa (XMAP215) homolog MICROTUBULE ORGANIZATION 1/GEMINI 1 (MOR1/GEM1). This outcome suggests that formins promote elongation of tubulin flares on the growing plus ends. Formins AtFH1 (A. thaliana Formin Homology 1) and AtFH8 can also interact with EB1. Besides cytokinesis, formins function in the mitotic spindle assembly and metaphase to anaphase transition. Our data suggest that during cytokinesis formins function in: (1) promoting microtubule polymerization; (2) nucleating F-actin at the cell plate; (3) retaining dynamin-related proteins at the cell plate; and (4) remodeling of the cell plate membrane.
Collapse
Affiliation(s)
- Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Nuria Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197376, Russia
| | - Natalia Moroz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Anna Kuchařová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Dominik Novák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Eduard Manoilov
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Petro Smertenko
- V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Kyiv, Ukraine
| | - Charitha Galva
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Alla S. Kostyukova
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - John C. Sedbrook
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
33
|
Minagawa M, Shirato M, Toya M, Sato M. Dual Impact of a Benzimidazole Resistant β-Tubulin on Microtubule Behavior in Fission Yeast. Cells 2021; 10:1042. [PMID: 33925026 PMCID: PMC8145593 DOI: 10.3390/cells10051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton microtubule consists of polymerized αβ-tubulin dimers and plays essential roles in many cellular events. Reagents that inhibit microtubule behaviors have been developed as antifungal, antiparasitic, and anticancer drugs. Benzimidazole compounds, including thiabendazole (TBZ), carbendazim (MBC), and nocodazole, are prevailing microtubule poisons that target β-tubulin and inhibit microtubule polymerization. The molecular basis, however, as to how the drug acts on β-tubulin remains controversial. Here, we characterize the S. pombe β-tubulin mutant nda3-TB101, which was previously isolated as a mutant resistance to benzimidazole. The mutation site tyrosine at position 50 is located in the interface of two lateral β-tubulin proteins and at the gate of a putative binging pocket for benzimidazole. Our observation revealed two properties of the mutant tubulin. First, the dynamics of cellular microtubules comprising the mutant β-tubulin were stabilized in the absence of benzimidazole. Second, the mutant protein reduced the affinity to benzimidazole in vitro. We therefore conclude that the mutant β-tubulin Nda3-TB101 exerts a dual effect on microtubule behaviors: the mutant β-tubulin stabilizes microtubules and is insensitive to benzimidazole drugs. This notion fine-tunes the current elusive molecular model regarding binding of benzimidazole to β-tubulin.
Collapse
Affiliation(s)
- Mamika Minagawa
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
| | - Minamo Shirato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
- Faculty of Science and Engineering, Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan; (M.M.); (M.S.); (M.T.)
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
34
|
Ayyappan S, Dharan PS, Krishnan A, Marira RR, Lambert M, Manna TK, Vijayan V. SxIP binding disrupts the constitutive homodimer interface of EB1 and stabilizes EB1 monomer. Biophys J 2021; 120:2019-2029. [PMID: 33737159 DOI: 10.1016/j.bpj.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
SxIP is a microtubule tip localizing signal found in many +TIP proteins that bind to the hydrophobic cavity of the C-terminal domain of end binding protein 1 (EB1) and then positively regulate the microtubule plus-end tracking of EBs. However, the exact mechanism of microtubule activation of EBs in the presence of SxIP signaling motif is not known. Here, we studied the effect of SxIP peptide on the native conformation of EB1 in solution. Using various NMR experiments, we found that SxIP peptide promoted the dissociation of natively formed EB1 dimer. We also discovered that I224A mutation of EB1 resulted in an unfolded C-terminal domain, which upon binding with the SxIP motif folded to its native structure. Molecular dynamics simulations also confirmed the relative structural stability of EB1 monomer in the SxIP bound state. Residual dipolar couplings and heteronuclear NOE analysis suggested that the binding of SxIP peptide at the C-terminal domain of EB1 decreased the dynamics and conformational flexibility of the N-terminal domain involved in EB1-microtubule interaction. The SxIP-induced disruption of the dimeric interactions in EB1, coupled with the reduction in conformational flexibility of the N-terminal domain of EB1, might facilitate the microtubule association of EB1.
Collapse
Affiliation(s)
- Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Pooja S Dharan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Arya Krishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Renjith R Marira
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Mahil Lambert
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
35
|
Bigman LS, Levy Y. Protein Diffusion on Charged Biopolymers: DNA versus Microtubule. Biophys J 2020; 118:3008-3018. [PMID: 32492371 DOI: 10.1016/j.bpj.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Protein diffusion in lower-dimensional spaces is used for various cellular functions. For example, sliding on DNA is essential for proteins searching for their target sites, and protein diffusion on microtubules is important for proper cell division and neuronal development. On the one hand, these linear diffusion processes are mediated by long-range electrostatic interactions between positively charged proteins and negatively charged biopolymers and have similar characteristic diffusion coefficients. On the other hand, DNA and microtubules have different structural properties. Here, using computational approaches, we studied the mechanism of protein diffusion along DNA and microtubules by exploring the diffusion of both protein types on both biopolymers. We found that DNA-binding and microtubule-binding proteins can diffuse on each other's substrates; however, the adopted diffusion mechanism depends on the molecular properties of the diffusing proteins and the biopolymers. On the protein side, only DNA-binding proteins can perform rotation-coupled diffusion along DNA, with this being due to their higher net charge and its spatial organization at the DNA recognition helix. By contrast, the lower net charge on microtubule-binding proteins enables them to diffuse more quickly than DNA-binding proteins on both biopolymers. On the biopolymer side, microtubules possess intrinsically disordered, negatively charged C-terminal tails that interact with microtubule-binding proteins, thus supporting their diffusion. Thus, although both DNA-binding and microtubule-binding proteins can diffuse on the negatively charged biopolymers, the unique molecular features of the biopolymers and of their natural substrates are essential for function.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
Song Y, Zhang Y, Pan Y, He J, Wang Y, Chen W, Guo J, Deng H, Xue Y, Fang X, Liang X. The microtubule end-binding affinity of EB1 is enhanced by a dimeric organization that is susceptible to phosphorylation. J Cell Sci 2020; 133:jcs241216. [PMID: 32152183 DOI: 10.1242/jcs.241216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
In cells, microtubule dynamics are regulated by plus-end tracking proteins (+TIPs). End-binding protein 1 (EB1, also known as MAPRE1) acts as a master regulator of +TIP networks by targeting the growing ends of microtubules and recruiting other factors. However, the molecular mechanism underlying high-affinity binding of EB1 to microtubule ends remains an open area of research. Using single-molecule imaging, we show that the end-binding kinetics of EB1 change when the polymerization and hydrolysis rates of tubulin dimers are altered, confirming that EB1 binds to GTP-tubulin and/or GDP-Pi-tubulin at microtubule growing ends. The affinity of wild-type EB1 to these sites is higher than that of monomeric EB1 mutants, suggesting that both calponin homology domains present in the EB1 dimer contribute to end binding. Introduction of phosphomimetic mutations into the EB1 linker domain weakens the end-binding affinity and confers a more curved conformation on the EB1 dimer without compromising dimerization, suggesting that the overall architecture of EB1 is important for its end-binding affinity. Taken together, our results provide insights into how the high-affinity end-binding of EB1 is achieved and how this activity may be regulated in cells.
Collapse
Affiliation(s)
- Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yikan Zhang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ying Pan
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Jianfeng He
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yan Wang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Wei Chen
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Jing Guo
- Protein Chemistry Facility at the Center for Biomedical Analysis of Tsinghua University, 100084 Beijing, China
| | - Haiteng Deng
- Protein Chemistry Facility at the Center for Biomedical Analysis of Tsinghua University, 100084 Beijing, China
| | - Yi Xue
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
37
|
Rodríguez-García R, Volkov VA, Chen CY, Katrukha EA, Olieric N, Aher A, Grigoriev I, López MP, Steinmetz MO, Kapitein LC, Koenderink G, Dogterom M, Akhmanova A. Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules. Curr Biol 2020; 30:972-987.e12. [PMID: 32032506 PMCID: PMC7090928 DOI: 10.1016/j.cub.2020.01.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 01/10/2020] [Indexed: 12/26/2022]
Abstract
Microtubule-dependent organization of membranous organelles occurs through motor-based pulling and by coupling microtubule dynamics to membrane remodeling. For example, tubules of endoplasmic reticulum (ER) can be extended by kinesin- and dynein-mediated transport and through the association with the tips of dynamic microtubules. The binding between ER and growing microtubule plus ends requires End Binding (EB) proteins and the transmembrane protein STIM1, which form a tip-attachment complex (TAC), but it is unknown whether these proteins are sufficient for membrane remodeling. Furthermore, EBs and their partners undergo rapid turnover at microtubule ends, and it is unclear how highly transient protein-protein interactions can induce load-bearing processive motion. Here, we reconstituted membrane tubulation in a minimal system with giant unilamellar vesicles, dynamic microtubules, an EB protein, and a membrane-bound protein that can interact with EBs and microtubules. We showed that these components are sufficient to drive membrane remodeling by three mechanisms: membrane tubulation induced by growing microtubule ends, motor-independent membrane sliding along microtubule shafts, and membrane pulling by shrinking microtubules. Experiments and modeling demonstrated that the first two mechanisms can be explained by adhesion-driven biased membrane spreading on microtubules. Optical trapping revealed that growing and shrinking microtubule ends can exert forces of ∼0.5 and ∼5 pN, respectively, through attached proteins. Rapidly exchanging molecules that connect membranes to dynamic microtubules can thus bear a sufficient load to induce membrane deformation and motility. Furthermore, combining TAC components and a membrane-attached kinesin in the same in vitro assays demonstrated that they can cooperate in promoting membrane tubule extension.
Collapse
Affiliation(s)
- Ruddi Rodríguez-García
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Vladimir A Volkov
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands
| | - Chiung-Yi Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Amol Aher
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | | | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Forschungsstrasse 111, Villigen 5232, Switzerland; University of Basel, Biozentrum, Klingelbergstrasse, Basel 4056, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands
| | - Gijsje Koenderink
- Department of Living Matter, AMOLF, Science Park 104, Amsterdam 1098, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629, the Netherlands.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584, the Netherlands.
| |
Collapse
|
38
|
Estévez-Gallego J, Josa-Prado F, Ku S, Buey RM, Balaguer FA, Prota AE, Lucena-Agell D, Kamma-Lorger C, Yagi T, Iwamoto H, Duchesne L, Barasoain I, Steinmetz MO, Chrétien D, Kamimura S, Díaz JF, Oliva MA. Structural model for differential cap maturation at growing microtubule ends. eLife 2020; 9:50155. [PMID: 32151315 PMCID: PMC7064335 DOI: 10.7554/elife.50155] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) are hollow cylinders made of tubulin, a GTPase responsible for essential functions during cell growth and division, and thus, key target for anti-tumor drugs. In MTs, GTP hydrolysis triggers structural changes in the lattice, which are responsible for interaction with regulatory factors. The stabilizing GTP-cap is a hallmark of MTs and the mechanism of the chemical-structural link between the GTP hydrolysis site and the MT lattice is a matter of debate. We have analyzed the structure of tubulin and MTs assembled in the presence of fluoride salts that mimic the GTP-bound and GDP•Pi transition states. Our results challenge current models because tubulin does not change axial length upon GTP hydrolysis. Moreover, analysis of the structure of MTs assembled in the presence of several nucleotide analogues and of taxol allows us to propose that previously described lattice expansion could be a post-hydrolysis stage involved in Pi release.
Collapse
Affiliation(s)
- Juan Estévez-Gallego
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fernando Josa-Prado
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Siou Ku
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Ruben M Buey
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca-Campus Miguel de Unamuno, Salamanca, Spain
| | - Francisco A Balaguer
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Andrea E Prota
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
| | - Daniel Lucena-Agell
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Toshiki Yagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Hiroyuki Iwamoto
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Isabel Barasoain
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Michel O Steinmetz
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland.,University of Basel, Biozentrum, Basel, Switzerland
| | - Denis Chrétien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, Rennes, France
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - J Fernando Díaz
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Maria A Oliva
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
39
|
Ye X, Kim T, Geyer EA, Rice LM. Insights into allosteric control of microtubule dynamics from a buried β-tubulin mutation that causes faster growth and slower shrinkage. Protein Sci 2020; 29:1429-1439. [PMID: 32077153 DOI: 10.1002/pro.3842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/27/2023]
Abstract
αβ-tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule-stabilizing effects (slower shrinking) of the β:T238A mutation we previously observed using yeast αβ-tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, β:T238A human microtubules grew faster than wild-type and the mutation did not appear to attenuate the conformational change associated with guanosine 5'-triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly-dependent conformational change in αβ-tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the β:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.
Collapse
Affiliation(s)
- Xuecheng Ye
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Tae Kim
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Elisabeth A Geyer
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| | - Luke M Rice
- UT Southwestern Medical Center, Departments of Biophysics and Biochemistry, Dallas, Texas, USA
| |
Collapse
|
40
|
Roostalu J, Thomas C, Cade NI, Kunzelmann S, Taylor IA, Surrey T. The speed of GTP hydrolysis determines GTP cap size and controls microtubule stability. eLife 2020; 9:e51992. [PMID: 32053491 PMCID: PMC7018511 DOI: 10.7554/elife.51992] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/25/2020] [Indexed: 11/30/2022] Open
Abstract
Microtubules are cytoskeletal polymers whose function depends on their property to switch between states of growth and shrinkage. Growing microtubules are thought to be stabilized by a GTP cap at their ends. The nature of this cap, however, is still poorly understood. End Binding proteins (EBs) recruit a diverse range of regulators of microtubule function to growing microtubule ends. Whether the EB binding region is identical to the GTP cap is unclear. Using mutated human tubulin with blocked GTP hydrolysis, we demonstrate that EBs bind with high affinity to the GTP conformation of microtubules. Slowing-down GTP hydrolysis leads to extended GTP caps. We find that cap length determines microtubule stability and that the microtubule conformation changes gradually in the cap as GTP is hydrolyzed. These results demonstrate the critical importance of the kinetics of GTP hydrolysis for microtubule stability and establish that the GTP cap coincides with the EB-binding region.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Surrey
- The Francis Crick InstituteLondonUnited Kingdom
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- ICREABarcelonaSpain
| |
Collapse
|
41
|
Ku S, Heichette C, Duchesne L, Chrétien D. Microtubule Seeded-assembly in the Presence of Poorly Nucleating Nucleotide Analogues. Bio Protoc 2020; 10:e3714. [DOI: 10.21769/bioprotoc.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 07/15/2020] [Indexed: 11/02/2022] Open
|
42
|
Atherton J, Luo Y, Xiang S, Yang C, Rai A, Jiang K, Stangier M, Vemu A, Cook AD, Wang S, Roll-Mecak A, Steinmetz MO, Akhmanova A, Baldus M, Moores CA. Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nat Commun 2019; 10:5236. [PMID: 31748546 PMCID: PMC6868217 DOI: 10.1038/s41467-019-13247-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
CAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is mediated by their CKK domains, which we proposed recognise specific tubulin conformations found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end specificity. Here we report near-atomic cryo-electron microscopy structures of HsCKK- and NgCKK-microtubule complexes, which show that these CKK domains share the same protein fold, bind at the intradimer interprotofilament tubulin junction, but exhibit different footprints on microtubules. NMR experiments show that both HsCKK and NgCKK are remarkably rigid. However, whereas NgCKK binding does not alter the microtubule architecture, HsCKK remodels its microtubule interaction site and changes the underlying polymer structure because the tubulin lattice conformation is not optimal for its binding. Thus, in contrast to many MAPs, the HsCKK domain can differentiate subtly specific tubulin conformations to enable microtubule minus-end recognition.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK.
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shengqi Xiang
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- MOE Key Lab for biomolecular Condensates & Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
| | - Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kai Jiang
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Marcel Stangier
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI, Switzerland
| | - Annapurna Vemu
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Alexander D Cook
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK
| | - Su Wang
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI, Switzerland
- University of Basel, Biozentrum, CH-4056, Basel, Switzerland
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, UK.
| |
Collapse
|
43
|
Balkunde R, Foroughi L, Ewan E, Emenecker R, Cavalli V, Dixit R. Mechanism of microtubule plus-end tracking by the plant-specific SPR1 protein and its development as a versatile plus-end marker. J Biol Chem 2019; 294:16374-16384. [PMID: 31527079 PMCID: PMC6827287 DOI: 10.1074/jbc.ra119.008866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Indexed: 11/06/2022] Open
Abstract
Microtubules are cytoskeletal polymers that perform diverse cellular functions. The plus ends of microtubules promote polymer assembly and disassembly and connect the microtubule tips to other cellular structures. The dynamics and functions of microtubule plus ends are governed by microtubule plus end-tracking proteins (+TIPs). Here we report that the Arabidopsis thaliana SPIRAL1 (SPR1) protein, which regulates directional cell expansion, is an autonomous +TIP. Using in vitro reconstitution experiments and total internal reflection fluorescence microscopy, we demonstrate that the conserved N-terminal region of SPR1 and its GGG motif are necessary for +TIP activity whereas the conserved C-terminal region and its PGGG motif are not. We further show that the N- and C-terminal regions, either separated or when fused in tandem (NC), are sufficient for +TIP activity and do not significantly perturb microtubule plus-end dynamics compared with full-length SPR1. We also found that exogenously expressed SPR1-GFP and NC-GFP label microtubule plus ends in plant and animal cells. These results establish SPR1 as a new type of intrinsic +TIP and reveal the utility of NC-GFP as a versatile microtubule plus-end marker.
Collapse
Affiliation(s)
- Rachappa Balkunde
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| | - Layla Foroughi
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| | - Eric Ewan
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ryan Emenecker
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
44
|
Nakos K, Radler MR, Spiliotis ET. Septin 2/6/7 complexes tune microtubule plus-end growth and EB1 binding in a concentration- and filament-dependent manner. Mol Biol Cell 2019; 30:2913-2928. [PMID: 31577529 PMCID: PMC6822581 DOI: 10.1091/mbc.e19-07-0362] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins (SEPTs) are filamentous guanosine-5′-triphosphate (GTP)-binding proteins, which affect microtubule (MT)-dependent functions including membrane trafficking and cell division, but their precise role in MT dynamics is poorly understood. Here, in vitro reconstitution of MT dynamics with SEPT2/6/7, the minimal subunits of septin heteromers, shows that SEPT2/6/7 has a biphasic concentration-dependent effect on MT growth. Lower concentrations of SEPT2/6/7 enhance MT plus-end growth and elongation, while higher and intermediate concentrations inhibit and pause plus-end growth, respectively. We show that SEPT2/6/7 has a modest preference for GTP- over guanosine diphosphate (GDP)-bound MT lattice and competes with end-binding protein 1 (EB1) for binding to guanosine 5′-O-[γ-thio]triphosphate (GTPγS)-stabilized MTs, which mimic the EB1-preferred GDP-Pi state of polymerized tubulin. Strikingly, SEPT2/6/7 triggers EB1 dissociation from plus-end tips in cis by binding to the MT lattice and in trans when MT plus ends collide with SEPT2/6/7 filaments. At these intersections, SEPT2/6/7 filaments were more potent barriers than actin filaments in pausing MT growth and dissociating EB1 in vitro and in live cells. These data demonstrate that SEPT2/6/7 complexes and filaments can directly impact MT plus-end growth and the tracking of plus end–binding proteins and thereby may facilitate the capture of MT plus ends at intracellular sites of septin enrichment.
Collapse
Affiliation(s)
| | - Megan R Radler
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
45
|
Reid TA, Coombes C, Mukherjee S, Goldblum RR, White K, Parmar S, McClellan M, Zanic M, Courtemanche N, Gardner MK. Structural state recognition facilitates tip tracking of EB1 at growing microtubule ends. eLife 2019; 8:48117. [PMID: 31478831 PMCID: PMC6742484 DOI: 10.7554/elife.48117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
The microtubule binding protein EB1 specifically targets the growing ends of microtubules in cells, where EB1 facilitates the interactions of cellular proteins with microtubule plus-ends. Microtubule end targeting of EB1 has been attributed to high-affinity binding of EB1 to GTP-tubulin that is present at growing microtubule ends. However, our 3D single-molecule diffusion simulations predicted a ~ 6000% increase in EB1 arrivals to open, tapered microtubule tip structures relative to closed lattice conformations. Using quantitative fluorescence, single-molecule, and electron microscopy experiments, we found that the binding of EB1 onto opened, structurally disrupted microtubules was dramatically increased relative to closed, intact microtubules, regardless of hydrolysis state. Correspondingly, in cells, the blunting of growing microtubule plus-ends by Vinblastine was correlated with reduced EB1 targeting. Together, our results suggest that microtubule structural recognition, based on a fundamental diffusion-limited binding model, facilitates the tip tracking of EB1 at growing microtubule ends.
Collapse
Affiliation(s)
- Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Soumya Mukherjee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Rebecca R Goldblum
- Medical Scientist Training Program, University of Minnesota, Minneapolis, United States.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
| | - Kyle White
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Sneha Parmar
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
46
|
Mustyatsa VV, Kostarev AV, Tvorogova AV, Ataullakhanov FI, Gudimchuk NB, Vorobjev IA. Fine structure and dynamics of EB3 binding zones on microtubules in fibroblast cells. Mol Biol Cell 2019; 30:2105-2114. [PMID: 31141458 PMCID: PMC6743451 DOI: 10.1091/mbc.e18-11-0723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
End-binding (EB) proteins associate with the growing tips of microtubules (MTs)and modulate their dynamics directly and indirectly, by recruiting essential factors to fine-tune MTs for their many essential roles in cells. Previously EB proteins have been shown to recognize a stabilizing GTP/GDP-Pi cap at the tip of growing MTs, but information about additional EB-binding zones on MTs has been limited. In this work, we studied fluorescence intensity profiles of one of the three mammalian EB-proteins, EB3, fused with red fluorescent protein (RFP). The distribution of EB3 on MTs in mouse fibroblasts frequently deviated from single exponential decay and exhibited secondary peaks. Those secondary peaks, which we refer to as EB3-islands, were detected on 56% comets of growing MTs and were encountered once per 44 s of EB3-RFP comet growth time with about 5 s half-lifetime. The majority of EB3-islands in the vicinity of MT tips was stationary and originated from EB3 comets moving with the growing MT tips. Computational modeling of the decoration of dynamic MT tips by EB3 suggested that the EB3-islands could not be explained simply by a stochastic first-order GTP hydrolysis/phosphate release. We speculate that additional protein factors contribute to EB3 residence time on MTs in cells, likely affecting MT dynamics.
Collapse
Affiliation(s)
- V. V. Mustyatsa
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - A. V. Kostarev
- Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - F. I. Ataullakhanov
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - N. B. Gudimchuk
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - I. A. Vorobjev
- Lomonosov Moscow State University, 119991 Moscow, Russia
- Nazarbayev University, 010000 Nur-Sultan, Kazakhstan
| |
Collapse
|
47
|
Best RL, LaPointe NE, Liang J, Ruan K, Shade MF, Wilson L, Feinstein SC. Tau isoform-specific stabilization of intermediate states during microtubule assembly and disassembly. J Biol Chem 2019; 294:12265-12280. [PMID: 31266806 DOI: 10.1074/jbc.ra119.009124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
The microtubule (MT)-associated protein tau regulates the critical growing and shortening behaviors of MTs, and its normal activity is essential for neuronal development and maintenance. Accordingly, aberrant tau action is tightly associated with Alzheimer's disease and is genetically linked to several additional neurodegenerative diseases known as tauopathies. Although tau is known to promote net MT growth and stability, the precise mechanistic details governing its regulation of MT dynamics remain unclear. Here, we have used the slowly-hydrolyzable GTP analog, guanylyl-(α,β)-methylene-diphosphonate (GMPCPP), to examine the structural effects of tau at MT ends that may otherwise be too transient to observe. The addition of both four-repeat (4R) and three-repeat (3R) tau isoforms to pre-formed GMPCPP MTs resulted in the formation of extended, multiprotofilament-wide projections at MT ends. Furthermore, at temperatures too low for assembly of bona fide MTs, both tau isoforms promoted the formation of long spiral ribbons from GMPCPP tubulin heterodimers. In addition, GMPCPP MTs undergoing cold-induced disassembly in the presence of 4R tau (and to a much lesser extent 3R tau) also formed spirals. Finally, three pathological tau mutations known to cause neurodegeneration and dementia were differentially compromised in their abilities to stabilize MT disassembly intermediates. Taken together, we propose that tau promotes the formation/stabilization of intermediate states in MT assembly and disassembly by promoting both longitudinal and lateral tubulin-tubulin contacts. We hypothesize that these activities represent fundamental aspects of tau action that normally occur at the GTP-rich ends of GTP/GDP MTs and that may be compromised in neurodegeneration-causing tau variants.
Collapse
Affiliation(s)
- Rebecca L Best
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Nichole E LaPointe
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Jiahao Liang
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Kevin Ruan
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Madeleine F Shade
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Leslie Wilson
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106
| | - Stuart C Feinstein
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California 93106.
| |
Collapse
|
48
|
Souphron J, Bodakuntla S, Jijumon AS, Lakisic G, Gautreau AM, Janke C, Magiera MM. Purification of tubulin with controlled post-translational modifications by polymerization-depolymerization cycles. Nat Protoc 2019; 14:1634-1660. [PMID: 30996262 DOI: 10.1038/s41596-019-0153-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022]
Abstract
In vitro reconstitutions of microtubule assemblies have provided essential mechanistic insights into the molecular bases of microtubule dynamics and their interactions with associated proteins. The tubulin code has emerged as a regulatory mechanism for microtubule functions, which suggests that tubulin isotypes and post-translational modifications (PTMs) play important roles in controlling microtubule functions. To investigate the tubulin code mechanism, it is essential to analyze different tubulin variants in vitro. Until now, this has been difficult, as most reconstitution experiments have used heavily post-translationally modified tubulin purified from brain tissue. Therefore, we developed a protocol that allows purification of tubulin with controlled PTMs from limited sources through cycles of polymerization and depolymerization. Although alternative protocols using affinity purification of tubulin also yield very pure tubulin, our protocol has the unique advantage of selecting for fully functional tubulin, as non-polymerizable tubulin is excluded in the successive polymerization cycles. It thus provides a novel procedure for obtaining tubulin with controlled PTMs for in vitro reconstitution experiments. We describe specific procedures for tubulin purification from adherent cells, cells grown in suspension cultures and single mouse brains. The protocol can be combined with drug treatment, transfection of cells before tubulin purification or enzymatic treatment during the purification process. The amplification of cells and their growth in spinner bottles takes ~13 d; the tubulin purification takes 6-7 h. The tubulin can be used in total internal reflection fluorescence (TIRF)-microscopy-based experiments or pelleting assays for the investigation of intrinsic properties of microtubules and their interactions with associated proteins.
Collapse
Affiliation(s)
- Judith Souphron
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - A S Jijumon
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France
| | - Goran Lakisic
- BIOC, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
- Institut MICALIS, AgroParisTech, Université Paris Saclay, INRA, Jouy-en-Josas, France
| | | | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR 3348, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, Orsay, France.
| |
Collapse
|
49
|
Cook BD, Chang F, Flor-Parra I, Al-Bassam J. Microtubule polymerase and processive plus-end tracking functions originate from distinct features within TOG domain arrays. Mol Biol Cell 2019; 30:1490-1504. [PMID: 30969896 PMCID: PMC6724690 DOI: 10.1091/mbc.e19-02-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
XMAP215/Stu2/Alp14 accelerates tubulin polymerization while processively tracking microtubule (MT) plus ends via tumor overexpressed gene (TOG) domain arrays. It remains poorly understood how these functions arise from tubulin recruitment, mediated by the distinct TOG1 and TOG2 domains, or the assembly of these arrays into large square complexes. Here, we describe a relationship between MT plus-end tracking and polymerase functions revealing their distinct origin within TOG arrays. We study Alp14 mutants designed based on structural models, with defects in either tubulin recruitment or self-organization. Using in vivo live imaging in fission yeast and in vitro MT dynamics assays, we show that tubulins recruited by TOG1 and TOG2 serve concerted, yet distinct, roles in MT plus-end tracking and polymerase functions. TOG1 is critical for processive plus-end tracking, whereas TOG2 is critical for accelerating tubulin polymerization. Inactivating interfaces that stabilize square complexes lead to defects in both processive MT plus-end tracking and polymerase. Our studies suggest that a dynamic cycle between square and unfurled TOG array states gives rise to processive polymerase activity at MT plus ends.
Collapse
Affiliation(s)
- Brian D Cook
- Department of Molecular Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucía, 41013 Seville, Spain
| | - Jawdat Al-Bassam
- Department of Molecular Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
50
|
Kim T, Rice LM. Long-range, through-lattice coupling improves predictions of microtubule catastrophe. Mol Biol Cell 2019; 30:1451-1462. [PMID: 30943103 PMCID: PMC6724698 DOI: 10.1091/mbc.e18-10-0641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microtubules are cylindrical polymers of αβ-tubulin that play critical roles in fundamental processes such as chromosome segregation and vesicular transport. Microtubules display dynamic instability, switching stochastically between growth and rapid shrinking as a consequence of GTPase activity in the lattice. The molecular mechanisms behind microtubule catastrophe, the switch from growth to rapid shrinking, remain poorly defined. Indeed, two-state stochastic models that seek to describe microtubule dynamics purely in terms of the biochemical properties of GTP- and GDP-bound αβ-tubulin predict the concentration dependence of microtubule catastrophe incorrectly. Recent studies provide evidence for three distinct conformations of αβ-tubulin in the lattice that likely correspond to GTP, GDP.Pi, and GDP. The incommensurate lattices observed for these different conformations raise the possibility that in a mixed nucleotide state lattice, neighboring tubulin dimers might modulate each other’s conformations and hence each other’s biochemistry. We explored whether incorporating a GDP.Pi state or the likely effects of conformational accommodation can improve predictions of catastrophe. Adding a GDP.Pi intermediate did not improve the model. In contrast, adding neighbor-dependent modulation of tubulin biochemistry improved predictions of catastrophe. Because this conformational accommodation should propagate beyond nearest-neighbor contacts, our modeling suggests that long-range, through-lattice effects are important determinants of microtubule catastrophe.
Collapse
Affiliation(s)
- Tae Kim
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|