1
|
Burdakov D, Peleg-Raibstein D. How may the hypothalamus control distinct types and stages of memory? Neuropharmacology 2025; 277:110513. [PMID: 40381884 DOI: 10.1016/j.neuropharm.2025.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Memory is a complex and multifaceted cognitive function integral to all aspects of survival across species. It involves short-term and long-term components, which are supported by distinct yet interconnected brain systems, each specialized in processing distinct types of information. These systems interact in an integrated and dynamic manner, allowing for the encoding, consolidation, retrieval, and updating of memories. In this review, we explore the role of orexin and melanin-concentrating hormone (MCH) neurons, clustered primarily within lateral hypothalamus (LH), in orchestrating these memory processes. We consider its demonstrated and potential contributions across memory phases (e.g., short-term, long-term), transitional processes (e.g., consolidation, retrieval), and memory types (e.g., declarative, nondeclarative). Particular attention is given to its neuropeptides, orexin and. MCH, which have been implicated in modulating arousal, sleep, and neural plasticity - key factors in memory formation and maintenance. While orexin and MCH neurons have direct (arousal-independent) synaptic effects relevant to memory, their overall influence on memory processes is likely to include their established roles in regulating arousal, vigilance, and sleep. We further link these roles to the LH's traditional view as a nutritional sensor and regulator of arousal states, highlighting its unique position at the intersection of homeostatic and cognitive functions. By providing a unified perspective on the LH's involvement in memory, this work aims to bridge gaps in our understanding of its broader cognitive significance.
Collapse
Affiliation(s)
- Denis Burdakov
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Federal Institute of Technology Zurich, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Daria Peleg-Raibstein
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Federal Institute of Technology Zurich, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Pittaras EC, Artal JM, Ajibola G, Allocca G, Bennett M, Camargo A, Carpio A, Gessner N, Hinton M, Pizzitola R, Tan N, Zhang E, Zhong A, Heller HC. Short-term γ-aminobutyric acid antagonist treatment improves long-term sleep quality, memory, and decision-making in a Down syndrome mouse model. Sleep 2025; 48:zsae300. [PMID: 39719304 DOI: 10.1093/sleep/zsae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/08/2024] [Indexed: 12/26/2024] Open
Abstract
Down syndrome (DS) is a common genetic condition affecting people worldwide. It involves cognitive disabilities for which there are no drug therapies. The Ts65Dn mouse model of DS shows cognitive impairment due to a reduction in neuron number and connectivity as well as excessive neuronal activity, as γ-aminobutyric acid (GABA) antagonist treatment restores memory in these mice. Our study showed the effects of GABA antagonist treatment on sleep and decision-making in Ts65Dn mice. We administered a daily, low oral dose of pentylenetetrazol (PTZ) in milk to Ts65Dn mice for 17 days. Decision-making was tested with and without PTZ treatment. Short and long-term memories were tested before, immediately after, and 1 month following PTZ treatment. Electro-encephalography was also recorded at these three time points to study the effect of the treatment on sleep. We showed that PTZ treatment improved long-term recognition, but not short term memory and led to more Ts65Dn mice showing safer decision-making behavior. PTZ treatment showed a moderate and only global beneficial effect on sleep by decreasing the global amount of wake and increasing non-rapid eye movement sleep in the Ts65Dn mice, which may explain the observed cognitive improvements. These results bring new knowledge on the role of GABA in sleep, memory consolidation, and decision-making abilities in DS.
Collapse
Affiliation(s)
- Elsa C Pittaras
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jonathan M Artal
- Department of Biology, Stanford University, Stanford, CA, USA
- Stanford Law School, Stanford University, Stanford, CA, USA
| | - Grace Ajibola
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Giancarlo Allocca
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
- Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia
| | - Mia Bennett
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Human Biology, School of Humanities and Sciences, Stanford University, Stanford, CA, USA
| | | | - Angelica Carpio
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Myles Hinton
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rebecca Pizzitola
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Symbolic Systems, School of Humanities and Sciences, Stanford University, Stanford, CA, USA
| | - Natalie Tan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Evelyn Zhang
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alan Zhong
- Department of Biology, Stanford University, Stanford, CA, USA
- BASIS Independent Silicon Valley, San Jose, CA, USA
| | - Horace C Heller
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Gamble MC, Williams BR, McKenna JT, Logan RW. SleepInvestigatoR: a flexible R function for analyzing scored sleep in rodents. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf032. [PMID: 40491986 PMCID: PMC12146841 DOI: 10.1093/sleepadvances/zpaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/14/2025] [Indexed: 06/11/2025]
Abstract
Analyzing scored sleep is a fundamental prerequisite to understanding how sleep changes between health and disease. Classically, this is accomplished by manually calculating various measures (e.g. percent of non-rapid eye movement sleep) from a collection of scored sleep files. This process can be tedious and error-prone, especially when studies include large animal numbers or involve long recording sessions. To address this issue, we present SleepInvestigatoR, a versatile tool that can quickly organize and analyze multiple scored sleep files into a single output. The function is written in the open-source statistical language R and has a total of 25 parameters that can be set to match a wide variety of experimental needs. SleepInvestigatoR delivers a total of 23 unique measures of sleep, including all measures commonly reported in the rodent literature. A simple plotting function is also provided to quickly graph and visualize the scored data. All code is designed to be implemented with little formal coding knowledge, and step-by-step instructions are provided on the corresponding GitHub page. Overall, SleepInvestigatoR provides the sleep researcher a critical tool to increase efficiency, interpretation, and reproducibility in analyzing scored rodent sleep.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin R Williams
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - James T McKenna
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
4
|
Lüthi A, Nedergaard M. Anything but small: Microarousals stand at the crossroad between noradrenaline signaling and key sleep functions. Neuron 2025; 113:509-523. [PMID: 39809276 DOI: 10.1016/j.neuron.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Continuous sleep restores the brain and body, whereas fragmented sleep harms cognition and health. Microarousals (MAs), brief (3- to 15-s-long) wake intrusions into sleep, are clinical markers for various sleep disorders. Recent rodent studies show that MAs during healthy non-rapid eye movement (NREM) sleep are driven by infraslow fluctuations of noradrenaline (NA) in coordination with electrophysiological rhythms, vasomotor activity, cerebral blood volume, and glymphatic flow. MAs are hence part of healthy sleep dynamics, raising questions about their biological roles. We propose that MAs bolster NREM sleep's benefits associated with NA fluctuations, according to an inverted U-shaped curve. Weakened noradrenergic fluctuations, as may occur in neurodegenerative diseases or with sleep aids, reduce MAs, whereas exacerbated fluctuations caused by stress fragment NREM sleep and collapse NA signaling. We suggest that MAs are crucial for the restorative and plasticity-promoting functions of sleep and advance our insight into normal and pathological arousal dynamics from sleep.
Collapse
Affiliation(s)
- Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Chai R, Bian WJ. Adolescent sleep and its disruption in depression and anxiety. Front Neurosci 2024; 18:1479420. [PMID: 39575099 PMCID: PMC11578994 DOI: 10.3389/fnins.2024.1479420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/24/2024] Open
Abstract
Adolescence is a pivotal stage during development when one's personality, emotion, and behavioral traits are shaped to a great extent, and the underlying neural circuits undergo substantial developmental organizations. Dramatic and dynamic changes occur in sleep architecture throughout the postnatal developmental course. Insufficient sleep and disruption of sleep/wake coherence are prevalent among the adolescents worldwide, and even so in young patients with neuropsychiatric conditions. Although accumulating evidence has suggested a tight association between sleep disruption and depression/anxiety, the causal relationship remains largely unclear. More importantly, most of these studies focused on adult subjects, and little is known about the role of sleep during the development of mood and behavior. Here we review recent studies investigating the acute and chronic effects of adolescent sleep disruption on depression and anxiety both in humans and rodent models with focuses on the assessment methodology and age. By discussing the findings and unsolved problems, we hope to achieve a better understanding of the relationship between sleep and mental health in adolescents and provide insights for future research.
Collapse
Affiliation(s)
- Ruiming Chai
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wen-Jie Bian
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
6
|
Kiss MG, Cohen O, McAlpine CS, Swirski FK. Influence of sleep on physiological systems in atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1284-1300. [PMID: 39528718 PMCID: PMC11567060 DOI: 10.1038/s44161-024-00560-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Sleep is a fundamental requirement of life and is integral to health. Deviation from optimal sleep associates with numerous diseases including those of the cardiovascular system. Studies, spanning animal models to humans, show that insufficient, disrupted or inconsistent sleep contribute to poor cardiovascular health by disrupting body systems. Fundamental experiments have begun to uncover the molecular and cellular links between sleep and heart health while large-scale human studies have associated sleep with cardiovascular outcomes in diverse populations. Here, we review preclinical and clinical findings that demonstrate how sleep influences the autonomic nervous, metabolic and immune systems to affect atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Máté G Kiss
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oren Cohen
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Heller C. How did I come to sleep research and stay there? SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae074. [PMID: 39494051 PMCID: PMC11528513 DOI: 10.1093/sleepadvances/zpae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Craig Heller
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Yan L, Wu L, Wiggin TD, Su X, Yan W, Li H, Li L, Lu Z, Li Y, Meng Z, Guo F, Li F, Griffith LC, Liu C. Brief disruption of activity in a subset of dopaminergic neurons during consolidation impairs long-term memory by fragmenting sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563499. [PMID: 37961167 PMCID: PMC10634733 DOI: 10.1101/2023.10.23.563499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, using both male and female flies, Drosophila melanogaster , we show that, during the first few hours of memory consolidation, disruption of basal activity of a small subset of protocerebral anterior medial DANs (PAM-DANs), by either brief activation or inhibition of the two dorsal posterior medial (DPM) neurons, impairs 24 h LTM. Interestingly, these brief changes in activity using female flies result in sleep loss and fragmentation, especially at night. Pharmacological rescue of sleep after manipulation restores LTM. A specific subset of PAM-DANs (PAM-α1) that synapse onto DPM neurons specify the microcircuit that links sleep and memory. PAM-DANs, including PAM-α1, form functional synapses onto DPM mainly via multiple dopamine receptor subtypes. This PAM-α1 to DPM microcircuit exhibits a synchronized, transient, post-training increase in activity during the critical memory consolidation window, suggesting an effect of this microcircuit on maintaining the sleep necessary for LTM consolidation. Our results provide a new cellular and circuit basis for the complex relationship between sleep and memory.
Collapse
|
9
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
10
|
Wiest A, Maurer JJ, Weber F, Chung S. A hypothalamic circuit mechanism underlying the impact of stress on memory and sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618467. [PMID: 39463948 PMCID: PMC11507874 DOI: 10.1101/2024.10.17.618467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stress profoundly affects sleep and memory processes. Stress impairs memory consolidation, and similarly, disruptions in sleep compromise memory functions. Yet, the neural circuits underlying stress-induced sleep and memory disturbances are still not fully understood. Here, we show that activation of CRHPVN neurons, similar to acute restraint stress, decreases sleep and impairs memory in a spatial object recognition task. Conversely, inhibiting CRHPVN neurons during stress reverses stress-induced memory deficits while slightly increasing the amount of sleep. We found that both stress and stimulation of CRHPVN neurons activate neurons in the lateral hypothalamus (LH), and that their projections to the LH are critical for mediating stress-induced memory deficits and sleep disruptions. Our results suggest a pivotal role for CRHPVN neuronal pathways in regulating the adverse effects of stress on memory and sleep, an important step towards improving sleep and ameliorating the cognitive deficits that occur in stress-related disorders.
Collapse
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John J. Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Kumar D, Yanagisawa M, Funato H. Sleep-dependent memory consolidation in young and aged brains. AGING BRAIN 2024; 6:100124. [PMID: 39309405 PMCID: PMC11416671 DOI: 10.1016/j.nbas.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Young children and aged individuals are more prone to memory loss than young adults. One probable reason is insufficient sleep-dependent memory consolidation. Sleep timing and sleep-stage duration differ between children and aged individuals compared to adults. Frequent daytime napping and fragmented sleep architecture are common in children and older individuals. Moreover, sleep-dependent oscillations that play crucial roles in long-term memory storage differ among age groups. Notably, the frontal cortex, which is important for long-term memory storage undergoes major structural changes in children and aged subjects. The similarities in sleep dynamics between children and aged subjects suggest that a deficit in sleep-dependent consolidation contributes to memory loss in both age groups.
Collapse
Affiliation(s)
- Deependra Kumar
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| |
Collapse
|
12
|
Pinto MJ, Bizien L, Fabre JM, Ðukanović N, Lepetz V, Henderson F, Pujol M, Sala RW, Tarpin T, Popa D, Triller A, Léna C, Fabre V, Bessis A. Microglial TNFα controls daily changes in synaptic GABAARs and sleep slow waves. J Cell Biol 2024; 223:e202401041. [PMID: 38695719 PMCID: PMC11070559 DOI: 10.1083/jcb.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.
Collapse
Affiliation(s)
- Maria Joana Pinto
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Lucy Bizien
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julie M.J. Fabre
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nina Ðukanović
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Valentin Lepetz
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fiona Henderson
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Marine Pujol
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Romain W. Sala
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Thibault Tarpin
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Daniela Popa
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Véronique Fabre
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Alain Bessis
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
13
|
Gamble MC, Williams BR, McKenna JT, Logan RW. SleepInvestigatoR: A flexible R function for analyzing scored sleep in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588853. [PMID: 38659801 PMCID: PMC11042239 DOI: 10.1101/2024.04.12.588853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Analyzing scored sleep is a fundamental prerequisite to understanding how sleep changes between health and disease. Classically, this is accomplished by manually calculating various measures (e.g., percent of non-rapid eye movement sleep) from a collection of scored sleep files. This process can be tedious and error prone especially when studies include a large number of animals or involve long recording sessions. To address this issue, we present SleepInvestigatoR, a versatile tool that can quickly organize and analyze multiple scored sleep files into a single output. The function is written in the open-source statistical language R and has a total of 25 parameters that can be set to match a wide variety of experimenter needs. SleepInvestigatoR delivers a total of 22 unique measures of sleep, including all measures commonly reported in the rodent literature. A simple plotting function is also provided to quickly graph and visualize the scored data. All code is designed to be implemented with little formal coding knowledge and step-by-step instructions are provided on the corresponding GitHub page. Overall, SleepInvestigatoR provides the sleep researcher a critical tool to increase efficiency, interpretation, and reproducibility in analyzing scored rodent sleep.
Collapse
|
14
|
Lok R, Chawra D, Zeitzer JM. A threshold by any other name: is 5 minutes of wake "long" enough to degrade sleep quality? Sleep 2024; 47:zsad295. [PMID: 37950748 DOI: 10.1093/sleep/zsad295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 11/13/2023] Open
Affiliation(s)
- Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Dwijen Chawra
- College of Science, Purdue University, West Lafayette, IN, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
15
|
Smith J, Honig-Frand A, Antila H, Choi A, Kim H, Beier KT, Weber F, Chung S. Regulation of stress-induced sleep fragmentation by preoptic glutamatergic neurons. Curr Biol 2024; 34:12-23.e5. [PMID: 38096820 PMCID: PMC10872481 DOI: 10.1016/j.cub.2023.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 01/11/2024]
Abstract
Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.
Collapse
Affiliation(s)
- Jennifer Smith
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Honig-Frand
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Antila
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Choi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Kim
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92617, USA
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Libourel PA, Lee WY, Achin I, Chung H, Kim J, Massot B, Rattenborg NC. Nesting chinstrap penguins accrue large quantities of sleep through seconds-long microsleeps. Science 2023; 382:1026-1031. [PMID: 38033080 DOI: 10.1126/science.adh0771] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Microsleeps, the seconds-long interruptions of wakefulness by eye closure and sleep-related brain activity, are dangerous when driving and might be too short to provide the restorative functions of sleep. If microsleeps do fulfill sleep functions, then animals faced with a continuous need for vigilance might resort to this sleep strategy. We investigated electroencephalographically defined sleep in wild chinstrap penguins, at sea and while nesting in Antarctica, constantly exposed to an egg predator and aggression from other penguins. The penguins nodded off >10,000 times per day, engaging in bouts of bihemispheric and unihemispheric slow-wave sleep lasting on average only 4 seconds, but resulting in the accumulation of >11 hours of sleep for each hemisphere. The investment in microsleeps by successfully breeding penguins suggests that the benefits of sleep can accrue incrementally.
Collapse
Affiliation(s)
- P-A Libourel
- Neuroscience Research Center of Lyon, Bron, France
| | - W Y Lee
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - I Achin
- Neuroscience Research Center of Lyon, Bron, France
| | - H Chung
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - J Kim
- Cheongju Zoo, Cheongju, Republic of Korea
| | - B Massot
- Lyon Institute of Nanotechnology, Villeurbanne, France
| | - N C Rattenborg
- Avian Sleep Group, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
17
|
Rossi MA. Control of energy homeostasis by the lateral hypothalamic area. Trends Neurosci 2023; 46:738-749. [PMID: 37353461 PMCID: PMC10524917 DOI: 10.1016/j.tins.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.
Collapse
Affiliation(s)
- Mark A Rossi
- Child Health Institute of New Jersey, New Brunswick, NJ, USA; Department of Psychiatry, Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
18
|
Nir Y, de Lecea L. Sleep and vigilance states: Embracing spatiotemporal dynamics. Neuron 2023; 111:1998-2011. [PMID: 37148873 DOI: 10.1016/j.neuron.2023.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The classic view of sleep and vigilance states is a global stationary perspective driven by the interaction between neuromodulators and thalamocortical systems. However, recent data are challenging this view by demonstrating that vigilance states are highly dynamic and regionally complex. Spatially, sleep- and wake-like states often co-occur across distinct brain regions, as in unihemispheric sleep, local sleep in wakefulness, and during development. Temporally, dynamic switching prevails around state transitions, during extended wakefulness, and in fragmented sleep. This knowledge, together with methods monitoring brain activity across multiple regions simultaneously at millisecond resolution with cell-type specificity, is rapidly shifting how we consider vigilance states. A new perspective incorporating multiple spatial and temporal scales may have important implications for considering the governing neuromodulatory mechanisms, the functional roles of vigilance states, and their behavioral manifestations. A modular and dynamic view highlights novel avenues for finer spatiotemporal interventions to improve sleep function.
Collapse
Affiliation(s)
- Yuval Nir
- Department of Physiology and Pharmacology, Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv 64239, Israel.
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
20
|
Lüthi A, Franken P, Fulda S, Siclari F, Van Someren EJW. Do all norepinephrine surges disrupt sleep? Nat Neurosci 2023:10.1038/s41593-023-01313-8. [PMID: 37081297 DOI: 10.1038/s41593-023-01313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Affiliation(s)
- Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Stephany Fulda
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, EOC, Lugano, Switzerland
| | - Francesca Siclari
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Center for Investigation and Research on Sleep, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Sion, Switzerland
| | - Eus J W Van Someren
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Cunningham TJ, Kishore D, Guo M, Igue M, Malhotra A, Stickgold R, Djonlagic I. The Effect of Obstructive Sleep Apnea on Sleep-dependent Emotional Memory Consolidation. Ann Am Thorac Soc 2023; 20:296-306. [PMID: 36250951 PMCID: PMC9989861 DOI: 10.1513/annalsats.202204-315oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/17/2022] [Indexed: 02/04/2023] Open
Abstract
Rationale: A growing body of evidence suggests that sleep is critical for the adaptive processing and consolidation of emotional information into long-term memory. Previous research has indicated that emotional components of scenes particularly benefit from sleep in healthy groups, yet sleep-dependent emotional memory processes remain unexplored in clinical cohorts, including those with obstructive sleep apnea (OSA). This line of research is important as it will add to the understanding of how disrupted sleep in OSA contributes to both impaired cognition and emotion dysregulation. Objectives: To test the hypothesis that individuals with OSA will have impaired sleep-dependent memory consolidation, with the greatest impact being on memory for emotional content. Methods: In this study, a group of newly diagnosed patients with OSA (n = 26; 10 female; average age, 42.5 years) and a matched group of healthy control subjects (n = 24; 13 female; average age, 37 years) were enrolled in the study at Beth Israel Deaconess Medical Center. Participants encoded scenes with negative or neutral foreground objects placed on neutral backgrounds before a night of polysomnographically recorded sleep. In the morning, they completed a recognition test in which old and new scene objects and backgrounds, presented separately and one at a time, were judged as old, new, or similar compared with what had been previously viewed. Results: Patients with OSA had a deficit in recognition memory for the scenes. Overall recognition (the ability to recognize old items as either old or similar) was impaired across all scene elements, both negative and neutral objects and backgrounds, whereas specific recognition (correctly identifying old items as old) was impaired only for negative objects. Across all participants, successful overall recognition correlated positively with sleep efficiency and rapid eye movement (REM) sleep, whereas successful specific memory recognition correlated only with REM sleep. Conclusions: Our findings indicate that fragmented sleep and reduced REM sleep, both hallmarks of OSA, are associated with disruptions in general memory impairment and veridical memory for emotional content, which could alter emotional regulation and contribute to comorbid emotional distress in OSA.
Collapse
Affiliation(s)
- Tony J. Cunningham
- Center for Sleep and Cognition, Department of Psychiatry and
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts; and
| | - Divya Kishore
- Department of Neurology, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts
| | - Meng Guo
- Department of Neurology, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, Sleep, and Physiology, University of California San Diego, La Jolla, California
| | - Moroké Igue
- Department of Neurology, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep, and Physiology, University of California San Diego, La Jolla, California
| | | | - Ina Djonlagic
- Department of Neurology, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, Sleep, and Physiology, University of California San Diego, La Jolla, California
| |
Collapse
|
22
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Guo R, Wang Y, Yan R, Chen B, Ding W, Gorczyca MT, Ozsoy S, Cai L, Hines RL, Tseng GC, Allocca G, Dong Y, Fang J, Huang YH. Rapid Eye Movement Sleep Engages Melanin-Concentrating Hormone Neurons to Reduce Cocaine Seeking. Biol Psychiatry 2022; 92:880-894. [PMID: 35953320 PMCID: PMC9872495 DOI: 10.1016/j.biopsych.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Persistent sleep disruptions following withdrawal from abused drugs may hold keys to battle drug relapse. It is posited that there may be sleep signatures that predict relapse propensity, identifying which may open new avenues for treating substance use disorders. METHODS We trained male rats (approximately postnatal day 56) to self-administer cocaine. After long-term drug withdrawal (approximately postnatal day 100), we examined the correlations between the intensity of cocaine seeking and key sleep features. To test for causal relationships, we then used behavioral, chemogenetic, or optogenetic methods to selectively increase rapid eye movement sleep (REMS) and measured behavioral and electrophysiological outcomes to probe for cellular and circuit mechanisms underlying REMS-mediated regulation of cocaine seeking. RESULTS A selective set of REMS features was preferentially associated with the intensity of cue-induced cocaine seeking after drug withdrawal. Moreover, selectively increasing REMS time and continuity by environmental warming attenuated a withdrawal time-dependent intensification of cocaine seeking, or incubation of cocaine craving, suggesting that REMS may benefit withdrawal. Warming increased the activity of lateral hypothalamic melanin-concentrating hormone (MCH) neurons selectively during prolonged REMS episodes and counteracted cocaine-induced synaptic accumulation of calcium-permeable AMPA receptors in the nucleus accumbens-a critical substrate for incubation. Finally, the warming effects were partly mimicked by chemogenetic or optogenetic stimulations of MCH neurons during sleep, or intra-accumbens infusions of MCH peptide during the rat's inactive phase. CONCLUSIONS REMS may encode individual vulnerability to relapse, and MCH neuron activities can be selectively targeted during REMS to reduce drug relapse.
Collapse
Affiliation(s)
- Rong Guo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yao Wang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rongzhen Yan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bo Chen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wanqiao Ding
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael T Gorczyca
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sahin Ozsoy
- Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia
| | - Li Cai
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rachel L Hines
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Giancarlo Allocca
- Somnivore Pty. Ltd., Bacchus Marsh, Victoria, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yan Dong
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jidong Fang
- Department of Psychiatry and Behavioral Health, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Farré R, Almendros I, Martínez-García MÁ, Gozal D. Experimental Models to Study End-Organ Morbidity in Sleep Apnea: Lessons Learned and Future Directions. Int J Mol Sci 2022; 23:ijms232214430. [PMID: 36430904 PMCID: PMC9696027 DOI: 10.3390/ijms232214430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep apnea (SA) is a very prevalent sleep breathing disorder mainly characterized by intermittent hypoxemia and sleep fragmentation, with ensuing systemic inflammation, oxidative stress, and immune deregulation. These perturbations promote the risk of end-organ morbidity, such that SA patients are at increased risk of cardiovascular, neurocognitive, metabolic and malignant disorders. Investigating the potential mechanisms underlying SA-induced end-organ dysfunction requires the use of comprehensive experimental models at the cell, animal and human levels. This review is primarily focused on the experimental models employed to date in the study of the consequences of SA and tackles 3 different approaches. First, cell culture systems whereby controlled patterns of intermittent hypoxia cycling fast enough to mimic the rates of episodic hypoxemia experienced by patients with SA. Second, animal models consisting of implementing realistic upper airway obstruction patterns, intermittent hypoxia, or sleep fragmentation such as to reproduce the noxious events characterizing SA. Finally, human SA models, which consist either in subjecting healthy volunteers to intermittent hypoxia or sleep fragmentation, or alternatively applying oxygen supplementation or temporary nasal pressure therapy withdrawal to SA patients. The advantages, limitations, and potential improvements of these models along with some of their pertinent findings are reviewed.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
- Correspondence: (R.F.); (D.G.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, 08036 Barcelona, Spain
| | - Miguel-Ángel Martínez-García
- CIBER de Enfermedades Respiratorias, 1964603 Madrid, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, The University of Missouri, Columbia, MO 65201, USA
- Correspondence: (R.F.); (D.G.)
| |
Collapse
|
25
|
Antila H, Kwak I, Choi A, Pisciotti A, Covarrubias I, Baik J, Eisch A, Beier K, Thomas S, Weber F, Chung S. A noradrenergic-hypothalamic neural substrate for stress-induced sleep disturbances. Proc Natl Acad Sci U S A 2022; 119:e2123528119. [PMID: 36331996 PMCID: PMC9659376 DOI: 10.1073/pnas.2123528119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
In our daily life, we are exposed to uncontrollable and stressful events that disrupt our sleep. However, the underlying neural mechanisms deteriorating the quality of non-rapid eye movement sleep (NREMs) and REM sleep are largely unknown. Here, we show in mice that acute psychosocial stress disrupts sleep by increasing brief arousals (microarousals [MAs]), reducing sleep spindles, and impairing infraslow oscillations in the spindle band of the electroencephalogram during NREMs, while reducing REMs. This poor sleep quality was reflected in an increased number of calcium transients in the activity of noradrenergic (NE) neurons in the locus coeruleus (LC) during NREMs. Opto- and chemogenetic LC-NE activation in naïve mice is sufficient to change the sleep microarchitecture similar to stress. Conversely, chemogenetically inhibiting LC-NE neurons reduced MAs during NREMs and normalized their number after stress. Specifically inhibiting LC-NE neurons projecting to the preoptic area of the hypothalamus (POA) decreased MAs and enhanced spindles and REMs after stress. Optrode recordings revealed that stimulating LC-NE fibers in the POA indeed suppressed the spiking activity of POA neurons that are activated during sleep spindles and REMs and inactivated during MAs. Our findings reveal that changes in the dynamics of the stress-regulatory LC-NE neurons during sleep negatively affect sleep quality, partially through their interaction with the POA.
Collapse
Affiliation(s)
- Hanna Antila
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iris Kwak
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley Choi
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa Pisciotti
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ivan Covarrubias
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Justin Baik
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amelia Eisch
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Kevin Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92617
| | - Steven Thomas
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Franz Weber
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
26
|
Bian WJ, Brewer CL, Kauer JA, de Lecea L. Adolescent sleep shapes social novelty preference in mice. Nat Neurosci 2022; 25:912-923. [PMID: 35618950 PMCID: PMC9283223 DOI: 10.1038/s41593-022-01076-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
Sleep disturbances frequently occur in neurodevelopmental disorders such as autism, but the developmental role of sleep is largely unexplored, and a causal relationship between developmental sleep defects and behavioral consequences in adulthood remains elusive. Here, we show that in mice, sleep disruption (SD) in adolescence, but not in adulthood, causes long-lasting impairment in social novelty preference. Furthermore, adolescent SD alters the activation and release patterns of dopaminergic neurons in the ventral tegmental area (VTA) in response to social novelty. This developmental sleep function is mediated by balanced VTA activity during adolescence; chemogenetic excitation mimics, whereas silencing rescues, the social deficits of adolescent SD. Finally, we show that in Shank3-mutant mice, improving sleep or rectifying VTA activity during adolescence ameliorates adult social deficits. Together, our results identify a critical role of sleep and dopaminergic activity in the development of social interaction behavior.
Collapse
Affiliation(s)
- Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Chelsie L Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol 2022; 13:831819. [PMID: 35558719 PMCID: PMC9090458 DOI: 10.3389/fpsyg.2022.831819] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity refers to the brain's ability to undergo structural and functional adaptations in response to experience, and this process is associated with learning, memory and improvements in cognitive function. The brain's propensity for neuroplasticity is influenced by lifestyle factors including exercise, diet and sleep. This review gathers evidence from molecular, systems and behavioral neuroscience to explain how these three key lifestyle factors influence neuroplasticity alone and in combination with one another. This review collected results from human studies as well as animal models. This information will have implications for research, educational, fitness and neurorehabilitation settings.
Collapse
Affiliation(s)
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karishma Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Fan X, Zhong Y, Zhang L, Li J, Xie F, Zhang Z. Abdominal Obesity: An Independent Influencing Factor of Visuospatial and Executive/Language Ability and the Serum Levels of A β40/A β42/Tau Protein. DISEASE MARKERS 2022; 2022:3622149. [PMID: 35401883 PMCID: PMC8993554 DOI: 10.1155/2022/3622149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although obesity affects human health and cognitive function, the influence of abdominal obesity on cognitive function is still unclear. METHODS The MoCA scale was used to evaluate the overall cognitive function and the function of each subitem of 196 subjects, as well as the SDMT and TMT-A scales for evaluating the attention and information processing speed. In addition, radioimmunoassay was used to detect the serum levels of Aβ40, Aβ42, and tau protein in 45 subjects. Subjects were divided into abdominal and nonabdominal obesity groups. Before and after correcting confounding factors, the differences in cognitive scale evaluation indexes and three protein levels between the two groups were compared. We also explore further the correlation between various cognitive abilities and the waist circumference/levels of the three proteins. Linear regression was used to identify the independent influencing factors of various cognitive functions and three protein levels. RESULTS After correcting for multiple factors, we observed the lower scores of visuospatial function, execution, and language in the MoCA scale, as well as higher levels of Aβ40 and tau protein in the abdominal obesity group, supported by the results of correlation analysis. Abdominal obesity was identified as an independent negative influencing factor of MoCA visual space, executive power, and language scores and an independent positive influencing factor of Aβ40, Aβ42, and tau protein levels. CONCLUSION Abdominal obesity may play a negative role in visuospatial, executive ability, and language function and a positive role in the Aβ40, Aβ42, and tau protein serum levels.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang 330000, China
| | - Lingling Zhang
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang 330000, China
| | - Fei Xie
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Zhiyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
29
|
Miyamoto D. Optical imaging and manipulation of sleeping-brain dynamics in memory processing. Neurosci Res 2022; 181:9-16. [DOI: 10.1016/j.neures.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
|
30
|
Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol 2022; 32:37-50.e6. [PMID: 34735794 PMCID: PMC8752505 DOI: 10.1016/j.cub.2021.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023]
Abstract
The two major stages of mammalian sleep-rapid eye movement sleep (REMs) and non-REM sleep (NREMs)-are characterized by distinct brain rhythms ranging from millisecond to minute-long (infraslow) oscillations. The mechanisms controlling transitions between sleep stages and how they are synchronized with infraslow rhythms remain poorly understood. Using opto- and chemogenetic manipulation in mice, we show that GABAergic neurons in the dorsomedial medulla (dmM) promote the initiation and maintenance of REMs, in part through their projections to the dorsal and median raphe nuclei. Fiber photometry revealed that their activity is strongly increased during REMs and fluctuates during NREMs in close synchrony with infraslow oscillations in the sleep spindle band of the electroencephalogram. The phase of this rhythm influenced the latency and probability with which dmM activation induced REMs. Thus, dmM inhibitory neurons strongly promote REMs, and their slow activity fluctuations may coordinate the timing of REMs episodes with infraslow brain rhythms.
Collapse
Affiliation(s)
- Joseph A Stucynski
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Amanda L Schott
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Justin Baik
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Pistono C, Zimmermann A, Morel C, Herbeaux K, Héraud C, Dumont-Kientzy S, Pevet P, Felder-Schmittbuhl MP, Mathis C. Major role of MT 2 receptors in the beneficial effect of melatonin on long-term recognition memory in C57BL/6J male mice. Horm Behav 2021; 136:105076. [PMID: 34634697 DOI: 10.1016/j.yhbeh.2021.105076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Melatonin, a major signal of the circadian system, is also involved in brain functions such as learning and memory. Chronic melatonin treatment is known to improve memory performances, but the respective contribution of its central receptors, MT1 and MT2, is still unclear. Here, we used new single receptor deficient MT1-/- and MT2-/- mice to investigate the contribution of each receptor in the positive effect of chronic melatonin treatment on long-term recognition memory. The lack of MT2 receptor precluded memory-enhancing effect of melatonin in the object recognition task and to a lesser extent in the object location task, whereas the lack of MT1 receptor mitigated its effect in the object location task only. Our findings support a key role of MT2 in mediating melatonin's beneficial action on long-term object recognition memory, whereas MT1 may contribute to the effect on object location memory.
Collapse
Affiliation(s)
- Cristiana Pistono
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France.
| | - Amandine Zimmermann
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Chloé Morel
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Karine Herbeaux
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Céline Héraud
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| | - Stéphanie Dumont-Kientzy
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Paul Pevet
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Marie-Paule Felder-Schmittbuhl
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| | - Chantal Mathis
- Université de Strasbourg, CNRS UMR 7364, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), 12 rue Goethe, Strasbourg, France
| |
Collapse
|
32
|
Pittaras E, Colas D, Chuluun B, Allocca G, Heller C. Enhancing sleep after training improves memory in Down syndrome model mice. Sleep 2021; 45:6383427. [PMID: 34618890 DOI: 10.1093/sleep/zsab247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. DS is associated with cognitive disabilities, for which there are no drug therapies. In spite of significant behavioral and pharmacological efforts to treat cognitive disabilities, new and continued efforts are still necessary. Over sixty percent of children with DS are reported to have sleep apnea that disrupt normal sleep. Normal and adequate sleep is necessary to maintain optimal cognitive functions. Therefore, we asked whether improved quality and/or quantity of sleep could improve cognitive capacities of people with DS. To investigate this possibility, we used the Ts65Dn mouse model of DS and applied two methods for enhancing their sleep following training on mouse memory tasks. A behavioral method was to impose sleep deprivation prior to training resulting in sleep rebound following the training. A pharmacologic method, hypocretin receptor 2 antagonist, was used immediately after the training to enhance subsequent sleep knowing that hypocretin is involved in the maintenance of wake. Our behavioral method resulted in a sleep reorganization that decreased wake and increased REM sleep following the training associated with an improvement of recognition memory and spatial memory in the DS model mice. Our pharmacologic approach decreased wake and increased NREM sleep and was associated with improvement only in the spatial memory task. These results show that enhancing sleep after the training in a memory task improves memory consolidation in a mouse model of DS.
Collapse
Affiliation(s)
- E Pittaras
- Stanford University, Department: Biology, Stanford, CA, USA
| | | | - B Chuluun
- Stanford University, Department: Biology, Stanford, CA, USA
| | - G Allocca
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia and School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia and Somnivore Pty. Ltd., Bacchus Marsh, VIC, Australia
| | - C Heller
- Stanford University, Department: Biology, Stanford, CA, USA
| |
Collapse
|
33
|
Dim light in the evening causes coordinated realignment of circadian rhythms, sleep, and short-term memory. Proc Natl Acad Sci U S A 2021; 118:2101591118. [PMID: 34556572 PMCID: PMC8488663 DOI: 10.1073/pnas.2101591118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
In modern societies, people are regularly exposed to artificial light (e.g., light-emitting electronic devices). Dim light in the evening (DLE) imposes an artificial extension of the solar day, increasing our alertness before bedtime, delaying melatonin timing and sleep onset, and increasing sleepiness in the next morning. Using laboratory mice as a model organism, we show that 2 wk of 4-h, 20-lux DLE postpones rest–activity rhythms, delays molecular rhythms in the brain and body, and reverses the diurnal pattern of short-term memory performance. These results highlight the biological impact of DLE and emphasize the need to optimize our evening light exposure if we are to avoid shifting our biological clocks. Light provides the primary signal for entraining circadian rhythms to the day/night cycle. In addition to rods and cones, the retina contains a small population of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). Concerns have been raised that exposure to dim artificial lighting in the evening (DLE) may perturb circadian rhythms and sleep patterns, and OPN4 is presumed to mediate these effects. Here, we examine the effects of 4-h, 20-lux DLE on circadian physiology and behavior in mice and the role of OPN4 in these responses. We show that 2 wk of DLE induces a phase delay of ∼2 to 3 h in mice, comparable to that reported in humans. DLE-induced phase shifts are unaffected in Opn4−/− mice, indicating that rods and cones are capable of driving these responses in the absence of melanopsin. DLE delays molecular clock rhythms in the heart, liver, adrenal gland, and dorsal hippocampus. It also reverses short-term recognition memory performance, which is associated with changes in preceding sleep history. In addition, DLE modifies patterns of hypothalamic and cortical cFos signals, a molecular correlate of recent neuronal activity. Together, our data show that DLE causes coordinated realignment of circadian rhythms, sleep patterns, and short-term memory process in mice. These effects are particularly relevant as DLE conditions―due to artificial light exposure―are experienced by the majority of the populace on a daily basis.
Collapse
|
34
|
Wichert N, Witt M, Blume C, Scheper T. Clinical applicability of optogenetic gene regulation. Biotechnol Bioeng 2021; 118:4168-4185. [PMID: 34287844 DOI: 10.1002/bit.27895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/27/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
The field of optogenetics is rapidly growing in relevance and number of developed tools. Among other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems, will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications.
Collapse
Affiliation(s)
- Nina Wichert
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Martin Witt
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Cornelia Blume
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| |
Collapse
|
35
|
Frazer MA, Cabrera Y, Guthrie RS, Poe GR. Shining a Light on the Mechanisms of Sleep for Memory Consolidation. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-021-00204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Purpose of review
This paper reviews all optogenetic studies that directly test various sleep states, traits, and circuit-level activity profiles for the consolidation of different learning tasks.
Recent findings
Inhibiting or exciting neurons involved either in the production of sleep states or in the encoding and consolidation of memories reveals sleep states and traits that are essential for memory. REM sleep, NREM sleep, and the N2 transition to REM (characterized by sleep spindles) are integral to memory consolidation. Neural activity during sharp-wave ripples, slow oscillations, theta waves, and spindles are the mediators of this process.
Summary
These studies lend strong support to the hypothesis that sleep is essential to the consolidation of memories from the hippocampus and the consolidation of motor learning which does not necessarily involve the hippocampus. Future research can further probe the types of memory dependent on sleep-related traits and on the neurotransmitters and neuromodulators required.
Collapse
|
36
|
Payette WI, Hodinka BL, Pullum KB, Richter MM, Ashley NT. An anti-narcolepsy drug reveals behavioral and fitness costs of extreme activity cycles in arctic-breeding songbirds. J Exp Biol 2021; 224:239541. [PMID: 34424984 DOI: 10.1242/jeb.237198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022]
Abstract
Sleep loss impairs cognitive function, immunological responses and general well-being in humans. However, sleep requirements in mammals and birds vary dramatically. In circumpolar regions with continuous summer light, daily sleep duration is reduced, particularly in breeding birds. The effect of an anti-narcolepsy drug (modafinil) to putatively extend wakefulness was examined in two species of closely related arctic-breeding passerine birds: Lapland longspurs (Calcarius lapponicus) and snow buntings (Plectrophenax nivalis). Free-living adult males were implanted during the nestling phase on day 4 (D4; 4 days post-hatching) with osmotic pumps containing either vehicle or modafinil to extend the active period for 72 h. Nestlings were weighed on D2 and D7 to measure growth rates. Additionally, focal observations were conducted on D6. Male longspurs receiving modafinil made fewer feeding visits and spent less time at the nest but tended to spend more time near the nest than controls. We observed no change in longspur nestling growth rates, but fledging occurred significantly later when males received modafinil, suggesting a fitness cost. In contrast, modafinil had no measurable impact on male or female snow bunting behavior, nestling growth rates or time to fledging. We suggest male longspurs compromise and maintain vigilance at their nests in lieu of sleeping because of the increased predation risk that is characteristic of their tundra nesting habitat. Snow buntings are cavity nesters, and their nests do not require the same vigilance, allowing males to presumably rest following provisioning. These life-history differences between species highlight the role of predation risk in mediating behavioral modifications to prolonged wakefulness in arctic-breeding songbirds.
Collapse
Affiliation(s)
- Wesley I Payette
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Brett L Hodinka
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.,Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Keelee B Pullum
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Melanie M Richter
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.,Department of Conservation and Research, Memphis Zoo, Memphis, TN 38112, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
37
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
38
|
Yeo V, Phillips NL, Bogdanov S, Brookes N, Epps A, Teng A, Naismith SL, Lah S. The persistence of sleep disturbance and its correlates in children with moderate to severe traumatic brain injury: A longitudinal study. Sleep Med 2021; 81:387-393. [PMID: 33819841 DOI: 10.1016/j.sleep.2021.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The primary aim was to examine whether sleep disturbances persist in children in the chronic stage of recovery from moderate or severe traumatic brain injury (TBI). The secondary aim was to examine whether memory difficulties and/or other previously identified factors relate to sleep disturbances in children with moderate to severe TBI. METHODS This longitudinal study included 21 children with moderate to severe TBI, 8-18 years old, recruited from an urban tertiary paediatric specialised brain injury rehabilitation unit. Participants were seen 5 years and again 7 years post-injury, on average. Sleep disturbances were assessed with Sleep Disturbance Scale for Children (SDSC). Correlates that were considered included indicators of TBI severity, and questionnaires assessing everyday memory, fatigue, internalizing and externalizing behaviors and pain intensity. RESULTS The SDSC scores of children with moderate to severe TBI indicated greater disturbances in initiating and maintaining sleep, arousal, sleep-wake transition, and excessive somnolence relative to the norms, at follow-up. The mean SDSC scores and the number of participants with subclinical to clinical sleep disturbances on the SDSC remained unchanged from baseline to follow-up. At follow-up, the SDSC initiating and maintaining sleep, and excessive somnolence scales were associated with poorer everyday memory and greater fatigue. CONCLUSIONS Children with moderate to severe TBI experience ongoing sleep disturbances for years post-injury. Greater sleep disturbances are associated with worse functional outcomes. Further research into sleep disturbances and development of treatments is important, as it could improve the outcomes of children with TBI.
Collapse
Affiliation(s)
- Vera Yeo
- School of Psychology, The University of Sydney, New South Wales, Australia
| | - Natalie L Phillips
- School of Psychology, The University of Sydney, New South Wales, Australia
| | - Stefan Bogdanov
- School of Psychology, The University of Sydney, New South Wales, Australia
| | - Naomi Brookes
- Rehab2Kids, Rehabilitation Unit, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Adrienne Epps
- Rehab2Kids, Rehabilitation Unit, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Arthur Teng
- Department of Sleep Medicine, Sydney Children's Hospital, Randwick, New South Wales, Australia; School of Paediatrics and Women's Health, University of New South Wales, Kensington, New South Wales, Australia
| | - Sharon L Naismith
- School of Psychology, The University of Sydney, New South Wales, Australia; Brain and Mind Centre, and Charles Perkins Centre, The University of Sydney, New South Wales, Australia
| | - Suncica Lah
- School of Psychology, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
39
|
Le CM, Le TH. Premature Aging Among Trauma Survivors-The Longitudinal Implications of Sleep Disruptions on Telomere Length and Cognitive Performance. J Gerontol B Psychol Sci Soc Sci 2021; 76:262-272. [PMID: 31155651 PMCID: PMC8046532 DOI: 10.1093/geronb/gbz077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Sleep is necessary for brain function as well as physical and cognitive processes. Sleep disruptions, common with aging, intensify among trauma survivors. Moreover, former prisoners-of-war (ex-POWs) often experience premature aging. This study investigates the longitudinal effects of sleep disruptions for ex-POWs in relation to cognitive performance and telomere length as well as between cognition and telomeres. METHOD This study included Israeli veterans from the 1973 Yom Kippur War who participated in four assessments (1991, 2003, 2008, 2015): (a) ex-POWs (n = 99), and (b) veterans who not were captured (controls) (n = 101). Among both groups, sleep disruptions were assessed using a self-report item in all four assessments. Cognitive performance was assessed using the Montreal Cognitive Assessment (MOCA) and telomere length was assessed via total white blood cells (leukocytes) from whole blood samples using Southern blot, both were measured only among ex-POWs in 2015. We conducted descriptive statistics, repeated measures, correlations, and path analyses. RESULTS Sleep disruptions were related to lower cognitive performance but not to shorter telomeres. Moreover, cognitive performance and telomere length were found to be related when sleep disruptions were taken into consideration. CONCLUSION Interpersonal trauma was shown to be a unique experience resulting in sleep disruptions over time, leading to cognitive impairment. These findings highlight the importance of viewing trauma survivors at high-risk for sleep disruptions. Therefore, it is imperative to inquire about sleep and diagnose cognitive disorders to help identify and treat premature aging.
Collapse
Affiliation(s)
- Cuong Manh Le
- Faculty of Building Material, National University of Civil Engineering, Hanoi 100000, Vietnam
| | - Thu-Huong Le
- Faculty of Chemistry and Environment, Thuyloi University, Hanoi 100000, Vietnam
| |
Collapse
|
40
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
41
|
Zhang K, Lian N, Ding R, Guo C, Dong X, Li Y, Wei S, Jiao Q, Yu Y, Shen H. Sleep Deprivation Aggravates Cognitive Impairment by the Alteration of Hippocampal Neuronal Activity and the Density of Dendritic Spine in Isoflurane-Exposed Mice. Front Behav Neurosci 2020; 14:589176. [PMID: 33328920 PMCID: PMC7719754 DOI: 10.3389/fnbeh.2020.589176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Isoflurane contributes to cognitive deficits when used as a general anesthetic, and so does sleep deprivation (SD). Patients usually suffer from insomnia before an operation due to anxiety, fear, and other factors. It remains unclear whether preoperative SD exacerbates cognitive impairment induced by isoflurane. In this study, we observed the effects of pretreated 24-h SD in adult isoflurane-exposed mice on the cognitive behaviors, the Ca2+ signals of dorsal hippocampal CA1 (dCA1) neurons in vivo with fiber photometry, and the density of dendritic spines in hippocampal neurons. Our results showed that in cognitive behavior tasks, short-term memory damages were more severe with SD followed by isoflurane exposure than that with SD or isoflurane exposure separately, and interestingly, severe long-term memory deficits were induced only by SD followed by isoflurane exposure. Only the treatment of SD followed by isoflurane exposure could reversibly decrease the amplitude of Ca2+ signals when mice were freely moving and increase the duration of Ca2+ signals during the long-term memory behavior test. The density of dendritic spines with both SD and isoflurane exposure was lower than that with SD alone. This study suggests that SD should be avoided preoperatively in patients undergoing elective surgery under isoflurane anesthesia.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Ran Ding
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
42
|
Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev 2020; 101:995-1046. [PMID: 32790576 DOI: 10.1152/physrev.00046.2019] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While insomnia is the second most common mental disorder, progress in our understanding of underlying neurobiological mechanisms has been limited. The present review addresses the definition and prevalence of insomnia and explores its subjective and objective characteristics across the 24-hour day. Subsequently, the review extensively addresses how the vulnerability to develop insomnia is affected by genetic variants, early life stress, major life events, and brain structure and function. Further supported by the clear mental health risks conveyed by insomnia, the integrated findings suggest that the vulnerability to develop insomnia could rather be found in brain circuits regulating emotion and arousal than in circuits involved in circadian and homeostatic sleep regulation. Finally, a testable model is presented. The model proposes that in people with a vulnerability to develop insomnia, the locus coeruleus is more sensitive to-or receives more input from-the salience network and related circuits, even during rapid eye movement sleep, when it should normally be sound asleep. This vulnerability may ignite a downward spiral of insufficient overnight adaptation to distress, resulting in accumulating hyperarousal, which, in turn, impedes restful sleep and moreover increases the risk of other mental health adversity. Sensitized brain circuits are likely to be subjectively experienced as "sleeping with one eye open". The proposed model opens up the possibility for novel intervention studies and animal studies, thus accelerating the ignition of a neuroscience of insomnia, which is direly needed for better treatment.
Collapse
Affiliation(s)
- Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit University Amsterdam, Amsterdam, The Netherlands; and Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Brynychová K, Šálek ME, Vozabulová E, Sládeček M. Daily Rhythms of Female Self-maintenance Correlate with Predation Risk and Male Nest Attendance in a Biparental Wader. J Biol Rhythms 2020; 35:489-500. [PMID: 32677476 DOI: 10.1177/0748730420940465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parents make tradeoffs between care for offspring and themselves. Such a tradeoff should be reduced in biparental species, when both parents provide parental care. However, in some biparental species, the contribution of one sex varies greatly over time or between pairs. How this variation in parental care influences self-maintenance rhythms is often unclear. In this study, we used continuous video recording to investigate the daily rhythms of sleep and feather preening in incubating females of the Northern Lapwing (Vanellus vanellus), a wader with a highly variable male contribution to incubation. We found that the female's sleep frequency peaked after sunrise and before sunset but was low in the middle of the day and especially during the night. In contrast, preening frequency followed a 24-h rhythm and peaked in the middle of the day. Taken together, incubating females rarely slept or preened during the night, when the predation pressure was highest. Moreover, the sleeping and preening rhythms were modulated by the male contribution to incubation. Females that were paired with more contributing males showed a stronger sleep rhythm but also a weaker preening rhythm. If more incubating males also invest more in nest guarding and deterring daylight predators, their females may afford more sleep on the nest during the day and preen more when they are off the nest. Whether the lack of sleep in females paired with less caregiving males has fitness consequences awaits future investigation.
Collapse
Affiliation(s)
- Kateřina Brynychová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Miroslav E Šálek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Eva Vozabulová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| | - Martin Sládeček
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha, Suchdol, Czech Republic
| |
Collapse
|
44
|
Honda T, Takata Y, Cherasse Y, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M, Lazarus M, Oishi Y. Ablation of Ventral Midbrain/Pons GABA Neurons Induces Mania-like Behaviors with Altered Sleep Homeostasis and Dopamine D 2R-mediated Sleep Reduction. iScience 2020; 23:101240. [PMID: 32563157 PMCID: PMC7305386 DOI: 10.1016/j.isci.2020.101240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
Individuals with the neuropsychiatric disorder mania exhibit hyperactivity, elevated mood, and a decreased need for sleep. The brain areas and neuronal populations involved in mania-like behaviors, however, have not been elucidated. In this study, we found that ablating the ventral medial midbrain/pons (VMP) GABAergic neurons induced mania-like behaviors in mice, including hyperactivity, anti-depressive behaviors, reduced anxiety, increased risk-taking behaviors, distractibility, and an extremely shortened sleep time. Strikingly, these mice also showed no rebound sleep after sleep deprivation, suggesting abnormal sleep homeostatic regulation. Dopamine D2 receptor deficiency largely abolished the sleep reduction induced by ablating the VMP GABAergic neurons without affecting the hyperactivity and anti-depressive behaviors. Our data demonstrate that VMP GABAergic neurons are involved in the expression of mania-like behaviors, which can be segregated to the short-sleep and other phenotypes on the basis of the dopamine D2 receptors. Hyperactivity and anti-depressive behaviors are induced by loss of VMP GABA neurons Homeostatic sleep rebound is lost together with largely shorten daily sleep Dopamine D2 receptors mediate the daytime sleep loss
Collapse
Affiliation(s)
- Takato Honda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Yohko Takata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Ota, Tokyo 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
45
|
Hong J, Ha GE, Kwak H, Lee Y, Jeong H, Suh PG, Cheong E. Destabilization of light NREM sleep by thalamic PLCβ4 deletion impairs sleep-dependent memory consolidation. Sci Rep 2020; 10:8813. [PMID: 32483199 PMCID: PMC7264240 DOI: 10.1038/s41598-020-64377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/15/2020] [Indexed: 01/20/2023] Open
Abstract
Sleep abnormality often accompanies the impairment of cognitive function. Both rapid eye movement (REM) and non-REM (NREM) sleep have associated with improved memory performance. However, the role of composition in NREM sleep, consisting of light and deep NREM, for memory formation is not fully understood. We investigated how the dynamics of NREM sleep states influence memory consolidation. Thalamocortical (TC) neuron-specific phospholipase C β4 (PLCβ4) knockout (KO) increased the total duration of NREM sleep, consisting of destabilized light NREM and stabilized deep NREM. Surprisingly, the longer NREM sleep did not improve memory consolidation but rather impaired it in TC-specific PLCβ4 KO mice. Memory function was positively correlated with the stability of light NREM and spindle activity occurring in maintained light NREM period. Our study suggests that a single molecule, PLCβ4, in TC neurons is critical for tuning the NREM sleep states and thus affects sleep-dependent memory formation.
Collapse
Affiliation(s)
- Joohyeon Hong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Go Eun Ha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yelin Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeonyeong Jeong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Science, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
46
|
Hodinka BL, Ashley NT. Effect of sleep loss on executive function and plasma corticosterone levels in an arctic-breeding songbird, the Lapland longspur (Calcarius lapponicus). Horm Behav 2020; 122:104764. [PMID: 32380084 DOI: 10.1016/j.yhbeh.2020.104764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 11/18/2022]
Abstract
Sleep is a fundamental component of vertebrate life, although its exact functions remain unclear. Animals deprived of sleep typically show reduced neurobiological performance, health, and in some cases, survival. However, a number of vertebrate taxa exhibit adaptations that permit normal activities even when sleep is reduced. Lapland longspurs (Calcarius lapponicus), arctic-breeding passerine birds, exhibit around-the-clock activity during their short breeding season, with an inactive period of ca. 4 h/day. Whether behavioral or physiological costs occur from sleep loss (SL) in this species is unknown. To assess the effects of SL, wild-caught male longspurs were placed in captivity (12L:12D) and trained for one month to successfully learn color association and spatial memory tasks. Birds were then placed in automated sleep fragmentation cages that utilize a moving wire to force movement every 1 min (60 arousals/h) during 12D (inactive period) or control conditions (during 12L; active period). After SL (or control) treatment, birds were presented with color association and spatial memory tasks a final time to assess executive function. Baseline plasma corticosterone concentration, body mass, and satiety were also measured. SL significantly elevated corticosterone levels and increased accuracy during color association recall but did not affect the overall time required to complete the task. SL had no effect upon spatial memory, body mass, or satiety. Taken together, these results suggest that Lapland longspurs exhibit a degree of behavioral, but not physiological, insensitivity to acute SL. Whether elevated plasma concentrations of corticosterone play a direct role in ameliorating cognitive deficits from SL require additional study.
Collapse
Affiliation(s)
- Brett L Hodinka
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
47
|
Bertrand SJ, Zhang Z, Patel R, O'Ferrell C, Punjabi NM, Kudchadkar SR, Kannan S. Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model. Exp Neurol 2020; 327:113212. [PMID: 31987835 DOI: 10.1016/j.expneurol.2020.113212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022]
Abstract
Sleep fragmentation is an increase in sleep-wake transitions without an overall decrease in total sleep time. Sleep fragmentation is well documented during acute and chronic hospitalization and can result in delirium and memory problems in children. Sleep fragmentation is also often noted in neurodevelopmental disorders. However, it is unclear how sleep fragmentation independent of disease affects brain development and function. We hypothesized that acute sleep fragmentation during the neonatal period in otherwise healthy animals would result in neuroinflammation and would be associated with abnormalities in cognitive development. The orbital shaker method was used to fragment sleep for 72 h in postnatal day 3 New Zealand white rabbit kits (fragmentation group). To control for maternal separation, the sham group was separated from the dam and maintained in the same conditions without undergoing sleep fragmentation. A naïve control group remained with the dam. Kits underwent behavioral testing with novel object recognition and spontaneous alternation T-maze tests at 2-3 weeks post-fragmentation and were sacrificed 3-50 days after fragmentation. Sleep fragmentation resulted in acute and chronic changes in microglial morphology in the hippocampus and cortex, and regional differences in mRNA expression of pro- and anti-inflammatory cytokines at 3, 7 and 50 days post-fragmentation. Impaired novel object recognition and a longer latency in T-maze task completion were noted in the fragmented kits. This was in spite of normalization of sleep architecture noted at 2 months of age in these kits. The results indicate that transient neonatal sleep fragmentation results in short-term and long-term immune alterations in the brain, along with diminished performance in cognitive tasks long-term.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Ruchit Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Caroline O'Ferrell
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Naresh M Punjabi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Sapna R Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America; Department of Pediatrics, Johns Hopkins University School of Medicine, United States of America; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, United States of America.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America.
| |
Collapse
|
48
|
Havekes R, Aton SJ. Impacts of Sleep Loss versus Waking Experience on Brain Plasticity: Parallel or Orthogonal? Trends Neurosci 2020; 43:385-393. [PMID: 32459991 DOI: 10.1016/j.tins.2020.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Recent studies on the effects of sleep deprivation on synaptic plasticity have yielded discrepant results. Sleep deprivation studies using novelty exposure as a means to keep animals awake suggests that sleep (compared with wake) leads to widespread reductions in net synaptic strength. By contrast, sleep deprivation studies using approaches avoiding novelty-induced arousal (i.e., gentle handling) suggest that sleep can promote synaptic growth and strengthening. How can these discrepant findings be reconciled? Here, we discuss how varying methodologies for the experimental disruption of sleep (with differential introduction of novel experiences) could fundamentally alter the experimental outcome with regard to synaptic plasticity. Thus, data from experiments aimed at assessing the relative impact of sleep versus wake on the brain may instead reflect the quality of the waking experience itself. The highlighted work suggests that brain plasticity resulting from novel experiences versus wake per se has unique and distinct features.
Collapse
Affiliation(s)
- Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands.
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
49
|
Differential modulation of NREM sleep regulation and EEG topography by chronic sleep restriction in mice. Sci Rep 2020; 10:18. [PMID: 31924847 PMCID: PMC6954245 DOI: 10.1038/s41598-019-54790-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 11/26/2022] Open
Abstract
Compensatory elevation in NREM sleep EEG delta power has been typically observed following prolonged wakefulness and widely used as a sleep homeostasis indicator. However, recent evidence in human and rodent chronic sleep restriction (CSR) studies suggests that NREM delta power is not progressively increased despite of accumulated sleep loss over days. In addition, there has been little progress in understanding how sleep EEG in different brain regions responds to CSR. Using novel high-density EEG electrode arrays in the mouse model of CSR where mice underwent 18-h sleep deprivation per day for 5 consecutive days, we performed an extensive analysis of topographical NREM sleep EEG responses to the CSR condition, including period-amplitude analysis of individual slow waves. As previously reported in our analysis of REM sleep responses, we found different patterns of changes: (i) progressive decrease in NREM sleep duration and consolidation, (ii) persistent enhancement in NREM delta power especially in the frontal and parietal regions, and (iii) progressive increases in individual slow wave slope and frontal fast oscillation power. These results suggest that multiple sleep-wake regulatory systems exist in a brain region-specific manner, which can be modulated independently, especially in the CSR condition.
Collapse
|
50
|
Liu C, Meng Z, Wiggin TD, Yu J, Reed ML, Guo F, Zhang Y, Rosbash M, Griffith LC. A Serotonin-Modulated Circuit Controls Sleep Architecture to Regulate Cognitive Function Independent of Total Sleep in Drosophila. Curr Biol 2019; 29:3635-3646.e5. [PMID: 31668619 DOI: 10.1016/j.cub.2019.08.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Both the structure and the amount of sleep are important for brain function. Entry into deep, restorative stages of sleep is time dependent; short sleep bouts selectively eliminate these states. Fragmentation-induced cognitive dysfunction is a feature of many common human sleep pathologies. Whether sleep structure is normally regulated independent of the amount of sleep is unknown. Here, we show that in Drosophila melanogaster, activation of a subset of serotonergic neurons fragments sleep without major changes in the total amount of sleep, dramatically reducing long episodes that may correspond to deep sleep states. Disruption of sleep structure results in learning deficits that can be rescued by pharmacologically or genetically consolidating sleep. We identify two reciprocally connected sets of ellipsoid body neurons that form the heart of a serotonin-modulated circuit that controls sleep architecture. Taken together, these findings define a circuit essential for controlling the structure of sleep independent of its amount.
Collapse
Affiliation(s)
- Chang Liu
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Zhiqiang Meng
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | | | - Junwei Yu
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Martha L Reed
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Fang Guo
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang province 310058, China
| | - Yunpeng Zhang
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rosbash
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|