1
|
Hnath B, Dokholyan NV. Novel extracellular vesicle release pathway facilitated by toxic superoxide dismutase 1 oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647611. [PMID: 40291716 PMCID: PMC12026985 DOI: 10.1101/2025.04.07.647611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease resulting in paralysis and death within three to five years. Mutations in over forty different proteins have been linked to ALS, leading to controversy whether ALS is one disease or many diseases with a similar phenotype. Mutations in Cu,Zn superoxide dismutase 1 (SOD1) are only found in 2-3% of ALS cases, yet misfolded SOD1 is found in both sporadic (sALS) and familial (fALS) patients. Yet, mutations in TDP-43 or FUS increase the level of misfolded SOD1 on extracellular vesicles (EVs). Additionally, small EVs isolated from ALS patient samples caused cell death of wild type motor neurons and myotubules. The toxicity and protein alterations of ALS EVs have led to the theory that EVs are responsible for the spread of ALS. We hypothesize that previously-identified toxic trimeric SOD1 is spreading on EVs in ALS and altering the spread of other ALS-related proteins, linking them to a common mechanism. To test our hypothesis, we isolate EVs from motor neuron-like cells expressing trimer stabilizing mutations and perform a sandwich enzyme-linked immunoassay (ELISA) (CD9 capture antibody) to quantify whether misfolded SOD1 and 17 other ALS-related proteins increase or decrease on EVs with trimer stabilization. We identify which EV release pathway is being affected by trimeric SOD1 utilizing endocytosis and exocytosis inhibitors, and determine if any specific EV-related proteins are altered with trimer stabilization. We establish that VAPB, VCP, and Stathmin-2 increase on EVs with trimer stabilization. The common pathway between SOD1 and three other ALS-associated proteins is affected by multiple pathways, including the Caveolae endocytosis pathway, suggesting a novel hybrid pathway of EV release present in ALS.
Collapse
|
2
|
Galaz-Araya C, Zuñiga-Núñez D, Salas-Sepúlveda F, Herrera-Morande A, Aspée A, Poblete H, Zamora RA. Theoretical evaluation of a bulky ortho-thioalkyl-azobenzene as an alternative to photocontrol structural cytotoxic effects of metal-free and disulfide oxidized hSOD1 in pathogenesis of ALS. RSC Adv 2025; 15:9018-9026. [PMID: 40129635 PMCID: PMC11931720 DOI: 10.1039/d4ra08972c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel photopharmacological strategy to mitigate the cytotoxic effects of apo-hSOD1S-S, a misfolded protein implicated in neurodegenerative diseases. Using quantum chemical calculations and molecular dynamics simulations, we demonstrate that ortho-thio-substituted azobenzene photoswitches (ortho-TABPs) can be employed to precisely modulate the dynamics of the crucial electrostatic loop (EL) in apo-hSOD1S-S. We establish that larger ortho-S-alkyl substituents on the ortho-TABP enhance its redox stability, favouring the cis conformation through the modulation of the position of the n → π* transition. This stability is crucial for operation within the reducing cellular environment. Furthermore, we demonstrate the successful and consistent photomodulation of EL conformational dynamics in apo-hSOD1S-S through covalent tethering of an ortho-TABP. This control is achieved by leveraging the thermodynamically stable trans conformation of the photoswitch, which allosterically influences the EL and consequently, the geometry of the Zn-binding site, a critical determinant of apo-hSOD1S-S cytotoxicity. This work paves the way for developing targeted therapies for neurodegenerative diseases by demonstrating the precise and effective photomodulation of apo-hSOD1S-S via rationally designed ortho-TABPs.
Collapse
Affiliation(s)
- Constanza Galaz-Araya
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Daniel Zuñiga-Núñez
- Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Francisca Salas-Sepúlveda
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Alejandra Herrera-Morande
- Departamento de Física y Química, Facultad de Ingeniería, Universidad Autónoma de Chile Av. Pedro de Valdivia 425 Providencia 7500000 Chile
| | - Alexis Aspée
- Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Horacio Poblete
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca 2 Norte 685 Talca Chile
| | - Ricardo A Zamora
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, and Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay Talca 3460000 Chile
| |
Collapse
|
3
|
Sakunthala A, Maji SK. Deciphering the Seed Size-Dependent Cellular Internalization Mechanism for α-Synuclein Fibrils. Biochemistry 2025; 64:377-400. [PMID: 39762762 DOI: 10.1021/acs.biochem.4c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds. Biophysical characterization of the fibril seeds generated by controlled fragmentation indicated that increased fragmentation leads to a reduction in fibril size, correlating directly with the extent of fragmentation events. Although the size-based complexity of amyloid fibrils modulates their biological activities and fibril amplification pathways, it remains unclear how the variability of fibril seed size dictates its specific uptake mechanism into the cells. The present study elucidates the mechanism of α-Syn fibril internalization and how it is regulated by the size of fibril seeds. Further, we demonstrate that size-dependent endocytic pathways (dynamin-dependent clathrin/caveolin-mediated) are more prominent for the differential uptake of short fibril seeds compared to their longer counterparts. This size-dependent preference might contribute to the enhanced uptake and transcellular propagation of short α-Syn fibril seeds in a prion-like manner. Overall, the present study suggests that the physical dimension of α-Syn amyloid fibril seeds significantly influences their cellular uptake and pathological responses in the initiation and progression of PD.
Collapse
Affiliation(s)
- Arunima Sakunthala
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Department of Biosciences& Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Department of Biosciences& Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Lai HJ, Kuo YC, Ting CH, Yang CC, Kao CH, Tsai YC, Chao CC, Hsueh HW, Hsieh PF, Chang HY, Wang IF, Tsai LK. Increase of HCN current in SOD1-associated amyotrophic lateral sclerosis. Brain 2024; 147:4240-4253. [PMID: 39088003 DOI: 10.1093/brain/awae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
The clinical manifestations of sporadic amyotrophic lateral sclerosis (ALS) vary widely. However, the current classification of ALS is based mainly on clinical presentations, and the roles of electrophysiological and biomedical biomarkers remain limited. Herein, we investigated a group of patients with sporadic ALS and an ALS mouse model with superoxide dismutase 1 (SOD1)/G93A transgenes using nerve excitability tests (NETs) to investigate axonal membrane properties and chemical precipitation, followed by ELISA analysis to measure plasma misfolded protein levels. Six of 19 patients (31.6%) with sporadic ALS had elevated plasma misfolded SOD1 protein levels. In sporadic ALS patients, only those with elevated misfolded SOD1 protein levels showed an increased inward rectification in the current-voltage threshold curve and an increased threshold reduction in the hyperpolarizing threshold electrotonus in the NET study. Two familial ALS patients with SOD1 mutations also exhibited similar electrophysiological patterns of NET. For patients with sporadic ALS showing significantly increased inward rectification in the current-voltage threshold curve, we noted an elevation in plasma misfolded SOD1 level, but not in total SOD1, misfolded C9orf72 or misfolded phosphorylated TDP43 levels. Computer simulations demonstrated that the aforementioned axonal excitability changes are likely to be associated with an increase in hyperpolarization-activated cyclic nucleotide-gated (HCN) current. In SOD1/G93A mice, NET also showed an increased inward rectification in the current-voltage threshold curve, which could be reversed by a single injection of the HCN channel blocker, ZD7288. Daily treatment of SOD1/G93A mice with ZD7288 partly prevented the early motor function decline and spinal motor neuron death. In summary, sporadic ALS patients with elevated plasma misfolded SOD1 exhibited similar patterns of motor axonal excitability changes to familial ALS patients and ALS mice with mutant SOD1, suggesting the existence of SOD1-associated sporadic ALS. The observed NET pattern of increased inward rectification in the current-voltage threshold curve was attributable to an elevation in the HCN current in SOD1-associated ALS.
Collapse
Affiliation(s)
- Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yih-Chih Kuo
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu City 300, Taiwan
| | - Chen-Hung Ting
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City 540219, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chia-Hsin Kao
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yi-Chieh Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Pei-Feng Hsieh
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsiang-Yu Chang
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City 540219, Taiwan
- Department of Translational Medicine, YeeFan Med Inc., Temple City, CA 91780, USA
| | - I Fan Wang
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City 540219, Taiwan
- Department of Translational Medicine, YeeFan Med Inc., Temple City, CA 91780, USA
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu City 300, Taiwan
| |
Collapse
|
5
|
Jin S, Tian Y, Hacker J, Chen X, Bertolio M, Reynolds C, Jarvis R, Hu J, Promes V, Halim D, Gao FB, Yang Y. Inflammatory cytokines disrupt astrocyte exosomal HepaCAM-mediated protection against neuronal excitotoxicity in the SOD1G93A ALS model. SCIENCE ADVANCES 2024; 10:eadq3350. [PMID: 39602529 PMCID: PMC11601204 DOI: 10.1126/sciadv.adq3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Astrocyte secreted signals substantially affect disease pathology in neurodegenerative diseases. It remains little understood about how proinflammatory cytokines, such as interleukin-1α/tumor necrosis factor-α/C1q (ITC), often elevated in neurodegenerative diseases, alter astrocyte-secreted signals and their effects in disease pathogenesis. By selectively isolating astrocyte exosomes (A-Exo.) and employing cell type-specific exosome reporter mice, our current study showed that ITC cytokines significantly reduced A-Exo. secretion and decreased spreading of focally labeled A-Exo. in diseased SOD1G93A mice. Our results also found that A-Exo. were minimally associated with misfolded SOD1 and elicited no toxicity to mouse spinal and human iPSC-derived motor neurons. In contrast, A-Exo. were neuroprotective against excitotoxicity, which was completely diminished by ITC cytokines and partially abolished by SOD1G93A expression. Subsequent proteomic characterization of A-Exo. and genetic analysis identified that surface expression of glial-specific HepaCAM preferentially mediates A-Exo's axon protection effect. Together, our study defines a cytokine-induced loss-of-function mechanism of A-Exo. in protecting neurons from excitotoxicity in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Shijie Jin
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yang Tian
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jonathan Hacker
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Xuan Chen
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Marcela Bertolio
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Caroline Reynolds
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rachel Jarvis
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jingwen Hu
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Vanessa Promes
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dilara Halim
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
6
|
Wang LQ, Ma Y, Zhang MY, Yuan HY, Li XN, Xia W, Zhao K, Huang X, Chen J, Li D, Zou L, Wang Z, Le W, Liu C, Liang Y. Amyloid fibril structures and ferroptosis activation induced by ALS-causing SOD1 mutations. SCIENCE ADVANCES 2024; 10:eado8499. [PMID: 39475611 PMCID: PMC11524188 DOI: 10.1126/sciadv.ado8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
Over 200 genetic mutations in copper-zinc superoxide dismutase (SOD1) have been linked to amyotrophic lateral sclerosis (ALS). Among these, two ALS-causing mutants, histidine-46→arginine (H46R) and glycine-85→arginine (G85R), exhibit a decreased capacity to bind metal ions. Here, we report two cryo-electron microscopy structures of amyloid fibrils formed by H46R and G85R. These mutations lead to the formation of amyloid fibrils with unique structures distinct from those of the native fibril. The core of these fibrils features a serpentine arrangement with seven or eight β strands, secured by a hydrophobic cavity and a salt bridge between arginine-85 and aspartic acid-101 in the G85R fibril. We demonstrate that these mutant fibrils are notably more toxic and capable of promoting the aggregation of wild-type SOD1 more effectively, causing mitochondrial impairment and activating ferroptosis in cell cultures, compared to wild-type SOD1 fibrils. Our study provides insights into the structural mechanisms by which SOD1 mutants aggregate and induce cytotoxicity in ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Weidong Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
7
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
8
|
Lee E, Park H, Kim S. Transcellular transmission and molecular heterogeneity of aggregation-prone proteins in neurodegenerative diseases. Mol Cells 2024; 47:100089. [PMID: 38971320 PMCID: PMC11286998 DOI: 10.1016/j.mocell.2024.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
The accumulation of aggregation-prone proteins in a specific neuronal population is a common feature of neurodegenerative diseases, which is correlated with the development of pathological lesions in diseased brains. The formation and progression of pathological protein aggregates in susceptible neurons induce cellular dysfunction, resulting in progressive degeneration. Moreover, recent evidence supports the notion that the cell-to-cell transmission of pathological protein aggregates may be involved in the onset and progression of many neurodegenerative diseases. Indeed, several studies have identified different pathological aggregate strains. Although how these different aggregate strains form remains unclear, a variety of biomolecular compositions or cross-seeding events promoted by the presence of other protein aggregates in the cellular environment may affect the formation of different strains of pathological aggregates, which in turn can influence complex pathologies in diseased brains. In this review, we summarize the recent results regarding cell-to-cell transmission and the molecular heterogeneity of pathological aggregate strains, raising key questions for future research directions.
Collapse
Affiliation(s)
- Eunmin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hyeonwoo Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
9
|
Kraus A, Kratzer B, Sehgal ANA, Trapin D, Khan M, Boucheron N, Pickl WF. Macropinocytosis Is the Principal Uptake Mechanism of Antigen-Presenting Cells for Allergen-Specific Virus-like Nanoparticles. Vaccines (Basel) 2024; 12:797. [PMID: 39066435 PMCID: PMC11281386 DOI: 10.3390/vaccines12070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Virus-like nanoparticles (VNP) are regarded as efficient vaccination platforms and have proven to be useful for the non-anaphylactogenic delivery of allergen-specific immunotherapy in preclinical models previously. Herein, we sought to determine the mode of VNP uptake by antigen presenting cells (APC). Accordingly, we screened a collection of substances known to inhibit different uptake pathways by APC. The human leukemia monocytic cell line THP-1 and the murine dendritic cell line DC 2.4 were examined for the uptake of fluorescently labelled VNP in the presence or absence of inhibitors. The inhibitory effect of candidate substances that blocked VNP uptake in APC lines was subsequently evaluated in studies with primary APC present in splenocyte and lung cell homogenates in vitro and upon intratracheal application of VNP in vivo. The uptake of allergen-specific VNP in vitro and in vivo was mainly observed by macrophages and CD103+ dendritic cells and was sensitive to inhibitors that block macropinocytosis, such as hyperosmolarity induced by sucrose or the polyphenol compound Rottlerin at low micromolar concentrations but not by other inhibitors. Also, T-cell proliferation induced by allergen-specific VNP was significantly reduced by both substances. In contrast, substances that stimulate macropinocytosis, such as Heparin and phorbol myristate acetate (PMA), increased VNP-uptake and may, thus, help modulate allergen-specific T-cell responses. We have identified macropinocytosis as the principal uptake mechanism of APC for allergen-specific VNP in vitro and in vivo, paving the way for further improvement of VNP-based therapies, especially those that can be used for tolerance induction in allergy, in the future.
Collapse
Affiliation(s)
- Armin Kraus
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Al Nasar Ahmed Sehgal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matarr Khan
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicole Boucheron
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
10
|
McAlary L, Nan JR, Shyu C, Sher M, Plotkin SS, Cashman NR. Amyloidogenic regions in beta-strands II and III modulate the aggregation and toxicity of SOD1 in living cells. Open Biol 2024; 14:230418. [PMID: 38835240 DOI: 10.1098/rsob.230418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/16/2024] [Indexed: 06/06/2024] Open
Abstract
Mutations in the protein superoxide dismutase-1 (SOD1) promote its misfolding and aggregation, ultimately causing familial forms of the debilitating neurodegenerative disease amyotrophic lateral sclerosis (ALS). Currently, over 220 (mostly missense) ALS-causing mutations in the SOD1 protein have been identified, indicating that common structural features are responsible for aggregation and toxicity. Using in silico tools, we predicted amyloidogenic regions in the ALS-associated SOD1-G85R mutant, finding seven regions throughout the structure. Introduction of proline residues into β-strands II (I18P) or III (I35P) reduced the aggregation propensity and toxicity of SOD1-G85R in cells, significantly more so than proline mutations in other amyloidogenic regions. The I18P and I35P mutations also reduced the capability of SOD1-G85R to template onto previously formed non-proline mutant SOD1 aggregates as measured by fluorescence recovery after photobleaching. Finally, we found that, while the I18P and I35P mutants are less structurally stable than SOD1-G85R, the proline mutants are less aggregation-prone during proteasome inhibition, and less toxic to cells overall. Our research highlights the importance of a previously underappreciated SOD1 amyloidogenic region in β-strand II (15QGIINF20) to the aggregation and toxicity of SOD1 in ALS mutants, and suggests that β-strands II and III may be good targets for the development of SOD1-associated ALS therapies.
Collapse
Affiliation(s)
- Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Jeremy R Nan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clay Shyu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mine Sher
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
12
|
Unni S, Kommu P, Aouti S, Nalli Y, Bharath MMS, Ali A, Padmanabhan B. Structural insights into the modulation Of SOD1 aggregation By a fungal metabolite Phialomustin-B: Therapeutic potential in ALS. PLoS One 2024; 19:e0298196. [PMID: 38446760 PMCID: PMC10917278 DOI: 10.1371/journal.pone.0298196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal human motor neuron disease leading to muscle atrophy and paralysis. Mutations in superoxide dismutase 1 (SOD1) are associated with familial ALS (fALS). The SOD1 mutants in ALS have a toxic-gain of function by destabilizing the functional SOD1 homodimer, consequently inducing fibril-like aggregation with a cytotoxic non-native trimer intermediate. Therefore, reducing SOD1 oligomerization via chemical modulators is an optimal therapy in ALS. Here, we report the discovery of Phialomustin-B, an unsaturated secondary metabolite from the endophytic fungus Phialophora mustea, as a modulator of SOD1 aggregation. The crystal structure of the SOD1-Phialomustin complex refined to 1.90 Å resolution demonstrated for the first time that the ligand binds to the dimer interface and the lateral region near the electrostatic loop. The aggregation analyses of SOD1WT and the disease mutant SOD1A4V revealed that Phialomustin-B reduces cytotoxic trimerization. We propose that Phialomustin-B is a potent lead molecule with therapeutic potential in fALS.
Collapse
Affiliation(s)
- Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Padmini Kommu
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Snehal Aouti
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Yedukondalu Nalli
- CSIR-Indian Institute of Integrative Medicine, Natural Product Division, Jammu, India
| | - M. M. Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Asif Ali
- CSIR-Indian Institute of Integrative Medicine, Natural Product Division, Jammu, India
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
13
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
14
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
15
|
Esquivel AR, Hill SE, Blair LJ. DnaJs are enriched in tau regulators. Int J Biol Macromol 2023; 253:127486. [PMID: 37852393 PMCID: PMC10842427 DOI: 10.1016/j.ijbiomac.2023.127486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The aberrant accumulation of tau protein is implicated as a pathogenic factor in many neurodegenerative diseases. Tau seeding may underlie its predictable spread in these diseases. Molecular chaperones can modulate tau pathology, but their effects have mainly been studied in isolation. This study employed a semi-high throughput assay to identify molecular chaperones influencing tau seeding using Tau RD P301S FRET Biosensor cells, which express a portion of tau containing the frontotemporal dementia-related P301S tau mutation fused to a FRET biosensor. Approximately fifty chaperones from five major families were screened using live cell imaging to monitor FRET-positive tau seeding. Among the tested chaperones, five exhibited significant effects on tau in the primary screen. Notably, three of these were from the DnaJ family. In subsequent studies, overexpression of DnaJA2, DnaJB1, and DnaJB6b resulted in significant reductions in tau levels. Knockdown experiments by shRNA revealed an inverse correlation between DnaJB1 and DnaJB6b with tau levels. DnaJB6b overexpression, specifically, reduced total tau levels in a cellular model with a pre-existing pool of tau, partially through enhanced proteasomal degradation. Further, DnaJB6b interacted with tau complexes. These findings highlight the potent chaperone activity within the DnaJ family, particularly DnaJB6b, towards tau.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Shannon E Hill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Laura J Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA; Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Shimizu M, Shiraishi N, Tada S, Sasaki T, Beck G, Nagano S, Kinoshita M, Sumi H, Sugimoto T, Ishida Y, Koda T, Ishikura T, Sugiyama Y, Kihara K, Kanakura M, Nakajima T, Takeda S, Takahashi MP, Yamashita T, Okuno T, Mochizuki H. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. SCIENCE ADVANCES 2023; 9:eadg3193. [PMID: 37992159 PMCID: PMC10665002 DOI: 10.1126/sciadv.adg3193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone-collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoru Tada
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Clinical Research, National Hospital Organization Osaka-Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurotherapeutics, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisae Sumi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Tomoyuki Sugimoto
- Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Yoko Ishida
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Minami Kanakura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka, Japan
| | - Masanori P. Takahashi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
17
|
Bakavayev S, Stavsky A, Argueti-Ostrovsky S, Yehezkel G, Fridmann-Sirkis Y, Barak Z, Gitler D, Israelson A, Engel S. Blocking an epitope of misfolded SOD1 ameliorates disease phenotype in a model of amyotrophic lateral sclerosis. Brain 2023; 146:4594-4607. [PMID: 37394908 DOI: 10.1093/brain/awad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023] Open
Abstract
The current strategies to mitigate the toxicity of misfolded superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis via blocking SOD1 expression in the CNS are indiscriminative for misfolded and intact proteins, and as such, entail a risk of depriving CNS cells of their essential antioxidant potential. As an alternative approach to neutralize misfolded and spare unaffected SOD1 species, we developed scFv-SE21 antibody that blocks the β6/β7 loop epitope exposed exclusively in misfolded SOD1. The β6/β7 loop epitope has previously been proposed to initiate amyloid-like aggregation of misfolded SOD1 and mediate its prion-like activity. The adeno-associated virus-mediated expression of scFv-SE21 in the CNS of hSOD1G37R mice rescued spinal motor neurons, reduced the accumulation of misfolded SOD1, decreased gliosis and thus delayed disease onset and extended survival by 90 days. The results provide evidence for the role of the exposed β6/β7 loop epitope in the mechanism of neurotoxic gain-of-function of misfolded SOD1 and open avenues for the development of mechanism-based anti-SOD1 therapeutics, whose selective targeting of misfolded SOD1 species may entail a reduced risk of collateral oxidative damage to the CNS.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yael Fridmann-Sirkis
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
18
|
Hivare P, Mujmer K, Swarup G, Gupta S, Bhatia D. Endocytic pathways of pathogenic protein aggregates in neurodegenerative diseases. Traffic 2023; 24:434-452. [PMID: 37392160 DOI: 10.1111/tra.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/14/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
Endocytosis is the fundamental uptake process through which cells internalize extracellular materials and species. Neurodegenerative diseases (NDs) are characterized by a progressive accumulation of intrinsically disordered protein species, leading to neuronal death. Misfolding in many proteins leads to various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other disorders. Despite the significance of disordered protein species in neurodegeneration, their spread between cells and the cellular uptake of extracellular species is not entirely understood. This review discusses the major internalization mechanisms of the different conformer species of these proteins and their endocytic mechanisms. We briefly introduce the broad types of endocytic mechanisms found in cells and then summarize what is known about the endocytosis of monomeric, oligomeric and aggregated conformations of tau, Aβ, α-Syn, Huntingtin, Prions, SOD1, TDP-43 and other proteins associated with neurodegeneration. We also highlight the key players involved in internalizing these disordered proteins and the several techniques and approaches to identify their endocytic mechanisms. Finally, we discuss the obstacles involved in studying the endocytosis of these protein species and the need to develop better techniques to elucidate the uptake mechanisms of a particular disordered protein species.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Kratika Mujmer
- Center for Brain and Cognitive Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Gitanjali Swarup
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
19
|
Ayers JI, Xu G, Lu Q, Dillon K, Fromholt S, Borchelt DR. Multiple Factors Influence the Incubation Period of ALS Prion-like Transmission in SOD1 Transgenic Mice. Viruses 2023; 15:1819. [PMID: 37766226 PMCID: PMC10534885 DOI: 10.3390/v15091819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) that are associated with amyotrophic lateral sclerosis (ALS) cause its misfolding and aggregation. Prior studies have demonstrated that the misfolded conformation of ALS-SOD1 can template with naïve SOD1 "host proteins" to propagate, spread, and induce paralysis in SOD1 transgenic mice. These observations have advanced the argument that SOD1 is a host protein for an ALS conformer that is prion-like and experimentally transmissible. Here, we investigated the propagation of different isolates of G93A-SOD1 ALS conformers using a paradigm involving transmission to mice expressing human G85R-SOD1 fused to yellow fluorescent protein (G85R-SOD1:YFP). In these studies, we also utilized a newly developed line of mice in which the G85R-SOD1:YFP construct was flanked by loxp sites, allowing its temporal and spatial regulation. We used methods in which the G93A ALS conformers were injected into the sciatic nerve or hindlimb muscle of adult transgenic mice. We observed that the incubation period to paralysis varied significantly depending upon the source of inoculum containing misfolded G93A SOD1. Serial passage and selection produced stable isolates of G93A ALS conformers that exhibited a defined minimum incubation period of ~2.5 months when injected into the sciatic nerve of young adult mice. As expected, neuronal excision of the transgene in loxpG85R-SOD1:YFP mice blocked induction of paralysis by transmission of G93A ALS conformers. Our findings indicate that G93A ALS conformers capable of inducing disease require neuronal expression of a receptive host SOD1 protein for propagation, with a defined incubation period to paralysis.
Collapse
Affiliation(s)
- Jacob I. Ayers
- Institute for Neurodegenerative Disease, University of California, San Francisco, CA 94158, USA
| | - Guilian Xu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (G.X.)
| | - Qing Lu
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (G.X.)
| | - Kristy Dillon
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (G.X.)
| | - Susan Fromholt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (G.X.)
| | - David R. Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; (G.X.)
- SantaFe HealthCare Alzheimer’s Disease Research Center, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Asgarkhani L, Khandakar I, Pakan R, Swayne TC, Emtage L. Threshold inclusion size triggers conversion of huntingtin to prion-like state that is reversible in newly born cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528394. [PMID: 36824970 PMCID: PMC9949074 DOI: 10.1101/2023.02.13.528394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Aggregation of mutant Huntingtin protein (mHtt) leads to neuronal cell death and human disease. We investigated the effect of inclusion formation on yeast cells. Previous work indicates that mHtt protein moves both in and out of inclusions, potentially undergoing refolding in the inclusion. However, the sustained influx of unfolded protein into an inclusion leads to a dramatic change from a phase-separated body to an irregular, less soluble form at a threshold inclusion size. Altered morphology was associated with a prion-like seeding that accelerated inclusion growth despite loss of soluble cytoplasmic protein. The structural change abolished exchange of material between the inclusion and the cytosol and resulted in early cell death. Affected cells continued to divide occasionally, giving rise to daughters with a similar phenotype. Most newly born cells were able to reverse the prion-like aggregation, restoring both soluble cytoplasmic protein and a normal inclusion structure.
Collapse
|
22
|
Kook MG, Byun MR, Lee SM, Lee MH, Lee DH, Lee HB, Lee EJ, Baek K, Kim S, Kang KS, Choi JW. Anti-apoptotic Splicing Variant of AIMP2 Recover Mutant SOD1-Induced Neuronal Cell Death. Mol Neurobiol 2023; 60:145-159. [PMID: 36242734 DOI: 10.1007/s12035-022-03073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death. We also suggest a therapeutic application that overexpression of DX2, the exon 2-deleted antagonistic splicing variant of AIMP2 (AIMP2-DX2), reduced neuronal cell death in the ALS mouse model. Expression of DX2 suppressed TRAF2 degradation and TNF-α-induced cell death by competing mode of action against full-length AIMP2. Motor neuron differentiated form iPSC showed a resistance in neuronal cell death after DX2 administration. Further, intrathecal administration of DX2-coding adeno-associated virus (AAV) improved locomotive activity and survival in a mutant SOD1-induced ALS mouse model. Taken together, these results indicated that DX2 could prolong life span and delay the ALS symptoms through compensation in neuronal inflammation.
Collapse
Affiliation(s)
- Myung Geun Kook
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Ran Byun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soo Min Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Min Hak Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Hyung Been Lee
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Eui-Jin Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea
| | - Kyunghwa Baek
- Department of Biomedicinal and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.,Generoath Ltd, Seoul, 04168, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kyung-Sun Kang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. .,Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon-do, 25457, Republic of Korea.
| |
Collapse
|
23
|
McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010121. [PMID: 36676070 PMCID: PMC9867379 DOI: 10.3390/life13010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence: (G.M.); (S.D.)
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Frederique Rene
- INSERM U1118, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence: (G.M.); (S.D.)
| |
Collapse
|
24
|
Ciuro M, Sangiorgio M, Leanza G, Gulino R. A Meta-Analysis Study of SOD1-Mutant Mouse Models of ALS to Analyse the Determinants of Disease Onset and Progression. Int J Mol Sci 2022; 24:ijms24010216. [PMID: 36613659 PMCID: PMC9820332 DOI: 10.3390/ijms24010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
A complex interaction between genetic and external factors determines the development of amyotrophic lateral sclerosis (ALS). Epidemiological studies on large patient cohorts have suggested that ALS is a multi-step disease, as symptom onset occurs only after exposure to a sequence of risk factors. Although the exact nature of these determinants remains to be clarified, it seems clear that: (i) genetic mutations may be responsible for one or more of these steps; (ii) other risk factors are probably linked to environment and/or to lifestyle, and (iii) compensatory plastic changes taking place during the ALS etiopathogenesis probably affect the timing of onset and progression of disease. Current knowledge on ALS mechanisms and therapeutic targets, derives mainly from studies involving superoxide dismutase 1 (SOD1) transgenic mice; therefore, it would be fundamental to verify whether a multi-step disease concept can also be applied to these animal models. With this aim, a meta-analysis study has been performed using a collection of primary studies (n = 137), selected according to the following criteria: (1) the studies should employ SOD1 transgenic mice; (2) the studies should entail the presence of a disease-modifying experimental manipulation; (3) the studies should make use of Kaplan-Meier plots showing the distribution of symptom onset and lifespan. Then, using a subset of this study collection (n = 94), the effects of treatments on key molecular mechanisms, as well as on the onset and progression of disease have been analysed in a large population of mice. The results are consistent with a multi-step etiopathogenesis of disease in ALS mice (including two to six steps, depending on the particular SOD1 mutation), closely resembling that observed in patient cohorts, and revealed an interesting relationship between molecular mechanisms and disease manifestation. Thus, SOD1 mouse models may be considered of high predictive value to understand the determinants of disease onset and progression, as well as to identify targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Ciuro
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Maria Sangiorgio
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre—IMPRonTE, University of Catania, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
25
|
Biological aspects of nitrogen heterocycles for amyotrophic lateral sclerosis. Appl Microbiol Biotechnol 2022; 107:43-56. [DOI: 10.1007/s00253-022-12317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
|
26
|
P2X7 receptor activation mediates superoxide dismutase 1 (SOD1) release from murine NSC-34 motor neurons. Purinergic Signal 2022; 18:451-467. [PMID: 35478453 PMCID: PMC9832181 DOI: 10.1007/s11302-022-09863-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1G93A, released from murine NSC-34 motor neurons transiently transfected with SOD1G93A, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1G93A from NSC-34 cells transiently transfected with SOD1G93A, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1G93A release coincided with membrane blebbing. Finally, aggregated SOD1G93A released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1G93A mice.
Collapse
|
27
|
Valappil DK, Mini NJ, Dilna A, Nath S. Membrane interaction to intercellular spread of pathology in Alzheimer’s disease. Front Neurosci 2022; 16:936897. [PMID: 36161178 PMCID: PMC9500529 DOI: 10.3389/fnins.2022.936897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer’s disease (AD) is the most prevalent among them. Extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aβ aggregates is considered as a trigger point. Interaction of Aβ peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aβ binding to the lipid membranes initiates formation of oligomers of Aβ species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a “prion-like” fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aβ and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aβ aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Nath
- *Correspondence: Sangeeta Nath, ; orcid.org/0000-0003-0050-0606
| |
Collapse
|
28
|
Bajic VP, Salhi A, Lakota K, Radovanovic A, Razali R, Zivkovic L, Spremo-Potparevic B, Uludag M, Tifratene F, Motwalli O, Marchand B, Bajic VB, Gojobori T, Isenovic ER, Essack M. DES-Amyloidoses “Amyloidoses through the looking-glass”: A knowledgebase developed for exploring and linking information related to human amyloid-related diseases. PLoS One 2022; 17:e0271737. [PMID: 35877764 PMCID: PMC9312389 DOI: 10.1371/journal.pone.0271737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
More than 30 types of amyloids are linked to close to 50 diseases in humans, the most prominent being Alzheimer’s disease (AD). AD is brain-related local amyloidosis, while another amyloidosis, such as AA amyloidosis, tends to be more systemic. Therefore, we need to know more about the biological entities’ influencing these amyloidosis processes. However, there is currently no support system developed specifically to handle this extraordinarily complex and demanding task. To acquire a systematic view of amyloidosis and how this may be relevant to the brain and other organs, we needed a means to explore "amyloid network systems" that may underly processes that leads to an amyloid-related disease. In this regard, we developed the DES-Amyloidoses knowledgebase (KB) to obtain fast and relevant information regarding the biological network related to amyloid proteins/peptides and amyloid-related diseases. This KB contains information obtained through text and data mining of available scientific literature and other public repositories. The information compiled into the DES-Amyloidoses system based on 19 topic-specific dictionaries resulted in 796,409 associations between terms from these dictionaries. Users can explore this information through various options, including enriched concepts, enriched pairs, and semantic similarity. We show the usefulness of the KB using an example focused on inflammasome-amyloid associations. To our knowledge, this is the only KB dedicated to human amyloid-related diseases derived primarily through literature text mining and complemented by data mining that provides a novel way of exploring information relevant to amyloidoses.
Collapse
Affiliation(s)
- Vladan P. Bajic
- Institute of Nuclear Sciences “VINCA", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Republic of Serbia
- * E-mail: (ME); (VPB)
| | - Adil Salhi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Katja Lakota
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Radovanovic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Rozaimi Razali
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Lada Zivkovic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Mahmut Uludag
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Faroug Tifratene
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaa Motwalli
- Saudi Electronic University (SEU), College of Computing and Informatics, Madinah, Kingdom of Saudi Arabia
| | | | - Vladimir B. Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Esma R. Isenovic
- Institute of Nuclear Sciences “VINCA", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Republic of Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (ME); (VPB)
| |
Collapse
|
29
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
30
|
Yang C, Zhang X. Research progress on vesicular trafficking in amyotrophic lateral sclerosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:380-387. [PMID: 36161717 PMCID: PMC9511476 DOI: 10.3724/zdxbyxb-2022-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
Vesicular trafficking is a basic physiological process by which vesicles transport materials between cells and environment (intercellular transport) and between different cellular compartments (intracellular trafficking). In recent years, more and more evidences have suggested that vesicular trafficking dysfunction plays a key role in pathogenesis of neurodegenerative diseases. Abnormal vesicular trafficking promotes the propagation of misfolded proteins by mechanisms involving endocytosis, endosomal-lysosomal pathway, endosomal escape and exosome release, leading to further acceleration of disease progression. Amyotrophic lateral sclerosis (ALS), as a neurodegenerative disease, is characterized by the selective death of upper and lower motor neurons. A variety of causative genes for ALS have been implicated in vesicle trafficking dysfunction, such as C9ORF72, TARDBP and SOD1. Therefore, the aggregation and propagation of misfolded proteins may be prevented through regulation of vesicle trafficking-related proteins, thus delay the progression of ALS. A more in-depth understanding of vesicular trafficking in ALS will be helpful in revealing the mechanism and clinical treatment of ALS. This review focuses on molecular mechanisms of vesicular trafficking in ALS, to provide reference for exploring new therapeutic strategies.
Collapse
|
31
|
Bian X, Zhuang X, Zheng Z, Liu S, Liu Z, Song F. Unfolding and aggregation of oxidized metal-deficient superoxide dismutase and isoflavone inhibition based on ion mobility mass spectrometry and ThT fluorescence assay. Arch Biochem Biophys 2022; 727:109306. [DOI: 10.1016/j.abb.2022.109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
32
|
Snead AM, Gowrishankar S. Loss of MAPK8IP3 Affects Endocytosis in Neurons. Front Cell Neurosci 2022; 16:828071. [PMID: 35711470 PMCID: PMC9196590 DOI: 10.3389/fncel.2022.828071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Perturbations in endo-lysosomal trafficking pathways are linked to many neurodevelopmental and neurodegenerative diseases. Of relevance to our current study, MAPK8IP3/JIP3, a brain enriched putative adaptor between lysosomes and motors has been previously implicated as a key regulator of axonal lysosome transport. Since de novo variants in MAPK8IP3 have recently been linked to a neurodevelopmental disorder with intellectual disability, there is a need to better understand the functioning of this protein in human neurons. To this end, using induced neurons (i3Neurons) derived from human iPSCs lacking MAPK8IP3, we demonstrate that loss of hMAPK8IP3 affects endocytic uptake in neurons but does not affect the proteolytic activity of lysosomes in neuronal cell bodies. Our findings indicate that MAPK8IP3 may be a regulator of bulk endocytosis in neurons and that altered endocytic uptake may play a role in MAPK8IP3-linked neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
34
|
The pathogenesis of amyotrophic lateral sclerosis: Mitochondrial dysfunction, protein misfolding and epigenetics. Brain Res 2022; 1786:147904. [PMID: 35390335 DOI: 10.1016/j.brainres.2022.147904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with multiple complex mechanisms involved. Among them, mitochondrial dysfunction plays an important role in ALS. Multiple studies have shown that mitochondria are closely associated with reactive oxygen species production and oxidative stress and exhibit different functional states in different genetic backgrounds. In this review we explored the roles of Ca2+, autophagy, mitochondrial quality control in the regulation of mitochondrial homeostasis and their relationship with ALS. In addition, we also summarized and analyzed the roles of protein misfolding and abnormal aggregation in the pathogenesis of ALS. Moreover, we also discussed how epigenetic mechanisms such as DNA methylation and protein post-translational modification affect initiation and progression of ALS. Nevertheless, existing events still cannot fully explain the pathogenesis of ALS at present, more studies are required to explore pathological mechanisms of ALS.
Collapse
|
35
|
Yeast red pigment, protein aggregates, and amyloidoses: a review. Cell Tissue Res 2022; 388:211-223. [PMID: 35258715 DOI: 10.1007/s00441-022-03609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Estimating the amyloid level in yeast Saccharomyces, we found out that the red pigment (product of polymerization of aminoimidazole ribotide) accumulating in ade1 and ade2 mutants leads to drop of the amyloid content. We demonstrated in vitro that fibrils of several proteins grown in the presence of the red pigment stop formation at the protofibril stage and form stable aggregates due to coalescence. Also, the red pigment inhibits reactive oxygen species accumulation in cells. This observation suggests that red pigment is involved in oxidative stress response. We developed an approach to identify the proteins whose aggregation state depends on prion (amyloid) or red pigment presence. These sets of proteins overlap and in both cases involve many different chaperones. Red pigment binds amyloids and is supposed to prevent chaperone-mediated prion propagation. An original yeast-Drosophila model was offered to estimate the red pigment effect on human proteins involved in neurodegeneration. As yeast cells are a natural feed of Drosophila, we could compare the data on transgenic flies fed on red and white yeast cells. Red pigment inhibits aggregation of human Amyloid beta and α-synuclein expressed in yeast cells. In the brain of transgenic flies, the red pigment diminishes amyloid beta level and the area of neurodegeneration. An improvement in memory and viability accompanied these changes. In transgenic flies expressing human α-synuclein, the pigment leads to a decreased death rate of dopaminergic neurons and improves mobility. The obtained results demonstrate yeast red pigment potential for the treatment of neurodegenerative diseases.
Collapse
|
36
|
Remarkable difference of phospholipid molecular chirality in regulating PrP aggregation and cell responses. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Jiang J, Liu Y, Wu Q. Revisit the Cellular Transmission and Emerging Techniques in Understanding the Mechanisms of Proteinopathies. Front Neurosci 2021; 15:781722. [PMID: 34867177 PMCID: PMC8636772 DOI: 10.3389/fnins.2021.781722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s diseases (AD and PD) are amongst top of the prevalent neurodegenerative disease. One-third of PD patients are diagnosed with dementia, a pre-symptom of AD, but the underlying mechanism is elusive. Amyloid beta (Aβ) and α-synuclein are two of the most investigated proteins, whose pathological aggregation and spreading are crucial to the pathogenesis of AD and PD, respectively. Transcriptomic studies of the mammalian central nervous system shed light on gene expression profiles at molecular levels, regarding the complexity of neuronal morphologies and electrophysiological inputs/outputs. In the last decade, the booming of the single-cell RNA sequencing technique helped to understand gene expression patterns, alternative splicing, novel transcripts, and signal pathways in the nervous system at single-cell levels, providing insight for molecular taxonomy and mechanistic targets of the degenerative nervous system. Here, we re-visited the cell-cell transmission mechanisms of Aβ and α-synuclein in mediating disease propagation, and summarized recent single-cell transcriptome sequencing from different perspectives and discussed its understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinwen Jiang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Iizuka Y, Owada R, Kawasaki T, Hayashi F, Sonoyama M, Nakamura K. Toxicity of internalized polyalanine to cells depends on aggregation. Sci Rep 2021; 11:23441. [PMID: 34873226 PMCID: PMC8648788 DOI: 10.1038/s41598-021-02889-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
In polyalanine (PA) diseases, the disease-causing transcription factors contain an expansion of alanine repeats. While aggregated proteins that are responsible for the pathogenesis of neurodegenerative disorders show cell-to-cell propagation and thereby exert toxic effects on the recipient cells, whether this is also the case with expanded PA has not been studied. It is also not known whether the internalized PA is toxic to recipient cells based on the degree of aggregation. In this study, we therefore prepared different degrees of aggregation of a peptide having 13 alanine repeats without flanking sequences of PA disease-causative proteins (13A). The aggregated 13A was spontaneously taken up by neuron-like cultured cells. Functionally, strong aggregates but not weak aggregates displayed a deficit in neuron-like differentiation in vitro. Moreover, the injection of strong but not weak 13A aggregates into the ventricle of mice during the neonatal stage led to enhanced spontaneous motor activity later in life. Thus, PA in the extracellular space has the potential to enter adjacent cells, and may exert toxicity depending on the degree of aggregation.
Collapse
Affiliation(s)
- Yutaro Iizuka
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ryuji Owada
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takayasu Kawasaki
- Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Fumio Hayashi
- Center for Instrumental Analysis, Organization for Promotion of Research and University Industry Collaboration, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.,Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
39
|
Farrawell NE, Yerbury JJ. Mutant Cu/Zn Superoxide Dismutase (A4V) Turnover Is Altered in Cells Containing Inclusions. Front Mol Neurosci 2021; 14:771911. [PMID: 34803609 PMCID: PMC8597841 DOI: 10.3389/fnmol.2021.771911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
SOD1 mutations account for ∼20% of familial amyotrophic lateral sclerosis (ALS) cases in which the hallmark pathological feature is insoluble SOD1 aggregates within motor neurons. Here, we investigated the degradation and synthesis of mutant SOD1 to determine whether the aggregation of mutant SOD1A4V affects these processes. We confirm that, in general, the degradation of mutant SOD1A4V occurs at a significantly faster rate than wild-type SOD1. We also report that the turnover and synthesis of mutant SOD1A4V is impaired in the presence of insoluble SOD1A4V aggregates. However, the timing of aggregation of SOD1A4V did not coincide with UPS dysfunction. Together, these results reveal the impact of SOD1 aggregation on protein degradation pathways, highlighting the importance of the UPS in preventing neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
40
|
Vatsa P, Negi R, Ansari UA, Khanna VK, Pant AB. Insights of Extracellular Vesicles of Mesenchymal Stem Cells: a Prospective Cell-Free Regenerative Medicine for Neurodegenerative Disorders. Mol Neurobiol 2021; 59:459-474. [PMID: 34714469 DOI: 10.1007/s12035-021-02603-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent, adult stem cells which are found in numerous tissues like the umbilical cord, Wharton's jelly, bone marrow, and adipose tissue. They possess the capacity of self-renewal by dividing and differentiating into various cellular lineages. Their characteristic therapeutic potential exploited so far has made them a desirable candidate in regenerative medicine. Neurodegenerative diseases (NDs) like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and ischemic stroke have been treated with MSCs and MSC-derived products. Over the past few decades, we have witnessed significant contributions in discovering the etiology of various NDs and their possible therapeutic solutions. One of the MSC-based therapeutics is extracellular vesicles (EVs), which contain multiple biologically active molecules like nucleic acids and proteins. The contents of EVs are ferried between cells for intercellular communication which then leads to regulation of the homeostasis of recipient cells. EVs serve as a considerable means of cell-free therapies like for tissue repair or regeneration as EVs can maintain therapeutically effective cargo of parent cells and are free of various ethical issues in cell-based therapies. Due to paucity of standard protocols in extraction procedures of EVs and their pharmacological properties and mechanisms, the development of new EV dependent therapies is challenging. With this review, an attempt has been made to annotate these mechanisms, which can help advance the novel therapeutic approaches towards the treat and define a more narrowed down approach for each ND to devise effective MSC-based therapies to cure and avert these diseases.
Collapse
Affiliation(s)
- P Vatsa
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh, 226001, India
- CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - R Negi
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh, 226001, India
- CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - U A Ansari
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh, 226001, India
- CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - V K Khanna
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh, 226001, India
- CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - A B Pant
- System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, P.O. Box No. 80, Lucknow, Uttar Pradesh, 226001, India.
- CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
41
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
42
|
Li Z, Siddique I, Hadrović I, Kirupakaran A, Li J, Zhang Y, Klärner FG, Schrader T, Bitan G. Lysine-selective molecular tweezers are cell penetrant and concentrate in lysosomes. Commun Biol 2021; 4:1076. [PMID: 34521989 PMCID: PMC8440717 DOI: 10.1038/s42003-021-02603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Lysine-selective molecular tweezers are promising drug candidates against proteinopathies, viral infection, and bacterial biofilm. Despite demonstration of their efficacy in multiple cellular and animal models, important questions regarding their mechanism of action, including cell penetrance and intracellular distribution, have not been answered to date. The main impediment to answering these questions has been the low intrinsic fluorescence of the main compound tested to date, called CLR01. Here, we address these questions using new fluorescently labeled molecular tweezers derivatives. We show that these compounds are internalized in neurons and astrocytes, at least partially through dynamin-dependent endocytosis. In addition, we demonstrate that the molecular tweezers concentrate rapidly in acidic compartments, primarily lysosomes. Accumulation of molecular tweezers in lysosomes may occur both through the endosomal-lysosomal pathway and via the autophagy-lysosome pathway. Moreover, by visualizing colocalization of molecular tweezers, lysosomes, and tau aggregates we show that lysosomes likely are the main site for the intracellular anti-amyloid activity of molecular tweezers. These findings have important implications for the mechanism of action of molecular tweezers in vivo, explaining how administration of low doses of the compounds achieves high effective concentrations where they are needed, and supporting the development of these compounds as drugs for currently cureless proteinopathies.
Collapse
Affiliation(s)
- Zizheng Li
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Inesa Hadrović
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Abbna Kirupakaran
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Thomas Schrader
- Institute of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. .,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Gopinath PM, Twayana KS, Ravanan P, John Thomas, Mukherjee A, Jenkins DF, Chandrasekaran N. Prospects on the nano-plastic particles internalization and induction of cellular response in human keratinocytes. Part Fibre Toxicol 2021; 18:35. [PMID: 34496914 PMCID: PMC8424902 DOI: 10.1186/s12989-021-00428-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Today, cosmetic products are very popular with both men and women to improve their appearance and increase their social acceptability. RESULTS In this study, nano-sized (30-300 nm) plastic particles were isolated from the commercial face-scrubs and treated on the human keratinocytes. The observed adherence of polyethylene nano-plastics (PENPs), polystyrene NPs (PSNPs), and face-scrubs isolated nano-plastics (NPs) on the keratin layer reveals a significant attachment of NPs from the cosmetics that are applied on the skin for a short duration. This attachment property could facilitate further adherence of protein molecules on NPs and the protein-corona formation. The protein-corona mimics protein aggregates, thereby triggers macropinocytosis, followed by the macropinolysosomal process in the cell. These internalized NPs induced the concentration-dependent cytotoxic, cytostatic and cytoprotective activity in keratinocytes. Both single dose and chronic long-term exposure of lethal and sub-lethal concentrations of NPs resulted in oxidative stress-mediated down-regulation of cell growth and proliferation inhibition. Autophagic structures and premature aging were also observed using an electron microscopy and a senescence marker, respectively in the NPs internalized HaCaT cells incubated in a fresh, NPs-free medium. CONCLUSION Though 2D culture models have many limitations, it produces significant conceptual advancements. This work provides an insight into the NPs concentration-dependent regulatory, cytoprotective, and cytotoxic effects in HaCaT cells. However, 3D model studies are required to identify the detailed mechanisms of NPs toxicity and cytoprotective events in cells at the molecular level.
Collapse
Affiliation(s)
| | - Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India.
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 104, India.
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India
| | - David F Jenkins
- Faculty of Science and Environment, Plymouth University, Plymouth, PL4 8AA, UK
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
44
|
Phenotypic diversity in ALS and the role of poly-conformational protein misfolding. Acta Neuropathol 2021; 142:41-55. [PMID: 32930869 DOI: 10.1007/s00401-020-02222-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/30/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
In many types of familial amyotrophic lateral sclerosis (fALS), mutations cause proteins to gain toxic properties that mediate neurodegenerative processes. It is becoming increasingly clear that the proteins involved in ALS, and those responsible for a host of other neurodegenerative diseases, share many characteristics with a growing number of prion diseases. ALS is a heterogenous disease in which the majority of cases are sporadic in their etiology. Studies investigating the inherited forms of the disease are now beginning to provide evidence that some of this heterogeneity may be due to the existence of distinct conformations that ALS-linked proteins can adopt to produce the equivalent of prion strains. In this review, we discuss the in vitro and in vivo evidence that has been generated to better understand the characteristics of these proteins and how their tertiary structure may impact the disease phenotype.
Collapse
|
45
|
Baumer KM, Cook CD, Zahler CT, Beard AA, Chen Z, Koone JC, Dashnaw CM, Villacob RA, Solouki T, Wood JL, Borchelt DR, Shaw BF. Supercharging Prions via Amyloid‐Selective Lysine Acetylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katelyn M. Baumer
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Collin T. Zahler
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Zhijuan Chen
- Department of Neuroscience University of Florida Gainesville FL USA
| | - Jordan C. Koone
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Raul A. Villacob
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - John L. Wood
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Bryan F. Shaw
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| |
Collapse
|
46
|
Kay RR. Macropinocytosis: Biology and mechanisms. Cells Dev 2021; 168:203713. [PMID: 34175511 DOI: 10.1016/j.cdev.2021.203713] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Macropinocytosis is a form of endocytosis performed by ruffles and cups of the plasma membrane. These close to entrap droplets of medium into micron-sized vesicles, which are trafficked through the endocytic system, their contents digested and useful products absorbed. Macropinocytosis is constitutive in certain immune cells and stimulated in many other cells by growth factors. It occurs across the animal kingdom and in amoebae, implying a deep evolutionary history. Its scientific history goes back 100 years, but increasingly work is focused on its medical importance in the immune system, cancer cell feeding, and as a backdoor into cells for viruses and drugs. Macropinocytosis is driven by the actin cytoskeleton whose dynamics can be appreciated with lattice light sheet microscopy: this reveals a surprising variety of routes for forming macropinosomes. In Dictyostelium amoebae, macropinocytic cups are organized around domains of PIP3 and active Ras and Rac in the plasma membrane. These attract activators of the Arp2/3 complex to their periphery, creating rings of actin polymerization that shape the cups. The size of PIP3 domains is controlled by RasGAPs, such as NF1, and the lipid phosphatase, PTEN. It is likely that domain dynamics determine the shape, evolution and closing of macropinocytic structures.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
47
|
Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants (Basel) 2021; 10:antiox10071012. [PMID: 34202494 PMCID: PMC8300638 DOI: 10.3390/antiox10071012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the progressive loss of motor neurons, leading to a fatal paralysis. According to whether there is a family history of ALS, ALS can be roughly divided into two types: familial and sporadic. Despite decades of research, the pathogenesis of ALS is still unelucidated. To this end, we review the recent progress of ALS pathogenesis, biomarkers, and treatment strategies, mainly discuss the roles of immune disorders, redox imbalance, autophagy dysfunction, and disordered iron homeostasis in the pathogenesis of ALS, and introduce the effects of RNA binding proteins, ALS-related genes, and non-coding RNA as biomarkers on ALS. In addition, we also mention other ALS biomarkers such as serum uric acid (UA), cardiolipin (CL), chitotriosidase (CHIT1), and neurofilament light chain (NFL). Finally, we discuss the drug therapy, gene therapy, immunotherapy, and stem cell-exosomal therapy for ALS, attempting to find new therapeutic targets and strategies. A challenge is to study the various mechanisms of ALS as a syndrome. Biomarkers that have been widely explored are indispensable for the diagnosis, treatment, and prevention of ALS. Moreover, the development of new genes and targets is an urgent task in this field.
Collapse
|
48
|
Keskin I, Ekhtiari Bidhendi E, Marklund M, Andersen PM, Brännström T, Marklund SL, Nordström U. Peripheral administration of SOD1 aggregates does not transmit pathogenic aggregation to the CNS of SOD1 transgenic mice. Acta Neuropathol Commun 2021; 9:111. [PMID: 34158126 PMCID: PMC8220797 DOI: 10.1186/s40478-021-01211-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
The deposition of aggregated proteins is a common neuropathological denominator for neurodegenerative disorders. Experimental evidence suggests that disease propagation involves prion-like mechanisms that cause the spreading of template-directed aggregation of specific disease-associated proteins. In transgenic (Tg) mouse models of superoxide dismutase-1 (SOD1)-linked amyotrophic lateral sclerosis (ALS), inoculation of minute amounts of human SOD1 (hSOD1) aggregates into the spinal cord or peripheral nerves induces premature ALS-like disease and template-directed hSOD1 aggregation that spreads along the neuroaxis. This infectious nature of spreading pathogenic aggregates might have implications for the safety of laboratory and medical staff, recipients of donated blood or tissue, or possibly close relatives and caregivers. Here we investigate whether transmission of ALS-like disease is unique to the spinal cord and peripheral nerve inoculations or if hSOD1 aggregation might spread from the periphery into the central nervous system (CNS). We inoculated hSOD1 aggregate seeds into the peritoneal cavity, hindlimb skeletal muscle or spinal cord of adult Tg mice expressing mutant hSOD1. Although we used up to 8000 times higher dose—compared to the lowest dose transmitting disease in spinal cord inoculations—the peripheral inoculations did not transmit seeded aggregation to the CNS or premature ALS-like disease in hSOD1 Tg mice. Nor was any hSOD1 aggregation detected in the liver, kidney, skeletal muscle or sciatic nerve. To explore potential reasons for the lack of disease transmission, we examined the stability of hSOD1 aggregates and found them to be highly vulnerable to both proteases and detergent. Our findings suggest that exposed individuals and personnel handling samples from ALS patients are at low risk of any potential transmission of seeded hSOD1 aggregation.
Collapse
|
49
|
Tanaka N, Kimura S, Kamatari YO, Nakata K, Kobatake Y, Inden M, Yamato O, Urushitani M, Maeda S, Kamishina H. In vitro evidence of propagation of superoxide dismutase-1 protein aggregation in canine degenerative myelopathy. Vet J 2021; 274:105710. [PMID: 34166783 DOI: 10.1016/j.tvjl.2021.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Canine degenerative myelopathy (DM) is a progressive and fatal neurodegenerative disorder that has been linked to mutations in the superoxide dismutase 1 (SOD1) gene. The accumulation of misfolded protein aggregates in spinal neurons and astrocytes is implicated as an important pathological process in DM; however, the mechanism of protein aggregate formation is largely unknown. In human neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), cell-to-cell propagation of disease-relevant proteins has been demonstrated. Therefore, in this study, propagation of aggregation-forming property of mutant SOD1 protein in DM in vitro was investigated. This study demonstrated that aggregates composed of canine wild type SOD1 protein were increased by co-transfection with canine mutant SOD1 (E40K SOD1), indicating intracellular propagation of SOD1 aggregates. Further, aggregated recombinant SOD1 proteins were released from the cells, taken up by other cells, and induced further aggregate formation of normally folded SOD1 proteins. These results suggest intercellular propagation of SOD1 aggregates. The hypothesis of cell-to-cell propagation of SOD1 aggregates proposed in this study may underly the progressive nature of DM pathology.
Collapse
Affiliation(s)
- N Tanaka
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - S Kimura
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Y O Kamatari
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - K Nakata
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Y Kobatake
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - M Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-26-4 Daigaku-Nishi, Gifu, 501-1196, Japan
| | - O Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-8580, Japan
| | - M Urushitani
- Department of Neurology, Shiga Univ. of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - S Maeda
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - H Kamishina
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| |
Collapse
|
50
|
Reselammal DS, Pinhero F, Sharma R, Oliyantakath Hassan MS, Srinivasula SM, Vijayan V. Mapping the Fibril Core of the Prion Subdomain of the Mammalian CPEB3 that is Involved in Long Term Memory Retention. J Mol Biol 2021; 433:167084. [PMID: 34081983 DOI: 10.1016/j.jmb.2021.167084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
Long-term memory storage is modulated by the prion nature of CPEB3 forming the molecular basis for the maintenance of synaptic facilitation. Here we report that the first prion sub-domain PRD1 of mouse CPEB3 can autonomously form amyloid fibrils in vitro and punctate-like structures in vivo. A ninety-four amino acid sequence within the PRD1 domain, PRD1-core, displays high propensity towards aggregation and associated amyloid characteristics. PRD1-core is characterized using electron microscopy, X-ray diffraction, and solution-state NMR deuterium exchange experiments. Secondary structure elements deduced from solid-state NMR reveal a β-rich core comprising of forty amino acids at the N-terminus of PRD1-core. The synthesized twenty-three amino acid long peptide containing the longest rigid segment (E124-H145) of the PRD1-core rapidly self-aggregates and forms fibrils, indicating a limited aggregation-prone region that could potentially activate the aggregation of the full-length protein. This study provides the first step in identifying the structural trigger for the CPEB3 aggregation process.
Collapse
Affiliation(s)
- Dhanya S Reselammal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | | | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India.
| |
Collapse
|