1
|
Hwang J, Lee CY, Brahmachari S, Tripathi S, Paul T, Lee H, Craig A, Ha T, Myong S. DNA supercoiling-mediated G4/R-loop formation tunes transcription by controlling the access of RNA polymerase. Nat Commun 2025; 16:3363. [PMID: 40204744 PMCID: PMC11982182 DOI: 10.1038/s41467-025-58479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
RNA polymerase (RNAP) is a processive motor that modulates DNA supercoiling and reshapes DNA structures. The feedback loop between the DNA topology and transcription remains elusive. Here, we investigate the impact of potential G-quadruplex forming sequences (PQS) on transcription in response to DNA supercoiling. We find that supercoiled DNA increases transcription frequency 10-fold higher than relaxed DNA, which lead to an abrupt formation of G-quadruplex (G4) and R-loop structures. Moreover, the stable R-loop relieves topological strain, facilitated by G4 formation. The cooperative formation of G4/R-loop effectively alters the DNA topology around the promoter and suppresses transcriptional activity by impeding RNAP loading. These findings highlight negative supercoiling as a built-in spring that triggers a transcriptional burst followed by a rapid suppression upon G4/R-loop formation. This study sheds light on the intricate interplay between DNA topology and structural change in transcriptional regulation, with implications for understanding gene expression dynamics.
Collapse
Affiliation(s)
- Jihee Hwang
- Programs in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun-Ying Lee
- Programs in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Shubham Tripathi
- Yale Center for Systems and Engineering Immunology & Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tapas Paul
- Programs in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Huijin Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alanna Craig
- Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Programs in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Program in Cellular Molecular Developmental Biology, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sua Myong
- Programs in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Sun Y, Woodson SA. Disassembly of unstable RNA structures by an E. coli DEAD-box chaperone accelerates ribosome assembly. Nucleic Acids Res 2025; 53:gkaf104. [PMID: 39988318 PMCID: PMC11840561 DOI: 10.1093/nar/gkaf104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Ribosome synthesis in bacteria is coupled with transcription of the pre-ribosomal RNA (pre-rRNA), which must fold and assemble with 20 or more ribosomal proteins. In vitro, the Escherichia coli pre-16S rRNA misfolds during transcription, delaying stable binding of ribosomal protein uS4 that nucleates assembly of the 16S 5' domain. Using single-molecule fluorescence microscopy, we show that the DEAD-box protein CsdA (DeaD) strongly accelerates uS4 binding by facilitating proper folding of the nascent rRNA. Unstable RNA structures are unfolded by CsdA, whereas stable RNA structures resist unwinding. We show that CsdA unfolding becomes less frequent as more ribosomal proteins add to the complex. The results demonstrate that disassembly of unstable, nascent RNA-protein complexes by chaperones fuels the search for native structure. We propose that general chaperones create a gradient of disassembly that steepens the hierarchy of proper protein addition until late assembly intermediates escape unwinding and commit to 30S maturation.
Collapse
Affiliation(s)
- Yunsheng Sun
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States
| |
Collapse
|
3
|
Patrick EM, Yadav R, Senanayake K, Cotter K, Putnam AA, Jankowsky E, Comstock MJ. High-resolution fleezers reveal duplex opening and stepwise assembly by an oligomer of the DEAD-box helicase Ded1p. Nat Commun 2025; 16:1015. [PMID: 39863580 PMCID: PMC11762735 DOI: 10.1038/s41467-024-54955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/22/2024] [Indexed: 01/27/2025] Open
Abstract
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Eric M Patrick
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Rajeev Yadav
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Kasun Senanayake
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Kyle Cotter
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Andrea A Putnam
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western University, Cleveland, OH, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Eckhard Jankowsky
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western University, Cleveland, OH, USA
- Moderna, Cambridge, MA, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Shehzad S, Kim H. Single-molecule DNA-flow stretching assay as a versatile hybrid tool for investigating DNA-protein interactions. BMB Rep 2025; 58:41-51. [PMID: 39701027 PMCID: PMC11788529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024] Open
Abstract
Single-molecule techniques allow researchers to investigate individual molecules and obtain unprecedented details of the heterogeneous nature of biological entities. They play instrumental roles in studying DNA-protein interactions due to the ability to visualize DNA or proteins and to manipulate individual DNA molecules by applying force or torque. Here, we describe single-molecule DNA-flow stretching assays as hybrid tools that combine forces with fluorescence. We also review how widely these assays are utilized in elucidating working mechanisms of DNA-binding proteins. Additionally, we provide a brief explanation of various efforts to prepare DNA substrates with desired internal protein-binding sequences. More complicated needs for DNA-protein interaction research have led to improvements in single-molecule DNA flow-stretching techniques. Several DNA flow-stretching variants such as DNA curtain, DNA motion capture assays, and protein-induced fluorescence enhancement (PIFE) are introduced in this mini review. Singlemolecule DNA flow-stretching assays will keep contributing to our understanding of how DNA-binding proteins function due to their multiplexed, versatile, and robust capabilities. [BMB Reports 2025; 58(1): 41-51].
Collapse
Affiliation(s)
- Sadaf Shehzad
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| |
Collapse
|
5
|
Banwait JK, Islam L, Lucius AL. Single turnover transient state kinetics reveals processive protein unfolding catalyzed by Escherichia coli ClpB. eLife 2024; 13:RP99052. [PMID: 39374121 PMCID: PMC11458177 DOI: 10.7554/elife.99052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 are AAA+ motor proteins essential for proteome maintenance and thermal tolerance. ClpB and Hsp104 have been proposed to extract a polypeptide from an aggregate and processively translocate the chain through the axial channel of its hexameric ring structure. However, the mechanism of translocation and if this reaction is processive remains disputed. We reported that Hsp104 and ClpB are non-processive on unfolded model substrates. Others have reported that ClpB is able to processively translocate a mechanically unfolded polypeptide chain at rates over 240 amino acids (aa) per second. Here, we report the development of a single turnover stopped-flow fluorescence strategy that reports on processive protein unfolding catalyzed by ClpB. We show that when translocation catalyzed by ClpB is challenged by stably folded protein structure, the motor enzymatically unfolds the substrate at a rate of ~0.9 aa s-1 with a kinetic step-size of ~60 amino acids at sub-saturating [ATP]. We reconcile the apparent controversy by defining enzyme catalyzed protein unfolding and translocation as two distinct reactions with different mechanisms of action. We propose a model where slow unfolding followed by fast translocation represents an important mechanistic feature that allows the motor to rapidly translocate up to the next folded region or rapidly dissociate if no additional fold is encountered.
Collapse
Affiliation(s)
| | - Liana Islam
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
6
|
Lee D, Kim J, Lee G. Simple methods to determine the dissociation constant, K d. Mol Cells 2024; 47:100112. [PMID: 39293742 PMCID: PMC11471161 DOI: 10.1016/j.mocell.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The determination of the dissociation constant (Kd) is pivotal in biochemistry and pharmacology for understanding binding affinities in chemical reactions, which is crucial for drug development and comprehending biological systems. Here, we introduce a single-molecule fluorescence resonance energy transfer-based method for determining Kd, alongside the conventional electrophoretic mobility shift assay method of Kd, offering insights into thermodynamic interactions between proteins and substrates. The single-molecule fluorescence resonance energy transfer approach is highlighted for its ability to accurately measure binding and dissociation kinetics through fluorescence labeling and the intrinsic nature of protein-DNA interactions, representing a significant advancement in the fields of molecular biology and pharmacology.
Collapse
Affiliation(s)
- Donghun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Juwon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Gwangrog Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
7
|
Shiekh S, Feldt D, Jack A, Kodikara SG, Alfehaid J, Pasha S, Yildiz A, Balci H. Protection of the Telomeric Junction by the Shelterin Complex. J Am Chem Soc 2024; 146:25158-25165. [PMID: 39207958 PMCID: PMC11404488 DOI: 10.1021/jacs.4c08649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Shelterin serves critical roles in suppressing superfluous DNA damage repair pathways on telomeres. The junction between double-stranded telomeric tracts (dsTEL) and single-stranded telomeric overhang (ssTEL) is the most accessible region of the telomeric DNA. The shelterin complex contains dsTEL and ssTEL binding proteins and can protect this junction by bridging the ssTEL and dsTEL tracts. To test this possibility, we monitored shelterin binding to telomeric DNA substrates with varying ssTEL and dsTEL lengths and quantified its impact on telomere accessibility using single-molecule fluorescence microscopy methods in vitro. We identified the first dsTEL repeat nearest the junction as the preferred binding site for creating the shelterin bridge. Shelterin requires at least two ssTEL repeats, while the POT1 subunit of shelterin that binds to ssTEL requires longer ssTEL tracts for stable binding to telomeres and effective protection of the junction region. The ability of POT1 to protect the junction is significantly enhanced by the 5'-phosphate at the junction. Collectively, our results show that shelterin enhances the binding stability of POT1 to ssTEL and provides more effective protection compared with POT1 alone by bridging single- and double-stranded telomeric tracts.
Collapse
Affiliation(s)
- Sajad Shiekh
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Darion Feldt
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, California 94720, United States
| | - Sineth G Kodikara
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Janan Alfehaid
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Sabaha Pasha
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, United States
- Physics Department, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
8
|
Shiekh S, Feldt D, Jack A, Kodikara SG, Alfehaid J, Pasha S, Yildiz A, Balci H. Protection of the Telomeric Junction by the Shelterin Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608453. [PMID: 39229120 PMCID: PMC11370466 DOI: 10.1101/2024.08.18.608453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Shelterin serves critical roles in suppressing superfluous DNA damage repair pathways on telomeres. The junction between double-stranded telomeric tracts (dsTEL) and single-stranded telomeric overhang (ssTEL) is the most accessible region of the telomeric DNA. The shelterin complex contains dsTEL and ssTEL binding proteins and can protect this junction by bridging between the ssTEL and dsTEL tracts. To test this possibility, we monitored shelterin binding to telomeric DNA substrates with varying ssTEL and dsTEL lengths and quantified its impact on telomere accessibility using single-molecule fluorescence microscopy methods in vitro. We identified the first dsTEL repeat nearest to the junction as the preferred binding site for creating the shelterin bridge. Shelterin requires at least two ssTEL repeats while the POT1 subunit of shelterin that binds to ssTEL requires longer ssTEL tracts for stable binding to telomeres and effective protection of the junction region. The ability of POT1 to protect the junction is significantly enhanced by the 5'-phosphate at the junction. Collectively, our results show that shelterin enhances the binding stability of POT1 to ssTEL and provides more effective protection compared to POT1 alone by bridging single- and double-stranded telomeric tracts.
Collapse
Affiliation(s)
- Sajad Shiekh
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Darion Feldt
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | - Janan Alfehaid
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Sabaha Pasha
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Physics Department, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
9
|
Wu JK, Lee YY, Hung H, Chang YP, Tai MH, Fan HF. Binding Behavior of Human Hepatoma-Derived Growth Factor on SMYD1. J Phys Chem B 2024; 128:7722-7735. [PMID: 39091133 PMCID: PMC11331505 DOI: 10.1021/acs.jpcb.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
The protein-induced fluorescence change technique was employed to investigate the interactions between proteins and their DNA substrates modified with the Cy3 fluorophore. It has been reported that the human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal proline-tryptophan-tryptophan-proline (PWWP) domain (the N-terminal 100 amino acids of HDGF) capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancer. This project investigated the specific binding behavior of HDGF, the PWWP domain, and the C140 domain (the C-terminal 140 amino acids of HDGF) sequentially using protein-induced fluorescence change. We found that the binding of HDGF and its related proteins on Cy3-labeled 15 bp SMYD1 dsDNA will cause a significant decrease in the recorded Cy3 fluorophore intensity, indicating the occurrence of protein-induced fluorescence quenching. The dissociation equilibrium constant was determined by fitting the bound fraction curve to a binding model. An approximate 10-time weaker SMYD1 binding affinity of the PWWP domain was found in comparison to HDGF. Moreover, the PWWP domain is required for DNA binding, and the C140 domain can enhance the DNA binding affinity. Furthermore, we found that the C140 domain can regulate the sequence-specific binding capability of HDGF on SMYD1.
Collapse
Affiliation(s)
- Jan-Kai Wu
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ying-ying Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsin Hung
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Yuan-Ping Chang
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Ming-Hong Tai
- Institute
of Biomedical Science, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 80424, Taiwan
| |
Collapse
|
10
|
Paul T, Yang L, Lee CY, Myong S. Simultaneous probing of transcription, G-quadruplex, and R-loop. Methods Enzymol 2024; 705:377-396. [PMID: 39389670 PMCID: PMC11760191 DOI: 10.1016/bs.mie.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA and RNA can form various non-canonical secondary structures, including G-quadruplex (G4) and R-loops. These structures are considered transcriptional regulatory elements due to their enrichment at regulatory regions. During transcription, G-rich sequences in the non-template strand promote R-loop formation in the DNA template strand. These R-loops induce G4 structures in the non-template DNA strand, further stabilizing them. Additionally, the high rG: dC base-pairing within the R-loop contributes to the stability of DNA/RNA hybridization. Our previous study investigated the interplay between G4s and R-loops and its impact on transcription. We employed two techniques to demonstrate transcription-mediated G4 and R-loop formation. The single-molecule method allows us to detect intricate details of transcription initiation, elongation, and co-transcriptional R-loop and G4 formation. It provides a high-resolution view of the dynamic processes involved in transcriptional regulation. As an orthogonal approach, a gel-based assay enables the detection of the transcription-mediated R-loops and the RNA product. We can measure the progressive formation of R-loop and total RNA produced from transcription by analyzing gel electrophoresis patterns. In summary, these techniques provide valuable insights into the non-canonical nucleic acid structures and their impact on gene expression.
Collapse
Affiliation(s)
- Tapas Paul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Leya Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chun-Ying Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sua Myong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Chu J, Ejaz A, Lin KM, Joseph MR, Coraor AE, Drummond DA, Squires AH. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. NATURE NANOTECHNOLOGY 2024; 19:1150-1157. [PMID: 38750166 PMCID: PMC11329371 DOI: 10.1038/s41565-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
Multiplexed, real-time fluorescence detection at the single-molecule level can reveal the stoichiometry, dynamics and interactions of multiple molecular species in mixtures and other complex samples. However, fluorescence-based sensing is typically limited to the detection of just 3-4 colours at a time due to low signal-to-noise ratio, high spectral overlap and the need to maintain the chemical compatibility of dyes. Here we engineered a palette of several dozen composite fluorescent labels, called FRETfluors, for multiplexed spectroscopic measurements at the single-molecule level. FRETfluors are compact nanostructures constructed from three chemical components (DNA, Cy3 and Cy5) with tunable spectroscopic properties due to variations in geometry, fluorophore attachment chemistry and DNA sequence. We demonstrate FRETfluor labelling and detection for low-concentration (<100 fM) mixtures of mRNA, dsDNA and proteins using an anti-Brownian electrokinetic trap. In addition to identifying the unique spectroscopic signature of each FRETfluor, this trap differentiates FRETfluors attached to a target from unbound FRETfluors, enabling wash-free sensing. Although usually considered an undesirable complication of fluorescence, here the inherent sensitivity of fluorophores to the local physicochemical environment provides a new design axis complementary to changing the FRET efficiency. As a result, the number of distinguishable FRETfluor labels can be combinatorically increased while chemical compatibility is maintained, expanding prospects for spectroscopic multiplexing at the single-molecule level using a minimal set of chemical building blocks.
Collapse
Affiliation(s)
- Jiachong Chu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ayesha Ejaz
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Kyle M Lin
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Interdisicplinary Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Madeline R Joseph
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aria E Coraor
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Donovan BT, Wang B, Garcia GR, Mount SM, Larson DR. REAL-TIME VISUALIZATION OF SPLICEOSOME ASSEMBLY REVEALS BASIC PRINCIPLES OF SPLICE SITE SELECTION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603320. [PMID: 39372787 PMCID: PMC11451613 DOI: 10.1101/2024.07.12.603320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The spliceosome is a megadalton protein-RNA complex which removes introns from pre-mRNA, yet the dynamic early assembly steps have not been structurally resolved. Specifically, how the spliceosome selects the correct 3' splice site (3'SS) amongst highly similar non-functional sites is not known. Here, we develop a kinetic model of splice site selection based on single-molecule U2AF heterodimer imaging in vitro and in vivo. The model successfully predicts alternative splicing patterns and indicates that 3'SS selection occurs while U2AF is in complex with the spliceosome, not during initial binding. This finding indicates the spliceosome operates in a 'partial' kinetic proofreading regime, catalyzed in part by the helicase DDX42, which increases selectivity to the underlying U2AF binding site while still allowing for efficient forward progression.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Bixuan Wang
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Gloria R Garcia
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- NIH Myeloid Malignancies Program, Bethesda, MD 20892, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel R Larson
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- NIH Myeloid Malignancies Program, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Huh H, Shen J, Ajjugal Y, Ramachandran A, Patel SS, Lee SH. Sequence-specific dynamic DNA bending explains mitochondrial TFAM's dual role in DNA packaging and transcription initiation. Nat Commun 2024; 15:5446. [PMID: 38937458 PMCID: PMC11211510 DOI: 10.1038/s41467-024-49728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.
Collapse
Affiliation(s)
- Hyun Huh
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jiayu Shen
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yogeeshwar Ajjugal
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Sang-Hyuk Lee
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
14
|
Patrick EM, Yadav R, Senanayake K, Cotter K, Putnam AA, Jankowsky E, Comstock MJ. High-resolution fleezers reveal duplex opening and stepwise assembly by an oligomer of the DEAD-box helicase Ded1p. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582829. [PMID: 38496418 PMCID: PMC10942383 DOI: 10.1101/2024.02.29.582829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
DEAD-box RNA helicases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box helicases unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.
Collapse
|
15
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
16
|
Lou Y, Woodson SA. Co-transcriptional folding of the glmS ribozyme enables a rapid response to metabolite. Nucleic Acids Res 2024; 52:872-884. [PMID: 38000388 PMCID: PMC10810187 DOI: 10.1093/nar/gkad1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The glmS ribozyme riboswitch, located in the 5' untranslated region of the Bacillus subtilis glmS messenger RNA (mRNA), regulates cell wall biosynthesis through ligand-induced self-cleavage and decay of the glmS mRNA. Although self-cleavage of the refolded glmS ribozyme has been studied extensively, it is not known how early the ribozyme folds and self-cleaves during transcription. Here, we combine single-molecule fluorescence with kinetic modeling to show that self-cleavage can occur during transcription before the ribozyme is fully synthesized. Moreover, co-transcriptional folding of the RNA at a physiological elongation rate allows the ribozyme catalytic core to react without the downstream peripheral stability domain. Dimethyl sulfate footprinting further revealed how slow sequential folding favors formation of the native core structure through fraying of misfolded helices and nucleation of a native pseudoknot. Ribozyme self-cleavage at an early stage of transcription may benefit glmS regulation in B. subtilis, as it exposes the mRNA to exoribonuclease before translation of the open reading frame can begin. Our results emphasize the importance of co-transcriptional folding of RNA tertiary structure for cis-regulation of mRNA stability.
Collapse
Affiliation(s)
- Yuan Lou
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
17
|
Hwang J, Palmer B, Myong S. Single-molecule observation of G-quadruplex and R-loop formation induced by transcription. Methods Enzymol 2024; 695:71-88. [PMID: 38521591 PMCID: PMC11756578 DOI: 10.1016/bs.mie.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Potential G-quadruplex forming sequences (PQS) are enriched in cancer-related genes and immunoglobulin class-switch recombination. They are prevalent in the 5'UTR of transcriptionally active genes, thereby contributing to the regulation of gene expression. We and others previously demonstrated that the PQS located in the non-template strand leads to an R-loop formation followed by a G-quadruplex (G4) formation during transcription. These structural changes increase mRNA production. Here, we present how single-molecule technique was used to observe cotranscriptional G4 and R-loop formation and to examine the impact on transcription, particularly for the initiation and elongation stages.
Collapse
Affiliation(s)
- Jihee Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradleigh Palmer
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Sua Myong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
18
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
19
|
Dhaka P, Singh A, Choudhary S, Peddinti RK, Kumar P, Sharma GK, Tomar S. Mechanistic and thermodynamic characterization of antiviral inhibitors targeting nucleocapsid N-terminal domain of SARS-CoV-2. Arch Biochem Biophys 2023; 750:109820. [PMID: 37956938 DOI: 10.1016/j.abb.2023.109820] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 plays a pivotal role in encapsulating the viral genome. Developing antiviral treatments for SARS-CoV-2 is imperative due to the diminishing immunity of the available vaccines. This study targets the RNA-binding site located in the N-terminal domain (NTD) of the N-protein to identify the potential antiviral molecules against SARS-CoV-2. A structure-based repurposing approach identified the twelve high-affinity molecules from FDA-approved drugs, natural products, and the LOPAC1280 compound libraries that precisely bind to the RNA binding site within the NTD. The interaction of these potential antiviral agents with the purified NTD protein was thermodynamically characterized using isothermal titration calorimetry (ITC). A fluorescence-based plate assay to assess the RNA binding inhibitory activity of small molecules against the NTD has been employed, and the selected compounds exhibited significant RNA binding inhibition with calculated IC50 values ranging from 8.8 μM to 15.7 μM. Furthermore, the antiviral efficacy of these compounds was evaluated using in vitro cell-based assays targeting the replication of SARS-CoV-2. Remarkably, two compounds, Telmisartan and BMS-189453, displayed potential antiviral activity against SARS-CoV-2, with EC50 values of approximately 1.02 μM and 0.98 μM, and a notable selective index of >98 and > 102, respectively. This study gives valuable insight into developing therapeutic interventions against SARS-CoV-2 by targeting the N-protein, a significant effort given the global public health concern posed due to the virus re-emergence and long COVID-19 disease.
Collapse
Affiliation(s)
- Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Gaurav Kumar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
20
|
Wei S, Pour NG, Tiruvadi-Krishnan S, Ray AP, Thakur N, Eddy MT, Lamichhane R. Single-molecule visualization of human A 2A adenosine receptor activation by a G protein and constitutively activating mutations. Commun Biol 2023; 6:1218. [PMID: 38036689 PMCID: PMC10689853 DOI: 10.1038/s42003-023-05603-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Mutations that constitutively activate G protein-coupled receptors (GPCRs), known as constitutively activating mutations (CAMs), modify cell signaling and interfere with drugs, resulting in diseases with limited treatment options. We utilize fluorescence imaging at the single-molecule level to visualize the dynamic process of CAM-mediated activation of the human A2A adenosine receptor (A2AAR) in real time. We observe an active-state population for all CAMs without agonist stimulation. Importantly, activating mutations significantly increase the population of an intermediate state crucial for receptor activation, notably distinct from the addition of a partner G protein. Activation kinetics show that while CAMs increase the frequency of transitions to the intermediate state, mutations altering sodium sensitivity increase transitions away from it. These findings indicate changes in GPCR function caused by mutations may be predicted based on whether they favor or disfavor formation of an intermediate state, providing a framework for designing receptors with altered functions or therapies that target intermediate states.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA
| | - Niloofar Gopal Pour
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA
| | - Arka Prabha Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
21
|
Lim G, Hwang S, Yu K, Kang JY, Kang C, Hohng S. Translocating RNA polymerase generates R-loops at DNA double-strand breaks without any additional factors. Nucleic Acids Res 2023; 51:9838-9848. [PMID: 37638763 PMCID: PMC10570047 DOI: 10.1093/nar/gkad689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
The R-loops forming around DNA double-strand breaks (DSBs) within actively transcribed genes play a critical role in the DSB repair process. However, the mechanisms underlying R-loop formation at DSBs remain poorly understood, with diverse proposed models involving protein factors associated with RNA polymerase (RNAP) loading, pausing/backtracking or preexisting transcript RNA invasion. In this single-molecule study using Escherichia coli RNAP, we discovered that transcribing RNAP alone acts as a highly effective DSB sensor, responsible for generation of R-loops upon encountering downstream DSBs, without requiring any additional factors. The R-loop formation efficiency is greatly influenced by DNA end structures, ranging here from 2.8% to 73%, and notably higher on sticky ends with 3' or 5' single-stranded overhangs compared to blunt ends without any overhangs. The R-loops extend unidirectionally upstream from the DSB sites and can reach the transcription start site, interfering with ongoing-round transcription. Furthermore, the extended R-loops can persist and maintain their structures, effectively preventing the efficient initiation of subsequent transcription rounds. Our results are consistent with the bubble extension model rather than the 5'-end invasion model or the middle insertion model. These discoveries provide valuable insights into the initiation of DSB repair on transcription templates across bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Gunhyoung Lim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungha Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kilwon Yu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl Fluoresc 2023; 12:012001. [PMID: 37726007 PMCID: PMC10570931 DOI: 10.1088/2050-6120/acfb58] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, United Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, United States of America
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ,85287, United States of America
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhishek Mazumder
- CSIR-Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Großhadernerstr. 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
23
|
Solomun T, Cordsmeier L, Hallier DC, Seitz H, Hahn MB. Interaction of a Dimeric Single-Stranded DNA-Binding Protein (G5P) with DNA Hairpins. A Molecular Beacon Study. J Phys Chem B 2023; 127:8131-8138. [PMID: 37704207 PMCID: PMC10544328 DOI: 10.1021/acs.jpcb.3c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Indexed: 09/15/2023]
Abstract
Gene-V protein (G5P/GVP) is a single-stranded (ss)DNA-binding protein (SBP) of bacteriophage f1 that is required for DNA synthesis and repair. In solution, it exists as a dimer that binds two antiparallel ssDNA strands with high affinity in a cooperative manner, forming a left-handed helical protein-DNA filament. Here, we report on fluorescence studies of the interaction of G5P with different DNA oligonucleotides having a hairpin structure (molecular beacon, MB) with a seven base-pair stem (dT24-stem7, dT18-stem7), as well as with DNA oligonucleotides (dT38, dT24) without a defined secondary structure. All oligonucleotides were end-labeled with a Cy3-fluorophore and a BHQ2-quencher. In the case of DNA oligonucleotides without a secondary structure, an almost complete quenching of their strong fluorescence (with about 5% residual intensity) was observed upon the binding of G5P. This implies an exact alignment of the ends of the DNA strand(s) in the saturated complex. The interaction of the DNA hairpins with G5P led to the unzipping of the base-paired stem, as revealed by fluorescence measurements, fluorescence microfluidic mixing experiments, and electrophoretic mobility shift assay data. Importantly, the disruption of ssDNA's secondary structure agrees with the behavior of other single-stranded DNA-binding proteins (SBPs). In addition, substantial protein-induced fluorescence enhancement (PIFE) of the Cy3-fluorescence was observed.
Collapse
Affiliation(s)
- Tihomir Solomun
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | - Leo Cordsmeier
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
- Institut
für Chemie, Freie Universität
Berlin, Berlin 14195, Germany
| | - Dorothea C. Hallier
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
- Institut
für Biochemie und Biologie, Universität
Potsdam, Potsdam 14476, Germany
- Fraunhofer
Institut für Zelltherapie und Immunologie Institutsteil Bioanalytik
und Bioprozesse IZI-BB, Potsdam 14476, Germany
| | - Harald Seitz
- Institut
für Biochemie und Biologie, Universität
Potsdam, Potsdam 14476, Germany
- Fraunhofer
Institut für Zelltherapie und Immunologie Institutsteil Bioanalytik
und Bioprozesse IZI-BB, Potsdam 14476, Germany
| | - Marc Benjamin Hahn
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| |
Collapse
|
24
|
Liao TW, Huang L, Wilson TJ, Ganser LR, Lilley DMJ, Ha T. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level. Nucleic Acids Res 2023; 51:8957-8969. [PMID: 37522343 PMCID: PMC10516623 DOI: 10.1093/nar/gkad633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Riboswitches are regulatory elements found in bacterial mRNAs that control downstream gene expression through ligand-induced conformational changes. Here, we used single-molecule FRET to map the conformational landscape of the translational SAM/SAH riboswitch and probe how co-transcriptional ligand-induced conformational changes affect its translation regulation function. Riboswitch folding is highly heterogeneous, suggesting a rugged conformational landscape that allows for sampling of the ligand-bound conformation even in the absence of ligand. The addition of ligand shifts the landscape, favoring the ligand-bound conformation. Mutation studies identified a key structural element, the pseudoknot helix, that is crucial for determining ligand-free conformations and their ligand responsiveness. We also investigated ribosomal binding site accessibility under two scenarios: pre-folding and co-transcriptional folding. The regulatory function of the SAM/SAH riboswitch involves kinetically favoring ligand binding, but co-transcriptional folding reduces this preference with a less compact initial conformation that exposes the Shine-Dalgarno sequence and takes min to redistribute to more compact conformations of the pre-folded riboswitch. Such slow equilibration decreases the effective ligand affinity. Overall, our study provides a deeper understanding of the complex folding process and how the riboswitch adapts its folding pattern in response to ligand, modulates ribosome accessibility and the role of co-transcriptional folding in these processes.
Collapse
Affiliation(s)
- Ting-Wei Liao
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Timothy J Wilson
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
25
|
Gidi Y, Robert A, Tordo A, Lovell TC, Ramos-Sanchez J, Sakaya A, Götte M, Cosa G. Binding and Sliding Dynamics of the Hepatitis C Virus Polymerase: Hunting the 3' Terminus. ACS Infect Dis 2023; 9:1488-1498. [PMID: 37436367 DOI: 10.1021/acsinfecdis.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase catalyzes the replication of the (+) single-stranded RNA genome of HCV. In vitro studies have shown that replication can be performed in the absence of a primer. However, the dynamics and mechanism by which NS5B locates the 3'-terminus of the RNA template to initiate de novo synthesis remain elusive. Here, we performed single-molecule fluorescence studies based on protein-induced fluorescence enhancement reporting on NS5B dynamics on a short model RNA substrate. Our results suggest that NS5B exists in a fully open conformation in solution wherefrom it accesses its binding site along RNA and then closes. Our results revealed two NS5B binding modes: an unstable one resulting in rapid dissociation, and a stable one characterized by a larger residence time on the substrate. We associate these bindings to an unproductive and productive orientation, respectively. Addition of extra mono (Na+)- and divalent (Mg2+) ions increases the mobility of NS5B along its RNA substrate. However, only Mg2+ ions induce a decrease in NS5B residence time. Dwell times of residence increase with the length of the single-stranded template, suggesting that NS5B unbinds its substrate by unthreading the template rather than by spontaneous opening.
Collapse
Affiliation(s)
- Yasser Gidi
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Anaïs Robert
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Alix Tordo
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Terri C Lovell
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jorge Ramos-Sanchez
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Aya Sakaya
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Applied Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
26
|
Donovan BT, Chen H, Eek P, Meng Z, Jipa C, Tan S, Bai L, Poirier MG. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol Cell 2023; 83:1251-1263.e6. [PMID: 36996811 PMCID: PMC10182836 DOI: 10.1016/j.molcel.2023.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
Nucleosomes drastically limit transcription factor (TF) occupancy, while pioneer transcription factors (PFs) somehow circumvent this nucleosome barrier. In this study, we compare nucleosome binding of two conserved S. cerevisiae basic helix-loop-helix (bHLH) TFs, Cbf1 and Pho4. A cryo-EM structure of Cbf1 in complex with the nucleosome reveals that the Cbf1 HLH region can electrostatically interact with exposed histone residues within a partially unwrapped nucleosome. Single-molecule fluorescence studies show that the Cbf1 HLH region facilitates efficient nucleosome invasion by slowing its dissociation rate relative to DNA through interactions with histones, whereas the Pho4 HLH region does not. In vivo studies show that this enhanced binding provided by the Cbf1 HLH region enables nucleosome invasion and ensuing repositioning. These structural, single-molecule, and in vivo studies reveal the mechanistic basis of dissociation rate compensation by PFs and how this translates to facilitating chromatin opening inside cells.
Collapse
Affiliation(s)
- Benjamin T Donovan
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Priit Eek
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiyuan Meng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caroline Jipa
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Michael G Poirier
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
28
|
Zamel J, Chen J, Zaer S, Harris PD, Drori P, Lebendiker M, Kalisman N, Dokholyan NV, Lerner E. Structural and dynamic insights into α-synuclein dimer conformations. Structure 2023; 31:411-423.e6. [PMID: 36809765 PMCID: PMC10081966 DOI: 10.1016/j.str.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
Parkinson disease is associated with the aggregation of the protein α-synuclein. While α-synuclein can exist in multiple oligomeric states, the dimer has been a subject of extensive debates. Here, using an array of biophysical approaches, we demonstrate that α-synuclein in vitro exhibits primarily a monomer-dimer equilibrium in nanomolar concentrations and up to a few micromolars. We then use spatial information from hetero-isotopic cross-linking mass spectrometry experiments as restrains in discrete molecular dynamics simulations to obtain the ensemble structure of dimeric species. Out of eight structural sub-populations of dimers, we identify one that is compact, stable, abundant, and exhibits partially exposed β-sheet structures. This compact dimer is the only one where the hydroxyls of tyrosine 39 are in proximity that may promote dityrosine covalent linkage upon hydroxyl radicalization, which is implicated in α-synuclein amyloid fibrils. We propose that this α-synuclein dimer features etiological relevance to Parkinson disease.
Collapse
Affiliation(s)
- Joanna Zamel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sofia Zaer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
29
|
Park J, Kang SJ, Go S, Lee J, An J, Chung HS, Jeong C, Ahn DR. Split-tracrRNA as an efficient tracrRNA system with an improved potential of scalability. Biomater Sci 2023; 11:3241-3251. [PMID: 36938935 DOI: 10.1039/d2bm01901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Due to the relatively long sequence, tracrRNAs are chemically less synthesizable than crRNAs, leading to limited scalability of RNA guides for CRISPR-Cas9 systems. To develop shortened versions of RNA guides with improved cost-effectiveness, we have developed a split-tracrRNA system by nicking the 67-mer tracrRNA (tracrRNA(67)). Cellular gene editing assays and in vitro DNA cleavage assays revealed that the position of the nick is critical for maintaining the activity of tracrRNA(67). TracrRNA(41 + 23), produced by nicking in stem loop 2, showed gene editing efficiency and specificity comparable to those of tracrRNA(67). Removal of the loop of stem loop 2 was further possible without compromising the efficiency and specificity when the stem duplex was stabilized via a high GC content. Binding assays and single-molecule experiments suggested that efficient split-tracrRNAs could be engineered as long as their binding affinity to Cas9 and their reaction kinetics are similar to those of tracrRNA(67).
Collapse
Affiliation(s)
- Jihyun Park
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Seong Jae Kang
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Seulgi Go
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,Department of Pharmacology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jeongmin Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Jinsu An
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Hak Suk Chung
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Cherlhyun Jeong
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, South Korea
| | - Dae-Ro Ahn
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea. .,Division of Biomedical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
30
|
Song E, Hwang S, Munasingha PR, Seo YS, Kang J, Kang C, Hohng S. Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination. Nucleic Acids Res 2023; 51:2778-2789. [PMID: 36762473 PMCID: PMC10085680 DOI: 10.1093/nar/gkad051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Transcriptional pause is essential for all types of termination. In this single-molecule study on bacterial Rho factor-dependent terminators, we confirm that the three Rho-dependent termination routes operate compatibly together in a single terminator, and discover that their termination efficiencies depend on the terminational pauses in unexpected ways. Evidently, the most abundant route is that Rho binds nascent RNA first and catches up with paused RNA polymerase (RNAP) and this catch-up Rho mediates simultaneous releases of transcript RNA and template DNA from RNAP. The fastest route is that the catch-up Rho effects RNA-only release and leads to 1D recycling of RNAP on DNA. The slowest route is that the RNAP-prebound stand-by Rho facilitates only the simultaneous rather than sequential releases. Among the three routes, only the stand-by Rho's termination efficiency positively correlates with pause duration, contrary to a long-standing speculation, invariably in the absence or presence of NusA/NusG factors, competitor RNAs or a crowding agent. Accordingly, the essential terminational pause does not need to be long for the catch-up Rho's terminations, and long pauses benefit only the stand-by Rho's terminations. Furthermore, the Rho-dependent termination of mgtA and ribB riboswitches is controlled mainly by modulation of the stand-by rather than catch-up termination.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungha Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Palinda Ruvan Munasingha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin Young Kang
- Correspondence may also be addressed to Jin Young Kang. Tel: +82 42 350 2831;
| | - Changwon Kang
- Correspondence may also be addressed to Changwon Kang. Tel: +82 42 350 2610;
| | - Sungchul Hohng
- To whom correspondence should be addressed. Tel: +82 2 880 6593;
| |
Collapse
|
31
|
Okafor I, Ha T. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics. J Phys Chem B 2022; 127:45-51. [PMID: 36563314 PMCID: PMC9841515 DOI: 10.1021/acs.jpcb.2c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CRISPR Cas9 is an RNA guided endonuclease that is part of a bacterial adaptive immune system. Single guide RNA (sgRNA) can be designed to target genomic DNA, making Cas9 a programmable DNA binding/cutting enzyme and allowing applications such as epigenome editing, controlling transcription, and targeted DNA insertion. Some of the main hurdles against an even wider adoption are off-target effects and variability in Cas9 editing outcomes. Most studies that aim to understand the mechanisms that underlie these two areas have focused on Cas9 DNA binding, DNA unwinding, and target cleavage. The assembly of Cas9 RNA ribonucleoprotein complex (RNP) precedes all these steps and includes sgRNA folding and Cas9 binding to sgRNA. We know from the crystal structure of the Cas9 RNP what the final sgRNA conformation is. However, the assembly dynamics has not been studied in detail and a better understanding of RNP assembly could lead to better-designed sgRNAs and better editing outcomes. To study this process, we developed a single molecule FRET assay to monitor the conformation of the sgRNA and the binding of Cas9 to sgRNA. We labeled the sgRNA with a donor fluorophore and an acceptor fluorophore such that when the sgRNA folds, there are changes in FRET efficiency. We measured sgRNA folding dynamics under different ion conditions, under various methods of folding (refolding vs vectorial), and with or without Cas9. sgRNA that closely mimics the sgRNA construct used for high resolution structural analysis of the Cas9-gRNA complex showed two main FRET states without Cas9, and Cas9 addition shifted the distribution toward the higher FRET state attributed to the properly assembled complex. Even in the absence of Cas9, folding the sgRNA vectorially using a superhelicase-dependent release of the sgRNA in the direction of transcription resulted in almost exclusively high FRET state. An addition of Cas9 during vectorial folding greatly reduced a slow-folding fraction. Our studies shed light on the heterogeneous folding dynamics of sgRNA and the impact of co-transcriptional folding and Cas9 binding in sgRNA folding. Further studies of sequence dependence may inform rational design of sgRNAs for optimal function.
Collapse
Affiliation(s)
- Ikenna
C. Okafor
- Department
of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Taekjip Ha
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States,Department
of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States,Department
of Biomedical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States,Howard
Hughes Medical Institute, Baltimore, Maryland 21205, United States,
| |
Collapse
|
32
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
33
|
Cai H, Roca J, Zhao YF, Woodson SA. Dynamic Refolding of OxyS sRNA by the Hfq RNA Chaperone. J Mol Biol 2022; 434:167776. [PMID: 35934049 PMCID: PMC10044511 DOI: 10.1016/j.jmb.2022.167776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
The Sm protein Hfq chaperones small non-coding RNAs (sRNAs) in bacteria, facilitating sRNA regulation of target mRNAs. Hfq acts in part by remodeling the sRNA and mRNA structures, yet the basis for this remodeling activity is not understood. To understand how Hfq remodels RNA, we used single-molecule Förster resonance energy transfer (smFRET) to monitor conformational changes in OxyS sRNA upon Hfq binding. The results show that E. coli Hfq first compacts OxyS, bringing its 5' and 3 ends together. Next, Hfq destabilizes an internal stem-loop in OxyS, allowing the RNA to adopt a more open conformation that is stabilized by a conserved arginine on the rim of Hfq. The frequency of transitions between compact and open conformations depend on interactions with Hfqs flexible C-terminal domain (CTD), being more rapid when the CTD is deleted, and slower when OxyS is bound to Caulobacter crescentus Hfq, which has a shorter and more stable CTD than E. coli Hfq. We propose that the CTDs gate transitions between OxyS conformations that are stabilized by interaction with one or more arginines. These results suggest a general model for how basic residues and intrinsically disordered regions of RNA chaperones act together to refold RNA.
Collapse
Affiliation(s)
- Huahuan Cai
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA; Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Jorjethe Roca
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA
| | - Yu-Fen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sarah A Woodson
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., MD 21218, USA.
| |
Collapse
|
34
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
35
|
Harris PD, Lerner E. Identification and quantification of within-burst dynamics in singly labeled single-molecule fluorescence lifetime experiments. BIOPHYSICAL REPORTS 2022; 2. [PMID: 36204594 PMCID: PMC9534301 DOI: 10.1016/j.bpr.2022.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-molecule spectroscopy has revolutionized molecular biophysics and provided means to probe how structural moieties within biomolecules spatially reorganize at different timescales. There are several single-molecule methodologies that probe local structural dynamics in the vicinity of a single dye-labeled residue, which rely on fluorescence lifetimes as readout. Nevertheless, an analytical framework to quantify dynamics in such single-molecule single dye fluorescence bursts, at timescales of microseconds to milliseconds, has not yet been demonstrated. Here, we suggest an analytical framework for identifying and quantifying within-burst lifetime-based dynamics, such as conformational dynamics recorded in single-molecule photo-isomerization-related fluorescence enhancement. After testing the capabilities of the analysis on simulations, we proceed to exhibit within-burst millisecond local structural dynamics in the unbound α-synuclein monomer. The analytical framework provided in this work paves the way for extracting a full picture of the energy landscape for the coordinate probed by fluorescence lifetime-based single-molecule measurements.
Collapse
Affiliation(s)
- Paul David Harris
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
36
|
Peter MF, Gebhardt C, Mächtel R, Muñoz GGM, Glaenzer J, Narducci A, Thomas GH, Cordes T, Hagelueken G. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. Nat Commun 2022; 13:4396. [PMID: 35906222 PMCID: PMC9338047 DOI: 10.1038/s41467-022-31945-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pulsed electron-electron double resonance spectroscopy (PELDOR/DEER) and single-molecule Förster resonance energy transfer spectroscopy (smFRET) are frequently used to determine conformational changes, structural heterogeneity, and inter probe distances in biological macromolecules. They provide qualitative information that facilitates mechanistic understanding of biochemical processes and quantitative data for structural modelling. To provide a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET, we use a library of double cysteine variants of four proteins that undergo large-scale conformational changes upon ligand binding. With either method, we use established standard experimental protocols and data analysis routines to determine inter-probe distances in the presence and absence of ligands. The results are compared to distance predictions from structural models. Despite an overall satisfying and similar distance accuracy, some inconsistencies are identified, which we attribute to the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. This large-scale cross-validation of PELDOR/DEER and smFRET highlights the strengths, weaknesses, and synergies of these two important and complementary tools in integrative structural biology.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Janin Glaenzer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, UK
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | | |
Collapse
|
37
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
38
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
39
|
Paul T, Opresko PL, Ha T, Myong S. Vectorial folding of telomere overhang promotes higher accessibility. Nucleic Acids Res 2022; 50:6271-6283. [PMID: 35687089 PMCID: PMC9226509 DOI: 10.1093/nar/gkac401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Human telomere overhang composed of tandem repeats of TTAGGG folds into G-quadruplex (G4). Unlike in an experimental setting in the test tube in which the entire length is allowed to fold at once, inside the cell, the overhang is expected to fold as it is synthesized directionally (5' to 3') and released segmentally by a specialized enzyme, the telomerase. To mimic such vectorial G4 folding process, we employed a superhelicase, Rep-X which can unwind DNA to release the TTAGGG repeats in 5' to 3' direction. We demonstrate that the folded conformation achieved by the refolding of full sequence is significantly different from that of the vectorial folding for two to eight TTAGGG repeats. Strikingly, the vectorially folded state leads to a remarkably higher accessibility to complementary C-rich strand and the telomere binding protein POT1, reflecting a less stably folded state resulting from the vectorial folding. Importantly, our study points to an inherent difference between the co-polymerizing and post-polymerized folding of telomere overhang that can impact telomere architecture and downstream processes.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA15213, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
40
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes NM, Guirao-Ortiz M, Narducci A, Smit JH, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling. Angew Chem Int Ed Engl 2022; 61:e202112959. [PMID: 35146855 PMCID: PMC9305292 DOI: 10.1002/anie.202112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Many life‐science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g., as a label for cellular compartments, super‐resolution imaging, DNA sequencing or for a specific biomedical assay. Modifications of fluorophores with the goal to alter their bioconjugation chemistry, photophysical or functional properties typically require complex synthesis schemes. We here introduce a general strategy that allows to customize these properties during biolabelling with the goal to introduce the fluorophore in the last step of biolabelling. For this, we present the design and synthesis of ‘linker’ compounds, that bridge biotarget, fluorophore and a functional moiety via well‐established labeling protocols. Linker molecules were synthesized via the Ugi four‐component reaction (Ugi‐4CR) which facilitates a modular design of linkers with diverse functional properties and bioconjugation‐ and fluorophore attachment moieties. To demonstrate the possibilities of different linkers experimentally, we characterized the ability of commercial fluorophores from the classes of cyanines, rhodamines, carbopyronines and silicon‐rhodamines to become functional labels on different biological targets in vitro and in vivo via thiol‐maleimide chemistry. With our strategy, we showed that the same commercial dye can become a photostable self‐healing dye or a sensor for bivalent ions subject to the linker used. Finally, we quantified the photophysical performance of different self‐healing linker–fluorophore conjugates and demonstrated their applications in super‐resolution imaging and single‐molecule spectroscopy.
Collapse
Affiliation(s)
- Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jens Köhler
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Nikolaos Eleftheriadis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nadia M Huisjes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Miguel Guirao-Ortiz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jochem H Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Janko Stoffels
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Hartmann Harz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Andreas Herrmann
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
41
|
Rho-dependent transcription termination proceeds via three routes. Nat Commun 2022; 13:1663. [PMID: 35351884 PMCID: PMC8964686 DOI: 10.1038/s41467-022-29321-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/09/2022] [Indexed: 01/26/2023] Open
Abstract
Rho is a general transcription termination factor in bacteria, but many aspects of its mechanism of action are unclear. Diverse models have been proposed for the initial interaction between the RNA polymerase (RNAP) and Rho (catch-up and stand-by pre-terminational models); for the terminational release of the RNA transcript (RNA shearing, RNAP hyper-translocation or displacing, and allosteric models); and for the post-terminational outcome (whether the RNAP dissociates or remains bound to the DNA). Here, we use single-molecule fluorescence assays to study those three steps in transcription termination mediated by E. coli Rho. We find that different mechanisms previously proposed for each step co-exist, but apparently occur on various timescales and tend to lead to specific outcomes. Our results indicate that three kinetically distinct routes take place: (1) the catch-up mode leads first to RNA shearing for RNAP recycling on DNA, and (2) later to RNAP displacement for decomposition of the transcriptional complex; (3) the last termination usually follows the stand-by mode with displacing for decomposing. This three-route model would help reconcile current controversies on the mechanisms. Rho is a general transcription termination factor in bacteria. Here, Song et al. use single-molecule fluorescence assays to provide evidence that Rho-mediated transcription termination can occur via three kinetically different routes.
Collapse
|
42
|
Wei S, Thakur N, Ray AP, Jin B, Obeng S, McCurdy CR, McMahon LR, Gutiérrez-de-Terán H, Eddy MT, Lamichhane R. Slow conformational dynamics of the human A 2A adenosine receptor are temporally ordered. Structure 2022; 30:329-337.e5. [PMID: 34895472 PMCID: PMC8897252 DOI: 10.1016/j.str.2021.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/26/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
A more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound A2AAR. Transitions among these states predominantly occurred in a specific order, and exchange between inactive and active-like conformations proceeded through an intermediate state. Models derived from molecular dynamics simulations with available A2AAR structures rationalized the relative fluorescence emission intensities for the highest and lowest emission states but not the transition state. This suggests that the functionally critical intermediate state required to achieve activation is not currently visualized among available A2AAR structures.
Collapse
Affiliation(s)
- Shushu Wei
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA
| | - Naveen Thakur
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Arka P Ray
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Beining Jin
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, B.M.C., Box 596, Uppsala 751 24, Sweden
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, 126 Sisler Hall, Gainesville, FL 32611, USA.
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, College of Arts and Sciences, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37932, USA.
| |
Collapse
|
43
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes N, Guirao M, Narducci A, Smit J, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Bio‐labeling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jens Köhler
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemie GERMANY
| | | | - Nadia Huisjes
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Miguel Guirao
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jochem Smit
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Janko Stoffels
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Hartmann Harz
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Andreas Herrmann
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Thorben Cordes
- Ludwig-Maximilians-Universitat Munchen Faculty of Biology Großhadernerstr. 2-4 82152 Planegg-Martiensried GERMANY
| |
Collapse
|
44
|
Ha T, Kaiser C, Myong S, Wu B, Xiao J. Next generation single-molecule techniques: Imaging, labeling, and manipulation in vitro and in cellulo. Mol Cell 2022; 82:304-314. [PMID: 35063098 PMCID: PMC12104962 DOI: 10.1016/j.molcel.2021.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Christian Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Yadav R, Widom JR, Chauvier A, Walter NG. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat Commun 2022; 13:207. [PMID: 35017489 PMCID: PMC8752731 DOI: 10.1038/s41467-021-27827-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
The archetypical transcriptional crcB fluoride riboswitch from Bacillus cereus is an intricately structured non-coding RNA element enhancing gene expression in response to toxic levels of fluoride. Here, we used single molecule FRET to uncover three dynamically interconverting conformations appearing along the transcription process: two distinct undocked states and one pseudoknotted docked state. We find that the fluoride anion specifically snap-locks the magnesium-induced, dynamically docked state. The long-range, nesting, single base pair A40-U48 acts as the main linchpin, rather than the multiple base pairs comprising the pseudoknot. We observe that the proximally paused RNA polymerase further fine-tunes the free energy to promote riboswitch docking. Finally, we show that fluoride binding at short transcript lengths is an early step toward partitioning folding into the docked conformation. These results reveal how the anionic fluoride ion cooperates with the magnesium-associated RNA to govern regulation of downstream genes needed for fluoride detoxification of the cell.
Collapse
Affiliation(s)
- Rajeev Yadav
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
46
|
Kaur H, Nguyen K, Kumar P. Pressure and temperature dependence of fluorescence anisotropy of green fluorescent protein. RSC Adv 2022; 12:8647-8655. [PMID: 35424839 PMCID: PMC8984833 DOI: 10.1039/d1ra08977c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
We have studied the effect of high hydrostatic pressure and temperature on the steady state fluorescence anisotropy of Green Fluorescent Protein (GFP). We find that the fluorescence anisotropy of GFP at a constant temperature decreases with increasing pressure. At atmospheric pressure, anisotropy decreases with increasing temperature but exhibits a maximum with temperature for pressure larger than 20 MPa. The temperature corresponding to the maximum of anisotropy increases with increasing pressure. By taking into account of the rotational correlation time changes of GFP with the pressure–temperature dependent viscosity of the solvent, we argue that viscosity increase with pressure is not a major contributing factor to the decrease in anisotropy with pressure. The decrease of anisotropy with pressure may result from changes in H-bonding environment around the chromophore. Effect of high hydrostatic pressure and temperature on the steady state fluorescence anisotropy of Green Fluorescent Protein (GFP).![]()
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physics, University of Arkansas, Fayetteville, AR, USA
| | - Khanh Nguyen
- Department of Physics, University of Arkansas, Fayetteville, AR, USA
| | - Pradeep Kumar
- Department of Physics, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
47
|
Eiring P, McLaughlin R, Matikonda SS, Han Z, Grabenhorst L, Helmerich DA, Meub M, Beliu G, Luciano M, Bandi V, Zijlstra N, Shi ZD, Tarasov SG, Swenson R, Tinnefeld P, Glembockyte V, Cordes T, Sauer M, Schnermann MJ. Targetable Conformationally Restricted Cyanines Enable Photon-Count-Limited Applications*. Angew Chem Int Ed Engl 2021; 60:26685-26693. [PMID: 34606673 PMCID: PMC8649030 DOI: 10.1002/anie.202109749] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Cyanine dyes are exceptionally useful probes for a range of fluorescence-based applications, but their photon output can be limited by trans-to-cis photoisomerization. We recently demonstrated that appending a ring system to the pentamethine cyanine ring system improves the quantum yield and extends the fluorescence lifetime. Here, we report an optimized synthesis of persulfonated variants that enable efficient labeling of nucleic acids and proteins. We demonstrate that a bifunctional sulfonated tertiary amide significantly improves the optical properties of the resulting bioconjugates. These new conformationally restricted cyanines are compared to the parent cyanine derivatives in a range of contexts. These include their use in the plasmonic hotspot of a DNA-nanoantenna, in single-molecule Förster-resonance energy transfer (FRET) applications, far-red fluorescence-lifetime imaging microscopy (FLIM), and single-molecule localization microscopy (SMLM). These efforts define contexts in which eliminating cyanine isomerization provides meaningful benefits to imaging performance.
Collapse
Affiliation(s)
- Patrick Eiring
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ryan McLaughlin
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Siddharth S Matikonda
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zhongying Han
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Luciano
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Venu Bandi
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, 20850, USA
| | - Sergey G Tarasov
- Biophysics Resource in the Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Rolf Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD, 20850, USA
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin J Schnermann
- Laboratory of Chemical Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| |
Collapse
|
48
|
Gupta S, Friedman LJ, Gelles J, Bell SP. A helicase-tethered ORC flip enables bidirectional helicase loading. eLife 2021; 10:74282. [PMID: 34882090 PMCID: PMC8828053 DOI: 10.7554/elife.74282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Replication origins are licensed by loading two Mcm2‑7 helicases around DNA in a head-to-head conformation poised to initiate bidirectional replication. This process requires ORC, Cdc6, and Cdt1. Although different Cdc6 and Cdt1 molecules load each helicase, whether two ORC proteins are required is unclear. Using colocalization single-molecule spectroscopy combined with FRET, we investigated interactions between ORC and Mcm2‑7 during helicase loading. In the large majority of events, we observed a single ORC molecule recruiting both Mcm2‑7/Cdt1 complexes via similar interactions that end upon Cdt1 release. Between first and second helicase recruitment, a rapid change in interactions between ORC and the first Mcm2-7 occurs. Within seconds, ORC breaks the interactions mediating first Mcm2-7 recruitment, releases from its initial DNA-binding site, and forms a new interaction with the opposite face of the first Mcm2-7. This rearrangement requires release of the first Cdt1 and tethers ORC as it flips over the first Mcm2-7 to form an inverted Mcm2‑7-ORC-DNA complex required for second-helicase recruitment. To ensure correct licensing, this complex is maintained until head-to-head interactions between the two helicases are formed. Our findings reconcile previous observations and reveal a highly-coordinated series of events through which a single ORC molecule can load two oppositely-oriented helicases.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
49
|
Paul T, Liou W, Cai X, Opresko PL, Myong S. TRF2 promotes dynamic and stepwise looping of POT1 bound telomeric overhang. Nucleic Acids Res 2021; 49:12377-12393. [PMID: 34850123 PMCID: PMC8643667 DOI: 10.1093/nar/gkab1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Liou
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyi Cai
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Suite 2.6a, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
50
|
Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc Natl Acad Sci U S A 2021; 118:2109026118. [PMID: 34782462 DOI: 10.1073/pnas.2109026118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F-)-sensing riboswitch is a transcriptional control element essential to defend against toxic F- levels. Using this model riboswitch, we find that its ligand F- and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other's modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.
Collapse
|