1
|
Wang L, Feng Y, Chen Y, Zhang T, Zeng H, Zhang H, Liu H, Wang X, Zaman QU, Sultan K, Zakria M, Fahad S, Chen S, Deng G. Synergistic Bio-Organic Fertilization Enhances Tobacco Antioxidative Defense and Soil Health for Sustainable Agriculture. ACS OMEGA 2025; 10:20001-20014. [PMID: 40415794 PMCID: PMC12096250 DOI: 10.1021/acsomega.5c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
The extensive use of chemical/inorganic fertilizer application over the past few decades has significantly enhanced global food production potentials. However, the excessive application of these fertilizers has resulted in environmental issues, soil nutrient imbalances, and poor quality of food. The study aimed to evaluate the impact of various blends of bio-organic fertilizer, farm manure, and compound fertilizer on soil health, focusing on soil nutrient content, soil enzymatic parameters, physio-biochemical attributes, and quality traits of tobacco. The experimental treatments incorporated different combinations of conventional compound fertilizer with organic and bio-organic fertilizers. The findings revealed that the application of these bio-organic fertilizers with various combinations to the soil significantly improved tobacco growth, photosynthetic traits, antioxidant enzyme activity, and soil enzymatic activities. These amendments significantly improved the tobacco leaf quality by limiting the proline accumulation (62.17 and 77.31%) and malondialdehyde content (35.33 and 41.91%) at the reefing and flowering stages, respectively. Soil treated with a combination of bio-organic fertilizer, farm manure, and compound fertilizer (B4) showed an increased soil enzyme activities with acid phosphatase improving by 19.91%, urease by 40.00%, and catalase activity by 7.41%, which results in enhanced soil nutrient status compared with other treatments. Based on these findings, it can be concluded that combined application of organic amendments resulted in better growth, improved antioxidative defense system, and improved quality of tobacco by reducing the use of compound fertilizer (10%) and activating soil enzymatic attributes, thereby boosting the tobacco productivity in agricultural systems.
Collapse
Affiliation(s)
- Liang Wang
- School of
Agriculture, Yunnan University, Kunming650504, PR China
- China RongTong
Agricultural Development Group Corporation Limited, Beijing100020, PR China
| | - Youhong Feng
- School of
Agriculture, Yunnan University, Kunming650504, PR China
| | - Yaqiong Chen
- Kunming
Branch of Yunnan Tobacco Company, Kunming650051, PR China
| | - Tingjin Zhang
- Kunming
Cuntu Agriculture Technology Co., Ltd., Kunming650032, PR China
| | - Hao Zeng
- Kunming
Branch of Yunnan Tobacco Company, Kunming650051, PR China
| | - Haiping Zhang
- Kunming
Branch of Yunnan Tobacco Company, Kunming650051, PR China
| | - Hao Liu
- School of
Agriculture, Yunnan University, Kunming650504, PR China
| | - Xinghong Wang
- School of
Ecology and Environmental Sciences, Biocontrol Engineering Research
Center of Crop Diseases & Pests, Yunnan
University, Kunming, Yunnan Province650500, PR China
| | - Qamar uz Zaman
- School of
Agriculture, Yunnan University, Kunming650504, PR China
- Department
of Environmental Sciences, The University
of Lahore, Lahore54590, Pakistan
| | - Khawar Sultan
- Department
of Environmental Sciences, The University
of Lahore, Lahore54590, Pakistan
| | - Muhammad Zakria
- Department
Computer Science, Post Graduated College
Dargai Malakand, Dargai, Khyber Pakhtunkhwa23060, Pakistan
| | - Shah Fahad
- Department
of Agronomy, Abdul Wali Khan University
Mardan, Mardan, Khyber Pakhtunkhwa23200, Pakistan
| | - Suiyun Chen
- School of
Ecology and Environmental Sciences, Biocontrol Engineering Research
Center of Crop Diseases & Pests, Yunnan
University, Kunming, Yunnan Province650500, PR China
| | - Gang Deng
- School of
Agriculture, Yunnan University, Kunming650504, PR China
| |
Collapse
|
2
|
Tong Y, Xue J, Li Q, Zhang L. A generalist regulator: MYB transcription factors regulate the biosynthesis of active compounds in medicinal plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4729-4744. [PMID: 38767602 DOI: 10.1093/jxb/erae225] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Medicinal plants are rich in a variety of secondary metabolites with therapeutic value. However, the yields of these metabolites are generally very low, making their extraction both time-consuming and labour-intensive. Transcription factor-targeted secondary metabolic engineering can efficiently regulate the biosynthesis and accumulation of secondary metabolites in medicinal plants. v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors are involved in regulating various morphological and developmental processes, responses to stress, and the biosynthesis of secondary metabolites in plants. This review discusses the biological functions and transcription regulation mechanisms of MYB transcription factors and summarizes research progress concerning MYB transcription factors involved in the biosynthesis of representative active components. In the transcriptional regulatory network, MYB transcription factors regulate multiple synthase genes to mediate the biosynthesis of active compounds. This work will serve as a reference for an in-depth analysis of the MYB transcription factor family in medicinal plants.
Collapse
Affiliation(s)
- Yuqing Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jianping Xue
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Jing T, Du W, Qian X, Wang K, Luo L, Zhang X, Deng Y, Li B, Gao T, Zhang M, Guo D, Jiang H, Liu Y, Schwab W, Sun X, Song C. UGT89AC1-mediated quercetin glucosylation is induced upon herbivore damage and enhances Camellia sinensis resistance to insect feeding. PLANT, CELL & ENVIRONMENT 2024; 47:682-697. [PMID: 37882446 DOI: 10.1111/pce.14751] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.
Collapse
Affiliation(s)
- Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaona Qian
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Kai Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Lanxin Luo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueying Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Yanni Deng
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Bo Li
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Mengting Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Hao Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Yuantao Liu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
4
|
Kaminski KP, Bovet L, Hilfiker A, Laparra H, Schwaar J, Sierro N, Lang G, De Palo D, Guy PA, Laszlo C, Goepfert S, Ivanov NV. Suppression of pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine in leaves of tobacco (N. tabacum L.). BMC Genomics 2023; 24:516. [PMID: 37667170 PMCID: PMC10476381 DOI: 10.1186/s12864-023-09588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Anatabine, although being one of four major tobacco alkaloids, is never accumulated in high quantity in any of the naturally occurring species from the Nicotiana genus. Previous studies therefore focused on transgenic approaches to synthetize anatabine, most notably by generating transgenic lines with suppressed putrescine methyltransferase (PMT) activity. This led to promising results, but the global gene expression of plants with such distinct metabolism has not been analyzed. In the current study, we describe how these plants respond to topping and the downstream effects on alkaloid biosynthesis. RESULTS The surge in anatabine accumulation in PMT transgenic lines after topping treatment and its effects on gene expression changes were analyzed. The results revealed increases in expression of isoflavone reductase-like (A622) and berberine bridge-like enzymes (BBLs) oxidoreductase genes, previously shown to be crucial for the final steps of nicotine biosynthesis. We also observed significantly higher methylputrescine oxidase (MPO) expression in all plants subjected to topping treatment. In order to investigate if MPO suppression would have the same effects as that of PMT, we generated transgenic plants. These plants with suppressed MPO expression showed an almost complete drop in leaf nicotine content, whereas leaf anatabine was observed to increase by a factor of ~ 1.6X. CONCLUSION Our results are the first concrete evidence that suppression of MPO leads to decreased nicotine in favor of anatabine in tobacco roots and that this anatabine is successfully transported to tobacco leaves. Alkaloid transport in plants remains to be investigated to higher detail due to high variation of its efficiency among Nicotiana species and varieties of tobacco. Our research adds important step to better understand pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine.
Collapse
Affiliation(s)
- Kacper Piotr Kaminski
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Lucien Bovet
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Aurore Hilfiker
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Helene Laparra
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Joanne Schwaar
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Gerhard Lang
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Damien De Palo
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Philippe Alexandre Guy
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Csaba Laszlo
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Simon Goepfert
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
5
|
Shahhoseini R, Daneshvar H. Phytochemical and physiological reactions of feverfew (Tanacetum parthenium (L.) Schultz Bip) to TiO 2 nanoparticles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:674-684. [PMID: 36563573 DOI: 10.1016/j.plaphy.2022.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/17/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials can be used as elicitors for improving the biosynthesis of secondary metabolites in medicinal plants. The present study was conducted to assay the titanium dioxide-nanoparticles (TiO2-NPs) effects on feverfew (Tanacetum parthenium) as an anti-cancer plant. The study showed that TiO2-NPs application increased the amounts of the main compounds and oxygenated monoterpene in essential oils, thereby causing an improvement in the quantity and quality of the essential oils compared to control. The highest effect was related to 1500 ppm TiO2-NPs concentration. Regarding parthenolide, TiO2-NPs had no positive effect on parthenolide content and the highest content was observed in control. Increasing the concentrations over 1500 ppm resulted in a decrease in chlorophyll content, capitule diameter, flower yield, and harvest index compared to other concentrations and control. Additionally, the results indicated that TiO2-NPs foliar spray reduced flower number, biological yield, fresh weight, and dry weights compared with untreated plants. The increase in quality and content of essential oil and lack of increase in parthenolide content, and reproductive and vegetative characteristics showed that TiO2-NPs mainly affected the content and composition of essential oil. Totally, the application of TiO2-NPs in terms of positive effect on the yield and metabolites (without damaging biological effects) can be recommended and followed up to the concentration of 1000 ppm. Overall, the results indicated that improving the synthesis of valuable medicinal metabolites using TiO2-NPs has promising results depending on the type of species, concentration used and target metabolites.
Collapse
Affiliation(s)
- Reza Shahhoseini
- Department of Medicinal Plants, Arak University, 38156-8-8349, Arak, Iran.
| | - Hadiseh Daneshvar
- Department of Horticultural Sciences, University of Tehran, Karaj, Iran
| |
Collapse
|
6
|
Wang W, Zhang J, Cao Y, Yang X, Wang F, Yang J, Wang X. NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to Phytophthora nicotianae. FRONTIERS IN PLANT SCIENCE 2022; 13:1073856. [PMID: 36561439 PMCID: PMC9764443 DOI: 10.3389/fpls.2022.1073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it's negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.
Collapse
Affiliation(s)
- Wenjing Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianhui Zhang
- Sichuan Tobacco Science Research Institute, Chengdu, China
| | - Yi Cao
- Academy of Guizhou Tobacco Sciences, Guiyang, China
| | - Xingyou Yang
- Sichuan Tobacco Science Research Institute, Chengdu, China
| | - Fenglong Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jinguang Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoqiang Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
7
|
Manz C, Raorane ML, Maisch J, Nick P. Switching cell fate by the actin-auxin oscillator in Taxus: cellular aspects of plant cell fermentation. PLANT CELL REPORTS 2022; 41:2363-2378. [PMID: 36214871 PMCID: PMC9700576 DOI: 10.1007/s00299-022-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Paclitaxel synthesis in Taxus cells correlates with a cell-fate switch that leads to vacuoles of a glossy appearance and vermiform mitochondria. This switch depends on actin and apoplastic respiratory burst. Plant cell fermentation, the production of valuable products in plant cell culture, has great potential as sustainable alternative to the exploitation of natural resources for compounds of pharmaceutical interest. However, the success of this approach has remained limited, because the cellular aspects of metabolic competence are mostly unknown. The production of the anti-cancer alkaloid Paclitaxel has been, so far, the most successful case for this approach. In the current work, we map cellular aspects of alkaloid synthesis in cells of Taxus chinensis using a combination of live-cell imaging, quantitative physiology, and metabolite analysis. We show evidence that metabolic potency correlates with a differentiation event giving rise to cells with large vacuoles with a tonoplast that is of a glossy appearance, agglomerations of lipophilic compounds, and multivesicular bodies that fuse with the plasma membrane. Cellular features of these glossy cells are bundled actin, more numerous peroxisomes, and vermiform mitochondria. The incidence of glossy cells can be increased by aluminium ions, and this increase is significantly reduced by the actin inhibitor Latrunculin B, and by diphenylene iodonium, a specific inhibitor of the NADPH oxidase Respiratory burst oxidase Homologue (RboH). It is also reduced by the artificial auxin Picloram. This cellular fingerprint matches the implications of a model, where the differentiation into the glossy cell type is regulated by the actin-auxin oscillator that in plant cells acts as dynamic switch between growth and defence.
Collapse
Affiliation(s)
- Christina Manz
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Manish L Raorane
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Jan Maisch
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
8
|
Sah SK, Jumaa S, Li J, Reddy KR. Proteomic analysis response of rice ( Oryza sativa) leaves to ultraviolet-B radiation stress. FRONTIERS IN PLANT SCIENCE 2022; 13:871331. [PMID: 36212327 PMCID: PMC9536139 DOI: 10.3389/fpls.2022.871331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa) is a human staple food and serves as a model organism for genetic and molecular studies. Few studies have been conducted to determine the effects of ultraviolet-B (UV-B) stress on rice. UV-B stress triggers morphological and physiological changes in plants. However, the underlying mechanisms governing these integrated responses are unknown. In this study, we conducted a proteomic response of rice leaves to UV-B stress using two-dimensional gel electrophoresis and identified the selected proteins by mass spectrometry analysis. Four levels of daily biologically effective UV-B radiation intensities were imposed to determine changes in protein accumulation in response to UV-B stress: 0 (control), 5, 10, and 15 kJ m-2 d-1in two cultivars, i.e., IR6 and REX. To mimic the natural environment, we conducted this experiment in Sunlit Soil-Plant-Atmosphere-Research (SPAR) chambers. Among the identified proteins, 11% of differentially expressed proteins were found in both cultivars. In the Rex cultivar, only 45% of proteins are differentially expressed, while only 27.5% were expressed in IR6. The results indicate that REX is more affected by UV-B stress than IR6 cultivars. The identified protein TSJT1 (spot 16) in both cultivars plays a crucial role in plant growth and development during stress treatment. Additionally, we found that UV-B stress altered many antioxidant enzymes associated with redox homeostasis and cell defense response. Another enzyme, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has been identified as spot 15, which plays an essential role in glycolysis and cellular energy production. Another vital protein identified is glycosyl hydrolase (GH) as spot 9, which catalyzes the hydrolysis of glycosidic bonds in cell wall polymers and significantly affects cell wall architecture. Some identified proteins are related to photosynthesis, protein biosynthesis, signal transduction, and stress response. The findings of our study provide new insights into understanding how rice plants are tailored to UV-B stress via modulating the expression of UV-B responsive proteins, which will help develop superior rice breeds in the future to combat UV-B stress. Data are available via ProteomeXchange with identifier PXD032163.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, United States
| | - Salah Jumaa
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, United States
| | - K. Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
9
|
Luo Z, Zhou Z, Li Y, Tao S, Hu ZR, Yang JS, Cheng X, Hu R, Zhang W. Transcriptome-based gene regulatory network analyses of differential cold tolerance of two tobacco cultivars. BMC PLANT BIOLOGY 2022; 22:369. [PMID: 35879667 PMCID: PMC9316383 DOI: 10.1186/s12870-022-03767-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 07/20/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cold is one of the main abiotic stresses that severely affect plant growth and development, and crop productivity as well. Transcriptional changes during cold stress have already been intensively studied in various plant species. However, the gene networks involved in the regulation of differential cold tolerance between tobacco varieties with contrasting cold resistance are quite limited. RESULTS Here, we conducted multiple time-point transcriptomic analyses using Tai tobacco (TT, cold susceptibility) and Yan tobacco (YT, cold resistance) with contrasting cold responses. We identified similar DEGs in both cultivars after comparing with the corresponding control (without cold treatment), which were mainly involved in response to abiotic stimuli, metabolic processes, kinase activities. Through comparison of the two cultivars at each time point, in contrast to TT, YT had higher expression levels of the genes responsible for environmental stresses. By applying Weighted Gene Co-Expression Network Analysis (WGCNA), we identified two main modules: the pink module was similar while the brown module was distinct between the two cultivars. Moreover, we obtained 100 hub genes, including 11 important transcription factors (TFs) potentially involved in cold stress, 3 key TFs in the brown module and 8 key TFs in the pink module. More importantly, according to the genetic regulatory networks (GRNs) between TFs and other genes or TFs by using GENIE3, we identified 3 TFs (ABI3/VP1, ARR-B and WRKY) mainly functioning in differential cold responses between two cultivars, and 3 key TFs (GRAS, AP2-EREBP and C2H2) primarily involved in cold responses. CONCLUSION Collectively, our study provides valuable resources for transcriptome- based gene network studies of cold responses in tobacco. It helps to reveal how key cold responsive TFs or other genes are regulated through network. It also helps to identify the potential key cold responsive genes for the genetic manipulation of tobacco cultivars with enhanced cold tolerance in the future.
Collapse
Affiliation(s)
- Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zhicheng Zhou
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Shentong Tao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Zheng-Rong Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Jia-Shuo Yang
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, 410128, Hunan, China.
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
10
|
Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, Ishida J, Tanaka M, Endo TA, Bhat P, Devlin PF, Seki M, Devoto A. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biol 2022; 20:83. [PMID: 35399062 PMCID: PMC8996529 DOI: 10.1186/s12915-022-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3). However, the genome-wide effect of HDA6 on H4Ac and much of the impact of JAs on histone modifications and chromatin remodelling remain elusive. RESULTS We performed high-throughput ChIP-Seq on the HDA6 mutant, axe1-5, and wild-type plants with or without methyl jasmonate (MeJA) treatment to assess changes in active H4ac and repressive H3K27me3 histone markers. Transcriptional regulation was investigated in parallel by microarray analysis in the same conditions. MeJA- and HDA6-dependent histone modifications on genes for specialized metabolism; linolenic acid and phenylpropanoid pathways; and abiotic and biotic stress responses were identified. H4ac and H3K27me3 enrichment also differentially affects JAs and HDA6-mediated genome integrity and gene regulatory networks, substantiating the role of HDA6 interacting with specific families of transposable elements in planta and highlighting further specificity of action as well as novel targets of HDA6 in the context of JA signalling for abiotic and biotic stress responses. CONCLUSIONS The findings demonstrate functional overlap for MeJA and HDA6 in tuning plant developmental plasticity and response to stress at the histone modification level. MeJA and HDA6, nonetheless, maintain distinct activities on histone modifications to modulate genetic variability and to allow adaptation to environmental challenges.
Collapse
Affiliation(s)
- Stacey A Vincent
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Jong-Myong Kim
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Ac-Planta Inc., 2-16-9 Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Taiko Kim To
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Department of Biological Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chieko Torii
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaho A Endo
- Bioinformatics and Systems Engineering Division, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Present address: Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Prajwal Bhat
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Paul F Devlin
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
11
|
Bansal J, Gupta K, Rajkumar MS, Garg R, Jain M. Draft genome and transcriptome analyses of halophyte rice Oryza coarctata provide resources for salinity and submergence stress response factors. PHYSIOLOGIA PLANTARUM 2021; 173:1309-1322. [PMID: 33215706 DOI: 10.1111/ppl.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 05/24/2023]
Abstract
Oryza coarctata is a wild relative of rice that has adapted to diverse ecological environments, including high salinity and submergence. Thus, it can provide an important resource for discovering candidate genes/factors involved in tolerance to these stresses. Here, we report a draft genome assembly of 573 Mb comprised of 8877 scaffolds with N50 length of 205 kb. We predicted a total of 50,562 protein-coding genes, of which a significant fraction was found to be involved in secondary metabolite biosynthesis and hormone signal transduction pathways. Several salinity and submergence stress-responsive protein-coding and long noncoding RNAs involved in diverse biological processes were identified using RNA-sequencing data. Based on small RNA sequencing, we identified 168 unique miRNAs and 3219 target transcripts (coding and noncoding) involved in several biological processes, including abiotic stress responses. Further, whole genome bisulphite sequencing data analysis revealed at least 19%-48% methylcytosines in different sequence contexts and the influence of methylation status on gene expression. The genome assembly along with other datasets have been made publicly available at http://ccbb.jnu.ac.in/ory-coar. Altogether, we provide a comprehensive genomic resource for understanding the regulation of salinity and submergence stress responses and identification of candidate genes/factors involved for functional genomics studies.
Collapse
Affiliation(s)
- Juhi Bansal
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khushboo Gupta
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Noida, India
| | - Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Noida, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Yamada Y, Sato F. Transcription Factors in Alkaloid Engineering. Biomolecules 2021; 11:1719. [PMID: 34827717 PMCID: PMC8615522 DOI: 10.3390/biom11111719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix-loop-helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
13
|
Emerging roles of NAC transcription factor in medicinal plants: progress and prospects. 3 Biotech 2021; 11:425. [PMID: 34567930 DOI: 10.1007/s13205-021-02970-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Transcriptional factors act as mediators in regulating stress response in plants from signal perception to processing the directed gene expression. WRKY, MYB, AP2/ERF, etc. are some of the major families of transcription factors known to mediate stress mechanisms in plants by regulating the production of secondary metabolites. NAC domain-containing proteins are among these large transcription factors families in plants. These proteins play impulsive roles in plant growth, development, and various abiotic as well as biotic stresses. They are involved in regulating the different signaling pathways of plant hormones that direct a plant's immunity against pathogens, thereby affecting their immune responses. However, their role in stress regulation or defence mechanism in plants through the secondary metabolite biosynthesis pathway is studied for very few cases. Emerging concern over the requirement of medicinal plants for the production of biocompatible drugs and antibiotics, the study of these vast, affecting proteins should be focused to improve their qualitative and quantitative production further. In medicinal plants, phytochemicals and secondary metabolites are the major biochemicals that impose antimicrobial and other medicinal properties in these plants. This review compiles the NAC transcription factors reported in selected medicinal plants and their possible roles in different mechanisms. Further, the comprehensive understanding of the molecular mechanism, genetic engineering, and regulation responses of NAC TFs in medicinal plants, can lead to improvement in stress response, immunity, and production of usable secondary metabolites.
Collapse
|
14
|
Hussain N, Chanda R, Abir RA, Mou MA, Hasan MK, Ashraf MA. MPDB 2.0: a large scale and integrated medicinal plant database of Bangladesh. BMC Res Notes 2021; 14:301. [PMID: 34362451 PMCID: PMC8344187 DOI: 10.1186/s13104-021-05721-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Objective MPDB 2.0 is built to be the continuation of MPDB 1.0, to serve as a more comprehensive data repertoire for Bangladeshi medicinal plants, and to provide a user-friendly interface for researchers, health practitioners, drug developers, and students who wish to study the various medicinal & nutritive plants scattered around Bangladesh and the underlying phytochemicals contributing to their efficacy in Bangladeshi folk medicine. Results MPDB 2.0 database (https://www.medicinalplantbd.com/) comprises a collection of more than five hundred Bangladeshi medicinal plants, alongside a record of their corresponding scientific, family, and local names together with their utilized parts, information regarding ailments, active compounds, and PubMed ID of related publications. While medicinal plants are not limited to the borders of any country, Bangladesh and its Southeast Asian neighbors do boast a huge collection of potent medicinal plants with considerable folk-medicinal history compared to most other countries in the world. Development of MPDB 2.0 has been highly focused upon human diseases, albeit many of the plants indexed here can serve in developing biofuel (e.g.: Jatropha curcas used in biofuel) or bioremediation technologies (e.g.: Amaranthus cruentus helps to reduce cadmium level in soil) or nutritive diets (Terminalia chebula can be used in nutritive diets) or cosmetics (Aloe vera used in cosmetics), etc.
Collapse
Affiliation(s)
- Nazmul Hussain
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University of Bangladesh, Gazipur, 1704, Bangladesh
| | - Rony Chanda
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University of Bangladesh, Gazipur, 1704, Bangladesh
| | | | | | - Md Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University of Bangladesh, Gazipur, 1704, Bangladesh.
| | - M Arif Ashraf
- Biology department, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
15
|
Wang J, Zhang Q, You X, Hou X. Transcriptome and Small RNA Combined Sequencing Analysis of Cold Tolerance in Non-heading Chinese Cabbage. Front Genet 2021; 12:605292. [PMID: 34367230 PMCID: PMC8334874 DOI: 10.3389/fgene.2021.605292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Non-heading Chinese cabbage (Brassica rapa ssp. chinensis) is an important leaf vegetable grown worldwide. However, there has currently been not enough transcriptome and small RNA combined sequencing analysis of cold tolerance, which hinders further functional genomics research. Results In this study, 63.43 Gb of clean data was obtained from the transcriptome analysis. The clean data of each sample reached 6.99 Gb, and the basic percentage of Q30 was 93.68% and above. The clean reads of each sample were sequence aligned with the designated reference genome (Brassica rapa, IVFCAASv1), and the efficiency of the alignment varied from 81.54 to 87.24%. According to the comparison results, 1,860 new genes were discovered in Pak-choi, of which 1,613 were functionally annotated. Among them, 13 common differentially expressed genes were detected in all materials, including seven upregulated and six downregulated. At the same time, we used quantitative real-time PCR to confirm the changes of these gene expression levels. In addition, we sequenced miRNA of the same material. Our findings revealed a total of 34,182,333 small RNA reads, 88,604,604 kinds of small RNAs, among which the most common size was 24 nt. In all materials, the number of common differential miRNAs is eight. According to the corresponding relationship between miRNA and its target genes, we carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the set of target genes on each group of differentially expressed miRNAs. Through the analysis, it is found that the distributions of candidate target genes in different materials are different. We not only used transcriptome sequencing and small RNA sequencing but also used experiments to prove the expression levels of differentially expressed genes that were obtained by sequencing. Sequencing combined with experiments proved the mechanism of some differential gene expression levels after low-temperature treatment. Conclusion In all, this study provides a resource for genetic and genomic research under abiotic stress in Pak-choi.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qinxue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Yamada Y, Nishida S, Shitan N, Sato F. Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy ( Eschscholzia californica). FRONTIERS IN PLANT SCIENCE 2021; 12:699326. [PMID: 34220919 PMCID: PMC8248504 DOI: 10.3389/fpls.2021.699326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Transcription factors of the WRKY family play pivotal roles in plant defense responses, including the biosynthesis of specialized metabolites. Based on the previous findings of WRKY proteins regulating benzylisoquinoline alkaloid (BIA) biosynthesis, such as CjWRKY1-a regulator of berberine biosynthesis in Coptis japonica-and PsWRKY1-a regulator of morphine biosynthesis in Papaver somniferum-we performed genome-wide characterization of the WRKY gene family in Eschscholzia californica (California poppy), which produces various BIAs. Fifty WRKY genes were identified by homology search and classified into three groups based on phylogenetic, gene structure, and conserved motif analyses. RNA sequencing showed that several EcWRKY genes transiently responded to methyl jasmonate, a known alkaloid inducer, and the expression patterns of these EcWRKY genes were rather similar to those of BIA biosynthetic enzyme genes. Furthermore, tissue expression profiling suggested the involvement of a few subgroup IIc EcWRKYs in the regulation of BIA biosynthesis. Transactivation analysis using luciferase reporter genes harboring the promoters of biosynthetic enzyme genes indicated little activity of subgroup IIc EcWRKYs, suggesting that the transcriptional network of BIA biosynthesis constitutes multiple members. Finally, we investigated the coexpression patterns of EcWRKYs with some transporter genes and discussed the diversified functions of WRKY genes based on a previous finding that CjWRKY1 overexpression in California poppy cells enhanced BIA secretion into the medium.
Collapse
Affiliation(s)
- Yasuyuki Yamada
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Shohei Nishida
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobukazu Shitan
- Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical University, Kobe, Japan
| | - Fumihiko Sato
- Department of Plant Gene and Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
17
|
Ranjith GP, Jisha S, Hemanthakumar AS, Saji CV, Shenoi RA, Sabu KK. Impact of potential stimulants on asiaticoside and madecassoside levels and expression of triterpenoid-related genes in axenic shoot cultures of Centella asiatica (L.) Urb. PHYTOCHEMISTRY 2021; 186:112735. [PMID: 33839454 DOI: 10.1016/j.phytochem.2021.112735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The triterpenoid saponins, asiaticoside and madecassoside from Centella asiatica (L.) Urb. are known to have a wide range of applications in pharmaceutical and cosmetic industries. The effect of addition of Potential Metabolite Stimulants (PMSs) - casein acid hydrolysate, meat peptone, salicylic acid, copper sulphate, and silver nitrate, on the concentrations of these saponins and transcript levels of associated genes encoding important biosynthetic enzymes, was assessed in axenic shoot cultures of C. asiatica. Among the stimulants, silver nitrate induced asiaticoside content approximately 6-fold increase in madecassoside levels, after three weeks post-treatment with a decrease in biomass compared to its control. Gene expression analysis of essential genes involved in triterpenoid synthesis such as β-amyrin synthase showed an upregulation of approximately 50-fold at the third week of silver nitrate treatment compared to control. These findings suggest that silver nitrate can act as a metabolite stimulant, to enhance the formation of triterpenoids in axenic shoot culture of C. asiatica, which could be utilized in studying the regulation of terpenoid biosynthesis and biotechnological application for the increased production of these bioactive molecules.
Collapse
Affiliation(s)
- Gouri Priya Ranjith
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - S Jisha
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - Achutan Sudarsanan Hemanthakumar
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India
| | - Chinthu V Saji
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus, Kottayam, 686009, Kerala, India
| | - Rajesh A Shenoi
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus, Kottayam, 686009, Kerala, India
| | - Kallevettankuzhy Krishnannair Sabu
- Division of Biotechnology and Bioinformatics, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 695562, Kerala, India.
| |
Collapse
|
18
|
Transcriptomic Analyses Shed Light on Critical Genes Associated with Bibenzyl Biosynthesis in Dendrobium officinale. PLANTS 2021; 10:plants10040633. [PMID: 33810588 PMCID: PMC8065740 DOI: 10.3390/plants10040633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
The Dendrobium plants (members of the Orchidaceae family) are used as traditional Chinese medicinal herbs. Bibenzyl, one of the active compounds in Dendrobium officinale, occurs in low amounts among different tissues. However, market demands require a higher content of thes compounds to meet the threshold for drug production. There is, therefore, an immediate need to dissect the physiological and molecular mechanisms underlying how bibenzyl compounds are biosynthesized in D. officinale tissues. In this study, the accumulation of erianin and gigantol in tissues were studied as representative compounds of bibenzyl. Exogenous application of Methyl-Jasmonate (MeJA) promotes the biosynthesis of bibenzyl compounds; therefore, transcriptomic analyses were conducted between D. officinale-treated root tissues and a control. Our results show that the root tissues contained the highest content of bibenzyl (erianin and gigantol). We identified 1342 differentially expressed genes (DEGs) with 912 up-regulated and 430 down-regulated genes in our transcriptome dataset. Most of the identified DEGs are functionally involved in the JA signaling pathway and the biosynthesis of secondary metabolites. We also identified two candidate cytochrome P450 genes and nine other enzymatic genes functionally involved in bibenzyl biosynthesis. Our study provides insights on the identification of critical genes associated with bibenzyl biosynthesis and accumulation in Dendrobium plants, paving the way for future research on dissecting the physiological and molecular mechanisms of bibenzyl synthesis in plants as well as guide genetic engineering for the improvement of Dendrobium varieties through increasing bibenzyl content for drug production and industrialization.
Collapse
|
19
|
Fu R, Zhang P, Jin G, Wang L, Qi S, Cao Y, Martin C, Zhang Y. Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower. Nat Commun 2021; 12:1563. [PMID: 33692355 PMCID: PMC7946891 DOI: 10.1038/s41467-021-21853-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/11/2021] [Indexed: 02/05/2023] Open
Abstract
Purple coneflower (Echinacea purpurea (L.) Moench) is a popular native North American herbal plant. Its major bioactive compound, chicoric acid, is reported to have various potential physiological functions, but little is known about its biosynthesis. Here, taking an activity-guided approach, we identify two cytosolic BAHD acyltransferases that form two intermediates, caftaric acid and chlorogenic acid. Surprisingly, a unique serine carboxypeptidase-like acyltransferase uses chlorogenic acid as its acyl donor and caftaric acid as its acyl acceptor to produce chicoric acid in vacuoles, which has evolved its acyl donor specificity from the better-known 1-O-β-D-glucose esters typical for this specific type of acyltransferase to chlorogenic acid. This unusual pathway seems unique to Echinacea species suggesting convergent evolution of chicoric acid biosynthesis. Using these identified acyltransferases, we have reconstituted chicoric acid biosynthesis in tobacco. Our results emphasize the flexibility of acyltransferases and their roles in the evolution of specialized metabolism in plants.
Collapse
Affiliation(s)
- Rao Fu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Pingyu Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ge Jin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Lianglei Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Cathie Martin
- Department of Metabolic Biology and Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
20
|
Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flavonoids represent a popular class of industrially important bioactive compounds. They possess valuable health-benefiting and disease preventing properties, and therefore they are an important component of the pharmaceutical, nutraceutical, cosmetical and medicinal industries. Moreover, flavonoids possess significant antiallergic, antihepatotoxic, anti-inflammatory, antioxidant, antitumor, antiviral, and antibacterial as well as cardio-protective activities. Due to these properties, there is a rise in global demand for flavonoids, forming a significant part of the world market. However, obtaining flavonoids directly from plants has some limitations, such as low quantity, poor extraction, over-exploitation, time consuming process and loss of flora. Henceforth, there is a shift towards the in vitro production of flavonoids using the plant tissue culture technique to achieve better yields in less time. In order to achieve the productivity of flavonoids at an industrially competitive level, elicitation is a useful tool. The elicitation of in vitro cultures induces stressful conditions to plants, activates the plant defense system and enhances the accumulation of secondary metabolites in higher quantities. In this regard, nanoparticles (NPs) have emerged as novel and effective elicitors for enhancing the in vitro production of industrially important flavonoids. Different classes of NPs, including metallic NPs (silver and copper), metallic oxide NPs (copper oxide, iron oxide, zinc oxide, silicon dioxide) and carbon nanotubes, are widely reported as nano-elicitors of flavonoids discussed herein. Lastly, the mechanisms of NPs as well as knowledge gaps in the area of the nano-elicitation of flavonoids have been highlighted in this review.
Collapse
|
21
|
Abstract
Mints emit diverse scents that exert specific biological functions and are relevance for applications. The current work strives to develop electronic noses that can electronically discriminate the scents emitted by different species of Mint as alternative to conventional profiling by gas chromatography. Here, 12 different sensing materials including 4 different metal oxide nanoparticle dispersions (AZO, ZnO, SnO2, ITO), one Metal Organic Frame as Cu(BPDC), and 7 different polymer films, including PVA, PEDOT:PSS, PFO, SB, SW, SG, and PB were used for functionalizing of Quartz Crystal Microbalance (QCM) sensors. The purpose was to discriminate six economically relevant Mint species (Mentha x piperita, Mentha spicata, Mentha spicata ssp. crispa, Mentha longifolia, Agastache rugosa, and Nepeta cataria). The adsorption and desorption datasets obtained from each modified QCM sensor were processed by three different classification models, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and k-Nearest Neighbor Analysis (k-NN). This allowed discriminating the different Mints with classification accuracies of 97.2% (PCA), 100% (LDA), and 99.9% (k-NN), respectively. Prediction accuracies with a repeating test measurement reached up to 90.6% for LDA, and 85.6% for k-NN. These data demonstrate that this electronic nose can discriminate different Mint scents in a reliable and efficient manner.
Collapse
|
22
|
Gutsch A, Hendrix S, Guerriero G, Renaut J, Lutts S, Alseekh S, Fernie AR, Hausman JF, Vangronsveld J, Cuypers A, Sergeant K. Long-Term Cd Exposure Alters the Metabolite Profile in Stem Tissue of Medicago sativa. Cells 2020; 9:E2707. [PMID: 33348837 PMCID: PMC7765984 DOI: 10.3390/cells9122707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
As a common pollutant, cadmium (Cd) is one of the most toxic heavy metals accumulating in agricultural soils through anthropogenic activities. The uptake of Cd by plants is the main entry route into the human food chain, whilst in plants it elicits oxidative stress by unbalancing the cellular redox status. Medicago sativa was subjected to chronic Cd stress for five months. Targeted and untargeted metabolic analyses were performed. Long-term Cd exposure altered the amino acid composition with levels of asparagine, histidine and proline decreasing in stems but increasing in leaves. This suggests tissue-specific metabolic stress responses, which are often not considered in environmental studies focused on leaves. In stem tissue, profiles of secondary metabolites were clearly separated between control and Cd-exposed plants. Fifty-one secondary metabolites were identified that changed significantly upon Cd exposure, of which the majority are (iso)flavonoid conjugates. Cadmium exposure stimulated the phenylpropanoid pathway that led to the accumulation of secondary metabolites in stems rather than cell wall lignification. Those metabolites are antioxidants mitigating oxidative stress and preventing cellular damage. By an adequate adjustment of its metabolic composition, M. sativa reaches a new steady state, which enables the plant to acclimate under chronic Cd stress.
Collapse
Affiliation(s)
- Annelie Gutsch
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
| | - Sophie Hendrix
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Gea Guerriero
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| | - Jenny Renaut
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute—Agronomy, Université Catholique de Louvain, 5, Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium;
| | - Saleh Alseekh
- Max-Planck-Institute of Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (S.A.); (A.R.F.)
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Max-Planck-Institute of Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (S.A.); (A.R.F.)
- Centre of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jean-Francois Hausman
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (S.H.); (J.V.); (A.C.)
| | - Kjell Sergeant
- GreenTech Innovation Center, Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg; (A.G.); (G.G.); (J.R.); (J.-F.H.)
| |
Collapse
|
23
|
Rajabi F, Gusbeth C, Frey W, Maisch J, Nick P. Nanosecond pulsed electrical fields enhance product recovery in plant cell fermentation. PROTOPLASMA 2020; 257:1585-1594. [PMID: 32651872 PMCID: PMC7567687 DOI: 10.1007/s00709-020-01534-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/03/2020] [Indexed: 05/20/2023]
Abstract
The potential of pharmacologically active secondary plant metabolites is limited by the low yield from often rare plants, and the lack of economically feasible chemical synthesis of these complex compounds. Plant cell fermentation offers an alternative strategy to overcome these constraints. However, the efficiency of this approach is limited by intracellular sequestration of the products, such that continuous bioprocessing is not possible. As a precondition for such a, more attractive, continuous process, it is of great importance to stimulate the export of the product into the medium without impairing viability and, thus, the productivity of the cells. Using nicotine alkaloids of tobacco as a case study, an alternative strategy is explored, where nanosecond pulsed electric fields (nsPEFs) are applied for the efficient downstream recovery of the products. To maintain cell viability and allow for the further use of biomass, cells were exposed to strong (1-20 kV·cm-1), but very short (10-100 ns) electric pulses, which leads to a temporary permeabilisation of cell membranes. Using two transgenic cell lines, where two key genes involved in the metabolism of the anti-Alzheimer compound nornicotine were overexpressed, we could show that this nsPEF treatment improved the partitioning of some nicotine alkaloids to the culture medium without impairing viability, nor the synthesis of alkaloids. However, this release was only partial and did not work for nornicotine. Thus, nsPEFs produced a fractionation of alkaloids. We explain this electrofractionation by a working model considering the differential intracellular compartmentalization of nicotineic alkaloids.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christian Gusbeth
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
24
|
Genome-wide identification of AP2/ERF transcription factor-encoding genes in California poppy (Eschscholzia californica) and their expression profiles in response to methyl jasmonate. Sci Rep 2020; 10:18066. [PMID: 33093564 PMCID: PMC7582171 DOI: 10.1038/s41598-020-75069-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
With respect to the biosynthesis of plant alkaloids, that of benzylisoquinoline alkaloids (BIAs) has been the most investigated at the molecular level. Previous investigations have shown that the biosynthesis of BIAs is comprehensively regulated by WRKY and bHLH transcription factors, while promoter analyses of biosynthesis enzyme-encoding genes have also implicated the involvement of members of the APETALA2/ethylene responsive factor (AP2/ERF) superfamily. To investigate the physiological roles of AP2/ERF transcription factors in BIA biosynthesis, 134 AP2/ERF genes were annotated using the draft genome sequence data of Eschscholzia californica (California poppy) together with transcriptomic data. Phylogenetic analysis revealed that these genes could be classified into 20 AP2, 5 RAV, 47 DREB, 60 ERF and 2 Soloist family members. Gene structure, conserved motif and orthologous analyses were also carried out. Gene expression profiling via RNA sequencing in response to methyl jasmonate (MeJA) indicated that approximately 20 EcAP2/ERF genes, including 10 group IX genes, were upregulated by MeJA, with an increase in the expression of the transcription factor-encoding gene EcbHLH1 and the biosynthesis enzyme-encoding genes Ec6OMT and EcCYP719A5. Further quantitative RT-PCR confirmed the MeJA responsiveness of the EcAP2/ERF genes, i.e., the increased expression of 9 group IX, 2 group X and 2 group III ERF subfamily genes. Transactivation activity of group IX EcAP2/ERFs was also confirmed by a luciferase reporter assay in conjunction with the promoters of the Ec6OMT and EcCYP719A5 genes. The physiological roles of AP2/ERF genes in BIA biosynthesis and their evolution in the regulation of alkaloid biosynthesis are discussed.
Collapse
|
25
|
Nitrate reductase-dependent nitric oxide plays a key role on MeJA-induced ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:10737-10753. [PMID: 33064185 DOI: 10.1007/s00253-020-10951-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Ganoderma lucidum, which contains numerous biologically active compounds, is known worldwide as a medicinal basidiomycete. Because of its application for the prevention and treatment of various diseases, most of artificially cultivated G. lucidum is output to many countries as food, tea, and dietary supplements for further processing. Methyl jasmonate (MeJA) has been reported as a compound that can induce ganoderic acid (GA) biosynthesis, an important secondary metabolite of G. lucidum. Herein, MeJA was found to increase the intracellular level of nitric oxide (NO). In addition, upregulation of GA biosynthesis in the presence of MeJA was abolished when NO was depleted from the culture. This result demonstrated that MeJA-regulated GA biosynthesis might occur via NO signaling. To elucidate the underlying mechanism, we used gene-silenced strains of nitrate reductase (NR) and the inhibitor of NR to illustrate the role of NO in MeJA induction. The results indicated that the increase in GA biosynthesis induced by MeJA was activated by NR-generated NO. Furthermore, the findings indicated that the reduction of NO could induce GA levels in the control group, but NO could also activate GA biosynthesis upon MeJA treatment. Further results indicated that NR silencing reversed the increased enzymatic activity of NOX to generate ROS due to MeJA induction. Importantly, our results highlight the NR-generated NO functions in signaling crosstalk between reactive oxygen species and MeJA. These results provide a good opportunity to determine the potential pathway linking NO to the ROS signaling pathway in fungi treated with MeJA. KEY POINTS: • MeJA increased the intracellular level of nitric oxide (NO) in G. lucidum. • The increase in GA biosynthesis induced by MeJA is activated by NR-generated NO. • NO acts as a signaling molecule between reactive oxygen species (ROS) and MeJA.
Collapse
|
26
|
Yan Z, Zuo J, Zhou F, Shi J, Xu D, Hu W, Jiang A, Liu Y, Wang Q. Integrated Analysis of Transcriptomic and Metabolomic Data Reveals the Mechanism by Which LED Light Irradiation Extends the Postharvest Quality of Pak-choi ( Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee). Biomolecules 2020; 10:E252. [PMID: 32046153 PMCID: PMC7072264 DOI: 10.3390/biom10020252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Low-intensity (10 μmol m-2 s-1) white LED (light-emitting diode) light effectively delayed senescence and maintained the quality of postharvest pakchoi during storage at 20 °C. To investigate the mechanism of LED treatment in maintaining the quality of pakchoi, metabolite profiles reported previously were complemented by transcriptomic profiling to provide greater information. A total of 7761 differentially expressed genes (DEGs) were identified in response to the LED irradiation of pak-choi during postharvest storage. Several pathways were markedly induced by LED irradiation, with photosynthesis being the most notable. More specifically, porphyrin and chlorophyll metabolism and glucosinolate biosynthesis were significantly induced by LED irradiation, which is consistent with metabolomics reported previously. Additionally, chlorophyllide a, chlorophyll, as well as total glucosinolate content was positively induced by LED irradiation. Overall, LED irradiation delayed the senescence of postharvest pak-choi mainly by activating photosynthesis, inducting glucosinolate biosynthesis, and inhibiting the down-regulation of porphyrin and chlorophyll metabolism pathways. The present study provides new insights into the effect and the underlying mechanism of LED irradiation on delaying the senescence of pak-choi. LED irradiation represents a useful approach for extending the shelf life of pak-choi.
Collapse
Affiliation(s)
- Zhicheng Yan
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Jinhua Zuo
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Fuhui Zhou
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Junyan Shi
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Dongying Xu
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Wenzhong Hu
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Aili Jiang
- Laboratory of Biotechnology and Bioresources Utilizatio, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (D.X.); (W.H.); (A.J.)
| | - Yao Liu
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| | - Qing Wang
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Z.Y.); (J.Z.); (F.Z.); (J.S.); (Y.L.)
| |
Collapse
|
27
|
Savchenko TV, Rolletschek H, Dehesh K. Jasmonates-Mediated Rewiring of Central Metabolism Regulates Adaptive Responses. PLANT & CELL PHYSIOLOGY 2019; 60:2613-2620. [PMID: 31529102 PMCID: PMC6896697 DOI: 10.1093/pcp/pcz181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 05/23/2023]
Abstract
The lipid-derived hormones jasmonates (JAs) play key functions in a wide range of physiological and developmental processes that regulate growth, secondary metabolism and defense against biotic and abiotic stresses. In this connection, biosynthesis, tissue-specific distribution, metabolism, perception, signaling of JAs have been the target of extensive studies. In recent years, the involvement of JAs signaling pathway in the regulation of growth and adaptive responses to environmental challenges has been further examined. However, JAs-mediated mechanisms underlying the transition from 'growth mode' to 'adaptive mode' remain ambiguous. Combined analysis of transgenic lines deficient in JAs signaling in conjunction with the data from JAs-treated plants revealed the function of these hormones in rewiring of central metabolism. The collective data illustrate JAs-mediated decrease in the levels of metabolites associated with active growth such as sucrose, raffinose, orotate, citrate, malate, and an increase in phosphorylated hexoses, responsible for the suppression of growth and photosynthesis, concurrent with the induction of protective metabolites, such as aromatic and branched-chain amino acids, and aspartate family of metabolites. This finding provides an insight into the function of JAs in shifting the central metabolism from the production of growth-promoting metabolites to protective compounds and expands our understanding of the role of JAs in resource allocation in response to environmental challenges.
Collapse
Affiliation(s)
- Tatyana V Savchenko
- Institute of Basic Biological Problems, FRC PSCBR RAS, Institutskaya St. 2, Pushchino, Moscow Region 142290, Russian Federation
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben D-06466, Germany
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Liu H, Kotova TI, Timko MP. Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco ( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E930. [PMID: 31739571 PMCID: PMC6896058 DOI: 10.3390/genes10110930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Nicotine, the most abundant pyridine alkaloid in cultivated tobacco (Nicotiana tabacum L.), is a potent inhibitor of insect and animal herbivory and a neurostimulator of human brain function. Nicotine biosynthesis is controlled developmentally and can be induced by abiotic and biotic stressors via a jasmonic acid (JA)-mediated signal transduction mechanism involving members of the APETALA 2/ethylene-responsive factor (AP2/ERF) and basic helix-loop-helix (bHLH) transcription factor (TF) families. AP2/ERF and bHLH TFs work combinatorically to control nicotine biosynthesis and its subsequent accumulation in tobacco leaves. Here, we demonstrate that overexpression of the tobacco NtERF32, NtERF221/ORC1, and NtMYC2a TFs leads to significant increases in nicotine accumulation in T2 transgenic K326 tobacco plants before topping. Up to 9-fold higher nicotine production was achieved in transgenics overexpressing NtERF221/ORC1 under the control of a constitutive GmUBI3 gene promoter compared to wild-type plants. The constitutive 2XCaMV35S promoter and a novel JA-inducible 4XGAG promoter were less effective in driving high-level nicotine formation. Methyljasmonic acid (MeJA) treatment further elevated nicotine production in all transgenic lines. Our results show that targeted manipulation of NtERF221/ORC1 is an effective strategy for elevating leaf nicotine levels in commercial tobacco for use in the preparation of reduced risk tobacco products for smoking replacement therapeutics.
Collapse
Affiliation(s)
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; (H.L.); (T.I.K.)
| |
Collapse
|
29
|
Poudel AN, Holtsclaw RE, Kimberlin A, Sen S, Zeng S, Joshi T, Lei Z, Sumner LW, Singh K, Matsuura H, Koo AJ. 12-Hydroxy-Jasmonoyl-l-Isoleucine Is an Active Jasmonate That Signals through CORONATINE INSENSITIVE 1 and Contributes to the Wound Response in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2152-2166. [PMID: 31150089 DOI: 10.1093/pcp/pcz109] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
12-hydroxy-jasmonoyl-isoleucine (12OH-JA-Ile) is a metabolite in the catabolic pathway of the plant hormone jasmonate, and is synthesized by the cytochrome P450 subclade 94 enzymes. Contrary to the well-established function of jasmonoyl-isoleucine (JA-Ile) as the endogenous bioactive form of jasmonate, the function of 12OH-JA-Ile is unclear. Here, the potential role of 12OH-JA-Ile in jasmonate signaling and wound response was investigated. Exogenous application of 12OH-JA-Ile mimicked several JA-Ile effects including marker gene expression, anthocyanin accumulation and trichome induction in Arabidopsis thaliana. Genome-wide transcriptomics and untargeted metabolite analyses showed large overlaps between those affected by 12OH-JA-Ile and JA-Ile. 12OH-JA-Ile signaling was blocked by mutation in CORONATINE INSENSITIVE 1. Increased anthocyanin accumulation by 12OH-JA-Ile was additionally observed in tomato and sorghum, and was disrupted by the COI1 defect in tomato jai1 mutant. In silico ligand docking predicted that 12OH-JA-Ile can maintain many of the key interactions with COI1-JAZ1 residues identified earlier by crystal structure studies using JA-Ile as ligand. Genetic alternation of jasmonate metabolic pathways in Arabidopsis to deplete both JA-Ile and 12OH-JA-Ile displayed enhanced jasmonate deficient wound phenotypes and was more susceptible to insect herbivory than that depleted in only JA-Ile. Conversely, mutants overaccumulating 12OH-JA-Ile showed intensified wound responses compared with wild type with similar JA-Ile content. These data are indicative of 12OH-JA-Ile functioning as an active jasmonate signal and contributing to wound and defense response in higher plants.
Collapse
Affiliation(s)
- Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Rebekah E Holtsclaw
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO, USA
| | - Shuai Zeng
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Informatics Institute, University of Missouri, Columbia, MO, USA
- Health Management and Informatics, University of Missouri, Columbia, MO, USA
| | - Zhentian Lei
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- MU Metabolomics Core, University of Missouri, Columbia, MO, MO, USA
| | - Lloyd W Sumner
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- MU Metabolomics Core, University of Missouri, Columbia, MO, MO, USA
| | - Kamlendra Singh
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Hideyuki Matsuura
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. HORTICULTURE RESEARCH 2019; 6:109. [PMID: 31666962 PMCID: PMC6804895 DOI: 10.1038/s41438-019-0193-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a leading flower with applied value worldwide. Developing new chrysanthemum cultivars with novel characteristics such as new flower colors and shapes, plant architectures, flowering times, postharvest quality, and biotic and abiotic stress tolerance in a time- and cost-efficient manner is the ultimate goal for breeders. Various breeding strategies have been employed to improve the aforementioned traits, ranging from conventional techniques, including crossbreeding and mutation breeding, to a series of molecular breeding methods, including transgenic technology, genome editing, and marker-assisted selection (MAS). In addition, the recent extensive advances in high-throughput technologies, especially genomics, transcriptomics, proteomics, metabolomics, and microbiomics, which are collectively referred to as omics platforms, have led to the collection of substantial amounts of data. Integration of these omics data with phenotypic information will enable the identification of genes/pathways responsible for important traits. Several attempts have been made to use emerging molecular and omics methods with the aim of accelerating the breeding of chrysanthemum. However, applying the findings of such studies to practical chrysanthemum breeding remains a considerable challenge, primarily due to the high heterozygosity and polyploidy of the species. This review summarizes the recent achievements in conventional and modern molecular breeding methods and emerging omics technologies and discusses their future applications for improving the agronomic and horticultural characteristics of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
31
|
Ghasemi Pirbalouti A, Nekoei M, Rahimmalek M, Malekpoor F. Chemical composition and yield of essential oil from lemon balm (Melissa officinalis L.) under foliar applications of jasmonic and salicylic acids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Jing T, Zhang N, Gao T, Zhao M, Jin J, Chen Y, Xu M, Wan X, Schwab W, Song C. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis. PLANT, CELL & ENVIRONMENT 2019; 42:1352-1367. [PMID: 30421786 DOI: 10.1111/pce.13479] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 05/18/2023]
Abstract
Plants emit a variety of volatiles in response to herbivore attack, and (Z)-3-hexenol and its glycosides have been shown to function as defence compounds. Although the ability to incorporate and convert (Z)-3-hexenol to glycosides is widely conserved in plants, the enzymes responsible for the glycosylation of (Z)-3-hexenol remained unknown until today. In this study, uridine-diphosphate-dependent glycosyltransferase (UGT) candidate genes were selected by correlation analysis and their response to airborne (Z)-3-hexenol, which has been shown to be taken up by the tea plant. The allelic proteins UGT85A53-1 and UGT85A53-2 showed the highest activity towards (Z)-3-hexenol and are distinct from UGT85A53-3, which displayed a similar catalytic efficiency for (Z)-3-hexenol and nerol. A single amino acid exchange E59D enhanced the activity towards (Z)-3-hexenol, whereas a L445M mutation reduced the catalytic activity towards all substrates tested. Transient overexpression of CsUGT85A53-1 in tobacco significantly increased the level of (Z)-3-hexenyl glucoside. The functional characterization of CsUGT85A53 as a (Z)-3-hexenol UGT not only provides the foundation for the biotechnological production of (Z)-3-hexenyl glucoside but also delivers insights for the development of novel insect pest control strategies in tea plant and might be generally applicable to other plants.
Collapse
Affiliation(s)
- Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Yongxian Chen
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Miaojing Xu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
- Biotechnology of Natural Products, Technische Universität München, 85354, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| |
Collapse
|
33
|
Lee W, Woo ER, Lee DG. Effect of apigenin isolated from Aster yomena against Candida albicans: apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:19-28. [PMID: 30408533 DOI: 10.1016/j.jep.2018.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aster yomena, a perennial herb that grows mainly in South Korea, has been employed in the traditional temple food for antibiotic efficacy. Recently, it was reported that apigenin isolated from A. yomena has a physical antifungal mechanism targeting membrane against Candida albicans. AIM OF THE STUDY Our study aimed to investigate the biochemical responses underlying the antifungal activity of apigenin isolated from A. yomena due to lack studies reporting the investigation of intracellular responses of apigenin in C. albicans. MATERIALS AND METHODS Apigenin was isolated from the aerial parts of A. yomena. To evaluate apigenin-induced inhibitory effects and membrane damages, the measurement of the cell viability assay and the flux of cytosolic components were performed with at various concentrations. Intracellular external potassium and calcium levels were assayed by an ion-selective electrode meter, Fura2-AM and Rhod2-AM, respectively. Mitochondrial dysfunctions were analyzed by using JC-1, Mitotracker Green FM, and MitoSOX Red dye. H2DCFDA, glutathione, and MDA assay were used to detect oxidative damage. Also, flow cytometry was carried out to detect apoptotic hallmarks using Annexin V-PI, TUNEL, and FITC-VAD-FMK staining. Tetraethylammoniumchloride (TEA), Ruthenium red (RR), and N-acetylcysteine (NAC) were used as a potassium channel blocker, mitochondrial calcium uptake inhibitor, and reactive oxygen species (ROS) scavenger, respectively. RESULTS We confirmed that there was no decrease of cell survival percentages in crude extracts of A. yomena treatment, however, only isolated apigenin has the antifungal effect in C. albicans. Apigenin triggered a dose-dependent mitochondrial calcium uptake followed by mitochondrial dysfunction, loss of the membrane potential and an increase in the mitochondrial mass and ROS. Apigenin also induced intracellular redox imbalance as indicated by the ROS accumulation, glutathione oxidation, and lipid peroxidation. Interestingly, NAC failed the restore the mitochondrial calcium levels and thus alleviate the mitochondrial damages, however, RR reduced the apigenin-induced redox imbalance. Furthermore, apigenin induced apoptosis activation marked by the phosphatidylserine exposure, DNA fragmentation, and caspase activation. The pro-apoptotic effect of apigenin was counteracted by RR and NAC pretreatment. In particular, RR significantly reduced the pro-apoptotic responses. CONCLUSIONS Apigenin isolated from A. yomena induced mitochondrial-mediated apoptotic pathway, and mitochondrial calcium signaling is main factor in its pathway in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, 375 Seosukdong, Donggu, Gwangju 61452, Republic of Korea.
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| |
Collapse
|
34
|
Bömer M, O’Brien JA, Pérez-Salamó I, Krasauskas J, Finch P, Briones A, Daudi A, Souda P, Tsui TL, Whitelegge JP, Paul Bolwell G, Devoto A. COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in arabidopsis. ANNALS OF BOTANY 2018; 122:1117-1129. [PMID: 29924303 PMCID: PMC6324744 DOI: 10.1093/aob/mcy109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/31/2018] [Indexed: 05/07/2023]
Abstract
Background and Aims Cultured cell suspensions have been the preferred model to study the apoplast as well as to monitor metabolic and cell cycle-related changes. Previous work showed that methyl jasmonate (MeJA) inhibits leaf growth in a CORONATINE INSENSITIVE 1 (COI1)-dependent manner, with COI1 being the jasmonate (JA) receptor. Here, the effect of COI1 overexpression on the growth of stably transformed arabidopsis cell cultures is described. Methods Time-course experiments were carried out to analyse gene expression, and protein and metabolite levels. Key Results Both MeJA treatment and the overexpression of COI1 modify growth, by altering cell proliferation and expansion. DNA content as well as transcript patterns of cell cycle and cell wall remodelling markers were altered. COI1 overexpression also increases the protein levels of OLIGOGALACTURONIDE OXIDASE 1, BETA-GLUCOSIDASE/ENDOGLUCANASES and POLYGALACTURONASE INHIBITING PROTEIN2, reinforcing the role of COI1 in mediating defence responses and highlighting a link between cell wall loosening and growth regulation. Moreover, changes in the levels of the primary metabolites alanine, serine and succinic acid of MeJA-treated Arabidopsis cell cultures were observed. In addition, COI1 overexpression positively affects the availability of metabolites such as β-alanine, threonic acid, putrescine, glucose and myo-inositol, thereby providing a connection between JA-inhibited growth and stress responses. Conclusions This study contributes to the understanding of the regulation of growth and the production of metabolic resources by JAs and COI1. This will have important implications in dissecting the complex relationships between hormonal and cell wall signalling in plants. The work also provides tools to uncover novel mechanisms co-ordinating cell division and post-mitotic cell expansion in the absence of organ developmental control.
Collapse
Affiliation(s)
- Moritz Bömer
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - José A O’Brien
- Departamento de Genética Molecular y Microbiología, Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Paul Finch
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Andrea Briones
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Arsalan Daudi
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Puneet Souda
- Departamento de Genética Molecular y Microbiología, Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tjir-Li Tsui
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - G Paul Bolwell
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
35
|
Kapoor S, Sharma A, Bhardwaj P, Sood H, Saxena S, Chaurasia OP. Enhanced Production of Phenolic Compounds in Compact Callus Aggregate Suspension Cultures of Rhodiola imbricata Edgew. Appl Biochem Biotechnol 2018; 187:817-837. [PMID: 30090988 DOI: 10.1007/s12010-018-2851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/23/2023]
Abstract
Rhodiola imbricata is a rare medicinal plant of the trans-Himalayan region of Ladakh. It is used for the treatment of numerous health ailments. Compact callus aggregate (CCA) suspension cultures of Rhodiola imbricata were established to counter extinction threats and for production of therapeutically valuable phenolic compounds to meet their increasing industrial demands. The present study also investigated the effect of jasmonic acid (JA) on production of phenolic compounds and bioactivities in CCA suspension cultures. CCA suspension cultures established in an optimized Murashige and Skoog medium supplemented with 30 g/l sucrose, 3 mg/l NAA, and 3 mg/l BAP showed maximum biomass accumulation (8.43 g/l DW) and highest salidroside production (3.37 mg/g DW). Upon 100 μM JA treatment, salidroside production (5.25 mg/g DW), total phenolic content (14.69 mg CHA/g DW), total flavonoid content (4.95 mg RE/g DW), and ascorbic acid content (17.93 mg/g DW) were significantly increased in cultures. In addition, DPPH-scavenging activity (56.32%) and total antioxidant capacity (60.45 mg QE/g DW) were significantly enhanced upon JA treatment, and this was positively correlated with increased accumulation of phenolic compounds. JA-elicited cultures exhibited highest antimicrobial activity against Escherichia coli. This is the first report describing the enhanced production of phenolic compounds and bioactivities from JA-elicited CCA suspension cultures of Rhodiola imbricata.
Collapse
Affiliation(s)
- Sahil Kapoor
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Ankita Sharma
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Pushpender Bhardwaj
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat (Solan), Himachal Pradesh, 173215, India.
| | - Shweta Saxena
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| | - Om Prakash Chaurasia
- Defence Institute of High Altitude Research (DRDO), C/O 56 APO, Leh-Ladakh, Jammu & Kashmir, 901205, India
| |
Collapse
|
36
|
Miras-Moreno B, Almagro L, Pedreño MA, Sabater-Jara AB. Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells. PLANT CELL REPORTS 2018; 37:1011-1019. [PMID: 29680944 DOI: 10.1007/s00299-018-2287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Terbinafine induced a significant increase of squalene production. Terbinafine increased the expression levels of squalene synthase. Cyclodextrins did not work as elicitors due to the gene expression levels obtained. Plant sterols are essential components of membrane lipids, which contributing to their fluidity and permeability. Besides their cholesterol-lowering properties, they also have anti-inflammatory, antidiabetic and anticancer activities. Squalene, which is phytosterol precursor, is widely used in medicine, foods and cosmetics due to its anti-tumor, antioxidant and anti-aging activities. Nowadays, vegetable oils constitute the main sources of phytosterols and squalene, but their isolation and purification involve complex extraction protocols and high costs. In this work, Daucus carota cell cultures were used to evaluate the effect of cyclodextrins and terbinafine on the production and accumulation of squalene and phytosterols as well as the expression levels of squalene synthase and cycloartenol synthase genes. D. carota cell cultures were able to produce high levels of extracellular being phytosterols in the presence of cyclodextrins (12 mg/L), these compounds able to increase both the secretion and accumulation of phytosterols in the culture medium. Moreover, terbinafine induced a significant increase in intracellular squalene production, as seen after 168 h of treatment (497.0 ± 23.5 µg g dry weight-1) while its extracellular production only increased in the presence of cyclodextrins.The analysis of sqs and cas gene expression revealed that cyclodextrins did not induce genes encoding enzymes involved in the phytosterol biosynthetic pathway since the expression levels of sqs and cas genes in cyclodextrin-treated cells were lower than in control cells. The results, therefore, suggest that cyclodextrins were only able to release phytosterols from the cells to the extracellular medium, thus contributing to their acumulation. To sum up, D. carota cell cultures treated with cyclodextrins or terbinafine were able to produce high levels of phytosterols and squalene, respectively, and, therefore, these suspension-cultured cells of carrot constitute an alternative biotechnological system, which is at the same time more sustainable, economic and ecological for the production of these bioactive compounds.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
37
|
Yugi K, Kuroda S. Metabolism as a signal generator across trans-omic networks at distinct time scales. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.coisb.2017.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Tian M, Nie Q, Li Z, Zhang J, Liu Y, Long Y, Wang Z, Wang G, Liu R. Transcriptomic analysis reveals overdominance playing a critical role in nicotine heterosis in Nicotiana tabacum L. BMC PLANT BIOLOGY 2018; 18:48. [PMID: 29566653 PMCID: PMC5863848 DOI: 10.1186/s12870-018-1257-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/01/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND As a unique biological phenomenon, heterosis has been concerned with the superior performance of the heterosis than either parents. Despite several F1 hybrids, containing supernal nicotine content, had been discovered and applied to heterosis utilization in Nicotiana tabacum L., nevertheless, the potential molecular mechanism revealing nicotine heterosis has not been illustrated clearly. RESULT Phenotypically, the F1 hybrids (Vall6 × Basma) show prominent heterosis in nicotine content by 3 years of field experiments. Transcriptome analysis revealed that genes participating in nicotine anabolism (ADC, PMT, MPO, QPT, AO, QS, QPT, A622, BBLs) and nicotine transport (JAT2, MATE1 and 2, NUP1 and 2) showed an upregulated expression in the hybrid, a majority of which demonstrated an overdominant performance. RT-PCR confirmed that nicotine anabolism was induced in the hybrid. CONCLUSIONS These findings strongly suggest that nicotine synthesis and transport efficiency improved in hybrid and overdominance at gene-expression level played a critical role in heterosis of nicotine metabolism.
Collapse
Affiliation(s)
- Maozhu Tian
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Qiong Nie
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhenhua Li
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yiling Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Yao Long
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Zhiwei Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Guoqing Wang
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Renxiang Liu
- Key Laboratory of Tobacco Quality in Guizhou province, Guizhou University, Guiyang, 550025, China.
- College of Tobacco, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
39
|
Martinoia E. Vacuolar Transporters - Companions on a Longtime Journey. PLANT PHYSIOLOGY 2018; 176:1384-1407. [PMID: 29295940 PMCID: PMC5813537 DOI: 10.1104/pp.17.01481] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/15/2017] [Indexed: 05/15/2023]
Abstract
Biochemical and electrophysiological studies on plant vacuolar transporters became feasible in the late 1970s and early 1980s, when methods to isolate large quantities of intact vacuoles and purified vacuolar membrane vesicles were established. However, with the exception of the H+-ATPase and H+-PPase, which could be followed due to their hydrolytic activities, attempts to purify tonoplast transporters were for a long time not successful. Heterologous complementation, T-DNA insertion mutants, and later proteomic studies allowed the next steps, starting from the 1990s. Nowadays, our knowledge about vacuolar transporters has increased greatly. Nevertheless, there are several transporters of central importance that have still to be identified at the molecular level or have even not been characterized biochemically. Furthermore, our knowledge about regulation of the vacuolar transporters is very limited, and much work is needed to get a holistic view about the interplay of the vacuolar transportome. The huge amount of information generated during the last 35 years cannot be summarized in such a review. Therefore, I decided to concentrate on some aspects where we were involved during my research on vacuolar transporters, for some our laboratories contributed more, while others contributed less.
Collapse
Affiliation(s)
- Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
40
|
Lee H, Woo ER, Lee DG. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 2018; 18:4810751. [DOI: 10.1093/femsyr/foy003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
|
41
|
Singh G, Dhar YV, Asif MH, Misra P. Exploring the functional significance of sterol glycosyltransferase enzymes. Prog Lipid Res 2018; 69:1-10. [DOI: 10.1016/j.plipres.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
|
42
|
Häkkinen ST, Reuter L, Nuorti N, Joensuu JJ, Rischer H, Ritala A. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production. FRONTIERS IN PLANT SCIENCE 2018; 9:45. [PMID: 29434617 PMCID: PMC5791008 DOI: 10.3389/fpls.2018.00045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.
Collapse
|
43
|
Chen H, Wang B, Geng S, Arellano C, Chen S, Qu R. Effects of overexpression of jasmonic acid biosynthesis genes on nicotine accumulation in tobacco. PLANT DIRECT 2018; 2:e00036. [PMID: 31245684 PMCID: PMC6508566 DOI: 10.1002/pld3.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 05/26/2023]
Abstract
Nicotine is naturally synthesized in tobacco roots and accumulates in leaves as a defense compound against herbivory attack. Nicotine biosynthesis pathway has been extensively studied with major genes and enzymes being isolated and functionally characterized. However, the molecular regulation of nicotine synthesis has not been fully understood. The phytohormone jasmonic acid (JA) mediates many aspects of plant defense responses including nicotine biosynthesis. In this study, five key genes (AtLOX2, AtAOS, AtAOC2, AtOPR3, AtJAR1) involved in JA biosynthesis from Arabidopsis were individually overexpressed, and a JA-Ile hydrolysis-related gene, NtJIH1, was suppressed by RNAi approach, to understand their effects on nicotine accumulation in tobacco. Interestingly, while transgene expression was high, levels of JA-Ile (the biologically active form of JA) were often significantly reduced. Meanwhile, nicotine content in these transgenic plants did not increase. The research revealed a tightly controlled JA signaling pathway and a complicated regulatory network for nicotine biosynthesis by JA signaling.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural SciencesKunmingChina
| | - Sisi Geng
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Sixue Chen
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Rongda Qu
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
44
|
Guan Q, Yu J, Zhu W, Yang B, Li Y, Zhang L, Tian J. RNA-Seq transcriptomic analysis of the Morus alba L. leaves exposed to high-level UVB with or without dark treatment. Gene 2017; 645:60-68. [PMID: 29274907 DOI: 10.1016/j.gene.2017.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023]
Abstract
Ultraviolet-B (UVB) irradiation induces oxidative stress in plant cells due to the generation of excessive reactive oxygen species. Morus alba L. (M. abla) is an important medicinal plant used for the treatment of human diseases. Also, its leaves are widely used as food for silkworms. In our previous research, we found that a high level of UVB irradiation with dark incubation led to the accumulation of secondary metabolites in M. abla leaf. The aim of the present study was to describe and compare M. alba leaf transcriptomics with different treatments (control, UVB, UVB+dark). Leaf transcripts from M. alba were sequenced using an Illumina Hiseq 2000 system, which produced 14.27Gb of data including 153,204,462 paired-end reads among the three libraries. We de novo assembled 133,002 transcripts with an average length of 1270bp and filtered 69,728 non-redundant unigenes. A similarity search was performed against the non-redundant National Center of Biotechnology Information (NCBI) protein database, which returned 41.08% hits. Among the 20,040 unigenes annotated in UniProtKB/SwissProt database, 16,683 unigenes were assigned 102,232 gene ontology terms and 6667 unigenes were identified in 287 known metabolic pathways. Results of differential gene expression analysis together with real-time quantitative PCR tests indicated that UVB irradiation with dark incubation enhanced the flavonoid biosynthesis in M. alba leaf. Our findings provided a valuable proof for a better understanding of the metabolic mechanism under abiotic stresses in M. alba leaf.
Collapse
Affiliation(s)
- Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Jiaojiao Yu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Yaohan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, PR China
| | - Lin Zhang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China; Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
45
|
Wang GQ, Chen JF, Yi B, Tan HX, Zhang L, Chen WS. HPPR encodes the hydroxyphenylpyruvate reductase required for the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza. Chin J Nat Med 2017; 15:917-927. [PMID: 29329649 DOI: 10.1016/s1875-5364(18)30008-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Indexed: 11/21/2022]
Abstract
Salvia miltiorrhiza is a medicinal plant widely used in the treatment of cardiovascular and cerebrovascular diseases. Hydrophilic phenolic acids, including rosmarinic acid (RA) and lithospermic acid B (LAB), are its primary medicinal ingredients. However, the biosynthetic pathway of RA and LAB in S. miltiorrhiza is still poorly understood. In the present study, we accomplished the isolation and characterization of a novel S. miltiorrhiza Hydroxyphenylpyruvate reductase (HPPR) gene, SmHPPR, which plays an important role in the biosynthesis of RA. SmHPPR contained a putative catalytic domain and a NAD(P)H-binding motif. The recombinant SmHPPR enzyme exhibited high HPPR activity, converting 4-hydroxyphenylpyruvic acid (pHPP) to 4-hydroxyphenyllactic acid (pHPL), and exhibited the highest affinity for substrate 4-hydroxyphenylpyruvate. SmHPPR expression could be induced by various treatments, including SA, GA3, MeJA and Ag+, and the changes in SmHPPR activity were correlated well with hydrophilic phenolic acid accumulation. SmHPPR was localized in cytoplasm, most likely close to the cytosolic NADPH-dependent hydroxypyruvate reductase active in photorespiration. In addition, the transgenic S. miltiorrhiza hairy roots overexpressing SmHPPR exhibited up to 10-fold increases in the products of hydrophilic phenolic acid pathway. In conclusion, our findings provide a new insight into the synthesis of active pharmaceutical compounds at molecular level.
Collapse
Affiliation(s)
- Guo-Quan Wang
- School of Biomedical Sciences, Huaqiao University, Fujian 362000, China
| | - Jun-Feng Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Bo Yi
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - He-Xin Tan
- School of Biomedical Sciences, Huaqiao University, Fujian 362000, China; Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lei Zhang
- School of Biomedical Sciences, Huaqiao University, Fujian 362000, China; Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
46
|
Yang Y, Yan P, Yi C, Li W, Chai Y, Fei L, Gao P, Zhao H, Wang Y, Timko MP, Wang B, Han S. Transcriptome-wide analysis of jasmonate-treated BY-2 cells reveals new transcriptional regulators associated with alkaloid formation in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:1-10. [PMID: 28527333 DOI: 10.1016/j.jplph.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 05/14/2023]
Abstract
Jasmonates (JAs) are well-known regulators of stress, defence, and secondary metabolism in plants, with JA perception triggering extensive transcriptional reprogramming, including both activation and/or repression of entire metabolic pathways. We performed RNA sequencing based transcriptomic profiling of tobacco BY-2 cells before and after treatment with methyl jasmonate (MeJA) to identify novel transcriptional regulators associated with alkaloid formation. A total of 107,140 unigenes were obtained through de novo assembly, and at least 33,213 transcripts (31%) encode proteins, in which 3419 transcription factors (TFs) were identified, representing 72 gene families, as well as 840 transcriptional regulators (TRs) distributed among 19 gene families. After MeJA treatment BY-2 cells, 7260 differentially expressed transcripts were characterised, which include 4443 MeJA-upregulated and 2817 MeJA-downregulated genes. Of these, 227 TFs/TRs in 36 families were specifically upregulated, and 102 TFs/TRs in 38 families were downregulated in MeJA-treated BY-2 cells. We further showed that the expression of 12 ethylene response factors and four basic helix-loop-helix factors increased at the transcriptional level after MeJA treatment in BY-2 cells and displayed specific expression patterns in nic mutants with or without MeJA treatments. Our data provide a catalogue of transcripts of tobacco BY-2 cells and benefit future study of JA-modulated regulation of secondary metabolism in tobacco.
Collapse
Affiliation(s)
- Yuping Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Pengcheng Yan
- Department of Computational Biology, Beijing Computing Center, Beijing 100094, China.
| | - Che Yi
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wenzheng Li
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, Yunnan 653100, China.
| | - Yuhui Chai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lingling Fei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Ping Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, Yunnan 653100, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
47
|
Takanashi K, Yamada Y, Sasaki T, Yamamoto Y, Sato F, Yazaki K. A multidrug and toxic compound extrusion transporter mediates berberine accumulation into vacuoles in Coptis japonica. PHYTOCHEMISTRY 2017; 138:76-82. [PMID: 28318534 DOI: 10.1016/j.phytochem.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 05/20/2023]
Abstract
Plants produce a large variety of alkaloids, which have diverse chemical structures and biological activities. Many of these alkaloids accumulate in vacuoles. Although some membrane proteins on tonoplasts have been identified as alkaloid uptake transporters, few have been characterized to date, and relatively little is known about the mechanisms underlying alkaloid transport and accumulation in plant cells. Berberine is a model alkaloid. Although all genes involved in berberine biosynthesis, as well as the master regulator, have been identified, the gene responsible for the final accumulation of berberine at tonoplasts has not been determined. This study showed that a multidrug and toxic compound extrusion protein 1 (CjMATE1) may act as a berberine transporter in cultured Coptis japonica cells. CjMATE1 was found to localize at tonoplasts in C. japonica cells and, in intact plants, to be expressed preferentially in rhizomes, the site of abundant berberine accumulation. Cellular transport analysis using a yeast expression system showed that CjMATE1 could transport berberine. Expression analysis showed that RNAi suppression of CjbHLH1, a master transcription factor of the berberine biosynthetic pathway, markedly reduced the expression of CjMATE1 in a manner similar to the suppression of berberine biosynthetic genes. These results strongly suggest that CjMATE1 is the transporter that mediates berberine accumulation in vacuoles.
Collapse
Affiliation(s)
- Kojiro Takanashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| | - Yasuyuki Yamada
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Fumihiko Sato
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| |
Collapse
|
48
|
Su X, Wei F, Huo Y, Xia Z. Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:827. [PMID: 28567053 PMCID: PMC5434153 DOI: 10.3389/fpls.2017.00827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/02/2017] [Indexed: 05/03/2023]
Abstract
Drought is a major environmental factor that limits crop growth and productivity. Flue-cured tobacco (Nicotiana tabacum) is one of the most important commercial crops worldwide and its productivity is vulnerable to drought. However, comparative analyses of physiological, biochemical and gene expression changes in flue-cured tobacco varieties differing in drought tolerance under long-term drought stress are scarce. In this study, drought stress responses of two flue-cured tobacco varieties, LJ851 and JX6007, were comparatively studied at the physiological and transcriptional levels. After exposing to progressive drought stress, the drought-tolerant LJ851 showed less growth inhibition and chlorophyll reduction than the drought-sensitive JX6007. Moreover, higher antioxidant enzyme activities and lower levels of H2O2, Malondialdehyde (MDA), and electrolyte leakage after drought stress were found in LJ851 when compared with JX6007. Further analysis showed that LJ851 plants had much less reductions than the JX6007 in the net photosynthesis rate and stomatal conductance during drought stress; indicating that LJ851 had better photosynthetic performance than JX6007 during drought. In addition, transcriptional expression analysis revealed that LJ851 exhibited significantly increased transcripts of several categories of drought-responsive genes in leaves and roots under drought conditions. Together, these results indicated that LJ851 was more drought-tolerant than JX6007 as evidenced by better photosynthetic performance, more powerful antioxidant system, and higher expression of stress defense genes during drought stress. This study will be valuable for the development of novel flue-cured tobacco varieties with improved drought tolerance by exploitation of natural genetic variations in the future.
Collapse
Affiliation(s)
- Xinhong Su
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
- Henan Institute of Tobacco ScienceZhengzhou, China
| | - Fengjie Wei
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
- Henan Institute of Tobacco ScienceZhengzhou, China
| | - Yongjin Huo
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
49
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
50
|
Rajabi F, Heene E, Maisch J, Nick P. Combination of Plant Metabolic Modules Yields Synthetic Synergies. PLoS One 2017; 12:e0169778. [PMID: 28081182 PMCID: PMC5231347 DOI: 10.1371/journal.pone.0169778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/21/2016] [Indexed: 12/05/2022] Open
Abstract
The great potential of pharmacologically active secondary plant metabolites is often limited by low yield and availability of the producing plant. Chemical synthesis of these complex compounds is often too expensive. Plant cell fermentation offers an alternative strategy to overcome these limitations. However, production in batch cell cultures remains often inefficient. One reason might be the fact that different cell types have to interact for metabolite maturation, which is poorly mimicked in suspension cell lines. Using alkaloid metabolism of tobacco, we explore an alternative strategy, where the metabolic interactions of different cell types in a plant tissue are technically mimicked based on different plant-cell based metabolic modules. In this study, we simulate the interaction found between the nicotine secreting cells of the root and the nicotine-converting cells of the senescent leaf, generating the target compound nornicotine in the model cell line tobacco BY-2. When the nicotine demethylase NtomCYP82E4 was overexpressed in tobacco BY-2 cells, nornicotine synthesis was triggered, but only to a minor extent. However, we show here that we can improve the production of nornicotine in this cell line by feeding the precursor, nicotine. Engineering of another cell line overexpressing the key enzyme NtabMPO1 allows to stimulate accumulation and secretion of this precursor. We show that the nornicotine production of NtomCYP82E4 cells can be significantly stimulated by feeding conditioned medium from NtabMPO1 overexpressors without any negative effect on the physiology of the cells. Co-cultivation of NtomCYP82E4 with NtabMPO1 stimulated nornicotine accumulation even further, demonstrating that the physical presence of cells was superior to just feeding the conditioned medium collected from the same cells. These results provide a proof of concept that combination of different metabolic modules can improve the productivity for target compounds in plant cell fermentation.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Ernst Heene
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Germany
| |
Collapse
|