1
|
Du Y, Li Y, Tang W, Mo W, Ma T, Lin R. ESSENTIAL MEIOTIC ENDONUCLEASE 1 is required for chloroplast development and DNA repair in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333587 DOI: 10.1111/pbi.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Chloroplast development is fundamental to photosynthesis and plant growth but is sensitive to environmental stress. Chloroplast development and division require genome stability and DNA repair, but the underlying mechanisms have been unclear. Using a forward genetic approach, we identified the striped-leaf mutant k48 in the rice (Oryza sativa L. japonica) cultivar KY131 background. k48 displayed defects in chloroplast development and photosynthesis, especially under high-light conditions. Genetic and complementation studies revealed that the loss of ESSENTIAL MEIOTIC ENDONUCLEASE 1 (EME1) is responsible for the defects in k48. Transcriptomic analysis showed that OsEME1 globally regulates the expression of genes involved in photosynthesis and DNA repair. Furthermore, mutations in OsEME1 led to cell cycle arrest and a DNA damage response. An in vitro endonuclease activity assay indicated that OsEME1 directly binds to and cleaves DNA substrates with a specific structure and that four conserved amino acids are required for its activity. Notably, OsEME1 targeted DNA fragments of rice GOLDEN-LIKE 1 (GLK1) and GLK2. We also demonstrated that OsEME1 interacts with the structure-specific endonuclease methyl methanesulfonate (MMS) and UV-SENSITIVE PROTEIN 81 (MUS81). This study highlights the role of OsEME1 in regulating chloroplast development by modulating homologous recombination repair in response to damage to double-stranded DNA.
Collapse
Affiliation(s)
- Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Weiping Mo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Biotechnology Institute, Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
2
|
Nair AU, Kundariya HS, Samantaray D, Dopp IJ, Allu AD, Mackenzie SA. Short-Term High Light Stress Analysis Through Differential Methylation Identifies Root Architecture and Cell Size Responses. PLANT, CELL & ENVIRONMENT 2025; 48:3269-3280. [PMID: 39722567 PMCID: PMC11963490 DOI: 10.1111/pce.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
DNA methylation repatterning is an epigenomic component of plant stress response, but the extent that methylome data can elucidate changes in plant growth following stress onset is not known. We applied high-resolution DNA methylation analysis to decode plant responses to short- and long-term high light stress and, integrating with gene expression data, attempted to predict components of plant growth response. We identified 105 differentially methylated genes (DMGs) following 1 h of high light treatment and 193 DMGs following 1 week of intermittent high light treatment. Two distinct methylome-predicted plant growth responses to high light treatment could be confirmed by linking methylome changes in auxin response pathways to observed changes in root architecture and methylome changes in cell cycle pathway components to endoreduplication and palisade cell enlargement. We observed methylome changes in a cyclic GMP-dependent protein kinase in association with high light stress signalling. The ability to associate intragenic methylation repatterning with predictable plant phenotypic outcomes after a limited period of high light treatment allows for data-based early prediction of plant growth responses. The approach also permits the dissection of gene networks underpinning plant growth adjustments during environmental change to uncover dynamic phenotype determinants.
Collapse
Affiliation(s)
- Akshay U. Nair
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Hardik S. Kundariya
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Devidutta Samantaray
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Isaac J. Dopp
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Annapurna Devi Allu
- Department of BiologyIndian Institute of Science Education and Research (IISER) TirupatiTirupatiAndhra PradeshIndia
| | - Sally A. Mackenzie
- Departments of Biology and Plant SciencePennsylvania State UniversityState CollegePennsylvaniaUSA
| |
Collapse
|
3
|
Takagi H, Lee N, Hempton AK, Purushwani S, Notaguchi M, Yamauchi K, Shirai K, Kawakatsu Y, Uehara S, Albers WG, Downing BLR, Ito S, Suzuki T, Matsuura T, Mori IC, Mitsuda N, Kurihara D, Matsushita T, Song YH, Sato Y, Nomoto M, Uchida N, Tada Y, Hanada K, Cuperus JT, Queitsch C, Imaizumi T. Florigen-producing cells express FPF1-LIKE PROTEIN 1 to accelerate flowering and stem growth in Arabidopsis. Dev Cell 2025:S1534-5807(25)00065-6. [PMID: 40020678 DOI: 10.1016/j.devcel.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/05/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Plants induce the expression of the florigen FLOWERING LOCUS T (FT) in response to seasonal changes. FT is expressed in a distinct subset of phloem companion cells in Arabidopsis. Using tissue-specific translatome analysis, we discovered that the FT-expressing cells also express FLOWERING PROMOTING FACTOR 1 (FPF1)-LIKE PROTEIN 1 (FLP1), specifically under long-day conditions with the red/far-red ratio of natural sunlight. The master regulator of FT, CONSTANS (CO), is essential for FLP1 expression, suggesting that FLP1 is involved in the photoperiod pathway. We show that FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 also facilitates inflorescence stem elongation. Our cumulative evidence suggests that the small FLP1 protein acts as a mobile signal like FT. Taken together, FLP1 accelerates flowering in parallel with FT and orchestrates flowering and stem elongation during the reproductive transition.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Andrew K Hempton
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Savita Purushwani
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan; Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kota Yamauchi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Susumu Uehara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - William G Albers
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | - Shogo Ito
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan; Institute for Advanced Research (IAR), Nagoya University, Nagoya 464-8601, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Naoyuki Uchida
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka 820-8502, Japan
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195-8047, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
4
|
Szurman-Zubrzycka M, Kocjan A, Spałek E, Gajecka M, Jędrzejek P, Nawrot M, Szarejko I, Kwasniewska J. To divide or not to divide? NAC8 (SOG1) as a key regulator of DNA damage response in barley (Hordeum vulgare L.). DNA Repair (Amst) 2025; 146:103810. [PMID: 39951954 DOI: 10.1016/j.dnarep.2025.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/17/2025]
Abstract
We identified several new TILLING mutants of barley (Hordeum vulgare L.) with missense mutations in the HvNAC8 gene, a homolog of the SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) gene in Arabidopsis thaliana. In Arabidopsis, SOG1 is the primary regulator of the DNA Damage Response (DDR) pathway. We aimed to transfer this knowledge to barley, an agriculturally important crop. Our detailed analysis of the hvnac8.k mutant revealed an impaired DDR pathway. The hvnac8.k mutant accumulates DNA damage under genotoxic stress induced by zeocin, but it also shows increased DNA damage under normal growth conditions. Despite this, the frequency of dividing cells in the root meristem of the mutant treated with zeocin is much less affected than in the wild type. This suggests that the mutant bypasses the typical DDR regulation, where cell division is halted to allow DNA repair following damage. We also analyzed our mutant under aluminum (Al³⁺) stress. Aluminum ions, present in acidic soils that constitute approximately 50 % of arable land, are a common stressor that significantly reduce barley yield. Al³ ⁺ is known to cause DNA damage and activate DDR. Consequently, we aimed to assess whether the hvnac8.k phenotype could confer a beneficial effect under aluminum stress, a widespread agronomic challenge. Our findings suggest that modulation of the DDR pathway has the potential to improve aluminum tolerance in barley.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Anna Kocjan
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Emilia Spałek
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Monika Gajecka
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Paulina Jędrzejek
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Małgorzata Nawrot
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Iwona Szarejko
- Plant Genetics and Functional Genomics Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Jolanta Kwasniewska
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| |
Collapse
|
5
|
Sincinelli F, Gaonkar SS, Tondepu SAG, Dueñas CJ, Pagano A. Hallmarks of DNA Damage Response in Germination Across Model and Crop Species. Genes (Basel) 2025; 16:95. [PMID: 39858642 PMCID: PMC11764568 DOI: 10.3390/genes16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks. The expression of genes encoding DDR sensors, transducers, mediators, and effectors is interpreted as a source of conserved hallmarks, along with markers of oxidative damage reflecting the seed's ability to germinate. Similarly, the accumulation patterns of proteins and metabolites that contribute to DNA stability are predictive of seed quality traits. While a list of candidates is presented from multiple models and crop species, their interaction with chromatin dynamics, cell cycle progression, and hormonal regulation provides further levels of analysis to investigate the seed stress response holistically. The identification of novel hallmarks of DDR in seeds constitutes a framework to prompt validation with different experimental systems, to refine the current models of pre-germinative metabolism, and to promote targeted approaches for seed quality evaluation.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
6
|
Sarmiento-Mañús R, Fontcuberta-Cervera S, Kawade K, Oikawa A, Tsukaya H, Quesada V, Micol JL, Ponce MR. Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair. Heliyon 2025; 11:e41019. [PMID: 39801971 PMCID: PMC11720913 DOI: 10.1016/j.heliyon.2024.e41019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable Arabidopsis thaliana ortholog of SAMHD1, also functions in DSB repair by HR. The ven4 loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation. Hydroxyurea, which blocks DNA replication and generates DSBs, induced VEN4 expression. The ven4 mutants were hypersensitive to hydroxyurea, with decreased DSB repair by HR. Metabolomic analysis of the strong ven4-0 mutant revealed depletion of metabolites associated with DNA damage responses. In contrast to SAMHD1, VEN4 showed no evident involvement in preventing R-loop accumulation. Our study thus reveals functional conservation in DNA repair by VEN4 and SAMHD1.
Collapse
Affiliation(s)
- Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | | | - Kensuke Kawade
- Graduate School of Science and Engineering, Saitama University, Saitama City, 338-8570, Saitama, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Kanagawa, Japan
- Exploratory Research Center on Life and Living Systems, Okazaki, 444-8787, Aichi, Japan
| | - Akira Oikawa
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Kanagawa, Japan
- Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Hirokazu Tsukaya
- Exploratory Research Center on Life and Living Systems, Okazaki, 444-8787, Aichi, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| |
Collapse
|
7
|
Grinberg M, Vodeneev V. The role of signaling systems of plant in responding to key astrophysical factors: increased ionizing radiation, near-null magnetic field and microgravity. PLANTA 2025; 261:31. [PMID: 39797920 DOI: 10.1007/s00425-025-04610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored. The review shows that, despite the lack of specialized receptors, plants are able to perceive changes in astrophysical factors. Potential mechanisms for perceiving changes in IR, MF and gravity levels are considered. The main pathway for inducing effects in plants is caused by primary physicochemical reactions and change in the levels of secondary messengers, including ROS and Ca2+. The presence of common components, including secondary messengers, in the chain of responses to astrophysical factors determines the complex nature of the response under their combined action. The analysis performed and the proposed hypothesis will help in planning space missions, as well as identifying the most important areas of research in space biology.
Collapse
Affiliation(s)
- Marina Grinberg
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Vladimir Vodeneev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Vázquez-Rivera D, Huerta-Venegas PI, Raya-González J, Peña-Uribe CA, López-Bucio JS, García-Pineda E, López-Bucio J, Campos-García J, Reyes de la Cruz H. BX517, an inhibitor of the mammalian phospholipid-dependent kinase 1 (PDK1), antagonizes sucrose-induced plant growth and represses the target of rapamycin (TOR) signaling and the cell cycle through WEE1 kinase in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154386. [PMID: 39616729 DOI: 10.1016/j.jplph.2024.154386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/30/2025]
Abstract
The target of rapamycin (TOR) signaling pathway is critical for plant growth and stress adaptation through maintaining the proper balance between cell proliferation and differentiation. Here, by using BX517, an inhibitor of the mammalian phosphoinositide-dependent protein kinase 1 (PDK1), we tested the hypothesis that a plant ortholog of PDK1 could influence the TOR complex activity and its target, the S6 ribosomal protein kinase (S6K) in Arabidopsis seedlings. Through locally applying sucrose to leaves, which promotes root growth and plant biomass production via TOR signaling, we could demonstrate the opposite trend upon BX517 treatment, which antagonized sucrose-induced plant growth and overly decreased root development through inhibiting the expression of mitotic cyclins CYCB1 and CYCA3 in root meristems. Evidence was gathered that the WEE1 kinase, a master regulator of the DNA damage rescue system in meristems, operates downstream of a plant BX517 target(s). TOR protein activity and WEE1 expression were analyzed through protein blots and reporter gene activity, respectively, and their relationship with meristematic cell cycle progression was tested through genetic analyses. BX517 reduced TOR kinase activity, activated WEE1 expression in shoot, root, and lateral root meristems, and inhibited meristematic cell cycle progression in roots, suggesting that PDK1 is a critical element for plant responses to mitogenic factors through modulating TOR activity. Our data uncover a relation between a PDK1 ortholog with TOR activity and the expression of WEE1 kinase for growth and stress responses in plants.
Collapse
Affiliation(s)
- Dolores Vázquez-Rivera
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Pedro Iván Huerta-Venegas
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biología del Desarrollo, Universidad Michoacana de San Nicolás de Hidalgo, Ed A1', Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzuntzan 173 Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - César Arturo Peña-Uribe
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Jesús Salvador López-Bucio
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Bioquímica y Biología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed A1', Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biología del Desarrollo, Universidad Michoacana de San Nicolás de Hidalgo, Ed A1', Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Microbiana, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico Biológicas, Laboratorio de Biotecnología Molecular de Plantas, Universidad Michoacana de San Nicolás de Hidalgo, Ed U3, Ciudad Universitaria, Morelia, Michoacán, Mexico, CP 58030.
| |
Collapse
|
9
|
Henning PM, Minkoff BB, Sussman MR. Phosphoproteomic analysis of distylous Turnera subulata identifies pathways related to endoreduplication that correlate with reciprocal herkogamy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16438. [PMID: 39551943 DOI: 10.1002/ajb2.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/19/2024]
Abstract
PREMISE A multi-omic approach was used to explore proteins and networks hypothetically important for establishing filament dimorphisms in heterostylous Turnera subulata (Sm.) as an exploratory method to identify genes for future empirical research. METHODS Mass spectrometry (MS) was used to identify differentially expressed proteins and differentially phosphorylated peptides in the developing filaments between the L- and S-morphs. RNAseq was used to generate a co-expression network of the developing filaments, MS data were mapped to the co-expression network to identify hypothetical relationships between the S-gene responsible for filament dimorphisms and differentially expressed proteins. RESULTS Mapping all MS identified proteins to a co-expression network of the S-morph's developing filaments identified several clusters containing SPH1 and other differentially expressed or phosphorylated proteins. Co-expression analysis clustered CDKG2, a protein that induces endoreduplication, and SPH1-suggesting a shared biological function. MS analysis suggests that the protein is present and phosphorylated only in the S-morph, and thus active only in the S-morph. A series of CDKG2 regulators, including ATM1, and cell cycle regulators also correlated with the presence of reciprocal herkogamy, supporting our interest in the protein. CONCLUSIONS This work has built a foundation for future empirical work, specifically supporting the role of CDKG2 and ATM1 in promoting filament elongation in response to SPH1 perception.
Collapse
Affiliation(s)
- Paige M Henning
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
| | - Benjamin B Minkoff
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
| | - Michael R Sussman
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 425 Henry Mall, Madison, 53706, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, 53706, Wisconsin, USA
| |
Collapse
|
10
|
Singh D, Verma N, Rengasamy B, Banerjee G, Sinha AK. The small RNA biogenesis in rice is regulated by MAP kinase-mediated OsCDKD phosphorylation. THE NEW PHYTOLOGIST 2024; 244:1482-1497. [PMID: 39285527 DOI: 10.1111/nph.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/18/2024]
Abstract
CDKs are the master regulator of cell division and their activity is controlled by the regulatory subunit cyclins and phosphorylation by the CAKs. However, the role of MAP kinases in regulating plant cell cycle or CDKs have not been explored. Here, we report that the MAP kinases OsMPK3, OsMPK4, and OsMPK6 physically interact and phosphorylate OsCDKD and its regulatory subunit OsCYCH in rice. MAP kinases phosphorylate CDKD at Ser-168 and Thr-235 residues in OsCDKD. The MAP kinase-mediated phosphorylation of OsCDKD is required for its activation to control the small RNA biogenesis. The phosphodead version of OsCDKD fails to activate the C-terminal domain of RNA Polymerase II, thereby negatively impacting small RNA transcription. Further, the overexpression lines of wild-type (WT) OsCDKD and phosphomimic OsCDKD show increased root growth, plant height, tiller number, panicle number, and seed number in comparison to WT, phosphodead OsCDKD-OE, and kinase-dead OsCDKD-OE plants. In a nutshell, our study establishes a novel regulation of OsCDKD by MAPK-mediated phosphorylation in rice. The phosphorylation of OsCDKD by MAPKs imparts a positive effect on rice growth and development by regulating miRNAs transcription.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| |
Collapse
|
11
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
12
|
Cervantes-Pérez SA, Zogli P, Amini S, Thibivilliers S, Tennant S, Hossain MS, Xu H, Meyer I, Nooka A, Ma P, Yao Q, Naldrett MJ, Farmer A, Martin O, Bhattacharya S, Kläver J, Libault M. Single-cell transcriptome atlases of soybean root and mature nodule reveal new regulatory programs that control the nodulation process. PLANT COMMUNICATIONS 2024; 5:100984. [PMID: 38845198 PMCID: PMC11369782 DOI: 10.1016/j.xplc.2024.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
The soybean root system is complex. In addition to being composed of various cell types, the soybean root system includes the primary root, the lateral roots, and the nodule, an organ in which mutualistic symbiosis with N-fixing rhizobia occurs. A mature soybean root nodule is characterized by a central infection zone where atmospheric nitrogen is fixed and assimilated by the symbiont, resulting from the close cooperation between the plant cell and the bacteria. To date, the transcriptome of individual cells isolated from developing soybean nodules has been established, but the transcriptomic signatures of cells from the mature soybean nodule have not yet been characterized. Using single-nucleus RNA-seq and Molecular Cartography technologies, we precisely characterized the transcriptomic signature of soybean root and mature nodule cell types and revealed the co-existence of different sub-populations of B. diazoefficiens-infected cells in the mature soybean nodule, including those actively involved in nitrogen fixation and those engaged in senescence. Mining of the single-cell-resolution nodule transcriptome atlas and the associated gene co-expression network confirmed the role of known nodulation-related genes and identified new genes that control the nodulation process. For instance, we functionally characterized the role of GmFWL3, a plasma membrane microdomain-associated protein that controls rhizobial infection. Our study reveals the unique cellular complexity of the mature soybean nodule and helps redefine the concept of cell types when considering the infection zone of the soybean nodule.
Collapse
Affiliation(s)
| | - Prince Zogli
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Sahand Amini
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211, USA; Interdisciplinary Plant Group of Missouri-Columbia, Columbia, MO 65211, USA
| | - Sandra Thibivilliers
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211, USA; Interdisciplinary Plant Group of Missouri-Columbia, Columbia, MO 65211, USA
| | - Sutton Tennant
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211, USA; Interdisciplinary Plant Group of Missouri-Columbia, Columbia, MO 65211, USA
| | - Md Sabbir Hossain
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211, USA; Interdisciplinary Plant Group of Missouri-Columbia, Columbia, MO 65211, USA
| | - Hengping Xu
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211, USA; Interdisciplinary Plant Group of Missouri-Columbia, Columbia, MO 65211, USA
| | - Ian Meyer
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Akash Nooka
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Pengchong Ma
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Qiuming Yao
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Olivier Martin
- INRAE, Université Paris-Saclay, Institut des Sciences des Plantes de Paris Saclay, IPS2, Batiment 630 Plateau du Moulon, Rue Noetzlin, 91192 Gif sur Yvette Cedex, France
| | | | | | - Marc Libault
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65211, USA; Interdisciplinary Plant Group of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
13
|
Saha S, Adhikari A, Ghosh PK, Shaw AK, Roy D, Choubey S, Basuli D, Tarafder M, Roy S, Hossain Z. Untying arsenite tolerance mechanisms in contrasting maize genotypes attributed to NIPs-mediated controlled influx and root-to-shoot translocation, redox homeostasis and phytochelatin-mediated detoxification pathway. CHEMOSPHERE 2024; 362:142647. [PMID: 38897322 DOI: 10.1016/j.chemosphere.2024.142647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Contamination of ground water and soil with toxic metalloids like arsenic (As) poses a serious hazard to the global agricultural food production. One of the best ways to restrict entry of As into the food chain is selection of germplasms which accrue extremely low level of As in grains. Here, we screened diverse maize genotypes under high arsenite (100 μM AsIII) stress and identified PMI-PV-9 and PMI-PV-3 as AsIII-tolerant and -sensitive maize genotype respectively. Expression of genes associated with As uptake, vacuolar sequestration, biosynthesis of phytochelatins, root-to-shoot translocation, in vivo ROS generation, fine tuning of antioxidant defense system, DNA and membrane damage, H2O2 and superoxide anion (O2•-) levels were compared among the selected genotypes. PMI-PV-9 plants performed much better than PMI-PV-3 in terms of plant growth with no visible symptom of As toxicity. Susceptibility of PMI-PV-3 to AsIII stress may be attributed to comparatively low expression of genes involved in phytochelatins (PCs) biosynthesis. Concomitant decrease in ABCC1 expression might be another key factor for futile sequestration of AsIII into root vacuoles. Moreover, up-regulation of ZmNIP3;1 might contribute in high root-to-leaf As translocation. Substantial spike in H2O2, O2•- and MDA levels indicates that PMI-PV-3 plants have experienced more oxidative stress than PMI-PV-9 plants. Appearance of prominent deep brown and dark blue spots/stripes on leaves as revealed after DAB and NBT staining respectively suggest severe oxidative burst in PMI-PV-3 plants. Marked reduction in DHAR and MDAR activity rendered PMI-PV-3 cells to recycle ascorbate pool ineffectively, which might have exacerbated their susceptibility to AsIII stress. In a nutshell, incompetent PCs mediated detoxification system and disruption of cellular redox homeostasis owing to feeble antioxidant defence system resulting oxidative burst might be the prime reasons behind reduced performance of PMI-PV-3 plants under AsIII stress.
Collapse
Affiliation(s)
- Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sampad Choubey
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Debapriya Basuli
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Mrinmay Tarafder
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
14
|
Kutashev K, Meschichi A, Reeck S, Fonseca A, Sartori K, White CI, Sicard A, Rosa S. Differences in RAD51 transcriptional response and cell cycle dynamics reveal varying sensitivity to DNA damage among Arabidopsis thaliana root cell types. THE NEW PHYTOLOGIST 2024; 243:966-980. [PMID: 38840557 DOI: 10.1111/nph.19875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Throughout their lifecycle, plants are subjected to DNA damage from various sources, both environmental and endogenous. Investigating the mechanisms of the DNA damage response (DDR) is essential to unravel how plants adapt to the changing environment, which can induce varying amounts of DNA damage. Using a combination of whole-mount single-molecule RNA fluorescence in situ hybridization (WM-smFISH) and plant cell cycle reporter lines, we investigated the transcriptional activation of a key homologous recombination (HR) gene, RAD51, in response to increasing amounts of DNA damage in Arabidopsis thaliana roots. The results uncover consistent variations in RAD51 transcriptional response and cell cycle arrest among distinct cell types and developmental zones. Furthermore, we demonstrate that DNA damage induced by genotoxic stress results in RAD51 transcription throughout the whole cell cycle, dissociating its traditional link with S/G2 phases. This work advances the current comprehension of DNA damage response in plants by demonstrating quantitative differences in DDR activation. In addition, it reveals new associations with the cell cycle and cell types, providing crucial insights for further studies of the broader response mechanisms in plants.
Collapse
Affiliation(s)
- Konstantin Kutashev
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Anis Meschichi
- Department of Biology, Institute of Molecular Plant Biology, Swiss Federal Institute of Technology Zürich, Zürich, 8092, Switzerland
| | - Svenja Reeck
- Department of Cell and Developmental Biology, John Innes Centre, Research Park, Norwich, NR4 7UH, UK
| | - Alejandro Fonseca
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Kevin Sartori
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Charles I White
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERM, Clermont-Ferrand, 63001, France
| | - Adrien Sicard
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 756 51, Sweden
| |
Collapse
|
15
|
Mishra S, Duarte GT, Horemans N, Ruytinx J, Gudkov D, Danchenko M. Complexity of responses to ionizing radiation in plants, and the impact on interacting biotic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171567. [PMID: 38460702 DOI: 10.1016/j.scitotenv.2024.171567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
In nature, plants are simultaneously exposed to different abiotic (e.g., heat, drought, and salinity) and biotic (e.g., bacteria, fungi, and insects) stresses. Climate change and anthropogenic pressure are expected to intensify the frequency of stress factors. Although plants are well equipped with unique and common defense systems protecting against stressors, they may compromise their growth and development for survival in such challenging environments. Ionizing radiation is a peculiar stress factor capable of causing clustered damage. Radionuclides are both naturally present on the planet and produced by human activities. Natural and artificial radioactivity affects plants on molecular, biochemical, cellular, physiological, populational, and transgenerational levels. Moreover, the fitness of pests, pathogens, and symbionts is concomitantly challenged in radiologically contaminated areas. Plant responses to artificial acute ionizing radiation exposure and laboratory-simulated or field chronic exposure are often discordant. Acute or chronic ionizing radiation exposure may occasionally prime the defense system of plants to better tolerate the biotic stress or could often exhaust their metabolic reserves, making plants more susceptible to pests and pathogens. Currently, these alternatives are only marginally explored. Our review summarizes the available literature on the responses of host plants, biotic factors, and their interaction to ionizing radiation exposure. Such systematic analysis contributes to improved risk assessment in radiologically contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia
| | - Gustavo Turqueto Duarte
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium
| | - Nele Horemans
- Unit for Biosphere Impact Studies, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Joske Ruytinx
- Department of Bio-engineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, 04210 Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 950 07 Nitra, Slovakia.
| |
Collapse
|
16
|
Huerta-Venegas PI, Raya-González J, Ruíz-Herrera LF, López-Bucio J. PHYTOCHROME A controls the DNA damage response and cell death tolerance within the Arabidopsis root meristem. PLANT, CELL & ENVIRONMENT 2024; 47:1513-1525. [PMID: 38251425 DOI: 10.1111/pce.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.
Collapse
Affiliation(s)
- Pedro Iván Huerta-Venegas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - León Francisco Ruíz-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
17
|
Takagi H, Lee N, Hempton AK, Purushwani S, Notaguchi M, Yamauchi K, Shirai K, Kawakatsu Y, Uehara S, Albers WG, Downing BLR, Ito S, Suzuki T, Matsuura T, Mori IC, Mitsuda N, Kurihara D, Matsushita T, Song YH, Sato Y, Nomoto M, Tada Y, Hanada K, Cuperus JT, Queitsch C, Imaizumi T. Florigen-producing cells express FPF1-LIKE PROTEIN 1 that accelerates flowering and stem growth in long days with sunlight red/far-red ratio in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591289. [PMID: 38746097 PMCID: PMC11092471 DOI: 10.1101/2024.04.26.591289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Seasonal changes in spring induce flowering by expressing the florigen, FLOWERING LOCUS T (FT), in Arabidopsis. FT is expressed in unique phloem companion cells with unknown characteristics. The question of which genes are co-expressed with FT and whether they have roles in flowering remains elusive. Through tissue-specific translatome analysis, we discovered that under long-day conditions with the natural sunlight red/far-red ratio, the FT-producing cells express a gene encoding FPF1-LIKE PROTEIN 1 (FLP1). The master FT regulator, CONSTANS (CO), controls FLP1 expression, suggesting FLP1's involvement in the photoperiod pathway. FLP1 promotes early flowering independently of FT, is active in the shoot apical meristem, and induces the expression of SEPALLATA 3 (SEP3), a key E-class homeotic gene. Unlike FT, FLP1 facilitates inflorescence stem elongation. Our cumulative evidence indicates that FLP1 may act as a mobile signal. Thus, FLP1 orchestrates floral initiation together with FT and promotes inflorescence stem elongation during reproductive transitions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Andrew K. Hempton
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Savita Purushwani
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kota Yamauchi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Yaichi Kawakatsu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Susumu Uehara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - William G. Albers
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
| | | | - Shogo Ito
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, 464-8601, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Young Hun Song
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, 820-8502, Japan
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195-5065, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, 98195-8047, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, 98195-1800, USA
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
18
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
19
|
Żabka A, Gocek N, Polit JT, Maszewski J. Oxidative replication stress induced by long-term exposure to hydroxyurea in root meristem cells of Vicia faba. PLANT CELL REPORTS 2024; 43:87. [PMID: 38460026 DOI: 10.1007/s00299-024-03187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
KEY MESSAGE Low concentrations of hydroxyurea, an inhibitor of DNA replication, induced oxidative and replicative stress in root apical meristem (RAM) cells of Vicia faba. Plant cells are constantly exposed to low-level endogenous stress factors that can affect DNA replication and lead to DNA damage. Long-term treatments of Vicia faba root apical meristems (RAMs) with HU leads to the appearance of atypical cells with intranuclear asynchrony. This rare form of abnormality was manifested by a gradual condensation of chromatin, from interphase to mitosis (so-called IM cells). Moreover, HU-treated root cells revealed abnormal chromosome structure, persisting DNA replication, and elevated levels of intracellular hydrogen peroxide (H2O2) and superoxide anion (O2∙-). Immunocytochemical studies have shown an increased number of fluorescent foci of H3 histones acetylated at lysine 56 (H3K56Ac; canonically connected with the DNA replication process). We show that continuous 3-day exposure to low concentrations (0.75 mM) of hydroxyurea (HU; an inhibitor of DNA replication) induces cellular response to reactive oxygen species and to DNA replication stress conditions.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland.
| | - Natalia Gocek
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| |
Collapse
|
20
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
21
|
Ito N, Sakamoto T, Oko Y, Sato H, Hanamata S, Sakamoto Y, Matsunaga S. Nuclear pore complex proteins are involved in centromere distribution. iScience 2024; 27:108855. [PMID: 38318384 PMCID: PMC10839643 DOI: 10.1016/j.isci.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/28/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The subnuclear distribution of centromeres is cooperatively regulated by condensin II and the linker of nucleoskeleton and cytoskeleton (LINC) complex. However, other nuclear membrane structures and nuclear proteins are probably involved in centromere dynamics and distribution. Here, we focused on the nuclear pore complex (NPC), which is known to regulate gene expression, transcription memory, and chromatin structure in addition to transport between the cytoplasm and nucleoplasm. We report here that some nucleoporins (Nups), including Nup85, Nup133, CG1, Nup93b, and NUA, are involved in centromere scattering in Arabidopsis thaliana. In addition, the centromere dynamics after metaphase in nup mutants were found to be similar to that of the condensin II mutant. Furthermore, both biochemical and genetic approaches showed that the Nups interact with the LINC complex. These results suggest that Nups regulate centromere scattering cooperatively with condensin II and the LINC complex.
Collapse
Affiliation(s)
- Nanami Ito
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Takuya Sakamoto
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuka Oko
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shigeru Hanamata
- Department of Science, Faculty of Science, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
22
|
Simonini S, Bencivenga S, Grossniklaus U. A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis. Science 2024; 383:646-653. [PMID: 38330116 DOI: 10.1126/science.adj4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds.
Collapse
Affiliation(s)
- Sara Simonini
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
23
|
Takatsuka H, Nomoto Y, Yamada K, Mineta K, Breuer C, Ishida T, Yamagami A, Sugimoto K, Nakano T, Ito M. MYB3R-SCL28-SMR module with a role in cell size control negatively regulates G2 progression in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2153209. [PMID: 36576149 PMCID: PMC10761098 DOI: 10.1080/15592324.2022.2153209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Cell size control is one of the prerequisites for plant growth and development. Recently, a GRAS family transcription factor, SCARECROW-LIKE28 (SCL28), was identified as a critical regulator for both mitotic and postmitotic cell-size control. Here, we show that SCL28 is specifically expressed in proliferating cells and exerts its function to delay G2 progression during mitotic cell cycle in Arabidopsis thaliana. Overexpression of SCL28 provokes a significant enlargement of cells in various organs and tissues, such as leaves, flowers and seeds, to different extents depending on the type of cells. The increased cell size is most likely due to a delayed G2 progression and accelerated onset of endoreplication, an atypical cell cycle repeating DNA replication without cytokinesis or mitosis. Unlike DWARF AND LOW-TILLERING, a rice ortholog of SCL28, SCL28 may not have a role in brassinosteroid (BR) signaling because sensitivity against brassinazole, a BR biosynthesis inhibitor, was not dramatically altered in scl28 mutant and SCL28-overexpressing plants. Collectively, our findings strengthen a recently proposed model of cell size control by SCL28 and suggest the presence of diversified evolutionary mechanisms for the regulation and action of SCL28.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kesuke Yamada
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Keito Mineta
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Christian Breuer
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Takashi Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
24
|
Yang Z, Mei W, Wang H, Zeng J, Dai H, Ding X. Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of AsNAC019 and AsNAC098 in Aquilaria sinensis. Int J Mol Sci 2023; 24:17384. [PMID: 38139213 PMCID: PMC10744133 DOI: 10.3390/ijms242417384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.
Collapse
Affiliation(s)
- Zhuo Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Zeng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
25
|
Tourdot E, Mauxion JP, Gonzalez N, Chevalier C. Endoreduplication in plant organogenesis: a means to boost fruit growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6269-6284. [PMID: 37343125 DOI: 10.1093/jxb/erad235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
26
|
Li J, Qian W. Translational control of SOG1 expression in response to replication stress in Arabidopsis. STRESS BIOLOGY 2023; 3:28. [PMID: 37676617 PMCID: PMC10442038 DOI: 10.1007/s44154-023-00112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
DNA damage, which may arise from cellular activities or be induced by genotoxic stresses, can cause genome instability and significantly affect plant growth and productivity. In response to genotoxic stresses, plants activate the cellular DNA damage response (DDR) to sense the stresses and activate downstream processes. The transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a functional counterpart of mammalian p53, is a master regulator of the DDR in plants. It is activated by various types of DNA lesions and can activate the transcription of hundreds of genes to trigger downstream processes, including cell cycle arrest, DNA repair, endoreplication, and apoptosis. Since SOG1 plays a crucial role in DDR, the activity of SOG1 must be tightly regulated. A recent study published in Plant Cell (Chen et al., Plant Cell koad126, 2023) reports a novel mechanism by which the ATR-WEE1 kinase module promotes SOG1 translation to fine-tune replication stress response.
Collapse
Affiliation(s)
- Jinchao Li
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Zhou XL, Wei Y, Chen P, Yang X, Lu C, Pan MH. A novel transcription factor, BmZFP67, regulates endomitosis switch by controlling the expression of cyclin B in silk glands. Int J Biol Macromol 2023:124931. [PMID: 37263320 DOI: 10.1016/j.ijbiomac.2023.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 06/03/2023]
Abstract
Endomitosis is involved in developmental processes associated with an increase in metabolic cell activity, which is characterized by repeated rounds of DNA replication without cytokinesis. Endomitosis cells are widespread in protozoa, plants, animals and humans. Endomitosis cell cycle is currently viewed as a variation of the canonical cell cycle and transformed from mitotic cell cycle. However, the meaningful question about how endomitosis transformed from mitosis is still unclear. Herein, we identified a novel transcription factor in silk glands, ZFP67, which is gradually reduced in silk glands during the transition of mitosis to endomitosis. In addition, over-expressed ZFP67 in silk glands led to the transition delayed. And, knock-out of ZFP67 led to abnormal chromatin division and unsuccessful cell division. These data reveled that ZFP67 played an important role in transition of mitosis to endomitosis. Furthermore, ZFP67 can regulate the transcription of cyclin B, a key cyclin related to cell division and G2/M phase, which is demonstrated by chromatin immunoprecipitation and dual luciferase reporter system in this article. In conclusion, it can be speculated that the decreasing expression of ZFP67 in silk glands during the transition stage of mitosis-to-endomitosis resulted in the lack of cyclin B, which further led to unsuccessful cytokinesis and then promoted the transition from mitosis to endomitosis of silk gland cells.
Collapse
Affiliation(s)
- Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, China.
| |
Collapse
|
28
|
Kimata Y, Yamada M, Murata T, Kuwata K, Sato A, Suzuki T, Kurihara D, Hasebe M, Higashiyama T, Ueda M. Novel inhibitors of microtubule organization and phragmoplast formation in diverse plant species. Life Sci Alliance 2023; 6:e202201657. [PMID: 36849250 PMCID: PMC9971157 DOI: 10.26508/lsa.202201657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Cell division is essential for development and involves spindle assembly, chromosome separation, and cytokinesis. In plants, the genetic tools for controlling the events in cell division at the desired time are limited and ineffective owing to high redundancy and lethality. Therefore, we screened cell division-affecting compounds in Arabidopsis thaliana zygotes, whose cell division is traceable without time-lapse observations. We then determined the target events of the identified compounds using live-cell imaging of tobacco BY-2 cells. Subsequently, we isolated two compounds, PD-180970 and PP2, neither of which caused lethal damage. PD-180970 disrupted microtubule (MT) organization and, thus, nuclear separation, and PP2 blocked phragmoplast formation and impaired cytokinesis. Phosphoproteomic analysis showed that these compounds reduced the phosphorylation of diverse proteins, including MT-associated proteins (MAP70) and class II Kinesin-12. Moreover, these compounds were effective in multiple plant species, such as cucumber (Cucumis sativus) and moss (Physcomitrium patens). These properties make PD-180970 and PP2 useful tools for transiently controlling plant cell division at key manipulation nodes conserved across diverse plant species.
Collapse
Affiliation(s)
- Yusuke Kimata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Moé Yamada
- Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takashi Murata
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan
| |
Collapse
|
29
|
Duarte GT, Volkova PY, Fiengo Perez F, Horemans N. Chronic Ionizing Radiation of Plants: An Evolutionary Factor from Direct Damage to Non-Target Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1178. [PMID: 36904038 PMCID: PMC10005729 DOI: 10.3390/plants12051178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In present times, the levels of ionizing radiation (IR) on the surface of Earth are relatively low, posing no high challenges for the survival of contemporary life forms. IR derives from natural sources and naturally occurring radioactive materials (NORM), the nuclear industry, medical applications, and as a result of radiation disasters or nuclear tests. In the current review, we discuss modern sources of radioactivity, its direct and indirect effects on different plant species, and the scope of the radiation protection of plants. We present an overview of the molecular mechanisms of radiation responses in plants, which leads to a tempting conjecture of the evolutionary role of IR as a limiting factor for land colonization and plant diversification rates. The hypothesis-driven analysis of available plant genomic data suggests an overall DNA repair gene families' depletion in land plants compared to ancestral groups, which overlaps with a decrease in levels of radiation exposure on the surface of Earth millions of years ago. The potential contribution of chronic IR as an evolutionary factor in combination with other environmental factors is discussed.
Collapse
Affiliation(s)
| | | | | | - Nele Horemans
- Belgian Nuclear Research Centre—SCK CEN, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
30
|
Takatsuka H, Higaki T, Ito M. At the Nexus between Cytoskeleton and Vacuole: How Plant Cytoskeletons Govern the Dynamics of Large Vacuoles. Int J Mol Sci 2023; 24:4143. [PMID: 36835552 PMCID: PMC9967756 DOI: 10.3390/ijms24044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Large vacuoles are a predominant cell organelle throughout the plant body. They maximally account for over 90% of cell volume and generate turgor pressure that acts as a driving force of cell growth, which is essential for plant development. The plant vacuole also acts as a reservoir for sequestering waste products and apoptotic enzymes, thereby enabling plants to rapidly respond to fluctuating environments. Vacuoles undergo dynamic transformation through repeated enlargement, fusion, fragmentation, invagination, and constriction, eventually resulting in the typical 3-dimensional complex structure in each cell type. Previous studies have indicated that such dynamic transformations of plant vacuoles are governed by the plant cytoskeletons, which consist of F-actin and microtubules. However, the molecular mechanism of cytoskeleton-mediated vacuolar modifications remains largely unclear. Here we first review the behavior of cytoskeletons and vacuoles during plant development and in response to environmental stresses, and then introduce candidates that potentially play pivotal roles in the vacuole-cytoskeleton nexus. Finally, we discuss factors hampering the advances in this research field and their possible solutions using the currently available cutting-edge technologies.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
31
|
Meng X, Dang HQ, Kapler GM. Developmentally Programmed Switches in DNA Replication: Gene Amplification and Genome-Wide Endoreplication in Tetrahymena. Microorganisms 2023; 11:microorganisms11020491. [PMID: 36838456 PMCID: PMC9967165 DOI: 10.3390/microorganisms11020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Locus-specific gene amplification and genome-wide endoreplication generate the elevated copy number of ribosomal DNA (rDNA, 9000 C) and non-rDNA (90 C) chromosomes in the developing macronucleus of Tetrahymena thermophila. Subsequently, all macronuclear chromosomes replicate once per cell cycle during vegetative growth. Here, we describe an unanticipated, programmed switch in the regulation of replication initiation in the rDNA minichromosome. Early in development, the 21 kb rDNA minichromosome is preferentially amplified from 2 C to ~800 C from well-defined origins, concurrent with genome-wide endoreplication (2 C to 8-16 C) in starved mating Tetrahymena (endoreplication (ER) Phase 1). Upon refeeding, rDNA and non-rDNA chromosomes achieve their final copy number through resumption of just the endoreplication program (ER Phase 2). Unconventional rDNA replication intermediates are generated primarily during ER phase 2, consistent with delocalized replication initiation and possible formation of persistent RNA-DNA hybrids. Origin usage and replication fork elongation are affected in non-rDNA chromosomes as well. Despite the developmentally programmed 10-fold reduction in the ubiquitous eukaryotic initiator, the Origin Recognition Complex (ORC), active initiation sites are more closely spaced in ER phases 1 and 2 compared to vegetative growing cells. We propose that initiation site selection is relaxed in endoreplicating macronuclear chromosomes and may be less dependent on ORC.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hung Quang Dang
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Alstem Bioscience, Richmond, CA 94806, USA
| | - Geoffrey M. Kapler
- Department of Cell Biology and Genetics, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-574-3901
| |
Collapse
|
32
|
Nishizawa-Yokoi A, Motoyama R, Tanaka T, Mori A, Iida K, Toki S. SUPPRESSOR OF GAMMA RESPONSE 1 plays rice-specific roles in DNA damage response and repair. PLANT PHYSIOLOGY 2023; 191:1288-1304. [PMID: 36271862 PMCID: PMC9922390 DOI: 10.1093/plphys/kiac490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Land plants are constantly exposed to environmental stresses and have developed complicated defense systems, including DNA damage response (DDR) and DNA repair systems, to protect plant cells. In Arabidopsis (Arabidopsis thaliana), the transcription factor SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) plays a key role in DDR. Here, we focus on DDR in rice (Oryza sativa)-thought to be a simpler system compared with Arabidopsis due to lack of induction of the endocycle even under DNA damage stress. Rice SOG1 (OsSOG1) and SOG1-like (OsSGL) were identified as putative AtSOG1 orthologs with complete or partial conservation of the serine-glutamine motifs involved in activation via phosphorylation. In addition to OsSOG1 or OsSGL knockout mutants, OsSOG1 nonphosphorylatable mutants (OsSOG1-7A) were generated by homologous recombination-mediated gene targeting. Based on the analysis of DNA damage susceptibility and the effect on the expression of DNA repair-related genes using these mutants, we have demonstrated that OsSOG1 plays a more important role than OsSGL in controlling DDR and DNA repair. OsSOG1-regulated target genes via CTT (N)7 AAG motifs reported previously as AtSOG1 recognition sites. The loss of transcription activity of OsSOG1-7A was not complete compared with OsSOG1-knockout mutants, raising the possibility that other phosphorylation sites might be involved in, or that phosphorylation might not be always required for, the activation of OsSOG1. Furthermore, our findings have highlighted differences in SOG1-mediated DDR between rice and Arabidopsis, especially regarding the transcriptional induction of meiosis-specific recombination-related genes and the response of cell cycle-related genes, revealing rice-specific DDR mechanisms.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan
| | - Ritsuko Motoyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan
| | - Tsuyoshi Tanaka
- Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki 305-8518, Japan
| | - Akiko Mori
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan
| | - Keiko Iida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8604, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga 520-2194, Japan
| |
Collapse
|
33
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
34
|
Maity S, Guchhait R, De S, Pramanick K. High doses of nano-polystyrene aggravate the oxidative stress, DNA damage, and the cell death in onions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120611. [PMID: 36368557 DOI: 10.1016/j.envpol.2022.120611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution has been reported to negatively impact global biodiversity and ecosystem health. However, the molecular mechanisms of nano-plastics in plants are unidentified, especially their negative impacts on genomic stability. This study for the first time showed that nano-polystyrene leads to cell death in plants by subjugating the cellular antioxidant defence mechanisms through the aggravated production of ROS, which in turn could induce the DNA damage impairing the genetic regulation of the corresponding DNA repair pathway. To validate the proposed hypothesis, the DNA damage potential of nano-polystyrene and the expression levels of key genetic regulators of the DNA damage repair pathway (such as - CYCA/B, CDKA, SOG1, MYB transcription factors, and RAD51) have been assessed in onion roots after 72 h exposure with three ecologically relevant concentrations (25, 50, and 100 μg ml-1) of 100 nm nano-polystyrene. In addition, imbalance in redox homeostasis (oxidative stress), cell viability, and nuclear aberrations such as - the frequency of micronucleus and bi-nucleate cells that are directly linked to the DNA damages have been checked to point out the cause and effect of nano-polystyrene-induced DNA damage. Results showed a significant increase in oxidative stress in each treatment concentrations of nano-polystyrene. However, ROS generated at 100 μg ml-1 nano-polystyrene dose subdues the antioxidant defence system and induces cell death. These observations may be ascribed to the accumulation damaged DNA and the down-regulation of repair pathway-associated genes, as observed in this treatment group. Conversely, the observed DNA damage and the reduced expressions of genes would be a mere consequence of reduced cellular viability.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India; Department of Zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Sukanta De
- Department of Physics, Presidency University, Kolkata, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
35
|
Sun L, Xue C, Guo C, Jia C, Li X, Tai P. Regulatory actions of rare earth elements (La and Gd) on the cell cycle of root tips in rice seedlings (Oryza sativa L.). CHEMOSPHERE 2022; 307:135795. [PMID: 35917980 DOI: 10.1016/j.chemosphere.2022.135795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The continuous expansion of the application of rare earth elements (REEs) in various fields has attracted attention to their biosafety. At present, the molecular mechanisms underlying the biological effects of REEs are unclear. In this study, the effects of lanthanum (La) and gadolinium (Gd) on cell cycle progression in the root tips of rice seedlings were investigated. Low concentrations of REEs (0.1 mg L-1) induced an increase in the number of cells in the prophase and metaphase, while high concentrations of REEs (10 mg L-1) induced an increase in the number of cells in the late and terminal stages of the cell cycle, and apoptosis or necrosis. Additionally, low concentrations of REEs induced a significant increase in the expression of the cell cycle factors WEE1, CDKA;1, and CYCB1;1, and promoted the G2/M phase and accelerated root tip growth. However, at high REEs concentrations, the DNA damage response sensitized by BRCA1, MRE11, and TP53 could that prevent root tip growth by inhibiting the transcription factor E2F, resulting in obvious G1/S phase transition block and delayed G2/M phase conversion. Furthermore, by comparing the biological effect mechanisms of La and Gd, we found that these two REEs share regulatory actions on the cell cycle of root tips in rice seedlings.
Collapse
Affiliation(s)
- Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
36
|
de Luxán-Hernández C, Lohmann J, Tranque E, Chumova J, Binarova P, Salinas J, Weingartner M. MDF is a conserved splicing factor and modulates cell division and stress response in Arabidopsis. Life Sci Alliance 2022; 6:6/1/e202201507. [PMID: 36265897 PMCID: PMC9585968 DOI: 10.26508/lsa.202201507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.
Collapse
Affiliation(s)
| | - Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Eduardo Tranque
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Jana Chumova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Binarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
37
|
Maity S, Guchhait R, Pramanick K. Melatonin mediated activation of MAP kinase pathway may reduce DNA damage stress in plants: A review. Biofactors 2022; 48:965-971. [PMID: 35938772 DOI: 10.1002/biof.1882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Melatonin is an important biomolecule found in diverse groups of organisms. Under different abiotic stresses, the synthesis of melatonin is markedly increased suggesting pivotal roles of melatonin in plants enduring stresses. Being an endogenous signaling molecule with antioxidant activity, melatonin alters many physiological responses and is found to be involved in regulating DNA damage responses. However, the molecular mechanisms of melatonin in response to DNA damage have not yet been studied. The present review aims to provide insights into the molecular mechanisms of melatonin in response to DNA damage in plants. We propose that the MAP kinase pathway is involved in regulating melatonin dependent response of plants under DNA damage stress. Where melatonin might activate MAPK via H2 O2 or Ca2+ dependent pathways. The activated MAPK in turn might phosphorylate and activate SOG1 and repressor type MYBs to mitigate DNA damage under abiotic stress.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- P.G. Department of Zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
38
|
Kang S, Guo C, Xue C, Ma C, Mu H, Sun L. Toxic Effects of Two Representative Rare Earth Elements (La and Gd) on Danio rerio Based on Transcriptome Analysis. TOXICS 2022; 10:519. [PMID: 36136485 PMCID: PMC9503537 DOI: 10.3390/toxics10090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The expanding applications of rare earth elements (REEs) in various fields have raised concerns about their biosafety. However, previous studies are insufficient to elucidate their toxic effects and mechanisms of action and whether there are uniform or predictable toxicity patterns among REEs. Herein, we investigated the toxic effects of two representative REEs (lanthanum (La) and gadolinium (Gd)) on zebrafish (Danio rerio) through toxicity experiments and transcriptome analysis. The results of the toxicity experiments showed that the two REEs have similar lethality, with half-lethal concentrations (LC50) at micromolar levels and mixed toxicity showing additive effects. Differential expression gene screening and functional group enrichment analysis showed that La and Gd might affect the growth and development of Danio rerio by interfering with some biological molecules. The two REEs showed significant effects on the metabolic pathways of exogenous or endogenous substances, including glutathione sulfotransferase and acetaldehyde dehydrogenase. Moreover, some basic biological processes, such as DNA replication, the insulin signaling pathway, and the p53 signaling pathway, were significantly enriched. Overall, the toxicity patterns of La and Gd may affect some biological processes with different intensities; however, there are many similarities in their toxicity mechanisms and modes of action. The concentrations investigated in this study were comparable to those of REE residues at highly contaminated sites, thus mimicking the ecotoxicological effects at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Shu Kang
- School of Public Management, Liaoning University, Shenyang 110016, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chenshu Ma
- School of Public Management, Liaoning University, Shenyang 110016, China
- Liaoning Economic Vocational Technological Institute, Shenyang 110016, China
| | - Huaizhong Mu
- School of Public Management, Liaoning University, Shenyang 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
39
|
Members of SIAMESE-RELATED Class Inhibitor Proteins of Cyclin-Dependent Kinase Retard G2 Progression and Increase Cell Size in Arabidopsis thaliana. Life (Basel) 2022; 12:life12091356. [PMID: 36143392 PMCID: PMC9505245 DOI: 10.3390/life12091356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cell size requires strict and flexible control as it significantly impacts plant growth and development. Unveiling the molecular mechanism underlying cell size control would provide fundamental insights into plants’ nature as sessile organisms. Recently, a GRAS family transcription factor SCARECROW-LIKE28 (SCL28) was identified as a determinant of cell size in plants; specifically, SCL28 directly induces a subset of SIAMESE-RELATED (SMR) family genes encoding plant-specific inhibitors of cyclin-dependent kinases (i.e., SMR1, SMR2, SMR6, SMR8, SMR9, SMR13, and SMR14), thereby slowing down G2 phase progression to provide the time to increase cell volume. Of the SMR genes regulated by SCL28, genetic analysis has demonstrated that SMR1, SMR2, and SMR13 cooperatively regulate the cell size downstream of SCL28 in roots and leaves, whereas other SMR members’ contribution remains unexplored. This study shows that in root meristematic cells, SMR9 redundantly participates in cell size control with SMR1, SMR2, and SMR13. Moreover, our cell cycle analysis provides the first experimental evidence that SMR proteins inhibit the G2 progression of proliferating cells. Overall, these findings illuminate the diverse yet overlapping roles of SMR proteins in cell cycle regulation while reinforcing that SMRs are essential downstream effectors of SCL28 to modulate G2 progression and cell size.
Collapse
|
40
|
Ezura K, Nakamura A, Mitsuda N. Genome-wide characterization of the TALE homeodomain family and the KNOX-BLH interaction network in tomato. PLANT MOLECULAR BIOLOGY 2022; 109:799-821. [PMID: 35543849 DOI: 10.1007/s11103-022-01277-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/23/2022] [Indexed: 05/05/2023]
Abstract
Comprehensive yeast and protoplast two-hybrid analyses illustrated the protein-protein interaction network of the TALE homeodomain protein family, KNOX and BLH proteins, in tomato leaf and fruit development. KNOTTED-like (KNOX, KN) proteins and BELL1-like (BLH) proteins, which belong to the same TALE homeodomain family, act together by forming KNOX-BLH heterodimer modules. These modules play crucial roles in regulating multiple developmental processes in plants, like organ differentiation. However, despite the increasing knowledge about individual KNOX and BLH functions, a comprehensive view of their functional protein-protein interaction (PPI) network remains elusive in most plants, including tomato (Solanum lycopersicum), an important model plant to study fruit and leaf development. Here, we characterized eight tomato KNOX genes (SlKN1 to SlKN8) and fourteen tomato BLH genes (SlBLH1 to SlBLH14) by expression profiling, co-expression analysis, and PPI network analysis using two-hybrid techniques in yeasts (Y2H) and protoplasts (P2H). We identified 75 pairwise KNOX-BLH interactions, including ten novel interactors of SlKN2/TKN2, a primary class I KNOX protein, and nine novel interactors of SlKN5, a primary class II KNOX protein. Based on these data, we classified KNOX-BLH modules into several categories, which made us infer the order and combination of the KNOX-BLH modules involved in differentiation processes in leaf and fruit. Notably, the co-expression and interaction of SlKN5 and fruit preferentially expressing BLH1-clade paralogs (SlBLH5/SlBEL11 and SlBLH7) suggest their important roles in regulating fruit differentiation. Furthermore, in silico modeling of the KNOX-BLH modules, sequence analysis, and P2H assay identified several residues and a linker region potentially influencing the affinity of BLHs to KNOXs within their conserved dimerization domains. Together, these findings provide insights into the regulatory mechanism of KNOX-BLH modules underlying tomato organ differentiation.
Collapse
Affiliation(s)
- Kentaro Ezura
- Japan Society for the Promotion of Science, Tokyo, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan.
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| |
Collapse
|
41
|
Ramtekey V, Cherukuri S, Kumar S, V. SK, Sheoran S, K. UB, K. BN, Kumar S, Singh AN, Singh HV. Seed Longevity in Legumes: Deeper Insights Into Mechanisms and Molecular Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:918206. [PMID: 35968115 PMCID: PMC9364935 DOI: 10.3389/fpls.2022.918206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sustainable agricultural production largely depends upon the viability and longevity of high-quality seeds during storage. Legumes are considered as rich source of dietary protein that helps to ensure nutritional security, but associated with poor seed longevity that hinders their performance and productivity in farmer's fields. Seed longevity is the key determinant to assure proper seed plant value and crop yield. Thus, maintenance of seed longevity during storage is of prime concern and a pre-requisite for enhancing crop productivity of legumes. Seed longevity is significantly correlated with other seed quality parameters such as germination, vigor, viability and seed coat permeability that affect crop growth and development, consequently distressing crop yield. Therefore, information on genetic basis and regulatory networks associated with seed longevity, as well as molecular dissection of traits linked to longevity could help in developing crop varieties with good storability. Keeping this in view, the present review focuses towards highlighting the molecular basis of seed longevity, with special emphasis on candidate genes and proteins associated with seed longevity and their interplay with other quality parameters. Further, an attempt was made to provide information on 3D structures of various genetic loci (genes/proteins) associated to seed longevity that could facilitate in understanding the interactions taking place within the seed at molecular level. This review compiles and provides information on genetic and genomic approaches for the identification of molecular pathways and key players involved in the maintenance of seed longevity in legumes, in a holistic manner. Finally, a hypothetical fast-forward breeding pipeline has been provided, that could assist the breeders to successfully develop varieties with improved seed longevity in legumes.
Collapse
Affiliation(s)
| | | | - Sunil Kumar
- Indian Agricultural Statistics Research Institute-IASRI, New Delhi, India
| | | | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
| | - Udaya Bhaskar K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Bhojaraja Naik K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sanjay Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
| | | | | |
Collapse
|
42
|
Abstract
The desiccated, quiescent state of seeds confers extended survival of the embryonic plant. However, accumulation of striking levels of genome damage in quiescence impairs germination and threatens plant survival. The mechanisms by which seeds mitigate this damage remain unclear. Here, we reveal that imbibed Arabidopsis seeds display high resistance to DNA damage, which is lost as seeds advance to germination, coincident with increasing cell cycle activity. In contrast to seedlings, we show that seeds minimize the impact of DNA damage by reducing meristem disruption and delaying SOG1-dependent programmed cell death. This promotes root growth early postgermination. In response to naturally accumulated DNA damage in aging seeds, SOG1 activates cell death postgermination. SOG1 activities are also important for promoting successful seedling establishment. These distinct cellular responses of seeds and seedlings are reflected by different DNA damage transcriptional profiles. Comparative analysis of DNA repair mutants identifies roles of the major genome maintenance pathways in germination but that the repair of cytotoxic chromosomal breaks is the most important for seed longevity. Collectively, these results indicate that high levels of DNA damage incurred in seeds are countered by low cell cycle activity, cell cycle checkpoints, and DNA repair, promoting successful seedling establishment. Our findings reveal insight into both the physiological significance of plant DNA damage responses and the mechanisms which maintain seed longevity, important for survival of plant populations in the natural environment and sustainable crop production under changing climates.
Collapse
|
43
|
Goh T, Sakamoto K, Wang P, Kozono S, Ueno K, Miyashima S, Toyokura K, Fukaki H, Kang BH, Nakajima K. Autophagy promotes organelle clearance and organized cell separation of living root cap cells in Arabidopsis thaliana. Development 2022; 149:275183. [PMID: 35485417 PMCID: PMC9245187 DOI: 10.1242/dev.200593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The root cap is a multilayered tissue covering the tip of a plant root that directs root growth through its unique functions, such as gravity sensing and rhizosphere interaction. To maintain the structure and function of the root cap, its constituent cells are constantly turned over through balanced cell division and cell detachment in the inner and outer cell layers, respectively. Upon displacement toward the outermost layer, columella cells at the central root cap domain functionally transition from gravity-sensing cells to secretory cells, but the mechanisms underlying this drastic cell fate transition are largely unknown. Here, using live-cell tracking microscopy, we show that organelles in the outermost cell layer undergo dramatic rearrangements. This rearrangement depends, at least partially, on spatiotemporally regulated activation of autophagy. Notably, this root cap autophagy does not lead to immediate cell death, but is instead necessary for organized separation of living root cap cells, highlighting a previously undescribed role of developmentally regulated autophagy in plants. This article has an associated ‘The people behind the papers’ interview. Summary: Time-lapse microscopy reveals the spatiotemporal dynamics of intracellular reorganization associated with the functional transition and cell separation in Arabidopsis root caps, and the roles of autophagy in these processes.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Kaoru Sakamoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Pengfei Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Saki Kozono
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koki Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shunsuke Miyashima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai, Kobe 657-8501, Japan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keiji Nakajima
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
44
|
Siqueira JA, Wakin T, Batista-Silva W, Silva JCF, Vicente MH, Silva JC, Clarindo WR, Zsögön A, Peres LEP, De Veylder L, Fernie AR, Nunes-Nesi A, Araújo WL. A long and stressful day: Photoperiod shapes aluminium tolerance in plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128704. [PMID: 35313159 DOI: 10.1016/j.jhazmat.2022.128704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Aluminium (Al), a limiting factor for crop productivity in acidic soils (pH ≤ 5.5), imposes drastic constraints for food safety in developing countries. The major mechanisms that allow plants to cope with Al involve manipulations of organic acids metabolism and DNA-checkpoints. When assumed individually both approaches have been insufficient to overcome Al toxicity. On analysing the centre of origin of most cultivated plants, we hypothesised that day-length seems to be a pivotal agent modulating Al tolerance across distinct plant species. We observed that with increasing distance from the Equator, Al tolerance decreases, suggesting a relationship with the photoperiod. We verified that long-day (LD) species are generally more Al-sensitive than short-day (SD) species, whereas genetic conversion of tomato for SD growth habit boosts Al tolerance. Reduced Al tolerance correlates with DNA-checkpoint activation under LD. Furthermore, DNA-checkpoint-related genes are under positive selection in Arabidopsis accessions from regions with shorter days, suggesting that photoperiod act as a selective barrier for Al tolerance. A diel regulation and genetic diversity affect Al tolerance, suggesting that day-length orchestrates Al tolerance. Altogether, photoperiodic control of Al tolerance might contribute to solving the historical obstacle that imposes barriers for developing countries to reach a sustainable agriculture.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Matheus H Vicente
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Jéssica C Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wellington R Clarindo
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
45
|
Cui K, Qin L, Tang X, Nong J, Chen J, Wu N, Gong X, Yi L, Yang C, Xia S. A Single Amino Acid Substitution in RFC4 Leads to Endoduplication and Compromised Resistance to DNA Damage in Arabidopsis thaliana. Genes (Basel) 2022; 13:genes13061037. [PMID: 35741798 PMCID: PMC9223238 DOI: 10.3390/genes13061037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Replication factor C (RFC) is a heteropentameric ATPase associated with the diverse cellular activities (AAA+ATPase) protein complex, which is composed of one large subunit, known as RFC1, and four small subunits, RFC2/3/4/5. Among them, RFC1 and RFC3 were previously reported to mediate genomic stability and resistance to pathogens in Arabidopsis. Here, we generated a viable rfc4e (rfc4-1/RFC4G54E) mutant with a single amino acid substitution by site-directed mutagenesis. Three of six positive T2 mutants with the same amino acid substitution, but different insertion loci, were sequenced to identify homozygotes, and the three homozygote mutants showed dwarfism, early flowering, and a partially sterile phenotype. RNA sequencing revealed that genes related to DNA repair and replication were highly upregulated. Moreover, the frequency of DNA lesions was found to be increased in rfc4e mutants. Consistent with this, the rfc4e mutants were very sensitive to DSB-inducing genotoxic agents. In addition, the G54E amino acid substitution in AtRFC4 delayed cell cycle progression and led to endoduplication. Overall, our study provides evidence supporting the notion that RFC4 plays an important role in resistance to genotoxicity and cell proliferation by regulating DNA damage repair in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kan Cui
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jieying Nong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Jin Chen
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
- Changsha Technology Innovation Center for Phytoremediation of Heavy Metal Contaminated Soil, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Nan Wu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Xin Gong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Lixiong Yi
- Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (L.Y.)
| | - Chenghuizi Yang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (K.C.); (L.Q.); (X.T.); (J.N.); (N.W.); (X.G.); (C.Y.)
- Correspondence:
| |
Collapse
|
46
|
De S, Jose J, Pal A, Roy Choudhury S, Roy S. Exposure to Low UV-B Dose Induces DNA Double-Strand Breaks Mediated Onset of Endoreduplication in Vigna radiata (L.) R. Wilczek Seedlings. PLANT & CELL PHYSIOLOGY 2022; 63:463-483. [PMID: 35134223 DOI: 10.1093/pcp/pcac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Multiple lines of evidence indicate that solar UV-B light acts as an important environmental signal in plants, regulating various cellular and metabolic activities, gene expression, growth and development. Here, we show that low levels of UV-B (4.0 kJ m-2) significantly influence plant response during early seedling development in the tropical legume crop Vigna radiata (L.) R. Wilczek. Exposure to low doses of UV-B showed relatively less growth inhibition yet remarkably enhanced lateral root formation in seedlings. Both low and high (8.0 kJ m-2) doses of UV-B treatment induced DNA double-strand breaks and activated the SOG1-related ATM-ATR-mediated DNA damage response pathway. These effects led to G2-M-phase arrest with a compromised expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1 and CYCB1;1, respectively. However, along with these effects, imbibitional exposure of seeds to a low UV-B dose resulted in enhanced accumulation of FZR1/CCS52A, E2Fa and WEE1 kinase and prominent induction of endoreduplication in 7-day-old seedlings. Low dose of UV-B mediated phenotypical responses, while the onset of endoreduplication appeared to be regulated at least in part via UV-B induced reactive oxygen species accumulation. Transcriptome analyses further revealed a network of co-regulated genes associated with DNA repair, cell cycle regulation and oxidative stress response pathways that are activated upon exposure to low doses of UV-B.
Collapse
Affiliation(s)
- Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal 713104, India
| | - Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal 700054, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal 713104, India
| |
Collapse
|
47
|
Li J, Liang W, Liu Y, Ren Z, Ci D, Chang J, Qian W. The Arabidopsis ATR-SOG1 signaling module regulates pleiotropic developmental adjustments in response to 3'-blocked DNA repair intermediates. THE PLANT CELL 2022; 34:852-866. [PMID: 34791445 PMCID: PMC8824664 DOI: 10.1093/plcell/koab282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Base excision repair and active DNA demethylation produce repair intermediates with DNA molecules blocked at the 3'-OH end by an aldehyde or phosphate group. However, both the physiological consequences of these accumulated single-strand DNAs break with 3'-blocked ends (DNA 3'-blocks) and the signaling pathways responding to unrepaired DNA 3'-blocks remain unclear in plants. Here, we investigated the effects of DNA 3'-blocks on plant development using the zinc finger DNA 3'-phosphoesterase (zdp) AP endonuclease2 (ape2) double mutant, in which 3'-blocking residues are poorly repaired. The accumulation of DNA 3'-blocked triggered diverse developmental defects that were dependent on the ATM and RAD3-related (ATR)-suppressor of gamma response 1 (SOG1) signaling module. SOG1 mutation rescued the developmental defects of zdp ape2 leaves by preventing cell endoreplication and promoting cell proliferation. However, SOG1 mutation caused intensive meristematic cell death in the radicle of zdp ape2 following germination, resulting in rapid termination of radicle growth. Notably, mutating FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE (FPG) in zdp ape2 sog1 partially recovered its radicle growth, demonstrating that DNA 3'-blocks generated by FPG caused the meristematic defects. Surprisingly, despite lacking a functional radicle, zdp ape2 sog1 mutants compensated the lack of root growth by generating anchor roots having low levels of DNA damage response. Our results reveal dual roles of SOG1 in regulating root establishment when seeds germinate with excess DNA 3'-blocks.
Collapse
Affiliation(s)
- Jinchao Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhitong Ren
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Ci
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinjie Chang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
48
|
Wang Y, Wang J, Lv Q, He YK. ADH2/GSNOR1 is a key player in limiting genotoxic damage mediated by formaldehyde and UV-B in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:378-391. [PMID: 34919280 DOI: 10.1111/pce.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Maintenance of genome stability is an essential requirement for all living organisms. Formaldehyde and UV-B irradiation cause DNA damage and affect genome stability, growth and development, but the interplay between these two genotoxic factors is poorly understood in plants. We show that Arabidopsis adh2/gsnor1 mutant, which lacks alcohol dehydrogenase 2/S-nitrosoglutathione reductase 1 (ADH2/GSNOR1), are hypersensitive to low fluence UV-B irradiation or UV-B irradiation-mimetic chemicals. Although the ADH2/GSNOR1 enzyme can act on different substrates, notably on S-hydroxymethylglutathione (HMG) and S-nitrosoglutathione (GSNO), our study provides several lines of evidence that the sensitivity of gsnor1 to UV-B is caused mainly by UV-B-induced formaldehyde accumulation rather than other factors such as alteration of the GSNO concentration. Our results demonstrate an interplay between formaldehyde and UV-B that exacerbates genome instability, leading to severe DNA damage and impaired growth and development in Arabidopsis, and show that ADH2/GSNOR1 is a key player in combating these effects.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yi-Kun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
49
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
50
|
Sablowski R, Gutierrez C. Cycling in a crowd: Coordination of plant cell division, growth, and cell fate. THE PLANT CELL 2022; 34:193-208. [PMID: 34498091 PMCID: PMC8774096 DOI: 10.1093/plcell/koab222] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 05/25/2023]
Abstract
The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.
Collapse
Affiliation(s)
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|