1
|
Kutz J, Schmietendorf H, Rahman SA, Opel F, Pospiech H. HROB Is Implicated in DNA Replication. Genes (Basel) 2024; 15:1587. [PMID: 39766854 PMCID: PMC11675949 DOI: 10.3390/genes15121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair. We identified HROB independently as a nuclear protein whose expression is co-regulated with various DNA replication factors. Accordingly, the HROB protein level showed a maximum in S phase and a downregulation in quiescence. Structural prediction and homology searches revealed that HROB is a largely intrinsically disordered protein bearing a helix-rich region and a canonical oligonucleotide/oligosaccharide-binding-fold motif that originated early in eukaryotic evolution. Employing a flow cytometry Förster resonance energy transfer (FRET) assay, we detected associations between HROB and proteins of the DNA replication machinery. Moreover, ectopic expression of HROB protein led to an almost complete shutdown of DNA replication. The available data imply a function for HROB during DNA replication across barriers such as ICLs.
Collapse
Affiliation(s)
- Julia Kutz
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Hannes Schmietendorf
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Sheikh Anika Rahman
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Franz Opel
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Department of Medical Engineering and Biotechnology, Ernst-Abbe University of Applied Sciences, D-07745 Jena, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
- Department of Obstetrics and Gynecology, University Hospital Düsseldorf and Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Nesbit C, Martin W, Czechanski A, Byers C, Raghupathy N, Ferraj A, Stumpff J, Reinholdt L. Anapc5 and Anapc7 as genetic modifiers of KIF18A function in fertility and mitotic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626395. [PMID: 39677807 PMCID: PMC11642851 DOI: 10.1101/2024.12.03.626395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinesin family member 18A (KIF18A) is an essential regulator of microtubule dynamics and chromosome alignment during mitosis. Functional dependency on KIF18A varies by cell type and genetic context but the heritable factors that influence this dependency remain unknown. To address this, we took advantage of the variable penetrance observed in different mouse strain backgrounds to screen for loci that modulate germ cell depletion in the absence of KIF18A. We found a significant association at a Chr5 locus where anaphase promoting complex subunits 5 (Anapc5) and 7 (Anapc7) were the top candidate genes. We found that both genes were differentially expressed in a sensitive strain background when compared to resistant strain background at key timepoints in gonadal development. We also identified a novel retroviral insertion in Anapc7 that may in part explain the observed expression differences. In cell line models, we found that depletion of KIF18A induced mitotic arrest, which was partially rescued by co-depletion of ANAPC7 (APC7) and exacerbated by co-depletion of ANAPC5 (APC5). These findings suggest that differential expression and activity of Anapc5 and Anapc7 may influence sensitivity to KIF18A depletion in germ cells and CIN cells, with potential implications for optimizing antineoplastic therapies.
Collapse
Affiliation(s)
- Carleigh Nesbit
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | | | | - Candice Byers
- The Roux Institute at Northeastern University, Portland, ME
| | | | | | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | | |
Collapse
|
3
|
Cuellar CJ, A Zayas G, Amaral TF, S McGraw M, Yu F, Mateescu RG, Hansen PJ. Ovarian hyperplasia linked to a mutation in MAN1A2 in a cow with excessive follicular growth and functional oocytes. Vet Res Commun 2024; 48:3239-3243. [PMID: 38954257 DOI: 10.1007/s11259-024-10435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Here we report the case of a cow with two ovaries that each exhibited hyperplasia but that otherwise had normal gross morphology. Both ovaries had a large number of tertiary follicles on the ovarian surface. Oocytes from one ovary were studied in more detail. The transcriptome was largely similar to other oocytes. Oocytes could undergo cleavage at a rate consistent with other oocytes and result in blastocyst-stage embryo formation after in vitro maturation and fertilization. Review of the literature from cattle and other species did not reveal reports of a similar type of spontaneous ovarian abnormality. Whole genome sequencing revealed many single nucleotide polymorphisms with predicted large effects on protein structure that could potentially be causative for the phenotype. The variant considered most likely to cause the observed alteration in ovarian function was a mutation in the glycoprotein-modifying enzyme MAN1A2.
Collapse
Affiliation(s)
- Camila J Cuellar
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Gabriel A Zayas
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Thiago F Amaral
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
- Genus PLC/ABS, Mogi Miri, São Paulo, 13800-478, Brazil
| | - Maura S McGraw
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Fahong Yu
- University of Florida Interdisciplinary Center for Biotechnology Research, Gainesville, FL, USA
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, 32611-0910, FL, USA.
| |
Collapse
|
4
|
Nie L, Wang X, Wang S, Hong Z, Wang M. Genetic insights into the complexity of premature ovarian insufficiency. Reprod Biol Endocrinol 2024; 22:94. [PMID: 39095891 PMCID: PMC11295921 DOI: 10.1186/s12958-024-01254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Premature Ovarian Insufficiency (POI) is a highly heterogeneous condition characterized by ovarian dysfunction in women occurring before the age of 40, representing a significant cause of female infertility. It manifests through primary or secondary amenorrhea. While more than half of POI cases are idiopathic, genetic factors play a pivotal role in all instances with known causes, contributing to approximately 20-25% of cases. This article comprehensively reviews the genetic factors associated with POI, delineating the primary candidate genes. The discussion delves into the intricate relationship between these genes and ovarian development, elucidating the functional consequences of diverse mutations to underscore the fundamental impact of genetic effects on POI. The identified genetic factors, encompassing gene mutations and chromosomal abnormalities, are systematically classified based on whether the resulting POI is syndromic or non-syndromic. Furthermore, this paper explores the genetic interplay between mitochondrial genes, such as Required for Meiotic Nuclear Division 1 homolog Gene (RMND1), Mitochondrial Ribosomal Protein S22 Gene (MRPS22), Leucine-rich Pentapeptide Repeat Gene (LRPPRC), and non-coding RNAs, including both microRNAs and Long non-coding RNAs, with POI. The insights provided serve to consolidate and enhance our understanding of the etiology of POI, contributing to establishing a theoretical foundation for diagnosing and treating POI patients, as well as for exploring the mechanisms underlying the disease.
Collapse
Affiliation(s)
- Linhang Nie
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Xiaojie Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Second Clinical Hospital of WuHan University, Wuhan, Hubei, P.R. China
| | - Songyuan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- WuHan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, P.R. China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China.
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei, P.R. China.
| |
Collapse
|
5
|
Tian Y, Zhou Y, Chen F, Qian S, Hu X, Zhang B, Liu Q. Research progress in MCM family: Focus on the tumor treatment resistance. Biomed Pharmacother 2024; 173:116408. [PMID: 38479176 DOI: 10.1016/j.biopha.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Malignant tumors constitute a significant category of diseases posing a severe threat to human survival and health, thereby representing one of the most challenging and pressing issues in the field of biomedical research. Due to their malignant nature, which is characterized by a high potential for metastasis, rapid dissemination, and frequent recurrence, the prevailing approach in clinical oncology involves a comprehensive treatment strategy that combines surgery with radiotherapy, chemotherapy, targeted drug therapies, and other interventions. Treatment resistance remains a major obstacle in the comprehensive management of tumors, serving as a primary cause for the failure of integrated tumor therapies and a critical factor contributing to patient relapse and mortality. The Minichromosome Maintenance (MCM) protein family comprises functional proteins closely associated with the development of resistance in tumor therapy.The influence of MCMs manifests through various pathways, encompassing modulation of DNA replication, cell cycle regulation, and DNA damage repair mechanisms. Consequently, this leads to an enhanced tolerance of tumor cells to chemotherapy, targeted drugs, and radiation. Consequently, this review explores the specific roles of the MCM family in various cancer treatment strategies. Its objective is to enhance our comprehension of resistance mechanisms in tumor therapy, thereby presenting novel targets for clinical research aimed at overcoming resistance in cancer treatment. This bears substantial clinical relevance.
Collapse
Affiliation(s)
- Yuxuan Tian
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410078, PR China
| | - Fuxin Chen
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Siyi Qian
- Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Xingming Hu
- The 1st Department of Thoracic Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Bin Zhang
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Histology and Embryology, Basic School of Medicine Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Qiang Liu
- Department of Hepatobiliary and Intestinal Surgery of Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| |
Collapse
|
6
|
Bakhshalizadeh S, Bird AD, Sreenivasan R, Bell KM, Robevska G, van den Bergen J, Asghari-Jafarabadi M, Kueh AJ, Touraine P, Lokchine A, Jaillard S, Ayers KL, Wilhelm D, Sinclair AH, Tucker EJ. A Human Homozygous HELQ Missense Variant Does Not Cause Premature Ovarian Insufficiency in a Mouse Model. Genes (Basel) 2024; 15:333. [PMID: 38540391 PMCID: PMC10970702 DOI: 10.3390/genes15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anthony D. Bird
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
- Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Rajini Sreenivasan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Mohammad Asghari-Jafarabadi
- Biostatistics Unit, School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia;
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Pitie Salpetriere Hospital, AP-HP, Sorbonne University Medicine, 75013 Paris, France;
| | - Anna Lokchine
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
7
|
Ding X, Singh P, Schimenti K, Tran TN, Fragoza R, Hardy J, Orwig KE, Olszewska M, Kurpisz MK, Yatsenko AN, Conrad DF, Yu H, Schimenti JC. In vivo versus in silico assessment of potentially pathogenic missense variants in human reproductive genes. Proc Natl Acad Sci U S A 2023; 120:e2219925120. [PMID: 37459509 PMCID: PMC10372637 DOI: 10.1073/pnas.2219925120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Infertility is a heterogeneous condition, with genetic causes thought to underlie a substantial fraction of cases. Genome sequencing is becoming increasingly important for genetic diagnosis of diseases including idiopathic infertility; however, most rare or minor alleles identified in patients are variants of uncertain significance (VUS). Interpreting the functional impacts of VUS is challenging but profoundly important for clinical management and genetic counseling. To determine the consequences of these variants in key fertility genes, we functionally evaluated 11 missense variants in the genes ANKRD31, BRDT, DMC1, EXO1, FKBP6, MCM9, M1AP, MEI1, MSH4 and SEPT12 by generating genome-edited mouse models. Nine variants were classified as deleterious by most functional prediction algorithms, and two disrupted a protein-protein interaction (PPI) in the yeast two hybrid (Y2H) assay. Though these genes are essential for normal meiosis or spermiogenesis in mice, only one variant, observed in the MCM9 gene of a male infertility patient, compromised fertility or gametogenesis in the mouse models. To explore the disconnect between predictions and outcomes, we compared pathogenicity calls of missense variants made by ten widely used algorithms to 1) those annotated in ClinVar and 2) those evaluated in mice. All the algorithms performed poorly in terms of predicting the effects of human missense variants modeled in mice. These studies emphasize caution in the genetic diagnoses of infertile patients based primarily on pathogenicity prediction algorithms and emphasize the need for alternative and efficient in vitro or in vivo functional validation models for more effective and accurate VUS description to either pathogenic or benign categories.
Collapse
Affiliation(s)
- Xinbao Ding
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Priti Singh
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Kerry Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Tina N. Tran
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| | - Robert Fragoza
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Jimmaline Hardy
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Kyle E. Orwig
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Maciej K. Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan60-479, Poland
| | - Alexander N. Yatsenko
- School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA15213
| | - Donald F. Conrad
- Oregon Health & Science University, Division of Genetics, Oregon National Primate Research Center, Beaverton, OR97006
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - John C. Schimenti
- College of Veterinary Medicine, Department of Biomedical Sciences, Cornell University, Ithaca, NY14853
| |
Collapse
|
8
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
The Role of MCM9 in the Etiology of Sertoli Cell-Only Syndrome and Premature Ovarian Insufficiency. J Clin Med 2023; 12:jcm12030990. [PMID: 36769638 PMCID: PMC9917496 DOI: 10.3390/jcm12030990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Infertility in couples is a common problem, with both female and male factors contributing to similar extents. Severe, congenital disorders affecting fertility are, however, rare. While folliculogenesis and spermatogenesis are generally orchestrated via different mechanisms, some genetic anomalies can impair both female and male gametogenesis. Minichromosome maintenance complex component 9 (MCM9) is involved in DNA repair and mutations of the MCM9 gene have been previously reported in females with premature ovarian insufficiency (POI). MCM9 is also an emerging cancer risk gene. We performed next-generation and Sanger sequencing of fertility and related genes and hormonal and imaging studies in a kindred whose members had POI and disordered spermatogenesis. We identified a homozygous pathogenic MCM9 variant, c.394C>T (p.Arg132*) in three sisters affected by POI due to ovarian dysgenesis and their brother who had normal pubertal development but suffered from non-obstructive azoospermia. Testicular biopsy revealed Sertoli cell-only testicular histopathology. No evidence of early onset cancer was found in the homozygotic family members, but they were all young (<30 years) at the time of the study. In the male patient the homozygous MCM9 variant led to normal pubertal development and hormonal levels but caused a Sertoli-cell-only syndrome with non-obstructive azoospermia. In the homozygous females studied, the clinical, hormonal, and gonadal phenotypes revealed ovarian dysgenesis consistent with previous reports. Active screening for potential colorectal and other cancer risks in the homozygotic MCM9 subjects has been instigated.
Collapse
|
10
|
Unravelling the genetics of non-random fertilization associated with gametic incompatibility. Sci Rep 2022; 12:22314. [PMID: 36566278 PMCID: PMC9789956 DOI: 10.1038/s41598-022-26910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In the dairy industry, mate allocation is dependent on the producer's breeding goals and the parents' breeding values. The probability of pregnancy differs among sire-dam combinations, and the compatibility of a pair may vary due to the combination of gametic haplotypes. Under the hypothesis that incomplete incompatibility would reduce the odds of fertilization, and complete incompatibility would lead to a non-fertilizing or lethal combination, deviation from Mendelian inheritance expectations would be observed for incompatible pairs. By adding an interaction to a transmission ratio distortion (TRD) model, which detects departure from the Mendelian expectations, genomic regions linked to gametic incompatibility can be identified. This study aimed to determine the genetic background of gametic incompatibility in Holstein cattle. A total of 283,817 genotyped Holstein trios were used in a TRD analysis, resulting in 422 significant regions, which contained 2075 positional genes further investigated for network, overrepresentation, and guilt-by-association analyses. The identified biological pathways were associated with immunology and cellular communication and a total of 16 functional candidate genes were identified. Further investigation of gametic incompatibility will provide opportunities to improve mate allocation for the dairy cattle industry.
Collapse
|
11
|
Griffin WC, McKinzey DR, Klinzing KN, Baratam R, Eliyapura A, Trakselis MA. A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress. Nat Commun 2022; 13:5090. [PMID: 36042199 PMCID: PMC9427862 DOI: 10.1038/s41467-022-32583-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
The minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon persistent stalling, MCM8/9 directs additional downstream stabilizers, including BRCA1 and Rad51, to protect forks from excessive degradation. Loss of MCM8 or 9 slows the overall replication rate and allows for excessive nascent strand degradation, detectable by increased markers of genomic damage. This evidence defines multifunctional roles for MCM8/9 in promoting normal replication fork progression and genome integrity following stress.
Collapse
Affiliation(s)
- Wezley C. Griffin
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA ,grid.240871.80000 0001 0224 711XPresent Address: St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - David R. McKinzey
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Kathleen N. Klinzing
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Rithvik Baratam
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Achini Eliyapura
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Michael A. Trakselis
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| |
Collapse
|
12
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
13
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
14
|
Wang X, Wang L, Dou J, Yu T, Cao P, Fan N, Borjigin U, Nashun B. Distinct role of histone chaperone Asf1a and Asf1b during fertilization and pre-implantation embryonic development in mice. Epigenetics Chromatin 2021; 14:55. [PMID: 34906203 PMCID: PMC8670131 DOI: 10.1186/s13072-021-00430-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background Asf1 is a well-conserved histone chaperone that regulates multiple cellular processes in different species. Two paralogous genes, Asf1a and Asf1b exist in mammals, but their role during fertilization and early embryogenesis remains to be investigated further. Methods We analyzed the dynamics of histone chaperone Asf1a and Asf1b in oocytes and pre-implantation embryos in mice by immunofluorescence and real-time quantitative PCR, and further investigated the role of Asf1a and Asf1b during fertilization and pre-implantation development by specific Morpholino oligos-mediated knock down approach. Results Immunofluorescence with specific antibodies revealed that both Asf1a and Asf1b were deposited in the nuclei of fully grown oocytes, accumulated abundantly in zygote and 2-cell embryonic nuclei, but turned low at 4-cell stage embryos. In contrast to the weak but definite nuclear deposition of Asf1a, Asf1b disappeared from embryonic nuclei at morula and blastocyst stages. The knockdown of Asf1a and Asf1b by specific Morpholino oligos revealed that Asf1a but not Asf1b was required for the histone H3.3 assembly in paternal pronucleus. However, knockdown of either Asf1a or Asf1b expression decreased developmental potential of pre-implantation embryos. Furthermore, while Asf1a KD severely reduced H3K56 acetylation level and the expression of Oct4 in blastocyst stage embryos, Asf1b KD almost eliminated nuclear accumulation of proliferating cell marker-PCNA in morula stage embryos. These results suggested that histone chaperone Asf1a and Asf1b play distinct roles during fertilization and pre-implantation development in mice. Conclusions Our data suggested that both Asf1a and Asf1b are required for pre-implantation embryonic development. Asf1a regulates H3K56ac levels and Oct4 expression, while Asf1b safeguards pre-implantation embryo development by regulating cell proliferation. We also showed that Asf1a, but not Asf1b, was necessary for the assembly of histone H3.3 in paternal pronuclei after fertilization. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00430-7.
Collapse
Affiliation(s)
- Xuemei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Lu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Jie Dou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Tianjiao Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Na Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Uyunbilig Borjigin
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China.
| |
Collapse
|
15
|
MCM9 is associated with germline predisposition to early-onset cancer-clinical evidence. NPJ Genom Med 2021; 6:78. [PMID: 34556653 PMCID: PMC8460657 DOI: 10.1038/s41525-021-00242-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
Mutated MCM9 has been associated with primary ovarian insufficiency. Although MCM9 plays a role in genome maintenance and has been reported as a candidate gene in a few patients with inherited colorectal cancer (CRC), it has not been clearly established as a cancer predisposition gene. We re-evaluated family members with MCM9-associated fertility problems. The heterozygote parents had a few colonic polys. Three siblings had early-onset cancer: one had metastatic cervical cancer and two had early-onset CRC. Moreover, a review of the literature on MCM9 carriers revealed that of nine bi-allelic carriers reported, eight had early-onset cancer. We provide clinical evidence for MCM9 as a cancer germline predisposition gene associated with early-onset cancer and polyposis, mainly in a recessive inheritance pattern. These observations, coupled with the phenotype in knockout mice, suggest that diagnostic testing for polyposis, CRC, and infertility should include MCM9 analysis. Early screening protocols may be beneficial for carriers.
Collapse
|
16
|
Structural study of the N-terminal domain of human MCM8/9 complex. Structure 2021; 29:1171-1181.e4. [PMID: 34043945 DOI: 10.1016/j.str.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
MCM8/9 is a complex involved in homologous recombination (HR) repair pathway. MCM8/9 dysfunction can cause genome instability and result in primary ovarian insufficiency (POI). However, the mechanism underlying these effects is largely unknown. Here, we report crystal structures of the N-terminal domains (NTDs) of MCM8 and MCM9, and build a ring-shaped NTD structure based on a 6.6 Å resolution cryoelectron microscopy map. This shows that the MCM8/9 complex forms a 3:3 heterohexamer in an alternating pattern. A positively charged DNA binding channel and a putative ssDNA exit pathway for fork DNA unwinding are revealed. Based on the atomic model, the potential effects of the clinical POI mutants are interpreted. Surprisingly, the zinc-finger motifs are found to be capable of binding an iron atom as well. Overall, our results provide a model for the formation of the MCM8/9 complex and provide a path for further studies.
Collapse
|
17
|
Franklin R, Murn J, Cheloufi S. Cell Fate Decisions in the Wake of Histone H3 Deposition. Front Cell Dev Biol 2021; 9:654915. [PMID: 33959610 PMCID: PMC8093820 DOI: 10.3389/fcell.2021.654915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
An expanding repertoire of histone variants and specialized histone chaperone partners showcases the versatility of nucleosome assembly during different cellular processes. Recent research has suggested an integral role of nucleosome assembly pathways in both maintaining cell identity and influencing cell fate decisions during development and normal homeostasis. Mutations and altered expression profiles of histones and corresponding histone chaperone partners are associated with developmental defects and cancer. Here, we discuss the spatiotemporal deposition mechanisms of the Histone H3 variants and their influence on mammalian cell fate during development. We focus on H3 given its profound effect on nucleosome stability and its recently characterized deposition pathways. We propose that differences in deposition of H3 variants are largely dependent on the phase of the cell cycle and cellular potency but are also affected by cellular stress and changes in cell fate. We also discuss the utility of modern technologies in dissecting the spatiotemporal control of H3 variant deposition, and how this could shed light on the mechanisms of cell identity maintenance and lineage commitment. The current knowledge and future studies will help us better understand how organisms employ nucleosome dynamics in health, disease, and aging. Ultimately, these pathways can be manipulated to induce cell fate change in a therapeutic setting depending on the cellular context.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Jernej Murn
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| | - Sihem Cheloufi
- Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
18
|
Identification of MCM family as potential therapeutic and prognostic targets for hepatocellular carcinoma based on bioinformatics and experiments. Life Sci 2021; 272:119227. [PMID: 33607151 DOI: 10.1016/j.lfs.2021.119227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
AIMS The minichromosome maintenance (MCM) complex is highly conserved, which has drawn increasing attention on physiology and pathology process. However, the role of MCM in hepatocellular carcinoma (HCC) remains largely unclear. We aimed to conduct systematic analysis of expression patterns, prognostic values and potential functions of nine MCM genes in HCC, thus identifying their role in HCC. MAIN METHODS In our study, we systemically analyzed the role of MCM in prognosis and HCC progression by several bioinformatics analysis tools. Immunohistochemical (IHC) assays were utilized to valid the protein expression of MCM in HCC and in vitro experiments were used to confirm the functions of MCMs in HCC proliferation. KEY FINDINGS Overexpression of MCM2-8 and MCM10 were found to be significantly associated with clinical parameters and poor prognosis of HCC patients. The function of MCM was mainly enriched in DNA replication. Moreover, MCM were also associated with several cancer pathway and drug sensitivity in HCC. Close correlations were observed between immune cell infiltration and MCM in HCC. Cell Counting Kit-8 (CCK-8) and clone formation assays suggested the role of MCM2-8 and MCM10 in HCC proliferation. SIGNIFICANCE These results have implied that deregulated MCM played an important role in HCC progression and might be considered as potential therapeutic and prognostic targets for HCC.
Collapse
|
19
|
Sasaki S, Ibi T. A genome-wide association study reveals a quantitative trait locus for calf mortality on chromosome 9 in Japanese Black cattle. Anim Genet 2021; 52:214-216. [PMID: 33544945 DOI: 10.1111/age.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
Calf mortality is a major problem affecting cattle production. To identify genetic variants associated with calf mortality in Japanese Black cattle, we evaluated calf mortality as a categorical trait using a threshold model and conducted a GWAS. We identified two SNPs between 32 549 297 and 32 606 924 bp on bovine chromosome 9 that were significantly associated with calf mortality from 61 to 180 days after birth. The SNP showing the highest association was localized at a region 624 bp downstream of exon 4 of the anti-silencing function 1A histone chaperone gene (ASF1A) that promotes DNA damage repair, and the null mice, which exhibit pre- and postnatal lethality. This association was also detected using the breeding value of 334 sires. The frequency of the risk allele in Japanese Black cattle from locations across Japan was 0.013; although the frequency of ASF1A risk allele was low, it is widespread in the Japanese Black cattle population. Thus, it may be necessary to routinely monitor the cattle population for the presence of this allele.
Collapse
Affiliation(s)
- S Sasaki
- University of the Ryukyus, Faculty of Agriculture, 1 Senbaru, Nishihara, Nakagami-gun, Okinawa, 903-0213, Japan.,United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - T Ibi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan
| |
Collapse
|
20
|
Motifs of the C-terminal domain of MCM9 direct localization to sites of mitomycin-C damage for RAD51 recruitment. J Biol Chem 2021; 296:100355. [PMID: 33539926 PMCID: PMC7949153 DOI: 10.1016/j.jbc.2021.100355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
The MCM8/9 complex is implicated in aiding fork progression and facilitating homologous recombination (HR) in response to several DNA damage agents. MCM9 itself is an outlier within the MCM family containing a long C-terminal extension (CTE) comprising 42% of the total length, but with no known functional components and high predicted disorder. In this report, we identify and characterize two unique motifs within the primarily unstructured CTE that are required for localization of MCM8/9 to sites of mitomycin C (MMC)-induced DNA damage. First, an unconventional “bipartite-like” nuclear localization (NLS) motif consisting of two positively charged amino acid stretches separated by a long intervening sequence is required for the nuclear import of both MCM8 and MCM9. Second, a variant of the BRC motif (BRCv) similar to that found in other HR helicases is necessary for localization to sites of MMC damage. The MCM9-BRCv directly interacts with and recruits RAD51 downstream to MMC-induced damage to aid in DNA repair. Patient lymphocytes devoid of functional MCM9 and discrete MCM9 knockout cells have a significantly impaired ability to form RAD51 foci after MMC treatment. Therefore, the disordered CTE in MCM9 is functionally important in promoting MCM8/9 activity and in recruiting downstream interactors; thus, requiring full-length MCM9 for proper DNA repair.
Collapse
|
21
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Lin HD, Yao CL, Ou WJ, Luo YH, Chen SC. 4-Aminobiphenyl suppresses homologous recombination repair by a reactive oxygen species-dependent p53/miR-513a-5p/p53 loop. Toxicology 2020; 444:152580. [DOI: 10.1016/j.tox.2020.152580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023]
|
23
|
Liu H, Wei X, Sha Y, Liu W, Gao H, Lin J, Li Y, Tang Y, Wang Y, Wang Y, Su Z. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention. J Ovarian Res 2020; 13:114. [PMID: 32962729 PMCID: PMC7510158 DOI: 10.1186/s13048-020-00716-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background The loss of ovarian function in women, referred to as premature ovarian insufficiency (POI), is associated with a series of concomitant diseases. POI is genetically heterogeneous, and in most cases, the etiology is unknown. Methods Whole-exome sequencing (WES) was performed on DNA samples obtained from patients with POI, and Sanger sequencing was used to validate the detected potentially pathogenic variants. An in silico analysis was carried out to predict the pathogenicity of the variants. Results We recruited 24 patients with POI and identified variants in POI-related genes in 14 patients, including bi-allelic mutations in DNAH6, HFM1, EIF2B2, BNC, and LRPPRC and heterozygous variants in BNC1, EIF2B4, FOXL2, MCM9, FANCA, ATM, EIF2B3, and GHR. No variants in the above genes were detected in the WES data obtained from 29 women in a control group without POI. Determining a clear genetic etiology could significantly increase patient compliance with appropriate intervention strategies. Conclusions Our study confirmed that POI is a genetically heterogeneous condition and that whole-exome sequencing is a powerful tool for determining its genetic etiology. The results of this study will aid researchers and clinicians in genetic counseling and suggests the potential of WES for the detection of POI and thus early interventions for patients with POI.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Gynecology, Key Clinical Discipline of Fujian province, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Xiaoli Wei
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yanwei Sha
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Wensheng Liu
- Department of Gynecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Haijie Gao
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jin Lin
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Youzhu Li
- Reproductive Medicine Center, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China
| | - Yaling Tang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yifeng Wang
- Department of Gynecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Yanlong Wang
- Department of Gynecology, Key Clinical Discipline of Fujian province, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Zhiying Su
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
24
|
MCM family in gastrointestinal cancer and other malignancies: From functional characterization to clinical implication. Biochim Biophys Acta Rev Cancer 2020; 1874:188415. [PMID: 32822825 DOI: 10.1016/j.bbcan.2020.188415] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Despite the recent advances in cancer research and treatment, gastrointestinal (GI) cancers remain the most common deadly disease worldwide. The aberrant DNA replication serves as a major source of genomic instability and enhances cell proliferation that contributes to tumor initiation and progression. Minichromosome maintenance family (MCMs) is a well-recognized group of proteins responsible for DNA synthesis. Recent studies suggested that dysregulated MCMs lead to tumor initiation, progression, and chemoresistance via modulating cell cycle and DNA replication stress. Their underlying mechanisms in various cancer types have been gradually identified. Furthermore, multiple studies have investigated the association between MCMs expression and clinicopathological features of cancer patients, implying that MCMs might serve as prominent prognostic biomarkers for GI cancers. This review summarizes the current knowledge on the oncogenic role of MCM proteins and highlights their clinical implications in various malignancies, especially in GI cancers. Targeting MCMs might shed light on the potential for identifying novel therapeutic strategies.
Collapse
|
25
|
Heddar A, Beckers D, Fouquet B, Roland D, Misrahi M. A Novel Phenotype Combining Primary Ovarian Insufficiency Growth Retardation and Pilomatricomas With MCM8 Mutation. J Clin Endocrinol Metab 2020; 105:dgaa155. [PMID: 32242235 DOI: 10.1210/clinem/dgaa155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/01/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary Ovarian insufficiency (POI) affects 1% of women aged <40 years and leads most often to definitive infertility with adverse health outcomes. Very recently, genes involved in deoxyribonucleic acid (DNA) repair have been shown to cause POI. OBJECTIVE To identify the cause of a familial POI in a consanguineous Turkish family. DESIGN Exome sequencing was performed in the proposita and her mother. Chromosomal breaks were studied in lymphoblastoid cell lines treated with mitomycin (MMC). SETTING AND PATIENTS The proposita presented intrauterine and postnatal growth retardation, multiple pilomatricomas in childhood, and primary amenorrhea. She was treated with growth hormone (GH) from age 14 to 18 years. RESULTS We identified a novel nonsense variant in exon 9 of the minichromosome maintenance complex component 8 gene (MCM8) NM_001281522.1: c0.925C > T/p.R309* yielding either a truncated protein or nonsense-mediated messenger ribonucleic acid decay.The variant was homozygous in the daughter and heterozygous in the mother. MMC induced DNA breaks and aberrant metaphases in the patient's lymphoblastoid cells. The mother's cells had intermediate but significantly higher chromosomal breaks compared with a control. CONCLUSION We describe a novel phenotype of syndromic POI related to a novel truncating MCM8 variant. We show for the first time that spontaneous tumors (pilomatricomas) are associated with an MCM8 genetic defect, making the screening of this gene necessary before starting GH therapy in patients with POI with short stature, especially in a familial or consanguineous context. Appropriate familial monitoring in the long term is necessary, and fertility preservation should be considered in heterozygous siblings to avoid rapid follicular atresia.
Collapse
Affiliation(s)
- Abdelkader Heddar
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| | - Dominique Beckers
- Université catholique de Louvain, CHU UCL Namur, Pediatric Endocrinology, Yvoir, Belgium
| | - Baptiste Fouquet
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| | - Dominique Roland
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Micheline Misrahi
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|
27
|
Deng K, Feng W, Liu X, Su X, Zuo E, Du S, Huang Y, Shi D, Lu F. Anti-silencing factor 1A is associated with genome stability maintenance of mouse preimplantation embryos†. Biol Reprod 2020; 102:817-827. [PMID: 31916576 DOI: 10.1093/biolre/ioaa001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/07/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.
Collapse
Affiliation(s)
- Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Wanyou Feng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaoping Su
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Erwei Zuo
- Center for Animal Genomics, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Du
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Yongjun Huang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| |
Collapse
|
28
|
MCMs in Cancer: Prognostic Potential and Mechanisms. Anal Cell Pathol (Amst) 2020; 2020:3750294. [PMID: 32089988 PMCID: PMC7023756 DOI: 10.1155/2020/3750294] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Enabling replicative immortality and uncontrolled cell cycle are hallmarks of cancer cells. Minichromosome maintenance proteins (MCMs) exhibit helicase activity in replication initiation and play vital roles in controlling replication times within a cell cycle. Overexpressed MCMs are detected in various cancerous tissues and cancer cell lines. Previous studies have proposed MCMs as promising proliferation markers in cancers, while the prognostic values remain controversial and the underlying mechanisms remain unascertained. This review provides an overview of the significant findings regarding the cellular and tumorigenic functions of the MCM family. Besides, current evidence of the prognostic roles of MCMs is retrospectively reviewed. This work also offers insight into the mechanisms of MCMs prompting carcinogenesis and adverse prognosis, providing information for future research. Finally, MCMs in liver cancer are specifically discussed, and future perspectives are provided.
Collapse
|
29
|
Guo F, Kong WN, Feng YC, Lv J, Zhao G, Wu HL, Ai L, Zhou X, Cai XL, Sun W, Ma XM. Comprehensive Analysis of the Expression and Prognosis for MCMs in Human Gastric Cancer. Technol Cancer Res Treat 2020; 19:1533033820970688. [PMID: 33167799 PMCID: PMC7658509 DOI: 10.1177/1533033820970688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSES Minichromosome maintenance (MCM) proteins play an important role in replication and cell cycle progression. Even so, their expression and prognostic roles in cancer remain controversial. METHODS To address this issue, the study investigated the roles of MCMs in the prognosis of GC by using ONCOMINE, GEPIA2, UALCAN, Cancer Cell Line Encyclopedia (CCLE), the Human Protein Atlas, Kaplan-Meier Plotter, cBioPortal, GeneMANIA, and DAVID databases. RESULTS Over expressions of mRNA and cell lines were found in all members of the MCM family, and MCMs were found to be significantly associated with pathological tumor grades in GC patients. Besides, higher mRNA expressions of MCM1/5/7 were found to be significantly associated with shorter overall survival (OS) and progression-free survival (FP) in GC patients, while higher mRNA expression of MCM4/6/9 were connected with favorable OS and FP. Moreover, a high mutation rate of MCMs (68%) was also observed in GC patients. CONCLUSIONS The results indicated that MCM1/5/7 were potential targets of precision therapy for patients with GC. And MCM4/6/9 were new biomarkers for the prognosis of GC. The results of the study will contribute to supplement the existing knowledge, and help to explore therapeutic targets and enhance the accuracy of prognosis for patients with GC.
Collapse
Affiliation(s)
- Fan Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei-Na Kong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang-Chun Feng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jie Lv
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui-Li Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Le Ai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuan Zhou
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuan-Lin Cai
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Sun
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiu-Min Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
30
|
Segura-Bayona S, Stracker TH. The Tousled-like kinases regulate genome and epigenome stability: implications in development and disease. Cell Mol Life Sci 2019; 76:3827-3841. [PMID: 31302748 PMCID: PMC11105529 DOI: 10.1007/s00018-019-03208-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
The Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine-threonine kinases that have been implicated in DNA replication, DNA repair, transcription, chromatin structure, viral latency, cell cycle checkpoint control and chromosomal stability in various organisms. The functions of the TLKs appear to depend largely on their ability to regulate the H3/H4 histone chaperone ASF1, although numerous TLK substrates have been proposed. Over the last few years, a clearer picture of TLK function has emerged through the identification of new partners, the definition of specific roles in development and the elucidation of their structural and biochemical properties. In addition, the TLKs have been clearly linked to human disease; both TLK1 and TLK2 are frequently amplified in human cancers and TLK2 mutations have been identified in patients with neurodevelopmental disorders characterized by intellectual disability (ID), autism spectrum disorder (ASD) and microcephaly. A better understanding of the substrates, regulation and diverse roles of the TLKs is needed to understand their functions in neurodevelopment and determine if they are viable targets for cancer therapy. In this review, we will summarize current knowledge of TLK biology and its potential implications in development and disease.
Collapse
Affiliation(s)
- Sandra Segura-Bayona
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
- The Francis Crick Institute, London, UK.
| | - Travis H Stracker
- Department of Oncology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/Baldiri Reixac 10, 08028, Barcelona, Spain.
| |
Collapse
|
31
|
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod 2019; 99:112-126. [PMID: 29385397 DOI: 10.1093/biolre/ioy021] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Collapse
|
32
|
Morii I, Iwabuchi Y, Mori S, Suekuni M, Natsume T, Yoshida K, Sugimoto N, Kanemaki MT, Fujita M. Inhibiting the MCM8-9 complex selectively sensitizes cancer cells to cisplatin and olaparib. Cancer Sci 2019; 110:1044-1053. [PMID: 30648820 PMCID: PMC6398883 DOI: 10.1111/cas.13941] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
MCM8 and MCM9 are paralogues of the MCM2‐7 eukaryotic DNA replication helicase proteins and play a crucial role in a homologous recombination‐mediated repair process to resolve replication stress by fork stalling. Thus, deficiency of MCM8‐9 sensitizes cells to replication stress caused, for example, by platinum compounds that induce interstrand cross‐links. It is suggested that cancer cells undergo more replication stress than normal cells due to hyperstimulation of growth. Therefore, it is possible that inhibiting MCM8‐9 selectively hypersensitizes cancer cells to platinum compounds and poly(ADP‐ribose) polymerase inhibitors, both of which hamper replication fork progression. Here, we inhibited MCM8‐9 in transformed and nontransformed cells and examined their sensitivity to cisplatin and olaparib. We found that knockout of MCM9 or knockdown of MCM8 selectively hypersensitized transformed cells to cisplatin and olaparib. In agreement with reported findings, RAS‐ and human papilloma virus type 16 E7‐mediated transformation of human fibroblasts increased replication stress, as indicated by induction of multiple DNA damage responses (including formation of Rad51 foci). Such replication stress induced by oncogenes was further increased by knockdown of MCM8, providing a rationale for cancer‐specific hypersensitization to cisplatin and olaparib. Finally, we showed that knocking out MCM9 increased the sensitivity of HCT116 xenograft tumors to cisplatin. Taken together, the data suggest that conceptual MCM8‐9 inhibitors will be powerful cancer‐specific chemosensitizers for platinum compounds and poly(ADP‐ribose) polymerase inhibitors, thereby opening new avenues to the design of novel cancer chemotherapeutic strategies.
Collapse
Affiliation(s)
- Issay Morii
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Iwabuchi
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sumiko Mori
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Suekuni
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Griffin WC, Trakselis MA. The MCM8/9 complex: A recent recruit to the roster of helicases involved in genome maintenance. DNA Repair (Amst) 2019; 76:1-10. [PMID: 30743181 DOI: 10.1016/j.dnarep.2019.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
There are several DNA helicases involved in seemingly overlapping aspects of homologous and homoeologous recombination. Mutations of many of these helicases are directly implicated in genetic diseases including cancer, rapid aging, and infertility. MCM8/9 are recent additions to the catalog of helicases involved in recombination, and so far, the evidence is sparse, making assignment of function difficult. Mutations in MCM8/9 correlate principally with primary ovarian failure/insufficiency (POF/POI) and infertility indicating a meiotic defect. However, they also act when replication forks collapse/break shuttling products into mitotic recombination and several mutations are found in various somatic cancers. This review puts MCM8/9 in context with other replication and recombination helicases to narrow down its genomic maintenance role. We discuss the known structure/function relationship, the mutational spectrum, and dissect the available cellular and organismal data to better define its role in recombination.
Collapse
Affiliation(s)
- Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA.
| |
Collapse
|
34
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
35
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
36
|
Differential requirements for Tousled-like kinases 1 and 2 in mammalian development. Cell Death Differ 2017; 24:1872-1885. [PMID: 28708136 DOI: 10.1038/cdd.2017.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
The regulation of chromatin structure is critical for a wide range of essential cellular processes. The Tousled-like kinases, TLK1 and TLK2, regulate ASF1, a histone H3/H4 chaperone, and likely other substrates, and their activity has been implicated in transcription, DNA replication, DNA repair, RNA interference, cell cycle progression, viral latency, chromosome segregation and mitosis. However, little is known about the functions of TLK activity in vivo or the relative functions of the highly similar TLK1 and TLK2 in any cell type. To begin to address this, we have generated Tlk1- and Tlk2-deficient mice. We found that while TLK1 was dispensable for murine viability, TLK2 loss led to late embryonic lethality because of placental failure. TLK2 was required for normal trophoblast differentiation and the phosphorylation of ASF1 was reduced in placentas lacking TLK2. Conditional bypass of the placental phenotype allowed the generation of apparently healthy Tlk2-deficient mice, while only the depletion of both TLK1 and TLK2 led to extensive genomic instability, indicating that both activities contribute to genome maintenance. Our data identifies a specific role for TLK2 in placental function during mammalian development and suggests that TLK1 and TLK2 have largely redundant roles in genome maintenance.
Collapse
|
37
|
Natsume T, Nishimura K, Minocherhomji S, Bhowmick R, Hickson ID, Kanemaki MT. Acute inactivation of the replicative helicase in human cells triggers MCM8-9-dependent DNA synthesis. Genes Dev 2017; 31:816-829. [PMID: 28487407 PMCID: PMC5435893 DOI: 10.1101/gad.297663.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023]
Abstract
DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8-9 complex, a paralog of the MCM2-7 replicative helicase. We show that MCM8-9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8-9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8-9 as an alternative replicative helicase.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kohei Nishimura
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan
| | - Sheroy Minocherhomji
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Rahul Bhowmick
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
38
|
Desai S, Wood-Trageser M, Matic J, Chipkin J, Jiang H, Bachelot A, Dulon J, Sala C, Barbieri C, Cocca M, Toniolo D, Touraine P, Witchel S, Rajkovic A. MCM8 and MCM9 Nucleotide Variants in Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2017; 102:576-582. [PMID: 27802094 PMCID: PMC5413161 DOI: 10.1210/jc.2016-2565] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/26/2016] [Indexed: 01/06/2023]
Abstract
Objective To assess the frequency of variants, including biallelic pathogenic variants, in minichromosome maintenance 8 (MCM8) and minichromosome maintenance 9 (MCM9), other genes related to MCM8-MCM9, and DNA damage repair (DDR) pathway in participants with primary ovarian insufficiency (POI). Design MCM8, MCM9, and genes encoding DDR proteins that have been implicated in reproductive aging were sequenced among POI participants. Setting Academic research institution. Participants All were diagnosed with POI prior to age 40 years and presented with elevated follicle-stimulating hormone levels. Interventions None. Main Outcome Measures We identified nucleotide variants in MCM8, MCM9, and genes thought to be involved in the DNA damage response pathway and/or implicated in reproductive aging. Results MCM8 was sequenced in 155 POI participants, whereas MCM9 was sequenced in 151 participants. Three of 155 (2%) participants carried possibly damaging heterozygous variants in MCM8, whereas 7 of 151 (5%) individuals carried possibly damaging heterozygous variants in MCM9. One participant carried a novel homozygous variant, c.1651C>T, p.Gln551*, in MCM9, which is predicted to introduce a premature stop codon in exon 9. Biallelic damaging heterozygous variants in both MCM8 and MCM9 were identified in 1 participant. Of a total of 10 participants carrying damaging heterozygous variants in either MCM8 or MCM9, 2 individuals carried heterozygous damaging variants in genes associated with either MCM8 or MCM9 or the DDR pathway. Conclusions We identified a significant number of potentially damaging and novel variants in MCM8 and MCM9 among participants with POI and examined multiallelic association with variants in DDR and MCM8-MCM9 interactome genes.
Collapse
Affiliation(s)
- Swapna Desai
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Michelle Wood-Trageser
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jelena Matic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jaqueline Chipkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Huaiyang Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Anne Bachelot
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la croissance et Centre des Pathologies gynécologiques Rares, ICAN, 75651 Paris, Cedex 13 France
| | - Jerome Dulon
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la croissance et Centre des Pathologies gynécologiques Rares, ICAN, 75651 Paris, Cedex 13 France
| | - Cinzia Sala
- San Raffaele Research Institute, Milano, 20132 Italy
| | | | - Massimiliano Cocca
- Institute for Maternal and Child Health–IRCCS “Burlo Garofolo,” University of Trieste, Trieste, 34137 Italy
| | | | - Philippe Touraine
- AP-HP, IE3M, Hôpital Pitié-Salpêtrière, Department of Endocrinology and Reproductive Medicine and Centre de Référence des Maladies Endocriniennes Rares de la croissance et Centre des Pathologies gynécologiques Rares, ICAN, 75651 Paris, Cedex 13 France
| | - Selma Witchel
- Department of Endocrinology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and
- Department of Human Genetics, University of Pittsburgh, Pennsylvania 15261
| |
Collapse
|
39
|
Repair of Meiotic DNA Breaks and Homolog Pairing in Mouse Meiosis Requires a Minichromosome Maintenance (MCM) Paralog. Genetics 2016; 205:529-537. [PMID: 27986806 DOI: 10.1534/genetics.116.196808] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022] Open
Abstract
The mammalian Mcm-domain containing 2 (Mcmdc2) gene encodes a protein of unknown function that is homologous to the minichromosome maintenance family of DNA replication licensing and helicase factors. Drosophila melanogaster contains two separate genes, the Mei-MCMs, which appear to have arisen from a single ancestral Mcmdc2 gene. The Mei-MCMs are involved in promoting meiotic crossovers by blocking the anticrossover activity of BLM helicase, a function presumably performed by MSH4 and MSH5 in metazoans. Here, we report that MCMDC2-deficient mice of both sexes are viable but sterile. Males fail to produce spermatozoa, and formation of primordial follicles is disrupted in females. Histology and immunocytological analyses of mutant testes revealed that meiosis is arrested in prophase I, and is characterized by persistent meiotic double-stranded DNA breaks (DSBs), failure of homologous chromosome synapsis and XY body formation, and an absence of crossing over. These phenotypes resembled those of MSH4/5-deficient meiocytes. The data indicate that MCMDC2 is essential for invasion of homologous sequences by RAD51- and DMC1-coated single-stranded DNA filaments, or stabilization of recombination intermediates following strand invasion, both of which are needed to drive stable homolog pairing and DSB repair via recombination in mice.
Collapse
|
40
|
Finsterbusch F, Ravindranathan R, Dereli I, Stanzione M, Tränkner D, Tóth A. Alignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein. PLoS Genet 2016; 12:e1006393. [PMID: 27760146 PMCID: PMC5070785 DOI: 10.1371/journal.pgen.1006393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023] Open
Abstract
Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair. Here, we addressed the function of MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not been reported. While we did not find an important role for MCMDC2 in mitotically dividing cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial function in meiotic recombination. Meiotic recombination begins with the introduction of DNA double-strand breaks into the genome. DNA ends at break sites are resected. The resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple strand invasions on each chromosome promote the alignment of homologous chromosomes, which is a prerequisite for inter-homologue crossover formation during meiosis. We found that although DNA ends at break sites were evidently resected, and they recruited RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting alignment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51 and DMC1 foci, which are thought to mark early recombination intermediates, were abnormally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4 protein, which marks more advanced recombination intermediates, did not efficiently form foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important role in either the formation, or the stabilization, of DNA strand invasion events that promote homologue alignment and provide the basis for inter-homologue crossover formation during meiotic recombination.
Collapse
Affiliation(s)
| | - Ramya Ravindranathan
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Marcello Stanzione
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Daniel Tränkner
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
41
|
Messiaen S, Guiard J, Aigueperse C, Fliniaux I, Tourpin S, Barroca V, Allemand I, Fouchet P, Livera G, Vernet M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction 2016; 151:477-89. [PMID: 26850882 DOI: 10.1530/rep-15-0327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
Anti-silencing function 1 (ASF1) is an evolutionarily conserved histone H3-H4 chaperone involved in the assembly/disassembly of nucleosome and histone modification. Two paralogous genes, Asf1a and Asf1b, exist in the mouse genome. Asf1a is ubiquitously expressed and its loss causes embryonic lethality. Conversely, Asf1b expression is more restricted and has been less studied. To determine the in vivo function of Asf1b, we generated a Asf1b-deficient mouse line (Asf1b(GT(ROSA-βgeo)437)) in which expression of the lacZ reporter gene is driven by the Asf1b promoter. Analysis of β-galactosidase activity at early embryonic stages indicated a correlation between Asf1b expression and cell differentiation potential. In the gonads of both male and female, Asf1b expression was specifically detected in the germ cell lineage with a peak expression correlated with meiosis. The viability of Asf1b-null mice suggests that Asf1b is dispensable for mouse development. However, these mice showed reduced reproductive capacity compared with wild-type controls. We present evidence that the timing of meiotic entry and the subsequent gonad development are affected more severely in Asf1b-null female mice than in male mice. In female mice, in addition to subfertility related to altered gamete formation, variable defects compromising the development and/or survival of their offspring were also observed. Altogether, our data indicate the importance of Asf1b expression at the time of meiotic entry, suggesting that chromatin modifications may play a central role in this process.
Collapse
Affiliation(s)
- S Messiaen
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - J Guiard
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - C Aigueperse
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - I Fliniaux
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - S Tourpin
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - V Barroca
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - I Allemand
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - P Fouchet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - G Livera
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - M Vernet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France Laboratoire de Recherche sur la réparation et la transcription dans les cellules souchesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| |
Collapse
|
42
|
Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure. Cancer Genet 2015; 208:621-4. [PMID: 26806154 DOI: 10.1016/j.cancergen.2015.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Mutations in MCM9, which encodes DNA helicase, were recently shown to cause a clinical phenotype of primary ovarian failure and chromosomal instability. MCM9 plays an essential role in homologous recombination-mediated double-strand break repair. We describe a multiplex family with early colorectal carcinoma and mixed polyposis associated with primary hypergonadotropic hypogonadism. A combination of whole genome homozygosity mapping as well as exome sequencing and targeted gene sequencing identified a homozygous c.672_673delGGinsC mutation that predicts a truncated protein, p.Glu225Lysfs*4. Our data expand the phenotypic spectrum of MCM9 mutations and suggest a link between MCM9 and inherited predisposition to mixed polyposis and early-onset colorectal cancer.
Collapse
|
43
|
Luo Y, Schimenti JC. MCM9 deficiency delays primordial germ cell proliferation independent of the ATM pathway. Genesis 2015; 53:678-84. [DOI: 10.1002/dvg.22901] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Yunhai Luo
- Department of Biomedical Sciences; Cornell University; Ithaca New York
| | - John C. Schimenti
- Department of Biomedical Sciences; Cornell University; Ithaca New York
| |
Collapse
|
44
|
Affiliation(s)
- Svetlana A Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Traver S, Coulombe P, Peiffer I, Hutchins J, Kitzmann M, Latreille D, Méchali M. MCM9 Is Required for Mammalian DNA Mismatch Repair. Mol Cell 2015; 59:831-9. [DOI: 10.1016/j.molcel.2015.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/23/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
|
46
|
Lee KY, Im JS, Shibata E, Park J, Handa N, Kowalczykowski SC, Dutta A. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun 2015; 6:7744. [PMID: 26215093 PMCID: PMC4525285 DOI: 10.1038/ncomms8744] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
MCM8-9 complex is required for homologous recombination (HR)-mediated repair of double-strand breaks (DSBs). Here we report that MCM8-9 is required for DNA resection by MRN (MRE11-RAD50-NBS1) at DSBs to generate ssDNA. MCM8-9 interacts with MRN and is required for the nuclease activity and stable association of MRN with DSBs. The ATPase motifs of MCM8-9 are required for recruitment of MRE11 to foci of DNA damage. Homozygous deletion of the MCM9 found in various cancers sensitizes a cancer cell line to interstrand-crosslinking (ICL) agents. A cancer-derived point mutation or an SNP on MCM8 associated with premature ovarian failure (POF) diminishes the functional activity of MCM8. Therefore, the MCM8-9 complex facilitates DNA resection by the MRN complex during HR repair, genetic or epigenetic inactivation of MCM8 or MCM9 are seen in human cancers, and genetic inactivation of MCM8 may be the basis of a POF syndrome.
Collapse
Affiliation(s)
- Kyung Yong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Jun-Sub Im
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Jonghoon Park
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| | - Naofumi Handa
- Department of Microbiology and Molecular Genetics, University of California, Briggs Hall, One Shields Avenue, Davis, California 95616-8665 USA
| | - Stephen C. Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Briggs Hall, One Shields Avenue, Davis, California 95616-8665 USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Jordan Hall, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908 USA
| |
Collapse
|
47
|
Czechanski A, Kim H, Byers C, Greenstein I, Stumpff J, Reinholdt LG. Kif18a is specifically required for mitotic progression during germ line development. Dev Biol 2015; 402:253-262. [PMID: 25824710 DOI: 10.1016/j.ydbio.2015.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
Genome integrity in the developing germ line is strictly required for fecundity. In proliferating somatic cells and in germ cells, there are mitotic checkpoint mechanisms that ensure accurate chromosome segregation and euploidy. There is growing evidence of mitotic cell cycle components that are uniquely required in the germ line to ensure genome integrity. We previously showed that the primary phenotype of germ cell deficient 2 (gcd2) mutant mice is infertility due to germ cell depletion during embryogenesis. Here we show that the underlying mutation is a mis-sense mutation, R308K, in the motor domain of the kinesin-8 family member, KIF18A, a protein that is expressed in a variety of proliferative tissues and is a key regulator of chromosome alignment during mitosis. Despite the conservative nature of the mutation, we show that its functional consequences are equivalent to KIF18A deficiency in HeLa cells. We also show that somatic cells progress through mitosis, despite having chromosome alignment defects, while germ cells with similar chromosome alignment defects undergo mitotic arrest and apoptosis. Our data provide evidence for differential requirements for chromosome alignment in germ and somatic cells and show that Kif18a is one of a growing number of genes that are specifically required for cell cycle progression in proliferating germ cells.
Collapse
Affiliation(s)
- Anne Czechanski
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| | - Haein Kim
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Candice Byers
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| | - Ian Greenstein
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Laura G Reinholdt
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| |
Collapse
|
48
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
49
|
Luo Y, Hartford SA, Zeng R, Southard TL, Shima N, Schimenti JC. Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling. PLoS Genet 2014; 10:e1004471. [PMID: 25010009 PMCID: PMC4091704 DOI: 10.1371/journal.pgen.1004471] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/14/2014] [Indexed: 01/12/2023] Open
Abstract
Genome maintenance in germ cells is critical for fertility and the stable propagation of species. While mechanisms of meiotic DNA repair and chromosome behavior are well-characterized, the same is not true for primordial germ cells (PGCs), which arise and propagate during very early stages of mammalian development. Fanconi anemia (FA), a genomic instability syndrome that includes hypogonadism and testicular failure phenotypes, is caused by mutations in genes encoding a complex of proteins involved in repair of DNA lesions associated with DNA replication. The signaling mechanisms underlying hypogonadism and testicular failure in FA patients or mouse models are unknown. We conducted genetic studies to show that hypogonadism of Fancm mutant mice is a result of reduced proliferation, but not apoptosis, of PGCs, resulting in reduced germ cells in neonates of both sexes. Progressive loss of germ cells in adult males also occurs, overlaid with an elevated level of meiotic DNA damage. Genetic studies indicated that ATM-p53-p21 signaling is partially responsible for the germ cell deficiency. The precursors to sperm and eggs begin are a group of <100 cells in the embryo, called primordial germ cells (PGCs). They migrate in the primitive embryo to the location of the future gonads, then undergo a rapid proliferation over the next few days to a population of many thousands. Because these cells contain the precious genetic information for our offspring, and the DNA replication associated with rapid PGC proliferation is subject to spontaneous errors, mechanisms exist to avoid propagation of mutations. A manifestation of this is the high sensitivity of PGCs to genetic perturbations affecting DNA repair. We studied mice defective for a gene called Fanconi anemia M (Fancm) that is important for repair of DNA damage that occurs during replication. Although it is expressed in all tissues, only the PGCs are affected in mutants, and are reduced in number. We find that PGCs lacking Fancm respond by slowing cell division, and identified the genetic pathway responsible for this protective response.
Collapse
Affiliation(s)
- Yunhai Luo
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Suzanne A Hartford
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Ruizhu Zeng
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Naoko Shima
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
50
|
O'Sullivan RJ, Arnoult N, Lackner DH, Oganesian L, Haggblom C, Corpet A, Almouzni G, Karlseder J. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat Struct Mol Biol 2014; 21:167-74. [PMID: 24413054 PMCID: PMC3946341 DOI: 10.1038/nsmb.2754] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/03/2013] [Indexed: 12/18/2022]
Abstract
The mechanism of activation of the alternative lengthening of telomeres (ALT) pathway of mammalian chromosome-end maintenance has been unclear. We have now discovered that co-depletion of the histone chaperones ASF1a and ASF1b in human cells induced all hallmarks of ALT in both primary and cancer cells. These included the formation of ALT-associated PML (promyelocytic leukemia) bodies (APBs), the presence of extrachromosomal telomeric DNA species, an elevated frequency of telomeric sister chromatid exchanges (t-SCE) events and intertelomeric exchange of an integrated tag. The induction of ALT characteristics in this setting led to the simultaneous suppression of telomerase. We determined that ALT induction is positively regulated by the proteins RAD17 and BLM and negatively regulated by EXO1 and DNA2. The induction of ALT phenotypes as a consequence of ASF1 depletion strongly supports the hypothesis that ALT is a consequence of histone management dysfunction.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Nausica Arnoult
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Daniel H Lackner
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Liana Oganesian
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Candy Haggblom
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Armelle Corpet
- 1] Institut Curie, Centre de Recherche, Paris, France. [2] Centre National de la Recherche Scientifique, Paris, France. [3]
| | - Genevieve Almouzni
- 1] Institut Curie, Centre de Recherche, Paris, France. [2] Centre National de la Recherche Scientifique, Paris, France
| | - Jan Karlseder
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|