1
|
Attallah C, Conti G, Zuljan F, Zavallo D, Ariel F. Noncoding RNAs as tools for advancing translational biology in plants. THE PLANT CELL 2025; 37:koaf054. [PMID: 40090356 PMCID: PMC12079378 DOI: 10.1093/plcell/koaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/18/2025]
Abstract
Noncoding RNAs (ncRNAs), once considered the "dark matter" of the genome, have emerged as critical regulators of gene expression in plants. Research initially focused on model organisms has laid the groundwork for harnessing the potential of ncRNAs in agriculture, particularly for crop protection, improvement, and modulation. This review explores the role of long and small ncRNAs in plant biology, highlighting their application as powerful tools in agricultural biotechnology. We examine the latest strategies for ncRNA expression and delivery in crops, including transgenic and nontransgenic approaches, as well as emerging technologies that enable precise and efficient modulation of gene activity in plants and pathogens. Additionally, we provide a comprehensive overview of the current state-of-the-art in the regulation of RNA-based products, addressing the challenges and opportunities for integrating these innovations into sustainable agricultural practices. As the regulatory landscape evolves, understanding the safety, efficacy, and environmental impact of ncRNA-based technologies will be crucial for their successful deployment. By leveraging the advances in plant science research, long and small ncRNAs hold promise for designing highly specific tools to boost crop productivity while preserving genetic diversity, contributing to global food security and sustainable agriculture.
Collapse
Affiliation(s)
- Carolina Attallah
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP1425 Buenos Aires, Argentina
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)—Instituto Nacional de Tecnología Agropecuaria (INTA) -CONICET, CP1686 Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía-Universidad de Buenos Aires (UBA), CP1417 Buenos Aires, Argentina
| | - Federico Zuljan
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Diego Zavallo
- APOLO Biotech, Santa Fe de la Vera Cruz, CP3000 Santa Fe, Argentina
| | - Federico Ariel
- Facultad de Bioquímica y Ciencias Biológicas Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, CP1428 Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhan W, Cui L, Song N, Liu X, Guo G, Zhang Y. Comprehensive analysis of cinnamoyl-CoA reductase (CCR) gene family in wheat: implications for lignin biosynthesis and stress responses. BMC PLANT BIOLOGY 2025; 25:567. [PMID: 40307683 PMCID: PMC12044727 DOI: 10.1186/s12870-025-06605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Lignin, the second most abundant terrestrial biopolymer, represents a significant renewable natural biomaterial. Cinnamoyl-CoA reductase (CCR) catalyzes the conversion of various hydroxycinnamoyl-CoA esters into their corresponding aldehydes, utilizing NADPH as a cofactor. CCR functions as a regulatory point that controls the overall carbon flux towards lignin and constitutes the initial committed step in the lignin biosynthesis pathway. Additionally, CCR plays a crucial role in plant development and in resistance to biotic and abiotic stresses. Bread wheat (Triticum aestivum L.), a hexaploid crop, serves as a staple food for much of the global population. However, the copy number variation and expression characteristics of wheat CCR genes remain to be elucidated. RESULTS This study identified 115 unique members of the CCR gene family through a comprehensive search of the wheat genome database. Subsequent analyses included the physicochemical properties, chromosomal localizations, gene duplication events, and structures of these genes. Wheat CCRs were categorized into TaCCR and TaCCR-like genes based on phylogenetic comparison, sequence alignment, and protein three-dimensional structure analysis. Twenty TaCCR proteins, characterized by key amino acid residues at the protein catalytic and NADPH-binding sites, were identified as genuine TaCCRs, potentially playing significant roles in lignin biosynthesis. The expression patterns of these 20 TaCCR genes were investigated in various wheat tissues and seedlings subjected to biotic and abiotic stresses. These genes may significantly influence stem development and responses to heat, drought, salt, and pathogen stresses. Additionally, degradome data analysis suggested that the expression of TaCCR6D-1 was regulated by miRNAs. Virus-induced gene silencing experiments demonstrated the involvement of TaCCR5-5 and TaCCR6-1 in wheat lignin synthesis. CONCLUSIONS This study presents the first comprehensive identification and analysis of wheat CCR genes. Our findings establish a foundation for further elucidation of TaCCR functions and offer a significant genetic resource for future wheat improvement efforts.
Collapse
Affiliation(s)
- Weimin Zhan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lianhua Cui
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ningning Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Xinye Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Yanpei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Allam G, Sakariyahu SK, McDowell T, Pitambar TA, Papadopoulos Y, Bernards MA, Hannoufa A. miR156 Is a Negative Regulator of Aluminum Response in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2025; 14:958. [PMID: 40265915 PMCID: PMC11945701 DOI: 10.3390/plants14060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/24/2025]
Abstract
Aluminum (Al) toxicity is a serious environmental constraint facing crop production in acidic soils, primarily due to the oxidative damage it causes to plant tissues. Alfalfa (Medicago sativa), a globally important forage crop, is highly susceptible to Al-induced stress, necessitating the development of Al-tolerant cultivars for sustainable forage production. In this study, we investigated the regulatory role of miR156 in Al stress response in alfalfa. Transcript analysis revealed significant downregulation of miR156 in alfalfa roots after 8 h of Al exposure, suggesting a negative role for miR156 in response to Al. To further investigate the role of miR156 in regulating agronomic traits and alfalfa's Al tolerance, we utilized the short tandem target mimic (STTM) method to silence miR156 in alfalfa (MsSTTM156), which led to an upregulation of SQUAMOSA PROMOTER BINDING-LIKE (SPL) target genes, albeit with variable miR156 dose-dependent effects across different transgenic genotypes. Morphological characterization of MsSTTM156 plants revealed significant negative changes in root architecture, root and shoot biomass, as well as flowering time. Under Al stress, overexpression of miR156 in alfalfa (MsmiR156OE) resulted in stunted growth and reduced biomass, whereas moderate MsmiR156 silencing enhanced root dry weight and increased stem basal diameter. In contrast, MsmiR156OE reduced plant height, stem basal diameter, shoot branching, and overall biomass under Al stress conditions. At the molecular level, silencing miR156 modulated the transcription of cell wall-related genes linked to Al tolerance, such as polygalacturonase 1(MsPG1) and polygalacturonase 4 (MsPG4). Furthermore, miR156 influenced the expression of indole-3-acetic acid (IAA) transport-related genes auxin transporter-like protein (MsAUX1) and auxin efflux carrier components 2 (MsPIN2), with MsSTTM156 and MsmiR156OE plants showing lower and higher transcript levels, respectively, upon Al exposure. These findings reveal the multi-layered role of miR156 in mediating Al tolerance, providing valuable insights into the genetic strategies that regulate response to Al stress in alfalfa.
Collapse
Affiliation(s)
- Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Solihu K. Sakariyahu
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
| | - Tevon A. Pitambar
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | | | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (G.A.); (S.K.S.); (T.A.P.)
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada;
| |
Collapse
|
4
|
Verrico B, Preston JC. Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change. THE NEW PHYTOLOGIST 2025; 245:1864-1878. [PMID: 39722593 PMCID: PMC11798905 DOI: 10.1111/nph.20375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.
Collapse
Affiliation(s)
- Brittany Verrico
- Department of Plant BiologyUniversity of Vermont63 Carrigan DriveBurlingtonVT05405USA
| | - Jill C. Preston
- Department of Plant BiologyUniversity of Vermont63 Carrigan DriveBurlingtonVT05405USA
| |
Collapse
|
5
|
Wang Y, Luo Z, Zhao X, Sun H, Liu J, Zhang D, Cao H, Ai C, Wang L, Dai L, Liu M, Wang L, Liu Z. Mechanism of zju-miR156c-mediated network in regulating witches' broom symptom of Chinese jujube. MOLECULAR PLANT PATHOLOGY 2024; 25:e70031. [PMID: 39558535 PMCID: PMC11573724 DOI: 10.1111/mpp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/03/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
Jujube witches' broom, caused by phytoplasma, is a destructive disease of Chinese jujube. Studies have shown that zju-miR156s play an important role in phytoplasma infection in jujube, but the regulatory mechanism between zju-miR156c and witches' broom remains unexplored. In the current study, miRNA-seq and gene expression analysis showed that zju-miR156c was more highly induced in infected jujube plants than the other miRNAs and its target gene was ZjSPL3. In addition, the expression levels of thymidylate kinase gene (TMKJWB) and secreted jujube protein (SJP1JWB) in diseased materials were higher than those in healthy controls. The expression level of zju-miR156c was significantly upregulated, while ZjSPL3 was sharply downregulated and the content of cytokinin (CTK) significantly increased. Overexpression of zju-miR156c in Arabidopsis significantly reduced the expression of AtSPL10 (homologous gene of ZjSPL3) but increased the content of CTK, and the transgenic plants exhibited witches' broom symptoms. In addition, yeast two-hybrid and co-immunoprecipitation assays confirmed that SJP1JWB interacted with ZjERF18. Yeast one-hybrid analysis showed that ZjERF18 could interact with the promoter of zju-MIR156c. In conclusion, our results demonstrated a novel pathogenic module of ZjERF18-zju-miR156c-ZjSPL3-CTK has an important function in the formation of witches' broom caused by SJP1JWB.
Collapse
Affiliation(s)
- Yunjie Wang
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Zhi Luo
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Xuan Zhao
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| | - Hongqiang Sun
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Liaoning Institute of Dryland Agriculture and ForestryChaoyangLiaoningChina
| | - Jiaxin Liu
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Dongfeng Zhang
- Hebei Academy of Forestry and Grassland SciencesShijiazhuangHebeiChina
| | - Haonan Cao
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Changfeng Ai
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Lihu Wang
- College of Landscape and Ecological EngineeringHebei University of EngineeringHandanHebeiChina
| | - Li Dai
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| | - Mengjun Liu
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| | - Lixin Wang
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
| | - Zhiguo Liu
- Research Center of Chinese JujubeHebei Agricultural UniversityBaodingHebeiChina
- College of HorticultureHebei Agricultural UniversityBaodingHebeiChina
- Jujube Industry Technology Research Institute of HebeiBaodingHebeiChina
| |
Collapse
|
6
|
Yang R, Wu Z, Sun Y, Liu Y, Hang Y, Liu M, Liu Y, Wang X, Liu W, Fu C. miR156-PvSPL2 controls culm development by transcriptional repression of switchgrass CYTOKININ OXIDASE/DEHYDROGENASE4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2055-2067. [PMID: 38507513 DOI: 10.1111/tpj.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Culm development in grasses can be controlled by both miR156 and cytokinin. However, the crosstalk between the miR156-SPL module and the cytokinin metabolic pathway remains largely unknown. Here, we found CYTOKININ OXIDASE/DEHYDROGENASE4 (PvCKX4) plays a negative regulatory role in culm development of the bioenergy grass Panicum virgatum (switchgrass). Overexpression of PvCKX4 in switchgrass reduced the internode diameter and length without affecting tiller number. Interestingly, we also found that PvCKX4 was always upregulated in miR156 overexpressing (miR156OE) transgenic switchgrass lines. Additionally, upregulation of either miR156 or PvCKX4 in switchgrass reduced the content of isopentenyl adenine (iP) without affecting trans-zeatin (tZ) accumulation. It is consistent with the evidence that the recombinant PvCKX4 protein exhibited much higher catalytic activity against iP than tZ in vitro. Furthermore, our results showed that miR156-targeted SPL2 bound directly to the promoter of PvCKX4 to repress its expression. Thus, alleviating the SPL2-mediated transcriptional repression of PvCKX4 through miR156 overexpression resulted in a significant increase in cytokinin degradation and impaired culm development in switchgrass. On the contrary, suppressing PvCKX4 in miR156OE transgenic plants restored iP content, internode diameter, and length to wild-type levels. Most strikingly, the double transgenic lines retained the same increased tiller numbers as the miR156OE transgenic line, which yielded more biomass than the wild type. These findings indicate that the miR156-SPL module can control culm development through transcriptional repression of PvCKX4 in switchgrass, which provides a promising target for precise design of shoot architecture to yield more biomass from grasses.
Collapse
Affiliation(s)
- Ruijuan Yang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhenying Wu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Yangzhou University, Yangzhou, 225009, China
| | - Yuchen Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yuqing Hang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Min Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yajun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Wenwen Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Mehtab-Singh, Tripathi RK, Bekele WA, Tinker NA, Singh J. Differential expression and global analysis of miR156/SQUAMOSA promoter binding-like proteins (SPL) module in oat. Sci Rep 2024; 14:9928. [PMID: 38688976 PMCID: PMC11061197 DOI: 10.1038/s41598-024-60739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
SQUAMOSA promoter binding-like proteins (SPLs) are important transcription factors that influence growth phase transition and reproduction in plants. SPLs are targeted by miR156 but the SPL/miR156 module is completely unknown in oat. We identified 28 oat SPL genes (AsSPLs) distributed across all 21 oat chromosomes except for 4C and 6D. The oat- SPL gene family represented six of eight SPL phylogenetic groups, with no AsSPLs in groups 3 and 7. A novel oat miR156 (AsmiR156) family with 21 precursors divided into 7 groups was characterized. A total of 16 AsSPLs were found to be targeted by AsmiR156. Intriguingly, AsSPL3s showed high transcript abundance during early inflorescence (GS-54), as compared to the lower abundance of AsmiR156, indicating their role in reproductive development. Unravelling the SPL/miR156 regulatory hub and alterations in expression patterns of AsSPLs could provide an essential toolbox for genetic improvement in the cultivated oat.
Collapse
Affiliation(s)
- Mehtab-Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada
| | - Rajiv K Tripathi
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada
| | - Wubishet A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada.
| |
Collapse
|
8
|
Pal G, Ingole KD, Yavvari PS, Verma P, Kumari A, Chauhan C, Chaudhary D, Srivastava A, Bajaj A, Vemanna RS. Exogenous application of nanocarrier-mediated double-stranded RNA manipulates physiological traits and defence response against bacterial diseases. MOLECULAR PLANT PATHOLOGY 2024; 25:e13417. [PMID: 38279851 PMCID: PMC10799200 DOI: 10.1111/mpp.13417] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/29/2024]
Abstract
Stability and delivery are major challenges associated with exogenous double-stranded RNA (dsRNA) application into plants. We report the encapsulation and delivery of dsRNA in cationic poly-aspartic acid-derived polymer (CPP6) into plant cells. CPP6 stabilizes the dsRNAs during long exposure at varied temperatures and pH, and protects against RNase A degradation. CPP6 helps dsRNA uptake through roots or foliar spray and facilitates systemic movement to induce endogenous gene silencing. The fluorescence of Arabidopsis GFP-overexpressing transgenic plants was significantly reduced after infiltration with gfp-dsRNA-CPP6 by silencing of the transgene compared to plants treated only with gfp-dsRNA. The plant endogenous genes flowering locus T (FT) and phytochrome interacting factor 4 (PIF4) were downregulated by a foliar spray of ft-dsRNA-CPP6 and pif4-dsRNA-CPP6 in Arabidopsis, with delayed flowering and enhanced biomass. The rice PDS gene targeted by pds-dsRNA-CPP6 through root uptake was effectively silenced and plants showed a dwarf and albino phenotype. The NaCl-induced OsbZIP23 was targeted through root uptake of bzip23-dsRNA-CPP6 and showed reduced transcripts and seedling growth compared to treatment with naked dsRNA. The negative regulators of plant defence SDIR1 and SWEET14 were targeted through foliar spray to provide durable resistance against bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Overall, the study demonstrates that transient silencing of plant endogenous genes using polymer-encapsulated dsRNA provides prolonged and durable resistance against Xoo, which could be a promising tool for crop protection and for sustaining productivity.
Collapse
Affiliation(s)
- Garima Pal
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Kishor D. Ingole
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | | | - Priyanka Verma
- Laboratory of Nanotechnology and Chemical BiologyRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Ankit Kumari
- Plant Genetic Engineering LabCentre for Biotechnology, Maharshi Dayananda UniversityRohtakIndia
| | - Chetan Chauhan
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Darshna Chaudhary
- Plant Genetic Engineering LabCentre for Biotechnology, Maharshi Dayananda UniversityRohtakIndia
| | - Aasheesh Srivastava
- Department of ChemistryIndian Institute of Science Education and ResearchBhopalIndia
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical BiologyRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Ramu S. Vemanna
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
9
|
Hu L, Kvitko B, Severns PM, Yang L. Shoot Maturation Strengthens FLS2-Mediated Resistance to Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:796-804. [PMID: 37638673 PMCID: PMC10989731 DOI: 10.1094/mpmi-02-23-0018-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Temporospatial regulation of immunity components is essential for properly activating plant defense response. Flagellin-sensing 2 (FLS2) is a surface-localized receptor that recognizes bacterial flagellin. The immune function of FLS2 is compromised in early stages of shoot development. However, the underlying mechanism for the age-dependent FLS2 signaling is not clear. Here, we show that the reduced basal immunity of juvenile leaves against Pseudomonas syringae pv. tomato DC3000 is independent of FLS2. The flg22-induced marker gene expression and reactive oxygen species activation were comparable in juvenile and adult stages, but callose deposition was more evident in the adult stage than the juvenile stage. We further demonstrated that microRNA156, a master regulator of plant aging, does not influence the expression of FLS2 and FRK1 (Flg22-induced receptor-like kinase 1) but mildly suppresses callose deposition in juvenile leaves. Our experiments revealed an intrinsic mechanism that regulates the amplitude of FLS2-mediated resistance during aging. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lanxi Hu
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Brian Kvitko
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Paul M. Severns
- Department of plant pathology, University of Georgia, Athens, GA 30602
| | - Li Yang
- Department of plant pathology, University of Georgia, Athens, GA 30602
| |
Collapse
|
10
|
Zhao X, Liu W, Aiwaili P, Zhang H, Xu Y, Gu Z, Gao J, Hong B. PHOTOLYASE/BLUE LIGHT RECEPTOR2 regulates chrysanthemum flowering by compensating for gibberellin perception. PLANT PHYSIOLOGY 2023; 193:2848-2864. [PMID: 37723123 PMCID: PMC10663108 DOI: 10.1093/plphys/kiad503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
The gibberellins (GAs) receptor GA INSENSITIVE DWARF1 (GID1) plays a central role in GA signal perception and transduction. The typical photoperiodic plant chrysanthemum (Chrysanthemum morifolium) only flowers when grown in short-day photoperiods. In addition, chrysanthemum flowering is also controlled by the aging pathway, but whether and how GAs participate in photoperiod- and age-dependent regulation of flowering remain unknown. Here, we demonstrate that photoperiod affects CmGID1B expression in response to GAs and developmental age. Moreover, we identified PHOTOLYASE/BLUE LIGHT RECEPTOR2, an atypical photocleavage synthase, as a CRYPTOCHROME-INTERACTING bHLH1 interactor with which it forms a complex in response to short days to activate CmGID1B transcription. Knocking down CmGID1B raised endogenous bioactive GA contents and GA signal perception, in turn modulating the expression of the aging-related genes MicroRNA156 and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3. We propose that exposure to short days accelerates the juvenile-to-adult transition by increasing endogenous GA contents and response to GAs, leading to entry into floral transformation.
Collapse
Affiliation(s)
- Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenwen Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Palinuer Aiwaili
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Han Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Niazi A, Iranbakhsh A, Esmaeel Zadeh M, Ebadi M, Oraghi Ardebili Z. Zinc oxide nanoparticles (ZnONPs) influenced seed development, grain quality, and remobilization by affecting the transcription of microRNA 171 (miR171), miR156, NAM, and SUT genes in wheat (Triticum aestivum): a biological advantage and risk assessment study. PROTOPLASMA 2023; 260:839-851. [PMID: 36318315 DOI: 10.1007/s00709-022-01817-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Limited studies have been conducted on the role of microRNAs (miRs) and transcription factors in regulating plant cell responses to nanoparticles. This study attempted to address whether the foliar application of zinc oxide nanoparticles (ZnONPs; 0, 10, 25, and 50 mgL-1) can affect miRs, gene expression, and wheat grain quality. The seedlings were sprayed with ZnONPs (0, 10, 25, and 50 mgL-1) or bulk counterpart (BZnO) five times at 72 h intervals. The application of ZnONPs at 10 mgL-1 increased the number of spikelets and seed weight, while the nano-supplement at 50 mgL-1 was accompanied by severe restriction on developing spikes and grains. ZnONPs, in a dose-dependent manner, transcriptionally influenced miR156 and miR171. The expression of miR171 showed a similar trend to that of miR156. The ZnONPs at optimum concentration upregulated the NAM transcription factor and sucrose transporter (SUT) at transcriptional levels. However, the transcription of both NAM and SUT genes displayed a downward trend in response to the toxic dose of ZnONPs (50 mgL-1). Utilization of ZnONPs increased proline and total soluble phenolic content. Monitoring the accumulation of carbohydrates, including fructan, glucose, fructose, and sucrose, revealed that ZnONPs at 10 mgL-1 modified the source/sink communication and nutrient remobilization. The molecular and physiological data revealed that the expression of miR156 and miR171 is tightly linked to seed grain development, remobilization of carbohydrates, and genes involved in nutrient transportation. This study establishes a novel strategy for obtaining higher yields in crops. This biological risk assessment investigation also displays the potential hazard of applying ZnONPs at the flowering developmental phase.
Collapse
Affiliation(s)
- Atefe Niazi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohsen Esmaeel Zadeh
- Seed and Plant Improvement Institute, Agricultural Research Education & Extension Organization, Karaj, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
12
|
Feng MQ, Lu MD, Long JM, Yin ZP, Jiang N, Wang PB, Liu Y, Guo WW, Wu XM. miR156 regulates somatic embryogenesis by modulating starch accumulation in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6170-6185. [PMID: 35661206 DOI: 10.1093/jxb/erac248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/02/2022] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that transcription factors CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (CsSPL) genes, and reduction of SE efficiency. In the short tandem target mimic (STTM)-miR156a overexpression callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated. csi-miR172d was down-regulated, whereas the target genes, CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus altering starch accumulation in callus cells and regulating SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs-mediated regulation of SE, and provides new insights into enhancing SE capability in citrus.
Collapse
Affiliation(s)
- Meng-Qi Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Meng-Di Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jian-Mei Long
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhao-Ping Yin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Nan Jiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Peng-Bo Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yue Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Chen C, Du X. LEAFY COTYLEDONs: Connecting different stages of plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:916831. [PMID: 36119568 PMCID: PMC9470955 DOI: 10.3389/fpls.2022.916831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The life of higher plants progresses successively through embryonic, juvenile, adult, and reproductive stages. LEAFY COTYLEDON (LEC) transcription factors, first discovered in Arabidopsis thaliana several decades ago, play a key role in regulating plant embryonic development, seed maturation, and subsequent growth. Existing studies have demonstrated that LECs together with other transcription factors form a huge and complex regulatory network to regulate many aspects of plant growth and development and respond to environmental stresses. Here, we focus on the role that has received little attention about the LECs linking different developmental stages and generational cycles in plants. We summarize the current fragmented research progress on the LECs role and molecular mechanism in connecting embryonic and vegetative growth periods and the reproductive stage. Furthermore, the possibility of LECs controlling the maintenance and transition of plant growth stages through epigenetic modifications is discussed.
Collapse
|
14
|
Yang R, Liu W, Sun Y, Sun Z, Wu Z, Wang Y, Wang M, Wang H, Bai S, Fu C. LATERAL BRANCHING OXIDOREDUCTASE, one novel target gene of Squamosa Promoter Binding Protein-like 2, regulates tillering in switchgrass. THE NEW PHYTOLOGIST 2022; 235:563-575. [PMID: 35383390 PMCID: PMC9321131 DOI: 10.1111/nph.18140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Strigolactones (SLs) play a critical role in regulating plant tiller number. LATERAL BRANCHING OXIDOREDUCTASE (LBO) encodes an important late-acting enzyme for SL biosynthesis and regulates shoot branching in Arabidopsis. However, little is known about the function of LBO in monocots including switchgrass (Panicum virgatum L.), a dual-purpose fodder and biofuel crop. We studied the function of PvLBO via the genetic manipulation of its expression levels in both the wild-type and miR156 overexpressing (miR156OE ) switchgrass. Co-expression analysis, quantitative real-time polymerase chain reaction (qRT-PCR), transient dual luciferase assay, and chromatin immunoprecipitation-qPCR were all used to determine the activation of PvLBO by miR156-targeted Squamosa Promoter Binding Protein-like 2 (PvSPL2) in regulating tillering of switchgrass. PvLBOtranscripts dramatically declined in miR156OE transgenic switchgrass, and the overexpression of PvLBO in the miR156OE transgenic line produce fewer tillers than the control. Furthermore, we found that PvSPL2 can directly bind to the promoter of PvLBO and activate its transcription, suggesting that PvLBO is a novel downstream gene of PvSPL2. We propose that PvLBO functions as an SL biosynthetic gene to mediate tillering and acts as an important downstream factor in the crosstalk between the SL biosynthetic pathway and the miR156-SPL module in switchgrass.
Collapse
Affiliation(s)
- Ruijuan Yang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
| | - Ying Sun
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
| | - Zhichao Sun
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yamei Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
| | - Mengqi Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyChinese Academy of SciencesXining810008China
| | - Shiqie Bai
- Sichuan Academy of Grassland ScienceChengdu611731China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- University of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyChinese Academy of SciencesXining810008China
| |
Collapse
|
15
|
Lai D, Fan Y, Xue G, He A, Yang H, He C, Li Y, Ruan J, Yan J, Cheng J. Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet (Setaria italica). BMC Genomics 2022; 23:389. [PMID: 35596144 PMCID: PMC9122484 DOI: 10.1186/s12864-022-08633-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Among the major transcription factors, SPL plays a crucial role in plant growth, development, and stress response. Foxtail millet (Setaria italica), as a C4 crop, is rich in nutrients and is beneficial to human health. However, research on the foxtail millet SPL (SQUAMOSA PROMOTER BINDING-LIKE) gene family is limited. RESULTS: In this study, a total of 18 SPL genes were identified for the comprehensive analysis of the whole genome of foxtail millet. These SiSPL genes were divided into seven subfamilies (I, II, III, V, VI, VII, and VIII) according to the classification of the Arabidopsis thaliana SPL gene family. Structural analysis of the SiSPL genes showed that the number of introns in subfamilies I and II were much larger than others, and the promoter regions of SiSPL genes were rich in different cis-acting elements. Among the 18 SiSPL genes, nine genes had putative binding sites with foxtail millet miR156. No tandem duplication events were found between the SiSPL genes, but four pairs of segmental duplications were detected. The SiSPL genes expression were detected in different tissues, which was generally highly expressed in seeds development process, especially SiSPL6 and SiSPL16, which deserve further study. The results of the expression levels of SiSPL genes under eight types of abiotic stresses showed that many stress responsive genes, especially SiSPL9, SiSPL10, and SiSPL16, were highly expressed under multiple stresses, which deserves further attention. CONCLUSIONS In this research, 18 SPL genes were identified in foxtail millet, and their phylogenetic relationships, gene structural features, duplication events, gene expression and potential roles in foxtail millet development were studied. The findings provide a new perspective for the mining of the excellent SiSPL gene and the molecular breeding of foxtail millet.
Collapse
Affiliation(s)
- Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
- School of Food and Biological Engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Chunlin He
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524000, People's Republic of China
| | - Yijing Li
- Henan Cancer Hospital, Zhengzhou, 450001, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Jun Yan
- School of Food and Biological Engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, People's Republic of China.
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou Province, People's Republic of China.
| |
Collapse
|
16
|
Xie K, Wang Y, Bai X, Ye Z, Zhang C, Sun F, Zhang C, Xi Y. Overexpression of PvSTK1 gene from Switchgrass (Panicum virgatum L.) affects flowering time and development of floral organ in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:93-104. [PMID: 35276599 DOI: 10.1016/j.plaphy.2022.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Flowering means that the plant enters the reproductive growth stage, which is a crucial stage in the plant life cycle. Delaying flowering time to prolong vegetative growth is an important method to increase biomass yield and saccharification efficiency in switchgrass, It is of great significance to study the molecular mechanism of plant flowering and regulate the process of plant flowering in the process of biomass production. In this study, we identified 55 serine/threonine-protein kinase genes related to flower development from the switchgrass transcriptome database. Simultaneously, we cloned one of them, PvSTK1, whose expression level and differential fold were significantly higher than other members. PvSTK1 is located on chromosome 8N and its protein was in the cell membrane, cytoplasm, and nucleus. The spatio-temporal expression analysis of the PvSTK1 in switchgrass displayed that the PvSTK1 is crucial in vegetative period, however, not in the transition to reproductive period. Overexpression of PvSTK1 in Arabidopsis resulted in down-regulation of flower-promoting genes and up-regulation of flower-suppressing genes, thereby delaying flowering. In addition, PvSTK1 caused atrophy of the ovules of the florets at the base of the inflorescence, leading to sterility of the florets. The function of PvSTK1 is to inhibit the development of floral organs, and its overexpression can prolong its vegetative period. In the future, overexpression of the PvSTK1 gene in switchgrass will change the flowering time and increase yield and utilization efficiency of biomass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xinchen Bai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Zi Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chuqiu Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
17
|
Wang K, Cai S, Xing Q, Qi Z, Fotopoulos V, Yu J, Zhou J. Melatonin delays dark-induced leaf senescence by inducing miR171b expression in tomato. J Pineal Res 2022; 72:e12792. [PMID: 35174545 DOI: 10.1111/jpi.12792] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Melatonin functions in multiple aspects of plant growth, development, and stress response. Nonetheless, the mechanism of melatonin in plant carbon metabolism remains largely unknown. In this study, we investigated the influence of melatonin on the degradation of starch in tomato leaves. Results showed that exogenous melatonin attenuated carbon starvation-induced chlorophyll degradation and leaf senescence. In addition, melatonin delayed leaf starch degradation and inhibited the transcription of starch-degrading enzymes after sunset. Interestingly, melatonin-alleviated symptoms of leaf senescence and starch degradation were compromised when the first key gene for starch degradation, α-glucan water dikinase (GWD), was overexpressed. Furthermore, exogenous melatonin significantly upregulated the transcript levels of several microRNAs, including miR171b. Crucially, the GWD gene was identified as a target of miR171b, and the overexpression of miR171b ameliorated the carbon starvation-induced degradation of chlorophyll and starch, and inhibited the expression of the GWD gene. Taken together, these results demonstrate that melatonin promotes plant tolerance against carbon starvation by upregulating the expression of miR171b, which can directly inhibit GWD expression in tomato leaves.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuyu Cai
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Qufan Xing
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou, People's Republic of China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, People's Republic of China
| |
Collapse
|
18
|
Debernardi JM, Woods DP, Li K, Li C, Dubcovsky J. MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat. PLoS Genet 2022; 18:e1010157. [PMID: 35468125 PMCID: PMC9037917 DOI: 10.1371/journal.pgen.1010157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022] Open
Abstract
Plants possess regulatory mechanisms that allow them to flower under conditions that maximize reproductive success. Selection of natural variants affecting those mechanisms has been critical in agriculture to modulate the flowering response of crops to specific environments and to increase yield. In the temperate cereals, wheat and barley, the photoperiod and vernalization pathways explain most of the natural variation in flowering time. However, other pathways also participate in fine-tuning the flowering response. In this work, we integrate the conserved microRNA miR172 and its targets APETALA2-like (AP2L) genes into the temperate grass flowering network involving VERNALIZATION 1 (VRN1), VRN2 and FLOWERING LOCUS T 1 (FT1 = VRN3) genes. Using mutants, transgenics and different growing conditions, we show that miR172 promotes flowering in wheat, while its target genes AP2L1 (TaTOE1) and AP2L5 (Q) act as flowering repressors. Moreover, we reveal that the miR172-AP2L pathway regulates FT1 expression in the leaves, and that this regulation is independent of VRN2 and VRN1. In addition, we show that the miR172-AP2L module and flowering are both controlled by plant age through miR156 in spring cultivars. However, in winter cultivars, flowering and the regulation of AP2L1 expression are decoupled from miR156 downregulation with age, and induction of VRN1 by vernalization is required to repress AP2L1 in the leaves and promote flowering. Interestingly, the levels of miR172 and both AP2L genes modulate the flowering response to different vernalization treatments in winter cultivars. In summary, our results show that conserved and grass specific gene networks interact to modulate the flowering response, and that natural or induced mutations in AP2L genes are useful tools for fine-tuning wheat flowering time in a changing environment.
Collapse
Affiliation(s)
- Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
19
|
Yang R, Wu Z, Bai C, Sun Z, Wang M, Huo Y, Zhang H, Wang Y, Zhou H, Dai S, Liu W, Fu C. Overexpression of PvWOX3a in switchgrass promotes stem development and increases plant height. HORTICULTURE RESEARCH 2021; 8:252. [PMID: 34848686 PMCID: PMC8633294 DOI: 10.1038/s41438-021-00678-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 05/17/2023]
Abstract
Switchgrass (Panicum virgatum L.) is an important perennial, noninvasive, tall ornamental grass that adds color and texture to gardens and landscapes. Moreover, switchgrass has been considered a forage and bioenergy crop because of its vigorous growth, low-input requirements, and broad geography. Here, we identified PvWOX3a from switchgrass, which encodes a WUSCHEL-related homeobox transcription factor. Transgenic overexpression of PvWOX3a in switchgrass increased stem length, internode diameter, and leaf blade length and width, all of which contributed to a 95% average increase in dry weight biomass compared with control plants. Yeast one-hybrid and transient dual-luciferase assays showed that PvWOX3a can repress the expression of gibberellin 2-oxidase and cytokinin oxidase/dehydrogenase through apparently direct interaction with their promoter sequences. These results suggested that overexpression of PvWOX3a could increase gibberellin and cytokinin levels in transgenic switchgrass plants, which promotes cell division, elongation, and vascular bundle development. We also overexpressed PvWOX3a in a transgenic miR156-overexpressing switchgrass line that characteristically exhibited more tillers, thinner internodes, and narrower leaf blades. Double transgenic switchgrass plants displayed significant increases in internode length and diameter, leaf blade width, and plant height but retained a tiller number comparable to that of plants expressing miR156 alone. Ultimately, the double transgenic switchgrass plants produced 174% more dry-weight biomass and 162% more solubilized sugars on average than control plants. These findings indicated that PvWOX3a is a viable potential genetic target for engineering improved shoot architecture and biomass yield of horticulture, fodder, and biofuel crops.
Collapse
Affiliation(s)
- Ruijuan Yang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
| | - Chen Bai
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
- Shanghai Normal University, 201418, Shanghai, China
| | - Zhichao Sun
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
| | - Mengqi Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
| | - Yuzhu Huo
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
| | - Hailing Zhang
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yamei Wang
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, 610064, Chengdu, China
| | - Shaojun Dai
- Shanghai Normal University, 201418, Shanghai, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
20
|
The Regulation of Plant Vegetative Phase Transition and Rejuvenation: miRNAs, a Key Regulator. EPIGENOMES 2021; 5:epigenomes5040024. [PMID: 34968248 PMCID: PMC8715473 DOI: 10.3390/epigenomes5040024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/13/2023] Open
Abstract
In contrast to animals, adult organs in plants are not formed during embryogenesis but generated from meristematic cells as plants advance through development. Plant development involves a succession of different phenotypic stages and the transition between these stages is termed phase transition. Phase transitions need to be tightly regulated and coordinated to ensure they occur under optimal seasonal, environmental conditions. Polycarpic perennials transition through vegetative stages and the mature, reproductive stage many times during their lifecycles and, in both perennial and annual species, environmental factors and culturing methods can reverse the otherwise unidirectional vector of plant development. Epigenetic factors regulating gene expression in response to internal cues and external (environmental) stimuli influencing the plant’s phenotype and development have been shown to control phase transitions. How developmental and environmental cues interact to epigenetically alter gene expression and influence these transitions is not well understood, and understanding this interaction is important considering the current climate change scenarios, since epigenetic maladaptation could have catastrophic consequences for perennial plants in natural and agricultural ecosystems. Here, we review studies focusing on the epigenetic regulators of the vegetative phase change and highlight how these mechanisms might act in exogenously induced plant rejuvenation and regrowth following stress.
Collapse
|
21
|
Ma JJ, Chen X, Song YT, Zhang GF, Zhou XQ, Que SP, Mao F, Pervaiz T, Lin JX, Li Y, Li W, Wu HX, Niu SH. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. PLANT PHYSIOLOGY 2021; 187:247-262. [PMID: 34618133 PMCID: PMC8418398 DOI: 10.1093/plphys/kiab250] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.
Collapse
Affiliation(s)
- Jing-Jing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Tong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Gui-Fang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xian-Qing Zhou
- Qigou State-Owned Forest Farm, Pingquan, Hebei Province 067509, PR China
| | - Shu-Peng Que
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Fei Mao
- Beijing Ming Tombs Forest Farm, Beijing 102200, PR China, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Tariq Pervaiz
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Jin-Xing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Wei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Harry X. Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shi-Hui Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
22
|
Lawrence EH, Springer CJ, Helliker BR, Scott Poethig R. MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. THE NEW PHYTOLOGIST 2021; 231:1008-1022. [PMID: 33064860 PMCID: PMC8299463 DOI: 10.1111/nph.17007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 05/09/2023]
Abstract
Plant morphology and physiology change with growth and development. Some of these changes are due to change in plant size and some are the result of genetically programmed developmental transitions. In this study we investigate the role of the developmental transition, vegetative phase change (VPC), on morphological and photosynthetic changes. We used overexpression of microRNA156, the master regulator of VPC, to modulate the timing of VPC in Populus tremula × alba, Zea mays, and Arabidopsis thaliana to determine its role in trait variation independent of changes in size and overall age. Here, we find that juvenile and adult leaves in all three species photosynthesize at different rates and that these differences are due to phase-dependent changes in specific leaf area (SLA) and leaf N but not photosynthetic biochemistry. Further, we found juvenile leaves with high SLA were associated with better photosynthetic performance at low light levels. This study establishes a role for VPC in leaf composition and photosynthetic performance across diverse species and environments. Variation in leaf traits due to VPC are likely to provide distinct benefits under specific environments; as a result, selection on the timing of this transition could be a mechanism for environmental adaptation.
Collapse
Affiliation(s)
- Erica H. Lawrence
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Clint J. Springer
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, PA 19131, USA
| | - Brent R. Helliker
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, Poethig RS. Vegetative phase change in Populus tremula × alba. THE NEW PHYTOLOGIST 2021; 231:351-364. [PMID: 33660260 PMCID: PMC8353317 DOI: 10.1111/nph.17316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/17/2021] [Indexed: 05/24/2023]
Abstract
Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genus Populus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagated in vitro, leaving the natural progression of this process unknown. We examined developmental morphology of seed-grown and in vitro derived Populus tremula × alba (clone 717-1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC. In seed-grown plants, most traits changed from node-to-node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over-expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering of Populus is one of these miR156-regulated traits. Vegetative development in plants grown from culture mirrored that of seed-grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.
Collapse
Affiliation(s)
- Erica H. Lawrence
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R. Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Erin E. Doody
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
|
25
|
Lin CY, Donohoe BS, Bomble YJ, Yang H, Yunes M, Sarai NS, Shollenberger T, Decker SR, Chen X, McCann MC, Tucker MP, Wei H, Himmel ME. Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (Panicum virgatum L.) biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:55. [PMID: 33663584 PMCID: PMC7931346 DOI: 10.1186/s13068-021-01891-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass. RESULTS In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%. CONCLUSIONS We conclude that this iron-accumulating strategy can be transferred from model plants and applied to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
- Present Address: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Haibing Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
- Present Address: South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Manal Yunes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 USA
| | - Todd Shollenberger
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Stephen R. Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
26
|
Zhang L, Chen WS, Lv ZY, Sun WJ, Jiang R, Chen JF, Ying X. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Jensen E, Shafiei R, Ma X, Serba DD, Smith DP, Slavov GT, Robson P, Farrar K, Thomas Jones S, Swaller T, Flavell R, Clifton‐Brown J, Saha MC, Donnison I. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C 4 rhizomatous grasses Miscanthus and switchgrass. GLOBAL CHANGE BIOLOGY. BIOENERGY 2021; 13:98-111. [PMID: 33381230 PMCID: PMC7756372 DOI: 10.1111/gcbb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.
Collapse
Affiliation(s)
- Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Reza Shafiei
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- University of Dundee at JHIDundeeUK
| | - Xue‐Feng Ma
- Ceres, Inc.Thousand OaksCAUSA
- Noble Research Institute, LLC.ArdmoreOKUSA
| | - Desalegn D. Serba
- Noble Research Institute, LLC.ArdmoreOKUSA
- Agricultural Research Center‐HaysKansas State UniversityHaysKSUSA
| | - Daniel P. Smith
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Gancho T. Slavov
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Sian Thomas Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Timothy Swaller
- Ceres, Inc.Thousand OaksCAUSA
- Genomics Institute of the Novartis Research FoundationSan DiegoCAUSA
| | - Richard Flavell
- Ceres, Inc.Thousand OaksCAUSA
- International Wheat Yield PartnershipTexas A&M UniversityCollege StationTXUSA
| | - John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| |
Collapse
|
28
|
A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'. Mol Genet Genomics 2020; 296:207-222. [PMID: 33146745 DOI: 10.1007/s00438-020-01740-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
The floral transition is a critical developmental switch in plants, and has profound effects on the flower production and yield. Magnolia × soulangeana 'Changchun' is known as a woody ornamental plant, which can bloom in spring and summer, respectively. In this study, anatomical observation, physiological measurement, transcriptome, and small RNA sequencing were performed to investigate potential endogenous regulatory mechanisms underlying floral transition in 'Changchun'. Transition of the shoot apical meristem from vegetative to reproductive growth occurred between late April and early May. During this specific developmental process, a total of 161,645 unigenes were identified, of which 73,257 were significantly differentially expressed, while a number of these two categories of miRNAs were 299 and 148, respectively. Further analysis of differentially expressed genes (DEGs) revealed that gibberellin signaling could regulate floral transition in 'Changchun' in a DELLA-dependent manner. In addition, prediction and analysis of miRNA targeted genes suggested that another potential molecular regulatory module was mediated by the miR172 family and other several novel miRNAs (Ms-novel_miR139, Ms-novel_miR229, and Ms-novel_miR232), with the participation of up- or down-regulating genes, including MsSVP, MsAP2, MsTOE3, MsAP1, MsGATA6, MsE2FA, and MsMDS6. Through the integrated analysis of mRNA and miRNA, our research results will facilitate the understanding of the potential molecular mechanism underlying floral transition in 'Changchun', and also provide basic experimental data for the plant germplasm resources innovation in Magnolia.
Collapse
|
29
|
Differential Expression of Maize and Teosinte microRNAs under Submergence, Drought, and Alternated Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101367. [PMID: 33076374 PMCID: PMC7650716 DOI: 10.3390/plants9101367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Submergence and drought stresses are the main constraints to crop production worldwide. MicroRNAs (miRNAs) are known to play a major role in plant response to various stresses. In this study, we analyzed the expression of maize and teosinte miRNAs by high-throughput sequencing of small RNA libraries in maize and its ancestor teosinte (Zea mays ssp. parviglumis), under submergence, drought, and alternated stress. We found that the expression patterns of 67 miRNA sequences representing 23 miRNA families in maize and other plants were regulated by submergence or drought. miR159a, miR166b, miR167c, and miR169c were downregulated by submergence in both plants but more severely in maize. miR156k and miR164e were upregulated by drought in teosinte but downregulated in maize. Small RNA profiling of teosinte subject to alternate treatments with drought and submergence revealed that submergence as the first stress attenuated the response to drought, while drought being the first stress did not alter the response to submergence. The miRNAs identified herein, and their potential targets, indicate that control of development, growth, and response to oxidative stress could be crucial for adaptation and that there exists evolutionary divergence between these two subspecies in miRNA response to abiotic stresses.
Collapse
|
30
|
Liu Y, Wang W, Yang B, Currey C, Fei SZ. Functional Analysis of the teosinte branched 1 Gene in the Tetraploid Switchgrass ( Panicum virgatum L.) by CRISPR/Cas9-Directed Mutagenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:572193. [PMID: 33101338 PMCID: PMC7546813 DOI: 10.3389/fpls.2020.572193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/03/2020] [Indexed: 05/25/2023]
Abstract
Tillering is an important biomass yield component trait in switchgrass (Panicum virgatum L.). Teosinte branched 1 (tb1)/Branched 1 (BRC1) gene is a known regulator for tillering/branching in several plant species; however, its role on tillering in switchgrass remains unknown. Here, we report physiological and molecular characterization of mutants created by CRISPR/Cas9. We successfully obtained nonchimeric Pvtb1a and Pvtb1b mutants from chimeric T0 mutants using nodal culture. The biallelic Pvtb1a-Pvtb1b mutant plants produced significantly more tillers and higher fresh weight biomass than the wild-type plants. The increased tiller number in the mutant plants resulted primarily from hastened outgrowth of lower axillary buds. Increased tillers were also observed in transgene-free BC1 monoallelic mutants for either Pvtb1a-Pvtb1b or Pvtb1b gene alone, suggesting Pvtb1 genes act in a dosage-dependent manner. Transcriptome analysis showed 831 genes were differentially expressed in the Pvtb1a-Pvtb1b double knockdown mutant. Gene Ontology analysis revealed downregulation of Pvtb1 genes affected multiple biological processes, including transcription, flower development, cell differentiation, and stress/defense responses in edited plants. This study demonstrates that Pvtb1 genes play a pivotal role in tiller production as a negative regulator in switchgrass and provides opportunities for further research aiming to elucidate the molecular pathway regulating tillering in switchgrass.
Collapse
Affiliation(s)
- Yang Liu
- Interdepartmental Program in Plant Biology, Iowa State University, Ames, IA, United States
- Department of Horticulture, Iowa State University, Ames, IA, United States
| | - Weiling Wang
- Department of Horticulture, Iowa State University, Ames, IA, United States
- Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Bing Yang
- Christopher S. Bond Life Sciences Center, Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Christopher Currey
- Interdepartmental Program in Plant Biology, Iowa State University, Ames, IA, United States
| | - Shui-zhang Fei
- Interdepartmental Program in Plant Biology, Iowa State University, Ames, IA, United States
- Department of Horticulture, Iowa State University, Ames, IA, United States
| |
Collapse
|
31
|
Jerome Jeyakumar JM, Ali A, Wang WM, Thiruvengadam M. Characterizing the Role of the miR156-SPL Network in Plant Development and Stress Response. PLANTS 2020; 9:plants9091206. [PMID: 32942558 PMCID: PMC7570127 DOI: 10.3390/plants9091206] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 01/22/2023]
Abstract
MicroRNA (miRNA) is a short, single-stranded, non-coding RNA found in eukaryotic cells that can regulate the expression of many genes at the post-transcriptional level. Among various plant miRNAs with diverse functions, miR156 plays a key role in biological processes, including developmental regulation, immune response, metabolic regulation, and abiotic stress. MiRNAs have become the regulatory center for plant growth and development. MicroRNA156 (miR156) is a highly conserved and emerging tool for the improvement of plant traits, including crop productivity and stress tolerance. Fine-tuning of squamosa promoter biding-like (SPL) gene expression might be a useful strategy for crop improvement. Here, we studied the regulation of the miR156 module and its interaction with SPL factors to understand the developmental transition of various plant species. Furthermore, this review provides a strong background for plant biotechnology and is an important source of information for further molecular breeding to optimize farming productivity.
Collapse
Affiliation(s)
- John Martin Jerome Jeyakumar
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
| | - Asif Ali
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
- Correspondence:
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
32
|
Necrotic upper tips1 mimics heat and drought stress and encodes a protoxylem-specific transcription factor in maize. Proc Natl Acad Sci U S A 2020; 117:20908-20919. [PMID: 32778598 DOI: 10.1073/pnas.2005014117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintaining sufficient water transport during flowering is essential for proper organ growth, fertilization, and yield. Water deficits that coincide with flowering result in leaf wilting, necrosis, tassel browning, and sterility, a stress condition known as "tassel blasting." We identified a mutant, necrotic upper tips1 (nut1), that mimics tassel blasting and drought stress and reveals the genetic mechanisms underlying these processes. The nut1 phenotype is evident only after the floral transition, and the mutants have difficulty moving water as shown by dye uptake and movement assays. These defects are correlated with reduced protoxylem vessel thickness that indirectly affects metaxylem cell wall integrity and function in the mutant. nut1 is caused by an Ac transposon insertion into the coding region of a unique NAC transcription factor within the VND clade of Arabidopsis NUT1 localizes to the developing protoxylem of root, stem, and leaf sheath, but not metaxylem, and its expression is induced by flowering. NUT1 downstream target genes function in cell wall biosynthesis, apoptosis, and maintenance of xylem cell wall thickness and strength. These results show that maintaining protoxylem vessel integrity during periods of high water movement requires the expression of specialized, dynamically regulated transcription factors within the vasculature.
Collapse
|
33
|
Cen H, Liu Y, Li D, Wang K, Zhang Y, Zhang W. Heterologous expression of a chimeric gene, OsDST-SRDX, enhanced salt tolerance of transgenic switchgrass (Panicum virgatum L.). PLANT CELL REPORTS 2020; 39:723-736. [PMID: 32130473 DOI: 10.1007/s00299-020-02526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Overexpression of OsDST-SRDX chimeric gene in switchgrass promotes plant growth and improves the salt tolerance of transgenic switchgrass by improving its antioxidative ability. Switchgrass (Panicum virgatum L.) is a forage and model feedstock plant. To avoid competing with crops in arable land utilization, improving salt tolerance of switchgrass is required to use marginal saline land for switchgrass production. To improve salt tolerance of switchgrass, a chimeric DROUGHT AND SALT TOLERANCE (DST) gene OsDST-SRDX was constructed using the Chimeric REpressor gene-Silencing Technology (CRES-T), and introduced into switchgrass genome by Agrobacterium-mediated transformation. Compared to wild-type (WT) plants, OsDST-SRDX transgenic (TG) switchgrass plants showed wider leaves and thicker stems. They performed better under salt stress, had higher relative leaf water content, lower electrolyte leakage and lower malondialdehyde (MDA) content, and accumulated less Na+ and more K+ than WT controls. The transgenic plants had also higher activities of antioxidant enzymes associated with suppressed expressing of genes in H2O2 homeostasis, including glutathione S-transferase (GST2, GST6), cytochrome P450, peroxidase 24 precursor, and induced expressing of CAT and SOD under salt stress to eliminate excess H2O2. Our results indicate that overexpression of the chimeric gene OsDST-SRDX improves salt tolerance of switchgrass, a C4 biofuel crop.
Collapse
Affiliation(s)
- Huifang Cen
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dayong Li
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Kexin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- National Energy R&D Center for Biomass (NECB), China Agricultural University, Beijing, 100193, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
- National Energy R&D Center for Biomass (NECB), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Waheed S, Zeng L. The Critical Role of miRNAs in Regulation of Flowering Time and Flower Development. Genes (Basel) 2020; 11:genes11030319. [PMID: 32192095 PMCID: PMC7140873 DOI: 10.3390/genes11030319] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Flowering is an important biological process for plants that ensures reproductive success. The onset of flowering needs to be coordinated with an appropriate time of year, which requires tight control of gene expression acting in concert to form a regulatory network. MicroRNAs (miRNAs) are non-coding RNAs known as master modulators of gene expression at the post-transcriptional level. Many different miRNA families are involved in flowering-related processes such as the induction of floral competence, floral patterning, and the development of floral organs. This review highlights the diverse roles of miRNAs in controlling the flowering process and flower development, in combination with potential biotechnological applications for miRNAs implicated in flower regulation.
Collapse
Affiliation(s)
- Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
- Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: or
| |
Collapse
|
35
|
Queiroz de Pinho Tavares E, Camara Mattos Martins M, Grandis A, Romim GH, Rusiska Piovezani A, Weissmann Gaiarsa J, Silveira Buckeridge M. Newly identified miRNAs may contribute to aerenchyma formation in sugarcane roots. PLANT DIRECT 2020; 4:e00204. [PMID: 32226917 PMCID: PMC7098396 DOI: 10.1002/pld3.204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/11/2020] [Accepted: 01/24/2020] [Indexed: 05/14/2023]
Abstract
Small RNAs comprise three families of noncoding regulatory RNAs that control gene expression by blocking mRNA translation or leading to mRNA cleavage. Such post-transcriptional negative regulation is relevant for both plant development and environmental adaptations. An important biotechnological application of miRNA identification is the discovery of regulators and effectors of cell wall degradation, which can improve/facilitate hydrolysis of cell wall polymers for second-generation bioethanol production. The recent characterization of plant innate cell wall modifications occurring during root aerenchyma development triggered by ethylene led to the possibility of prospection for mechanisms of cell wall disassembly in sugarcane. By using next-generation sequencing, 39 miRNAs were identified in root segments along the process of aerenchyma development. Among them, 31 miRNAs were unknown to the sugarcane miRBase repository but previously identified as produced by its relative Sorghum bicolor. Key putative targets related to signal transduction, carbohydrate metabolic process, and cell wall organization or biogenesis were among the most representative gene categories targeted by miRNA. They belong to the subclasses of genes associated with the four modules of cell wall modification in sugarcane roots: cell expansion, cell separation, hemicellulose, and cellulose hydrolysis. Thirteen miRNAs possibly related to ethylene perception and signaling were also identified. Our findings suggest that miRNAs may be involved in the regulation of cell wall degradation during aerenchyma formation. This work also points out to potential molecular tools for sugarcane improvement in the context of second-generation biofuels.
Collapse
Affiliation(s)
| | | | - Adriana Grandis
- Departamento de Botânica Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | - Grayce H Romim
- Departamento de Botânica Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Jonas Weissmann Gaiarsa
- Centro de Facilidades Para a Pesquisa Instituto de Ciências Biomédicas Universidade de São Paulo São Paulo Brazil
| | | |
Collapse
|
36
|
Liu Q, Su Y, Zhu Y, Peng K, Hong B, Wang R, Gaballah M, Xiao L. Manipulating osa-MIR156f Expression by D18 Promoter to Regulate Plant Architecture and Yield Traits both in Seasonal and Ratooning Rice. Biol Proced Online 2019; 21:21. [PMID: 31700499 PMCID: PMC6827258 DOI: 10.1186/s12575-019-0110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
Background Rice (Oryza sativa L.) feeds more than half of the world's population. Ratooning rice is an economical alternative to the second seasonal rice, thus increasing the yield of ratooning rice is highly important. Results Here we report an applicable transgenic line constructed through the manipulation of osa-MIR156f expression in rice shoot using the OsGA3ox2 (D18) promoter. In seasonal rice, the D18-11 transgenic line showed moderate height and more effective tillers with normal panicle. In ratooning rice, axillary buds outgrew from the basal node of the D18-11 transgenic line before the harvest of seasonal rice. More effective tillers produced by the outgrowth of axillary buds contributed to the plant architecture improvement and yield increase. Additionally, it was found that osa-miR156f down-regulated the expression of tillering regulators, such as TEOSINTE BRANCHED1 (TB1) and LAX PANICLE 1 (LAX1). The expression of DWARF10, DWARF27 and DWARF53, three genes being involved in the biosynthesis and signaling of strigolactone (SL), decreased in the stem of the D18-11 transgenic line. Conclusion Our results indicated that the manipulation of osa-MIR156f expression may have application significance in rice genetic breeding. This study developed a novel strategy to regulate plant architecture and grain yield potential both in the seasonal and ratooning rice.
Collapse
Affiliation(s)
- Qing Liu
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Yi Su
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Yunhua Zhu
- 3Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Keqin Peng
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Bin Hong
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China
| | - Ruozhong Wang
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| | - Mahmoud Gaballah
- 4Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Giza, 33717 Egypt
| | - Langtao Xiao
- 1Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128 China.,2Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
37
|
Hashimoto S, Tezuka T, Yokoi S. Morphological changes during juvenile-to-adult phase transition in sorghum. PLANTA 2019; 250:1557-1566. [PMID: 31359138 DOI: 10.1007/s00425-019-03251-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Morphological and genetic markers indicate that in sorghum, the juvenile-to-adult phase transition occurs during the fourth and fifth leaf stages. This timing differs from those reported for other plants. The juvenile-to-adult (JA) phase transition is an important event for optimizing vegetative growth and reproductive success in plants. Among the Poaceae crops, which are a vital food source for humans, studies of the JA phase transition have been restricted to rice and maize. We studied the morphological and genetic changes that occur during the early development of sorghum and found that dramatic changes occur in shoot architecture during the early vegetative stages. Changes were observed in leaf size, leaf shape, numbers of trichomes, and size of the shoot apical meristem. In particular, the length/width ratios of the leaf blades in the fifth and upper leaves were completely different from those of the second to fourth leaves. The fifth and upper leaves have trichomes on their adaxial sides, which were absent on the lower leaves. We also analyzed expression of two microRNAs that are known to be molecular markers of the JA phase transition and found that expression of miR156 was highest in the second to fourth leaves and then was gradually down-regulated, whereas miR172 expression followed the opposite pattern. These results suggest that in sorghum, the second and third leaves represent the juvenile phase, the fourth and fifth leaves are in the transition stage, and the sixth and upper leaves are in the adult phase. Thus, the JA phase transition occurs during the fourth and fifth leaf stages. These findings are expected to be useful for understanding the early development of sorghum.
Collapse
Affiliation(s)
- Shumpei Hashimoto
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Laboratory of Plant Breeding, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, School of Life and Environmental Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
38
|
Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019; 366:science.aax0025. [PMID: 31488704 DOI: 10.1126/science.aax0025] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of the major crops that feed humans and their livestock arose from agricultural revolutions that increased productivity and adapted plants to large-scale farming practices. Two hormone systems that universally control flowering and plant architecture, florigen and gibberellin, were the source of multiple revolutions that modified reproductive transitions and proportional growth among plant parts. Although step changes based on serendipitous mutations in these hormone systems laid the foundation, genetic and agronomic tuning were required for broad agricultural benefits. We propose that generating targeted genetic variation in core components of both systems would elicit a wider range of phenotypic variation. Incorporating this enhanced diversity into breeding programs of conventional and underutilized crops could help to meet the future needs of the human diet and promote sustainable agriculture.
Collapse
Affiliation(s)
- Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
39
|
Wang Z, Shi H, Yu S, Zhou W, Li J, Liu S, Deng M, Ma J, Wei Y, Zheng Y, Liu Y. Comprehensive transcriptomics, proteomics, and metabolomics analyses of the mechanisms regulating tiller production in low-tillering wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2181-2193. [PMID: 31020386 DOI: 10.1007/s00122-019-03345-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Tiller development in low-tillering wheat is related to several differentially expressed genes, proteins, and metabolites, as determined by an integrated omics approach combining transcriptome analysis, iTRAQ, and HPLC-MS on multiple NILs. Tillering is an important aspect of plant morphology that affects spike number, thereby contributing to the final crop yield. However, the mechanisms inhibiting tiller production in low-tillering wheat are poorly characterized. To investigate this aspect of wheat biology, two pairs of near-isogenic lines were developed, and an integrated omics approach combining transcriptome analysis, isobaric tags for relative and absolute quantification, and high-performance liquid chromatography-mass spectrometry were used to compare the free-tillering and low-tillering caused by an allele at Qltn.sicau-2D in wheat samples. Overall, 474 genes, 166 proteins, and 28 metabolites were identified as tillering-associated differentially expressed genes, proteins, and metabolites (DEGs, DEPs, and DEMs, respectively). Functional analysis indicated that the abundance of DEGs/DEPs/DEMs was related to lignin and cellulose metabolism, cell division, cell cycle processes, and glycerophospholipid metabolism; three transcription factor families, GRAS, GRF, and REV, might be related to the decrease in tillering in low-tillering wheat. These findings contribute to improve our understanding of the mechanisms responsible for the inhibition of tiller development in low-tillering wheat cultivars.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Haoran Shi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shifan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Wanlin Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
40
|
Zhang X, Xie S, Han J, Zhou Y, Liu C, Zhou Z, Wang F, Cheng Z, Zhang J, Hu Y, Hao Z, Li M, Zhang D, Yong H, Huang Y, Weng J, Li X. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. BMC Genomics 2019; 20:574. [PMID: 31296166 PMCID: PMC6625009 DOI: 10.1186/s12864-019-5945-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Starch biosynthesis in endosperm is a key process influencing grain yield and quality in maize. Although a number of starch biosynthetic genes have been well characterized, the mechanisms by which the expression of these genes is regulated, especially in regard to microRNAs (miRNAs), remain largely unclear. Results Sequence data for small RNAs, degradome, and transcriptome of maize endosperm at 15 and 25 d after pollination (DAP) from inbred lines Mo17 and Ji419, which exhibit distinct starch content and starch granule structure, revealed the mediation of starch biosynthetic pathways by miRNAs. Transcriptome analysis of these two lines indicated that 33 of 40 starch biosynthetic genes were differentially expressed, of which 12 were up-regulated in Ji419 at 15 DAP, one was up-regulated in Ji419 at 25 DAP, 14 were up-regulated in Ji419 at both 15 and 25 DAP, one was down-regulated in Ji419 at 15 DAP, two were down-regulated in Ji419 at 25 DAP, and three were up-regulated in Ji419 at 15 DAP and down-regulated in Ji419 at 25 DAP, compared with Mo17. Through combined analyses of small RNA and degradome sequences, 22 differentially expressed miRNAs were identified, including 14 known and eight previously unknown miRNAs that could target 35 genes. Furthermore, a complex co-expression regulatory network was constructed, in which 19 miRNAs could modulate starch biosynthesis in endosperm by tuning the expression of 19 target genes. Moreover, the potential operation of four miRNA-mediated pathways involving transcription factors, miR169a-NF-YA1-GBSSI/SSIIIa and miR169o-GATA9-SSIIIa/SBEIIb, was validated via analyses of expression pattern, transient transformation assays, and transactivation assays. Conclusion Our results suggest that miRNAs play a critical role in starch biosynthesis in endosperm, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing maize endosperm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5945-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaocong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sidi Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
41
|
Genome-Wide Identification of Putative MicroRNAs in Cassava ( Manihot esculenta Crantz) and Their Functional Landscape in Cellular Regulation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2019846. [PMID: 31321230 PMCID: PMC6607727 DOI: 10.1155/2019/2019846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 11/18/2022]
Abstract
MicroRNAs are small noncoding RNAs, involved in the regulation of many cellular processes in plants. Hundreds of miRNAs have been identified in cassava by various techniques, yet these identifications were constrained by a lack of miRNA templates and the narrow range of conditions in transcriptome study. In this research, we conducted genome-wide analysis identification, whereby miRNAs from cassava genome were thoroughly screened using bioinformatics approach independent of predefined templates and studied conditions. Our work provided a catalog of putative mature miRNAs and explored the landscape of miRNAome in cassava. These putative miRNAs were validated using statistical analysis as well as available cassava expression data. We showed that the crowded locations of cassava miRNAs are consistent with other plants and animals and hypothesized to have the same evolutionary origin. At least 10 conserved miRNAs were identified in cassava based on the comparative study of miRNA conservation. Finally, investigation of miRNAs and target gene relationships enabled us to envisage the complexities of cellular regulatory systems modulated at posttranscriptional level.
Collapse
|
42
|
Perspectives on microRNAs and Phased Small Interfering RNAs in Maize ( Zea mays L.): Functions and Big Impact on Agronomic Traits Enhancement. PLANTS 2019; 8:plants8060170. [PMID: 31212808 PMCID: PMC6630462 DOI: 10.3390/plants8060170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Small RNA (sRNA) population in plants comprises of primarily micro RNAs (miRNAs) and small interfering RNAs (siRNAs). MiRNAs play important roles in plant growth and development. The miRNA-derived secondary siRNAs are usually known as phased siRNAs, including phasiRNAs and tasiRNAs. The miRNA and phased siRNA biogenesis mechanisms are highly conserved in plants. However, their functional conservation and diversification may differ in maize. In the past two decades, lots of miRNAs and phased siRNAs have been functionally identified for curbing important maize agronomic traits, such as those related to developmental timing, plant architecture, sex determination, reproductive development, leaf morphogenesis, root development and nutrition, kernel development and tolerance to abiotic stresses. In contrast to Arabidopsis and rice, studies on maize miRNA and phased siRNA biogenesis and functions are limited, which restricts the small RNA-based fundamental and applied studies in maize. This review updates the current status of maize miRNA and phased siRNA mechanisms and provides a survey of our knowledge on miRNA and phased siRNA functions in controlling agronomic traits. Furthermore, improvement of those traits through manipulating the expression of sRNAs or their targets is discussed.
Collapse
|
43
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
44
|
Zhu H, Zhang Y, Tang R, Qu H, Duan X, Jiang Y. Banana sRNAome and degradome identify microRNAs functioning in differential responses to temperature stress. BMC Genomics 2019; 20:33. [PMID: 30630418 PMCID: PMC6329063 DOI: 10.1186/s12864-018-5395-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Temperature stress is a major environmental factor affecting not only plant growth and development, but also fruit postharvest life and quality. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in various biological processes. Harvested banana fruit can exhibit distinct symptoms in response to different temperature stresses, but the underlying miRNA-mediated regulatory mechanisms remained unknown. Results Here, we profiled temperature-responsive miRNAs in banana, using deep sequencing and computational and molecular analyses. In total 113 known miRNAs and 26 novel banana-specific miRNAs were identified. Of these miRNAs, 42 miRNAs were expressed differentially under cold and heat stresses. Degradome sequencing identified 60 target genes regulated by known miRNAs and half of these targets were regulated by 15 temperature-responsive miRNAs. The correlative expression patterns between several miRNAs and their target genes were further validated via qRT-PCR. Our data showed that miR535 and miR156 families may derive from a common ancestor during evolution and jointly play a role in fine-tuning SPL gene expression in banana. We also identified the miRNA-triggered phased secondary siRNAs in banana and found miR393-TIR1/AFB phasiRNA production displaying cold stress-specific enrichment. Conclusions Our results provide a foundation for understanding the miRNA-dependent temperature stress response in banana. The characterized correlations between miRNAs and their response to temperature stress could serve as markers in the breeding programs or tools for improving temperature tolerance of banana. Electronic supplementary material The online version of this article (10.1186/s12864-018-5395-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Yu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifang Tang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongxia Qu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
45
|
Bellinger M, Sidhu S, Rasmussen C. Staining Maize Epidermal Leaf Peels with Toluidine Blue O. Bio Protoc 2019. [DOI: 10.21769/bioprotoc.3214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
46
|
Ligaba-Osena A, DiMarco K, Richard TL, Hankoua B. The Maize Corngrass1 miRNA-Regulated Developmental Alterations Are Restored by a Bacterial ADP-Glucose Pyrophosphorylase in Transgenic Tobacco. Int J Genomics 2018; 2018:8581258. [PMID: 30356416 PMCID: PMC6178181 DOI: 10.1155/2018/8581258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
Crop-based bioethanol has raised concerns about competition with food and feed supplies, and technologies for second- and third-generation biofuels are still under development. Alternative feedstocks could fill this gap if they can be converted to biofuels using current sugar- or starch-to-ethanol technologies. The aim of this study was to enhance carbohydrate accumulation in transgenic Nicotiana benthamiana by simultaneously expressing the maize Corngrass1 miRNA (Cg1) and E. coli ADP-glucose pyrophosphorylase (glgC), both of which have been reported to enhance carbohydrate accumulation in planta. Our findings revealed that expression of Cg1 alone increased shoot branching, delayed flowering, reduced flower organ size, and induced loss of fertility. These changes were fully restored by coexpressing Escherichia coli glgC. The transcript level of miRNA156 target SQUAMOSA promoter binding-like (SPL) transcription factors was suppressed severely in Cg1-expressing lines as compared to the wild type. Expression of glgC alone or in combination with Cg1 enhanced biomass yield and total sugar content per plant, suggesting the potential of these genes in improving economically important biofuel feedstocks. A possible mechanism of the Cg1 phenotype is discussed. However, a more detailed study including genome-wide transcriptome and metabolic analysis is needed to determine the underlying genetic elements and pathways regulating the observed developmental and metabolic changes.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE 19901, USA
| | - Kay DiMarco
- 2217 Earth and Engineering Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Tom L. Richard
- Agricultural and Biological Engineering, Pennsylvania State University, 132 Land and Water Research Building, PA 16802, USA
| | - Bertrand Hankoua
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
47
|
Combined small RNA and gene expression analysis revealed roles of miRNAs in maize response to rice black-streaked dwarf virus infection. Sci Rep 2018; 8:13502. [PMID: 30201997 PMCID: PMC6131507 DOI: 10.1038/s41598-018-31919-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/28/2018] [Indexed: 01/01/2023] Open
Abstract
Maize rough dwarf disease, caused by rice black-streaked dwarf virus (RBSDV), is a devastating disease in maize (Zea mays L.). MicroRNAs (miRNAs) are known to play critical roles in regulation of plant growth, development, and adaptation to abiotic and biotic stresses. To elucidate the roles of miRNAs in the regulation of maize in response to RBSDV, we employed high-throughput sequencing technology to analyze the miRNAome and transcriptome following RBSDV infection. A total of 76 known miRNAs, 226 potential novel miRNAs and 351 target genes were identified. Our dataset showed that the expression patterns of 81 miRNAs changed dramatically in response to RBSDV infection. Transcriptome analysis showed that 453 genes were differentially expressed after RBSDV infection. GO, COG and KEGG analysis results demonstrated that genes involved with photosynthesis and metabolism were significantly enriched. In addition, twelve miRNA-mRNA interaction pairs were identified, and six of them were likely to play significant roles in maize response to RBSDV. This study provided valuable information for understanding the molecular mechanism of maize disease resistance, and could be useful in method development to protect maize against RBSDV.
Collapse
|
48
|
Li G, Jones KC, Eudes A, Pidatala VR, Sun J, Xu F, Zhang C, Wei T, Jain R, Birdseye D, Canlas PE, Baidoo EEK, Duong PQ, Sharma MK, Singh S, Ruan D, Keasling JD, Mortimer JC, Loqué D, Bartley LE, Scheller HV, Ronald PC. Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnol 2018; 18:54. [PMID: 30180895 PMCID: PMC6123914 DOI: 10.1186/s12896-018-0464-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Switchgrass (Panicum virgatum L.) is a promising bioenergy feedstock because it can be grown on marginal land and produces abundant biomass. Recalcitrance of the lignocellulosic components of the switchgrass cell wall to enzymatic degradation into simple sugars impedes efficient biofuel production. We previously demonstrated that overexpression of OsAT10, a BAHD acyltransferase gene, enhances saccharification efficiency in rice. Results Here we show that overexpression of the rice OsAT10 gene in switchgrass decreased the levels of cell wall-bound ferulic acid (FA) in green leaf tissues and to a lesser extent in senesced tissues, and significantly increased levels of cell wall-bound p-coumaric acid (p-CA) in green leaves but decreased its level in senesced tissues of the T0 plants under greenhouse conditions. The engineered switchgrass lines exhibit an approximate 40% increase in saccharification efficiency in green tissues and a 30% increase in senesced tissues. Conclusion Our study demonstrates that overexpression of OsAT10, a rice BAHD acyltransferase gene, enhances saccharification of lignocellulosic biomass in switchgrass. Electronic supplementary material The online version of this article (10.1186/s12896-018-0464-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guotian Li
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Kyle C Jones
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Jian Sun
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories, CA94551, Livermore, USA
| | - Feng Xu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Tong Wei
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Rashmi Jain
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Devon Birdseye
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick E Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Phat Q Duong
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Manoj K Sharma
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA.,School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seema Singh
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories, CA94551, Livermore, USA
| | - Deling Ruan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering and Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Pamela C Ronald
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
49
|
Arshad M, Gruber MY, Hannoufa A. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci Rep 2018; 8:9363. [PMID: 29921939 PMCID: PMC6008443 DOI: 10.1038/s41598-018-27088-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/24/2018] [Indexed: 11/09/2022] Open
Abstract
Drought is one of the major abiotic stresses that negatively impact alfalfa growth and productivity. The role of microRNA156 (miR156) in drought has been demonstrated in plants. To date, there are no published studies investigating the role of miR156 in regulating global gene expression in alfalfa under drought. In our study, alfalfa genotypes overexpressing miR156 (miR156OE) exhibited reduced water loss, and enhanced root growth under drought. Our RNA-seq data showed that in response to drought, a total of 415 genes were upregulated and 169 genes were downregulated specifically in miR156OE genotypes. Genotypic comparison revealed that 285 genes were upregulated and 253 genes were downregulated in miR156OE genotypes relative to corresponding WT under drought. Gene Ontology enrichment analysis revealed that the number of differentially expressed genes belonging to biological process, molecular function and cell component functional groups was decreased in miR156OE genotypes under drought. Furthermore, RNA-Seq data showed downregulation of a gene encoding WD40 repeat in a miR156-specific manner. 5' RACE experiments verified cleavage of WD40-2 transcript under drought. Moreover, alfalfa plants overexpressing WD40-2 showed drought sensitive, whereas those with silenced WD40-2 exhibited drought tolerant phenotypes. These findings suggest that miR156 improves drought tolerance in alfalfa by targeting WD40-2.
Collapse
Affiliation(s)
- Muhammad Arshad
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Margaret Y Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
50
|
Martinelli F, Cannarozzi G, Balan B, Siegrist F, Weichert A, Blösch R, Tadele Z. Identification of miRNAs linked with the drought response of tef [Eragrostis tef (Zucc.) Trotter]. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:163-172. [PMID: 29656008 DOI: 10.1016/j.jplph.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/25/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Tef [Eragrostis tef (Zucc.) Trotter], a staple food crop in the Horn of Africa and particularly in Ethiopia, has several beneficial agronomical and nutritional properties, including waterlogging and drought tolerance. In this study, we performed microRNA profiling of tef using the Illumina HiSeq 2500 platform, analyzing both shoots and roots of two tef genotypes, one drought-tolerant (Tsedey) and one drought-susceptible (Alba). We obtained more than 10 million filtered reads for each of the 24 sequenced small cDNA libraries. Reads mapping to known miRNAs were more abundant in the root than shoot tissues. Thirteen and 35 miRNAs were significantly modulated in response to drought, in Alba and Tsedey roots, respectively. One miRNA was upregulated under drought conditions in both genotypes. In shoots, nine miRNAs were modulated in common between the two genotypes and all showed similar trends of expression. One-hundred and forty-seven new miRNA mature sequences were identified in silico, 22 of these were detected in all relevant samples and seven were differentially regulated when comparing drought with normal watering. Putative targets of the miRNA regulated under drought in root and shoot tissues were predicted. Among the targets were transcription factors such as CCAAT-HAP2, MADS and NAC. Verification with qRT-PCR revealed that five of six potential targets showed a pattern of expression that was consistent with the correspondent miRNA amount measured by RNA-Seq. In general, candidate miRNAs involved in the post-transcriptional regulation of the tef response to drought could be included in next-generation breeding programs.
Collapse
Affiliation(s)
- Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, viale delle scienze Ed. 4., Palermo, Italy.
| | - Gina Cannarozzi
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Bipin Balan
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, viale delle scienze Ed. 4., Palermo, Italy.
| | - Fredy Siegrist
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Annett Weichert
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Regula Blösch
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland.
| | - Zerihun Tadele
- Institute of Plant Sciences, Altenbergrain 21, University of Bern, Bern, Switzerland; Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|