1
|
Li J, Ma X, Xuan Q, Li Q, Wu M, Shi B, Fang Z, Chen L, Chen J, Wen Y, Zhu C, Zhu L, Zhang X, Yuan Z. Modulation of monocyte activity by hepatocellular MicroRNA delivery through HBsAg particles: Implications for pathobiology of chronic hepatitis B. Hepatology 2025; 81:990-1005. [PMID: 38904485 PMCID: PMC11825484 DOI: 10.1097/hep.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS HBsAg serves as an important immune-modulatory factor in chronic hepatitis B. One aspect of such modulation may act through monocytes, which are the major Ag-presenting cells taking up HBsAg. There is evidence for the encapsulation of hepatocellular microRNAs (miRNAs) by HBsAg particles, while its pathobiological significance is unclear. Here, we characterized the miRNA profile in patients with chronic hepatitis B and probed their association with liver inflammation. APPROACHES AND RESULTS We collected plasma from patients that are treatment-naive with chronic hepatitis B (n = 110) and quantified total/HBsAg-enveloped miRNAs by qRT-PCR and plasma cytokines by ELISA. The biological effects of HBsAg-delivered miRNAs in monocytes were evaluated using multiple approaches. The clinical significance of candidate miRNAs and cytokines was corroborated in patients with HBV-associated advanced liver diseases. The plasma miRNA profile showed 2 major clusters, one significantly associated with HBsAg titer and the other correlated with liver inflammation. Among HBsAg-carried miRNAs, miR-939 displayed the most significant correlation with IL-8. Mechanistically, miR-939 in subviral particles enters monocytes and significantly augments IL-8 production through the mitogen-activated protein kinase (MAPK) p38 signaling pathway. Finally, the findings that miR-939 positively correlated with IL-8 level and inflammation/fibrosis stage in the cohort of HBV-associated advanced liver diseases support its causative role in the progression of liver diseases. CONCLUSIONS HBsAg particles carry hepatocellular miRNAs, including miR-939, which enter monocytes and alter their functional status, such as IL-8 secretion. Our findings demonstrate that the HBsAg-miR-939-IL-8 axis may play a crucial role in HBV-induced hepatic necro-inflammation and the progression of advanced liver diseases.
Collapse
Affiliation(s)
- Jin Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinkao Xuan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiang Li
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bisheng Shi
- Department of Laboratory Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Zhong Fang
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Liang Chen
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| | - Chuanwu Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Australia
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College Fudan University, Shanghai, China
| |
Collapse
|
2
|
Sánchez‐García S, Povo‐Retana A, Marin S, Madurga S, Fariñas M, Aleixandre N, Castrillo A, de la Rosa JV, Alvarez‐Lucena C, Landauro‐Vera R, Prieto P, Cascante M, Boscá L. Immunometabolic Effect of Nitric Oxide on Human Macrophages Challenged With the SARS-CoV2-Induced Cytokine Storm. A Fluxomic Approach. Adv Healthc Mater 2025; 14:e2401688. [PMID: 39502019 PMCID: PMC11694080 DOI: 10.1002/adhm.202401688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/04/2024] [Indexed: 01/03/2025]
Abstract
The cytokine storm associated with SARS-CoV-2 infection is one of the most distinctive pathological signatures in COVID-19 patients. Macrophages respond to this pro-inflammatory challenge by reprogramming their functional and metabolic phenotypes. Interestingly, human macrophages fail to express the inducible form of the NO synthase (NOS2) in response to pro-inflammatory activation and, therefore, NO is not synthesized by these cells. The contribution of exogenously added NO, via a chemical NO-donor, on the immunometabolic changes associated with the cytokine storm is investigated. By using metabolic, transcriptomic, and functional assays the effect of NO in human macrophages is evaluated and found specific responses. Moreover, through integrative fluxomic analysis, pathways modified by NO that contribute to the expression of a particular phenotype in human macrophages are identified, which includes a decrease in mitochondrial respiration and TCA with a slight increase in the glycolytic flux. A significant ROS increase and preserved cell viability are observed in the presence of NO, which may ease the inflammatory response and host defense. Also, NO reverses the cytokine storm-induced itaconate accumulation. These changes offer additional clues to understanding the potential crosstalk between NO and the COVID-19 cytokine storm-dependent signaling pathways.
Collapse
Affiliation(s)
- Sergio Sánchez‐García
- Instituto de Investigaciones Biomédicas Sols‐Morreale, Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de MadridArturo Duperier 4Madrid28029Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
| | - Adrián Povo‐Retana
- Instituto de Investigaciones Biomédicas Sols‐Morreale, Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de MadridArturo Duperier 4Madrid28029Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine‐Institute of Biomedicine (IBUB), Faculty of BiologyUniversitat de BarcelonaBarcelona08028Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
| | - Sergio Madurga
- Department of Material Science and Physical Chemistry & Research Institute of Theoretical and Computational Chemistry (IQTCUB)University of BarcelonaBarcelona08028Spain
| | - Marco Fariñas
- Department of Biochemistry and Molecular Biomedicine‐Institute of Biomedicine (IBUB), Faculty of BiologyUniversitat de BarcelonaBarcelona08028Spain
| | - Nuria Aleixandre
- Department of Biochemistry and Molecular Biomedicine‐Institute of Biomedicine (IBUB), Faculty of BiologyUniversitat de BarcelonaBarcelona08028Spain
- Department of Material Science and Physical Chemistry & Research Institute of Theoretical and Computational Chemistry (IQTCUB)University of BarcelonaBarcelona08028Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Sols‐Morreale, Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de MadridArturo Duperier 4Madrid28029Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Juan V. de la Rosa
- Unidad de Biomedicina (Unidad Asociada al CSIC) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| | - Carlota Alvarez‐Lucena
- Instituto de Investigaciones Biomédicas Sols‐Morreale, Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de MadridArturo Duperier 4Madrid28029Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
| | - Rodrigo Landauro‐Vera
- Instituto de Investigaciones Biomédicas Sols‐Morreale, Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de MadridArturo Duperier 4Madrid28029Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Sols‐Morreale, Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de MadridArturo Duperier 4Madrid28029Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
- Departamento de Farmacología, Farmacognosia y BotánicaFacultad de Farmacia, Universidad Complutense de MadridMadrid28040Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine‐Institute of Biomedicine (IBUB), Faculty of BiologyUniversitat de BarcelonaBarcelona08028Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols‐Morreale, Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de MadridArturo Duperier 4Madrid28029Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)Av. Monforte de Lemos 3–5, P‐11Madrid28029Spain
- Unidad de Biomedicina (Unidad Asociada al CSIC) de la Universidad de Las Palmas de Gran CanariaLas Palmas35016Spain
| |
Collapse
|
3
|
Sánchez-García S, Castrillo A, Boscá L, Prieto P. Potential Beneficial Role of Nitric Oxide in SARS-CoV-2 Infection: Beyond Spike-Binding Inhibition. Antioxidants (Basel) 2024; 13:1301. [PMID: 39594443 PMCID: PMC11591382 DOI: 10.3390/antiox13111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
SARS-CoV-2, the causative virus for the COVID-19 disease, uses its spike glycoprotein to bind to human ACE2 as a first step for viral entry into the cell. For this reason, great efforts have been made to find mechanisms that disrupt this interaction, avoiding the infection. Nitric oxide (NO) is a soluble endogenous gas with known antiviral and immunomodulatory properties. In this study, we aimed to test whether NO could inhibit the binding of the viral spike to ACE2 in human cells and its effects on ACE2 enzymatic activity. Our results show that ACE2 activity was decreased by the NO donors DETA-NONOate and GSNO and by the NO byproduct peroxynitrite. Furthermore, we found that DETA-NONOate could break the spike-ACE2 interaction using the spike from two different variants (Alpha and Gamma) and in two different human cell types. Moreover, the same result was obtained when using NO-producing murine macrophages, while no significant changes were observed in ACE2 expression or distribution within the cell. These results support that it is worth considering NO as a therapeutic agent for COVID-19, as previous reports have suggested.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Unidad de Biomedicina (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Patricia Prieto
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain
| |
Collapse
|
4
|
Singh N, Rai MK, Agarwal V, Agarwal V. In Silico Prediction of NOS2, NOS3 and Arginase 1 Genes Targeting by Micro RNAs Upregulated in Systemic Sclerosis. INDIAN JOURNAL OF RHEUMATOLOGY 2024; 19:100-109. [DOI: 10.1177/09733698241229803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Introduction: Systemic sclerosis (SSc) is a chronic disorder, characterised by endothelial dysfunction and fibrosis of skin and internal organs. Endothelium dysfunction leads to a decrease in nitric oxide levels, consequent to reduced Nitric Oxide synthase 3 (NOS3) activity due to decreased NOS3 gene function. Besides endothelium, macrophages too play an important role in the pathogenesis of SSc; classically activated M1 macrophages (express NOS2) and alternatively activated M2 macrophages (express Arginase1) are differentially altered in favour of M2 macrophages. Micro-RNAs (miRNAs) regulate expression of various genes and may favour disease phenotype. Aim: Our aim was to identify differentially expressed micro-RNAs in SSc, which target NOS2, NOS3 and Arginase1 genes by in-silico approach. Methods: Data on miRNAs upregulation reported in various studies was collected and their sequence ID from miRBase was identified in FASTA format from NCBI. Binding strength of these miRNAs against NOS2, NOS3 and Arginase1 genes was evaluated by RNA22. Results: After scanning 39 publications reporting miRNA expression in SSc, a total of 13 miRNAs were found to be up-regulated for NOS2 (Gibbs free energy ≤18.0Kj/mol) and 15 miRNAs up-regulated for NOS3 (Gibbs free energy ≤18.0Kj/mol) whereas for Arginase1 only 2 miRNAs were up-regulated. Conclusion: There is differential upregulation of miRNAs in SSc. Micro RNAs targeting NOS2 and NOS3 genes are highly up-regulated in comparison to Arginase 1. Role of epigenetic regulation of genes by miRNAs may play a key role in pathogenesis of SSc.
Collapse
Affiliation(s)
- Neha Singh
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Mohit Kumar Rai
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Vishwesh Agarwal
- Mahatma Gandhi Missions Medical College, Navi Mumbai, Maharashtra, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Yoshida M, Matsuzaki J, Fujita K, Kimura M, Umezu T, Tokuda N, Yamaguchi T, Kuroda M, Ochiya T, Saito Y, Kimura K. Plasma extracellular vesicle microRNAs reflecting the therapeutic effect of the CBP/β-catenin inhibitor PRI-724 in patients with liver cirrhosis. Sci Rep 2024; 14:6266. [PMID: 38491114 PMCID: PMC10943077 DOI: 10.1038/s41598-024-56942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
There is an unmet need for antifibrotic therapies to prevent the progression of liver cirrhosis. Previously, we conducted an exploratory trial to assess the safety and antifibrotic efficacy of PRI-724, a selective CBP/β-catenin inhibitor, in patients with liver cirrhosis. PRI-724 was well tolerated and exerted a potential antifibrotic effect. Here, we investigated whether the profiles of circulating microRNAs packaged in extracellular vesicles (EV-miRNAs) are associated with responses to liver fibrosis treatments. Eighteen patients who received PRI-724 for 12 weeks in a phase 1/2a study were classified as responders (n = 10) or non-responders (n = 8) based on changes in liver stiffness. Plasma samples were obtained before and after PRI-724 administration and the levels of EV-miRNAs were analyzed. Three miRNAs (miR-6510-5p, miR-6772-5p, and miR-4261) were identified as predictors of response or non-response to PRI-724, and the levels of three other miRNAs (miR-939-3p, miR-887-3p, and miR-7112-5p) correlated with the efficacy of treatment. Expression of miR-887-3p was detected in hepatocytes and was decreased significantly in liver tissue following PRI-724 treatment. In addition, transfection of a miR-887-3p mimic activated hepatic stellate cells. Thus, decreases in the miR-887-3p level in blood may reflect recovery from liver fibroses in patients with liver cirrhosis treated with PRI-724, although further validation studies are warranted to confirm this.
Collapse
Affiliation(s)
- Mayu Yoshida
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masamichi Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Noi Tokuda
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Tomoko Yamaguchi
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| |
Collapse
|
6
|
Wilmes V, Mildeberger L, Verhoff MA, Kauferstein S. Influence of microRNAs on iNOS expression in postmortem human infarction hearts. Forensic Sci Int 2024; 354:111892. [PMID: 38150896 DOI: 10.1016/j.forsciint.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators in several diseases, including cancer, immunologic and cardiovascular diseases. A growing list of miRNAs are dysregulated in cardiac arrhythmias, contractility diseases, myocardial infarction (MI), sudden cardiac death (SCD), chronic heart failure and hypertrophy. However, the exact regulatory pathways, through which miRNAs exert their effects are often unclear. In this study, we measured the expression patterns of miR-21, miR-939 and miR-30e in postmortem human MI. The aim of the study was to examine the influence of these miRNAs on cardiac inducible nitric oxide synthase (iNOS) mRNA levels. We measured iNOS mRNA and miRNA expression patterns by means of qPCR. Further we used correlation analyses to determine causality between miRNA expression and cardiac iNOS levels. iNOS mRNA, miR-21, miR-939 and miR-30e were significantly upregulated in infarcted and non-infarcted regions of postmortem human MI hearts in comparison to healthy controls. While miR-21 and miR-939 showed their strongest expression in infarcted regions, miR-30e peaked in the non-infarcted myocardium. Further, we found a significant correlation between miR-939 and iNOS expression levels in controls and infarcted regions. The results indicate, that miR-939 is a regulator of cardiac iNOS expression. However, a massive iNOS activation might exceed the capability of miR-939 to keep its expression in balance. miR-21 and miR-30e do not seem to influence cardiac iNOS levels in MI. Further studies are needed to evaluate downstream targets of these miRNAs and their signaling pathways to clarify their role in human MI.
Collapse
Affiliation(s)
- Verena Wilmes
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| | - Luise Mildeberger
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Marcel A Verhoff
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Song M, Wang X, Gao J, Jiang W, Bi E, An T, Wang T, Chen Z, Liu W, Shi Z, Xiao J, Zhang C. circIFNGR2 regulating ankylosing spondylitis-associated inflammation through macrophage polarization. iScience 2023; 26:107325. [PMID: 37520722 PMCID: PMC10372825 DOI: 10.1016/j.isci.2023.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Macrophages activation is crucial in pathogenesis of rheumatic diseases like ankylosing spondylitis (AS). Circular RNAs (circRNAs)-induced macrophage-associated inflammation participates in many autoimmune diseases but remains elusive in AS. Here, we verified increased expression of circIFNGR2 in peripheral blood mononuclear cells from patients with AS and its expression levels were correlated with the AS severity. In vitro assays revealed that circIFNGR2 enhances macrophage proliferation, and regulates M1/M2 macrophage polarization and NF-κB/Akt pathways. We identified that circIFNGR2 promoted the expression of iNOS/TNFα and M1 polarization, and restrained M2 polarization by sponging miR-939. Additionally, the RNA-binding protein, eIF4A3, was found to enhance the production of circIFNGR2. Interestingly, miR-939 attenuated joint damage in collagen-induced arthritis mice, whereas circIFNGR2 reversed this effect. Our findings highlight the pro-inflammatory roles of eIF4A3-induced circIFNGR2 in AS by modulating macrophage-associated inflammation through miR-939.
Collapse
Affiliation(s)
- Minkai Song
- Division of Orthopaedic Surgery, Department of Orthopaedics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyu Wang
- Department of Endocrinology & Metabolism, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Gao
- Division of Spinal Surgery, Department of Orthopaedics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhou Jiang
- Division of Orthopaedic Surgery, Department of Orthopaedics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Enguang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Taixue An
- Department of Laboratory Medicine, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Zishuo Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xiao
- Division of Orthopaedic Surgery, Department of Orthopaedics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
9
|
Gather F, Ihrig-Biedert I, Kohlhas P, Krutenko T, Peitz M, Brüstle O, Pautz A, Kleinert H. A specific, non-immune system-related isoform of the human inducible nitric oxide synthase is expressed during differentiation of human stem cells into various cell types. Cell Commun Signal 2022; 20:47. [PMID: 35392923 PMCID: PMC8991583 DOI: 10.1186/s12964-022-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.,Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Freiburg, Germany
| | - Irmgard Ihrig-Biedert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Kohlhas
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Cell Programming Core Facility, Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
10
|
Ramos-Sanchez EM, Reis LC, Souza MDA, Muxel SM, Santos KR, Lagos D, Pereira VRA, de Brito MEF, Kaye PM, Floeter-Winter LM, Goto H. miR-548d-3p Is Up-Regulated in Human Visceral Leishmaniasis and Suppresses Parasite Growth in Macrophages. Front Cell Infect Microbiol 2022; 12:826039. [PMID: 35265535 PMCID: PMC8900537 DOI: 10.3389/fcimb.2022.826039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Visceral leishmaniasis caused by Leishmania (Leishmania) infantum in Latin America progress with hepatosplenomegaly, pancytopenia, hypergammaglobulinemia, and weight loss and maybe lethal mainly in untreated cases. miRNAs are important regulators of immune and inflammatory gene expression, but their mechanisms of action and their relationship to pathogenesis in leishmaniasis are not well understood. In the present study, we sought to quantify changes in miRNAs associated with immune and inflammatory pathways using the L. (L.) infantum promastigote infected- human monocytic THP-1 cell model and plasma from patients with visceral leishmaniasis. We identified differentially expressed miRNAs in infected THP-1 cells compared with non-infected cells using qPCR arrays. These miRNAs were submitted to in silico analysis, revealing targets within functional pathways associated with TGF-β, chemokines, glucose metabolism, inflammation, apoptosis, and cell signaling. In parallel, we identified differentially expressed miRNAs in active visceral leishmaniasis patient plasma compared with endemic healthy controls. In silico analysis of these data indicated different predicted targets within the TGF-β, TLR4, IGF-I, chemokine, and HIF1α pathways. Only a small number of miRNAs were commonly identified in these two datasets, notably with miR-548d-3p being up-regulated in both conditions. To evaluate the potential biological role of miR-548d-3p, we transiently transfected a miR-548d-3p inhibitor into L. (L.) infantum infected-THP-1 cells, finding that inhibition of miR-548d-3p enhanced parasite growth, likely mediated through reduced levels of MCP-1/CCL2 and nitric oxide production. Further work will be required to determine how miR-548d-3p plays a role in vivo and whether it serves as a potential biomarker of progressive leishmaniasis.
Collapse
Affiliation(s)
- Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
- Graduate Program in Animal Science, Agrarian Sciences Center (CCA), Federal University of Paraiba (UFPB), Areia, Brazil
| | - Luiza Campos Reis
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Marina de Assis Souza
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Sandra Márcia Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Kamila Reis Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | | | - Paul Martin Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | - Hiro Goto
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
12
|
Xiao J, Zhang Y, Tang Y, Dai H, OuYang Y, Li C, Yu M. MiRNA-1202 promotes the TGF-β1-induced proliferation, differentiation and collagen production of cardiac fibroblasts by targeting nNOS. PLoS One 2021; 16:e0256066. [PMID: 34428251 PMCID: PMC8384215 DOI: 10.1371/journal.pone.0256066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Atrial fibrillation (AF) is a clinically common arrhythmia that affects human health. Myocardial fibrosis serves as an important contributor to AF. Recently, miRNA-1202 have been reported to be up-regulated in AF. However, the role of miRNA-1202 and its mechanism in myocardial fibrosis remain unclear. Methods Human cardiac fibroblasts (HCFs) were used to construct a fibrosis model by TGF-β1 induction. The expression of miR-1202 was measured by qRT-PCR. Cell proliferation was assessed by CCK-8 assays. Protein expression levels were measured by western blot. Collagen accumulation was measured by ELISA. The relationship between miR-1202 and nNOS was investigated by luciferase reporter assays. Results MiR-1202 expression was obviously increased in HCFs and was both time- and dose-independent. MiR-1202 could increase the proliferation and collagen I, collagen III, and α-SMA levels with or without TGF-β1. MiR-1202 could also increase TGF-β1 and p-Smad2/3 protein levels in comparison to the control group. However, they were obviously decreased after inhibitor transfection. MiR-1202 targets nNOS for negative regulation of HCFs fibrosis by decreasing cell differentiation, collagen deposition and the activity of the TGF-β1/Smad2/3 pathway. Co-transfection of miR-1202 inhibitor and siRNA of nNOS inhibited nNOS protein expression, thereby enhancing the HCFs proliferation. Furthermore, co-transfection of the miR-1202 inhibitor and siRNA of nNOS significantly promoted collagen I, collagen III, TGF-β1, Smad2/3 and α-SMA protein expression and Smad2/3 protein phosphorylation. These findings suggested that miR-1202 promotes HCFs transformation to a pro-fibrotic phenotype by targeting nNOS through activating the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Jingwen Xiao
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Yan Zhang
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
- * E-mail:
| | - Yuan Tang
- The Cardiac Function Laboratory of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Hengfen Dai
- The Department of Clinical Pharmacy, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Yu OuYang
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Chuanchuan Li
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Meiqin Yu
- The Cardiac Function Laboratory of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| |
Collapse
|
13
|
Role of Nitric Oxide in Gene Expression Regulation during Cancer: Epigenetic Modifications and Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22126264. [PMID: 34200849 PMCID: PMC8230456 DOI: 10.3390/ijms22126264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) has been identified and described as a dual mediator in cancer according to dose-, time- and compartment-dependent NO generation. The present review addresses the different epigenetic mechanisms, such as histone modifications and non-coding RNAs (ncRNAs), miRNA and lncRNA, which regulate directly or indirectly nitric oxide synthase (NOS) expression and NO production, impacting all hallmarks of the oncogenic process. Among lncRNA, HEIH and UCA1 develop their oncogenic functions by inhibiting their target miRNAs and consequently reversing the inhibition of NOS and promoting tumor proliferation. The connection between miRNAs and NO is also involved in two important features in cancer, such as the tumor microenvironment that includes key cellular components such as tumor-associated macrophages (TAMs), cancer associated fibroblasts (CAFs) and cancer stem cells (CSCs).
Collapse
|
14
|
Souza MDA, Ramos-Sanchez EM, Muxel SM, Lagos D, Reis LC, Pereira VRA, Brito MEF, Zampieri RA, Kaye PM, Floeter-Winter LM, Goto H. miR-548d-3p Alters Parasite Growth and Inflammation in Leishmania (Viannia) braziliensis Infection. Front Cell Infect Microbiol 2021; 11:687647. [PMID: 34178725 PMCID: PMC8224172 DOI: 10.3389/fcimb.2021.687647] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
American Tegumentary Leishmaniasis (ATL) is an endemic disease in Latin America, mainly caused in Brazil by Leishmania (Viannia) braziliensis. Clinical manifestations vary from mild, localized cutaneous leishmaniasis (CL) to aggressive mucosal disease. The host immune response strongly determines the outcome of infection and pattern of disease. However, the pathogenesis of ATL is not well understood, and host microRNAs (miRNAs) may have a role in this context. In the present study, miRNAs were quantified using qPCR arrays in human monocytic THP-1 cells infected in vitro with L. (V.) braziliensis promastigotes and in plasma from patients with ATL, focusing on inflammatory response-specific miRNAs. Patients with active or self-healed cutaneous leishmaniasis patients, with confirmed parasitological or immunological diagnosis, were compared with healthy controls. Computational target prediction of significantly-altered miRNAs from in vitro L. (V.) braziliensis-infected THP-1 cells revealed predicted targets involved in diverse pathways, including chemokine signaling, inflammatory, cellular proliferation, and tissue repair processes. In plasma, we observed distinct miRNA expression in patients with self-healed and active lesions compared with healthy controls. Some miRNAs dysregulated during THP-1 in vitro infection were also found in plasma from self-healed patients, including miR-548d-3p, which was upregulated in infected THP-1 cells and in plasma from self-healed patients. As miR-548d-3p was predicted to target the chemokine pathway and inflammation is a central to the pathogenesis of ATL, we evaluated the effect of transient transfection of a miR-548d-3p inhibitor on L. (V.) braziliensis infected-THP-1 cells. Inhibition of miR-548d-3p reduced parasite growth early after infection and increased production of MCP1/CCL2, RANTES/CCL5, and IP10/CXCL10. In plasma of self-healed patients, MCP1/CCL2, RANTES/CCL5, and IL-8/CXCL8 concentrations were significantly decreased and MIG/CXCL9 and IP-10/CXCL10 increased compared to patients with active disease. These data suggest that by modulating miRNAs, L. (V.) braziliensis may interfere with chemokine production and hence the inflammatory processes underpinning lesion resolution. Our data suggest miR-548d-3p could be further evaluated as a prognostic marker for ATL and/or as a host-directed therapeutic target.
Collapse
Affiliation(s)
- Marina de Assis Souza
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | - Eduardo Milton Ramos-Sanchez
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru
| | | | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Luiza Campos Reis
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil
| | | | | | | | - Paul Martin Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | | | - Hiro Goto
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo (IMTSP/USP), São Paulo, Brazil.,Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 2021; 22:6022. [PMID: 34199590 PMCID: PMC8199685 DOI: 10.3390/ijms22116022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | | - Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
16
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
17
|
Wang S, Qi X, Liu H. microRNA-939 Promotes the Vitality of Human Breast Cancer Cells via Inhibition of E2F1/P73 Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We assessed miR-939’s role in breast cancer (BC) and its molecular mechanism. PCR was performed to detect miRNA levels. Correlations between miR-939 and patients’ pathological information were analyzed. After transfection of E2F1 plasmid, P73 plasmid, si-E2F1, si-P73, miR-939
mimic or si-miR-939, cell proliferation and apoptosis were measured. The miR-939 target gene was proved by a luciferase assay. Protein and mRNA levels of E2F1 and P73 were detected by immunoblotting and PCR, and corresponding proliferation or apoptosis were assessed. MiR-939 expression was
significantly increased in BC and associated with TNM staging, Ki-67 enhancement, and shorter disease-free survival time. In BC clinical samples, E2F1 expression is negatively correlated with miR-939 expressions. Overexpressing miR-939 stimulated growth but suppressed cell apoptosis. Functional
analysis indicated E2F1 is the target gene of miR-939, and overexpression of miR-939 significantly downregulated E2F1 and P73. Silencing of E2F1 or P73 significantly promoted MDA-MB-231 cell proliferation and inhibited apoptosis. Overexpression of E2F1 plasmid or P73 plasmid significantly
inhibited MDA-MB-231 cell proliferation but induced apoptosis. Transfection of P73 or E2F1 plasmid abolished miR-939’s effects on proliferation and apoptosis. miR-939 promotes breast cancer progression by downregulation of E2F1 to inhibit P73 pathway, thereby promoting proliferation
and inhibiting apoptosis.
Collapse
Affiliation(s)
- Shuaibing Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin’s Clinical Research Center
for Cancer, Tianjin 300060, China
| | - Xiuheng Qi
- HebeiPetroChina Central Hospital, Langfang, Hebei 065000, China
| | - Hong Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin’s Clinical Research Center for Cancer,
Tianjin 300060, China
| |
Collapse
|
18
|
Nafea H, Youness RA, Abou-Aisha K, Gad MZ. LncRNA HEIH/miR-939-5p interplay modulates triple-negative breast cancer progression through NOS2-induced nitric oxide production. J Cell Physiol 2020; 236:5362-5372. [PMID: 33368266 DOI: 10.1002/jcp.30234] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to unravel the regulatory role of noncoding RNAs (ncRNA) on the nitric oxide (NO) machinery system in triple-negative breast cancer (TNBC) patients and to further assess the influence of NO-modulating ncRNAs on TNBC progression, immunogenic profile, and the tumor microenvironment (TME). The results revealed miR-939-5p and lncRNA HEIH as novel ncRNAs modulating NO machinery in TNBC. MiR-939-5p, an underexpressed microRNA (miRNA) in BC patients, showed an inhibitory effect on NOS2 and NOS3 transcript levels on TNBC cells. In contrast, HEIH was found to be markedly upregulated in TNBC patients and showed a modulatory role on miR-939-5p/NOS2/NO axis. Functionally, miR-939-5p was characterized as a tumor suppressor miRNA while HEIH was categorized as a novel oncogenic lncRNA in TNBC. Finally, knocking down of HEIH resulted in improvement of immunogenic profile of TNBC cells through inducing MICA/B and suppressing the immune checkpoint inhibitor PDL1. In the same context, knockdown of HEIH resulted in the alleviation of the immune-suppressive TME by repressing interleukin-10 and tumor necrosis factor-α levels. In conclusion, this study identifies miR-939-5p as a tumor suppressor miRNA while HEIH as an oncogenic lncRNA exhibiting its effect through miR-939-5p/NOS2/NO axis. Therefore, repressing BC hallmarks, improving TNBC immunogenic profile, and trimming TME.
Collapse
Affiliation(s)
- Heba Nafea
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| |
Collapse
|
19
|
Chen C, Zong M, Lu Y, Guo Y, Lv H, Xie L, Fu Z, Cheng Y, Si Y, Ye B, Fan L. Differentially expressed lnc-NOS2P3-miR-939-5p axis in chronic heart failure inhibits myocardial and endothelial cells apoptosis via iNOS/TNFα pathway. J Cell Mol Med 2020; 24:11381-11396. [PMID: 32844595 PMCID: PMC7576245 DOI: 10.1111/jcmm.15740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammatory cytokine‐induced cell apoptosis is important for initiation and progression of chronic heart failure (CHF). Non‐coding RNAs, including long non‐coding RNAs and microRNAs, have emerged as critical regulators of this pathological process. The role in regulating inflammation and induction to cell apoptosis in CHF is not well understood. This study found CHF patients had elevated serum miR‐939‐5p, with greater increase in New York Heart Association (NYHA) I‐II patients than in NYHA III‐IV. Moreover, miR‐939‐5p was positively correlated with B‐type natriuretic peptide (BNP) in NYHA III‐IV patients, while not in NYHA I‐II. Further study showed miR‐939‐5p mimics promoted cell proliferation and inhibited inflammatory cytokine‐induced apoptosis of HUVECs and H9C2, while inhibition of endogenous miR‐939‐5p produced the opposite effects. Induced nitric oxide synthase (iNOS) and tumour necrosis factor α (TNFα) were identified as target genes of miR‐939‐5p. Additionally, lncRNA‐NOS2P3 acted as an endogenous sponge RNA to inhibit miR‐939‐5p expression, regulate the expression of iNOS/TNFα and control inflammation‐induced cells apoptosis. These suggest that CHF patients exhibited elevated serum miR‐939‐5p level especially in NYHA I‐II grades. And lnc‐NOS2P3‐miR‐939‐5p‐iNOS/TNFα pathway regulated inflammatory cytokine‐induced endothelial and myocardial cells apoptosis and provided a promising strategy for diagnosis and treatment of CHF.
Collapse
Affiliation(s)
- Cuncun Chen
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yide Guo
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honggen Lv
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lihong Xie
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyan Fu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuying Si
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bei Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Dong K, Du Q, Cui X, Wan P, Kaltenmeier C, Luo J, Yan B, Yan Y, Geller DA. MicroRNA-301a (miR-301a) is induced in hepatocellular carcinoma (HCC) and down- regulates the expression of interferon regulatory factor-1. Biochem Biophys Res Commun 2020; 524:273-279. [PMID: 31987500 PMCID: PMC7857543 DOI: 10.1016/j.bbrc.2020.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) tumors evade death in part by downregulating expression of the tumor suppressor gene Interferon regulatory factor-1 (IRF-1). However, the molecular mechanisms accounting for IRF-1 suppression in HCC have not been well described. In this study, we identified a novel microRNA-301a (miR-301a) binding site in the 3'-untranslated region (3'- UTR) of the human IRF-1 gene and hypothesized a functional role for miR-301a in regulating HCC growth. We show that miR-301a is markedly upregulated in primary HCC tumors and HCC cell lines, while IRF-1 is down-regulated in a post-transcriptional manner. MiR-301a regulates basal and inducible IRF-1 expression in HCC cells with an inverse relationship between miR-301a and IRF-1 expression in HCC cells. Chronic hypoxia induces miR-301a in HCC in vitro and decreases IRF-1 expression. Finally, miR-301a inhibition increases apoptosis and decreases HCC cell proliferation. These findings suggest that targeting of IRF-1 by miR-301a contributes to the molecular basis for IRF-1 downregulation in HCC and provides new insight into the regulation of HCC by miRNAs.
Collapse
Affiliation(s)
- Kun Dong
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xiao Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peiqi Wan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Jing Luo
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bing Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yihe Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - David A Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, Hart M, Abu-Halima M, Grässer FA, Lenhof HP, Keller A, Meese E. An estimate of the total number of true human miRNAs. Nucleic Acids Res 2019; 47:3353-3364. [PMID: 30820533 PMCID: PMC6468295 DOI: 10.1093/nar/gkz097] [Citation(s) in RCA: 386] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
While the number of human miRNA candidates continuously increases, only a few of them are completely characterized and experimentally validated. Toward determining the total number of true miRNAs, we employed a combined in silico high- and experimental low-throughput validation strategy. We collected 28 866 human small RNA sequencing data sets containing 363.7 billion sequencing reads and excluded falsely annotated and low quality data. Our high-throughput analysis identified 65% of 24 127 mature miRNA candidates as likely false-positives. Using northern blotting, we experimentally validated miRBase entries and novel miRNA candidates. By exogenous overexpression of 108 precursors that encode 205 mature miRNAs, we confirmed 68.5% of the miRBase entries with the confirmation rate going up to 94.4% for the high-confidence entries and 18.3% of the novel miRNA candidates. Analyzing endogenous miRNAs, we verified the expression of 8 miRNAs in 12 different human cell lines. In total, we extrapolated 2300 true human mature miRNAs, 1115 of which are currently annotated in miRBase V22. The experimentally validated miRNAs will contribute to revising targetomes hypothesized by utilizing falsely annotated miRNAs.
Collapse
Affiliation(s)
- Julia Alles
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Valentina Galata
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Marie Minet
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany.,Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Friedrich A Grässer
- Institute of Virology, Saarland University Medical School, 66421 Homburg, Germany
| | - Hans-Peter Lenhof
- Chair for Bioinformatics, Center for Bioinformatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
22
|
Zhang Y, Xu W, Nan S, Chang M, Fan J. MicroRNA-326 Inhibits Apoptosis and Promotes Proliferation of Dopaminergic Neurons in Parkinson's Disease Through Suppression of KLK7-Mediated MAPK Signaling Pathway. J Mol Neurosci 2019; 69:197-214. [PMID: 31270675 DOI: 10.1007/s12031-019-01349-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD), one of the motor system disorders, is characterized by the loss of dopamine-producing brain cells. Accumulating evidence has highlighted the involvement of microRNAs (miRs) in the development and progression of PD. Hence, we aimed at exploring possible effects of miR-326 on the progression of PD in mice in an attempt to elucidate the underlying mechanism associated with the kallikrein-related peptidase 7 (KLK7)-mediated mitogen-activated protein kinase (MAPK) signaling pathway. In order to identify the regulatory relationship between miR-326 and KLK7 and its biological significance in PD, PD mouse models were established and subsequently treated with mimics or inhibitors of miR-326 or siRNA-KLK7. The content of striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyrosine (3-MT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA); positive expression of tyrosine hydroxylase (TH) and inducible nitric oxide synthase (iNOS); and the levels of IL-1, IL-6, TNF-α, INF-γ, and MAPK signaling pathway-related genes were determined accordingly. The results obtained indicated that KLK7 was negatively targeted by miR-326, with lower miR-326 and higher KLK7 detected among PD mice. The overexpression of miR-326 or silencing of KLK7 was demonstrated to increase the content of DA, DOPAC, HVA, 3-MT, SOD, GSH-Px, and TH positive expression, while reducing iNOS positive expression, MDA content and cell apoptosis, as well as inhibited levels of IL-1, IL-6, TNF-α, INF-γ, and mRNA and protein levels of p38, ERK, JNK, and caspase-3. Taken together, these results provided evidence suggesting that miR-326 could inhibit iNOS activation and apoptosis of dopaminergic neurons through inhibiting the MAPK signaling pathway and negatively regulating KLK7 in mice with PD. These findings highlight the potential of miR-326 as a novel target for future PD treatment.
Collapse
Affiliation(s)
- Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Weiwei Xu
- Department of Neurology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China
| | - Meiji Chang
- Department of Neurology, Changchun Central Hospital, Changchun, 130000, People's Republic of China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, People's Republic of China.
| |
Collapse
|
23
|
Gather F, Schmitz K, Koch K, Vogt LM, Pautz A, Kleinert H. Regulation of human inducible nitric oxide synthase expression by an upstream open reading frame. Nitric Oxide 2019; 88:50-60. [PMID: 31004763 DOI: 10.1016/j.niox.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
The human inducible nitric oxide synthase (iNOS) gene contains an upstream open reading frame (uORF) in its 5'-untranslated region (5'-UTR) implying a translational regulation of iNOS expression. Transfection experiments in human DLD-1 cells revealed that the uORF although translatable seems not to inhibit the translation start at the bona fide ATG. Our data clearly show that human iNOS translation is cap-dependent and that the 5'-UTR of the iNOS mRNA contains no internal ribosome entry site. Translation of the bona fide coding sequence is most likely mediated by a leaky scanning mechanism. The 5'-UTR is encoded by exon 1 and exon 2 of the iNOS gene with the uORF stop codon located in front of the first intron indicating an involvement of the nonsense mediated RNA decay (NMD) in iNOS regulation. SiRNA-mediated down-regulation of Upf1 resulted in enhanced endogenous cytokine iNOS expression in human DLD-1 cells. Transfection of constructs containing iNOS exon 1, intron 1 and exon 2 in front of a luciferase gene showed a clear effect of the mutation of the uORF-ATG on luciferase reportergene expression. Our data indicate that the uORF in the 5'-UTR sequence of human iNOS gene reduces its expression via the NMD mechanism.
Collapse
Affiliation(s)
- Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Katja Schmitz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Kathrin Koch
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Lea-Marie Vogt
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55101, Mainz, Germany.
| |
Collapse
|
24
|
Wang JY, Zhang DQ, Cao Q, Qiao XQ, Zhou GP. miR-939-5p decreases the enrichment of RNA polymerase II in the promoter region of CD2AP involved in nephrotic syndrome. J Cell Biochem 2019; 120:11366-11374. [PMID: 30756418 DOI: 10.1002/jcb.28413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
The expression changes of CD2-associated protein (CD2AP) can lead to kidney diseases with proteinuria, including nephrotic syndrome (NS). A recent study reported that miRNAs may be important transcriptional regulators. In this study, we found increased expression of miR-939-5p and decreased expression of CD2AP in the peripheral blood of patients with NS. However, miR-939-5p did not show a regulatory effect on the 3'-untranslated region of CD2AP. The expression levels of specific protein 1 and adenovirus E2 promoter-binding factor 1, important transcription regulators in the promoter region of CD2AP, were also not affected by microRNA (miR)-939-5p. We confirmed that miR-939-5p is in the nucleus by fluorescent in situ hybridization and cytoplasmic separation polymerase chain reaction. The promoter plasmid and miR-939-5p were cotransfected into HEK-293 cells, and the luciferase reporter gene assay was used to analyze the promoter activity. We found that miR-939-5p binds to a specific sequence in the CD2AP promoter. miR-939-5p was confirmed to reduce the recruitment of RNA polymerase II to the CD2AP promoter region by chromatin immunoprecipitation. These findings improve our understanding of the mechanism of miR-939-5p in NS and provide potential molecular therapeutic targets for NS.
Collapse
Affiliation(s)
- Jin-Ya Wang
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dao-Qi Zhang
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Cao
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao-Qin Qiao
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guo-Ping Zhou
- Department of Pediatrics, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Saifi M, Yogindran S, Nasrullah N, Nissar U, Gul I, Abdin MZ. Co-expression of anti-miR319g and miRStv_11 lead to enhanced steviol glycosides content in Stevia rebaudiana. BMC PLANT BIOLOGY 2019; 19:274. [PMID: 31234787 PMCID: PMC6591970 DOI: 10.1186/s12870-019-1871-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/04/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND miRNAs are major regulators of gene expression and have proven their role in understanding the genetic regulation of biosynthetic pathways. Stevioside and rebaudioside-A, the two most abundant and sweetest compounds found in leaf extract of Stevia rebaudiana, have been used for many years in treatment of diabetes. It has been found that the crude extract is more potent than the purified extract. Stevioside, being accumulated in higher concentration, imparts licorice like aftertaste. Thus, in order to make the sweetener more potent and palatable, there is a need to increase the intrinsic concentration of steviol glycosides and to alter the ratio of rebaudioside-A to stevioside. Doing so would significantly increase the quality of the sweeteners, and the potential to be used on a wider scale. To do so, in previous report, miRNAs associated with genes of steviol glycosides biosynthetic pathway were identified in S. rebaudiana. In continuation to that in this study, the two miRNAs (miR319g and miRStv_11) targeting key genes of steviol glycosides biosynthetic pathway were modulated and their impact was evaluated on steviol glycosides contents. RESULTS The over-expression results showed that miRStv_11 induced, while miR319g had repressive action on its target genes. The knock-down constructs for miR319g and miRStv_11 were then prepared and it was demonstrated that the expression of anti-miR319g produced inhibitory effect on its target miRNA, resulting in enhanced expression of its target genes. On the other hand, anti-miRStv_11 resulted in down-regulation of miRStv_11 and its target gene. Further miRStv_11 and anti-miR319gwere co-expressed which resulted in significant increase in stevioside (24.5%) and rebaudioside-A (51%) contents. CONCLUSION In conclusion, the role of miR319g and miRStv_11 was successfully validated in steviol gycosides biosynthetic pathway gene regulation and their effect on steviol gycosides contents. In this study, we found the positively correlated miRNA-mRNA interaction network in plants, where miRStv_11 enhanced the expression of KAH gene. miRNAs knock-down was also successfully achieved using antisense precursors. Overall, this study thus reveals more complex nature and fundamental importance of miRNAs in biosynthetic pathway related gene networks and hence, these miRNAs can be successfully employed to enhance the ratio of rebaudioside-A to stevioside, thus enhancing the sweetening indices of this plant and making it more palatable.
Collapse
Affiliation(s)
- Monica Saifi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, JamiaHamdard, Hamdard Nagar, New Delhi, 110062 India
| | - Sneha Yogindran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Nazima Nasrullah
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, JamiaHamdard, Hamdard Nagar, New Delhi, 110062 India
| | - Umara Nissar
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, JamiaHamdard, Hamdard Nagar, New Delhi, 110062 India
| | - Irum Gul
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, JamiaHamdard, Hamdard Nagar, New Delhi, 110062 India
| | - M. Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, JamiaHamdard, Hamdard Nagar, New Delhi, 110062 India
| |
Collapse
|
26
|
Kielbik M, Szulc-Kielbik I, Klink M. The Potential Role of iNOS in Ovarian Cancer Progression and Chemoresistance. Int J Mol Sci 2019; 20:E1751. [PMID: 30970628 PMCID: PMC6479373 DOI: 10.3390/ijms20071751] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS), the enzyme responsible for nitric oxide (NO) production, is not present in most cells under normal conditions. The expression of its mRNA, as well as its protein synthesis and full enzymatic activity, undergoes multilevel regulation including transcriptional and posttranscriptional mechanisms, the availability of iNOS substrate and cofactors and oxygen tension. However, in various malignant diseases, such as ovarian cancer, the intracellular mechanisms controlling iNOS are dysregulated, resulting in the permanent induction of iNOS expression and activation. The present review summarizes the multistaged processes occurring in normal cells that promote NO synthesis and focuses on factors regulating iNOS expression in ovarian cancer. The possible involvement of iNOS in the chemoresistance of ovarian cancer and its potential as a prognostic/predictive factor in the course of disease development are also reviewed. According to the available yet limited data, it is difficult to draw unequivocal conclusions on the pros and cons of iNOS in ovarian cancer. Most clinical data support the hypothesis that high levels of iNOS expression in ovarian tumors are associated with a greater risk of disease relapse and patient death. However, in vitro studies with various ovarian cancer cell lines indicate a correlation between a high level of iNOS expression and sensitivity to cisplatin.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| |
Collapse
|
27
|
Somasundaram V, Basudhar D, Bharadwaj G, No JH, Ridnour LA, Cheng RY, Fujita M, Thomas DD, Anderson SK, McVicar DW, Wink DA. Molecular Mechanisms of Nitric Oxide in Cancer Progression, Signal Transduction, and Metabolism. Antioxid Redox Signal 2019; 30:1124-1143. [PMID: 29634348 PMCID: PMC6354612 DOI: 10.1089/ars.2018.7527] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 01/03/2023]
Abstract
SIGNIFICANCE Cancer is a complex disease, which not only involves the tumor but its microenvironment comprising different immune cells as well. Nitric oxide (NO) plays specific roles within tumor cells and the microenvironment and determines the rate of cancer progression, therapy efficacy, and patient prognosis. Recent Advances: Key understanding of the processes leading to dysregulated NO flux within the tumor microenvironment over the past decade has provided better understanding of the dichotomous role of NO in cancer and its importance in shaping the immune landscape. It is becoming increasingly evident that nitric oxide synthase 2 (NOS2)-mediated NO/reactive nitrogen oxide species (RNS) are heavily involved in cancer progression and metastasis in different types of tumor. More recent studies have found that NO from NOS2+ macrophages is required for cancer immunotherapy to be effective. CRITICAL ISSUES NO/RNS, unlike other molecules, are unique in their ability to target a plethora of oncogenic pathways during cancer progression. In this review, we subcategorize the different levels of NO produced by cells and shed light on the context-dependent temporal effects on cancer signaling and metabolic shift in the tumor microenvironment. FUTURE DIRECTIONS Understanding the source of NO and its spaciotemporal profile within the tumor microenvironment could help improve efficacy of cancer immunotherapies by improving tumor infiltration of immune cells for better tumor clearance.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Lisa A. Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Robert Y.S. Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Department of Basic Medical Sciences for Radiation Damages, National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Douglas D. Thomas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen K. Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David A. Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
28
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
29
|
Abstract
SIGNIFICANCE RNA is a heterogeneous class of molecules with the minority being protein coding. Noncoding RNAs (ncRNAs) are involved in translation and epigenetic control mechanisms of gene expression. Recent Advances: In recent years, the number of identified ncRNAs has dramatically increased and it is now clear that ncRNAs provide a complex layer of differential gene expression control. CRITICAL ISSUES NcRNAs exhibit interplay with redox regulation. Redox regulation alters the expression of ncRNAs; conversely, ncRNAs alter the expression of generator and effector systems of redox regulation in a complex manner, which will be the focus of this review article. FUTURE DIRECTIONS Understanding the role of ncRNA in redox control will lead to the development of new strategies to alter redox programs. Given that many ncRNAs (particularly microRNAs [miRNAs]) change large gene sets, these molecules are attractive drug candidates; already, now miRNAs can be targeted in patients. Therefore, the development of ncRNA therapies focusing on these molecules is an attractive future strategy. Antioxid. Redox Signal. 29, 793-812.
Collapse
Affiliation(s)
- Matthias S Leisegang
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
30
|
Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, Ge J. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Am J Cancer Res 2018; 8:2079-2093. [PMID: 29721064 PMCID: PMC5928872 DOI: 10.7150/thno.21895] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/09/2018] [Indexed: 12/19/2022] Open
Abstract
Rationale: Angiogenesis is a crucial step towards tissue repair and regeneration after ischemia. The role of circulating exosomes in angiogenic signal transduction has not been well elucidated. Thus, this study aims to investigate the effects of coronary serum exosomes from patients with myocardial ischemia on angiogenesis and to elucidate the underlying mechanisms. Methods and Results: The patients were enrolled according to the inclusion and exclusion criteria. Coronary blood was obtained from the angiography catheter. Serum exosomes were purified and characterized by their specific morphology and surface markers. In vitro analysis showed that compared to exosomes from healthy controls (con-Exo), exosomes from patients with myocardial ischemia (isc-Exo) enhanced endothelial cell proliferation, migration and tube formation. In a mouse hind-limb ischemia model, blood perfusion and histological staining demonstrated that isc-Exo significantly promoted blood flow recovery and enhanced neovascularization compared to con-Exo. Further, we revealed that cardiomyocytes, but not cardiac fibroblasts or endothelial cells, were initiated to release exosomes under ischemic stress; cardiomyocytes might be the source of bioactive exosomes in coronary serum. In addition, microarray analysis indicated that miR-939-5p was significantly down-regulated in isc-Exo. By knockdown and overexpression analyses, we found that miR-939-5p regulated angiogenesis by targeting iNOS. miR-939-5p inhibited both iNOS's expression and its activity, attenuated endothelial NO production, and eventually impaired angiogenesis. Conclusions: Exosomes derived from patients with myocardial ischemia promote angiogenesis via the miR-939-iNOS-NO pathway. Our study highlights that coronary serum exosomes serve as an important angiogenic messenger in patients suffering from myocardial ischemia.
Collapse
|
31
|
Alber J, McGarry K, Noto RB, Snyder PJ. Use of Eflornithine (DFMO) in the Treatment of Early Alzheimer's Disease: A Compassionate Use, Single-Case Study. Front Aging Neurosci 2018; 10:60. [PMID: 29559907 PMCID: PMC5845715 DOI: 10.3389/fnagi.2018.00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Recent genome-wide association screening (GWAS) studies have linked Alzheimer's disease (AD) neuropathology to gene networks that regulate immune function. Kan et al. recently reported that Arg1 (an anti-inflammatory gene that codes for arginase-1) is expressed in parts of the brain associated with amyloidosis prior to the onset of neuronal loss, suggesting that chronic brain arginine deprivation promotes AD-related neuropathology. They blocked arginine catabolism in their mouse AD model by administration of eflornithine (DFMO) to juvenile animals, effectively blocking the expression of AD-related amyloid pathology as the mice aged. We report results from a single-case study in which DFMO was administered, for the first time, in an attempt to slow progression of AD in a single woman with multi-domain, amnestic MCI who was unable to tolerate an acetylcholinesterase inhibitor. Methods: Patient C.S. is a 74-year old female with a 5-year history of cognitive decline who was placed on DFMO (500 mg b.i.d.) for 12 months, with amyloid PET scans (baseline and 12-months), APOE genotyping and neuropsychological exams at baseline, 3, 9, and 12 months. Results: C.S. suffered continued cognitive decline over 12 months, including progressive worsening of orientation, social functions and ability to engage in IADL's. She also showed progressive decline on measures of episodic memory and executive function. Florbetapir PET imaging yielded elevated total neocortical SUVr scores at both baseline (SUVr = 1.55) and at 12 months (SUVr = 1.69). Conclusions: We report a first attempt at using DFMO to slow AD progression. This 12-month single-case trial did not halt continued amyloidosis nor cognitive decline. Although this trial was predicated on data reported by Kan et al. (2015) showing that DFMO administered to juvenile AD-prone mice led to diminished amyloid aggregation, this attempt to treat an older mild AD patient may not be a fair test of Kan et al.'s model and results. A future trial might seek to block amyloidosis in young adults who are autosomal gene carriers for early onset AD, or perhaps in adults who are very clearly in the pre-clinical disease stage. Trial Registration: This trial was registered as a Compassionate Use IND #128888 with the United States Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Jessica Alber
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University & Rhode Island Hospital, Providence, RI, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Kelly McGarry
- Division of General Internal Medicine, Department of Medicine, Warren Alpert Medical School of Brown University & Rhode Island Hospital, Providence, RI, United States
| | - Richard B. Noto
- Department of Radiology, Warren Alpert Medical School of Brown University & Rhode Island Hospital, Providence, RI, United States
| | - Peter J. Snyder
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, United States
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, United States
- Ryan Institute for Neurosciences, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
32
|
Chen G, Du C, Shen Z, Peng L, Xie H, Zang R, Li H, Xia Y, Tang W. MicroRNA-939 inhibits cell proliferation via targeting LRSAM1 in Hirschsprung's disease. Aging (Albany NY) 2017; 9:2471-2479. [PMID: 29253842 PMCID: PMC5764386 DOI: 10.18632/aging.101331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/26/2017] [Indexed: 12/27/2022]
Abstract
BackgroundHirschsprung's disease (HSCR) is a common digestive disease caused by impaired development of neural crest cells. Some studies have revealed the roles of microRNA (miRNA) in various diseases. But the function of miRNA in HSCR needs further investigation.MethodsWe adopted qRT-PCR and immunoblot analyses to explore the relative expression of miR-939 and LRSAM1 in 80 HSCR bowel tissues and 80 normal bowel tissues. CCK-8 assay, transwell assay and flow cytometry were used to evaluate the function of miR-939 by overexpression of miR-939 in 293T, SK-N-BE(2), SH-SY5Y cell lines. The direct connection between miR-939 and LRSAM1 was validated by dual-luciferase reporter assay. We also investigated the autophagy level via immunoblot analyses.ResultsMir-939 was significantly upregulated in HSCR tissues with decreased expression of LRSAM1. Overexpression of miR-939 suppressed cell proliferation without affecting cell apoptosis, cell cycle or cell migration. And LRSAM1 exerted similar function. Autophagy was impaired in HSCR tissues compared with control samples. Mir-939 did not inhibit the autophagy although it decreased the expression of LRSAM1.ConclusionsOur study shows the potential function of mir-939 through regulating LRSAM1 in HSCR and infers that autophagy may also confer the risk of HSCR.
Collapse
Affiliation(s)
- Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Equal contribution
| | - Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Equal contribution
| | - Ziyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Equal contribution
| | - Lei Peng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hua Xie
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Rujin Zang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
33
|
Majumdar I, Ahuja V, Paul J. Altered expression of Tumor Necrosis Factor Alpha -Induced Protein 3 correlates with disease severity in Ulcerative Colitis. Sci Rep 2017; 7:9420. [PMID: 28842689 PMCID: PMC5572729 DOI: 10.1038/s41598-017-09796-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
Ulcerative colitis (UC), an inflammatory disorder of the colon arises from dysregulated immune response towards gut microbes. Transcription factor NFκB is a major regulatory component influencing mucosal inflammation. We evaluated expression of Tumor Necrosis Factor Alpha Induced Protein3 (TNFAIP3), the inhibitor of NFκB activation and its associated partners ITCH, RNF11 and Tax1BP1 in inflamed mucosa of UC patients. We found highly significant up-regulated mRNA expression of TNFAIP3 that negatively correlated with disease activity in UC. mRNA levels of ITCH, RNF11 and Tax1BP1 were significantly down-regulated. Significant positive correlation with disease activity was noted for Tax1BP1. All four genes showed significant down-regulation at protein level. mRNA levels of inducers of TNFAIP3 expression, NFκB p65 subunit and MAST3 was determined. There was significant increase in p65 mRNA expression and down-regulated MAST3 expression. This suggested that increase in NFκB expression regulates TNFAIP3 levels. Deficiency of TNFAIP3 expression resulted in significant up-regulation of NFκB p65 sub-unit as well as its downstream genes such as iNOS, an inflammatory marker, inhibitors of apoptosis like cIAP2 and XIAP and mediators of anti-apoptotic signals TRAF1 and TRAF2. Taken together, decreased expression of TNFAIP3 and its partners contribute to inflammation and up-regulation of apoptosis inhibitors that may create microenvironment for colorectal cancer.
Collapse
Affiliation(s)
- Ishani Majumdar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
34
|
Lee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase. Results Probl Cell Differ 2017; 62:181-207. [PMID: 28455710 DOI: 10.1007/978-3-319-54090-0_8] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christine Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
35
|
Wang J, Hussain SP. NO • and Pancreatic Cancer: A Complex Interaction with Therapeutic Potential. Antioxid Redox Signal 2017; 26:1000-1008. [PMID: 27510096 PMCID: PMC5467115 DOI: 10.1089/ars.2016.6809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Pancreatic tumors express high level of nitric oxide synthases (NOSs) in particular inducible (iNOS/NOS2) and endothelial (eNOS/NOS3) forms. However, the role of nitric oxide (NO•) in the development and progression of pancreatic cancer is not clearly defined. Delineating the NO•-induced signaling in pancreatic cancer and its potential contribution in disease aggressiveness may provide therapeutic targets to improve survival in this lethal malignancy. Recent Advances: An increased expression of NOS2/iNOS in tumors is associated with poorer survival in early stage resected patients with pancreatic ductal adenocarcinoma (PDAC). Furthermore, genetic deletion of NOS2 enhanced survival in mice with autochthonous PDAC. Additionally, targeting NOS3/eNOS reduced the abundance of precursor lesions in mice, which trended toward improved survival. CRITICAL ISSUES The extremely poor prognosis in pancreatic cancer is due to the late diagnosis and lack of effective therapy in advanced disease. One of the most critical issues is to decipher the underlying mechanism of disease aggressiveness and therapeutic resistance for identifying potential therapeutic target and effective treatment. Given the evidence of a strong association between inflammation and pancreatic cancer and clinical evidence, which suggests an association between NOS2 and disease aggressiveness, it is critical to define the role of NO• signaling in this lethal malignancy. FUTURE DIRECTIONS Recent preclinical and clinical evidences indicate a potential therapeutic significance of targeting NO• signaling in pancreatic cancer. With the emergence of new preclinical models, including the patient-derived organoids, further preclinical evaluation using clinically tested NOS inhibitors is needed for designing future clinical investigation. Antioxid. Redox Signal. 26, 1000-1008.
Collapse
Affiliation(s)
- Jian Wang
- Pancreatic Cancer Unit, Laboratory of Human Carcinogenesis, NIH Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - S Perwez Hussain
- Pancreatic Cancer Unit, Laboratory of Human Carcinogenesis, NIH Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| |
Collapse
|
36
|
|
37
|
Simchovitz A, Heneka MT, Soreq H. Personalized genetics of the cholinergic blockade of neuroinflammation. J Neurochem 2017; 142 Suppl 2:178-187. [PMID: 28326544 PMCID: PMC5600134 DOI: 10.1111/jnc.13928] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
Acetylcholine signaling is essential for cognitive functioning and blocks inflammation. To maintain homeostasis, cholinergic signaling is subjected to multi‐leveled and bidirectional regulation by both proteins and non‐coding microRNAs (‘CholinomiRs’). CholinomiRs coordinate the cognitive and inflammatory aspects of cholinergic signaling by targeting major cholinergic transcripts including the acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE). Notably, AChE inhibitors are the only currently approved line of treatment for Alzheimer's disease patients. Since cholinergic signaling blocks neuroinflammation which is inherent to Alzheimer's disease, genomic changes modifying AChE's properties and its susceptibility to inhibitors and/or to CholinomiRs regulation may affect the levels and properties of inflammasome components such as NLRP3. This calls for genomic‐based medicine approaches based on genotyping of both coding and non‐coding single nucleotide polymorphisms (SNPs) in the genes involved in cholinergic signaling. An example is a SNP in a recognition element for the primate‐specific microRNA‐608 within the 3′ untranslated region of the AChE transcript. Carriers of the minor allele of that SNP present massively elevated brain AChE levels, increased trait anxiety and inflammation, accompanied by perturbed CholinomiR‐608 regulatory networks and elevated prefrontal activity under exposure to stressful insults. Several additional SNPs in the AChE and other cholinergic genes await further studies, and might likewise involve different CholinomiRs and pathways including those modulating the initiation and progression of neurodegenerative diseases. CholinomiRs regulation of the cholinergic system thus merits in‐depth interrogation and is likely to lead to personalized medicine approaches for achieving better homeostasis in health and disease. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. ![]()
Collapse
Affiliation(s)
- Alon Simchovitz
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | | | - Hermona Soreq
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| |
Collapse
|
38
|
Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism. Sci Rep 2017; 7:44141. [PMID: 28276497 PMCID: PMC5343489 DOI: 10.1038/srep44141] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/02/2017] [Indexed: 01/15/2023] Open
Abstract
Leishmania (Leishmania) amazonensis is an intracellular protozoan parasite responsible for the cutaneous leishmaniasis. The parasite replicates inside mammalian macrophage to establish infection. Host-pathogen interactions result in microRNA-mediated post-transcriptional regulation of host genes involved in inflammatory immune response. We analyzed macrophage miRNA profiles during L. (L.) amazonensis infection. The regulation of macrophage miRNA expression by the parasite correlates with/depends on parasite arginase activity during infection. L. (L.) amazonensis (La-WT) presented significant miRNA profile alteration (27%) compared to L. (L.) amazonensis arginase knockout (La-arg−) (~40%) in relation to uninfected-macrophages. We observed that 78% of the altered miRNAs were up-regulated in La-WT infection, while only 32% were up-regulated in La-arg−-infected macrophages. In contrast to La-WT, the lack of L. (L.) amazonensis arginase led to the inhibition of miR-294 and miR-721 expression. The expression of miR-294 and miR-721 was recovered to levels similar to La-WT in La-arg− addback mutant. The inhibition of miR-294/Nos2 and miR721/Nos2 interactions increased NOS2 expression and NO production, and reduced L. (L.) amazonensis infectivity, confirming Nos2 as target of these miRNAs. The role of miR-294 and miR-721 in the regulation of NOS2 expression during Leishmania replication in infected macrophages pointing these miRNAs as potential new targets for drug development.
Collapse
|
39
|
MicroRNA-939 governs vascular integrity and angiogenesis through targeting γ-catenin in endothelial cells. Biochem Biophys Res Commun 2017; 484:27-33. [DOI: 10.1016/j.bbrc.2017.01.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/18/2017] [Indexed: 12/26/2022]
|
40
|
Loughran P, Xu L, Billiar T. Nitric Oxide and the Liver. LIVER PATHOPHYSIOLOGY 2017:799-816. [DOI: 10.1016/b978-0-12-804274-8.00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Chen C, Wu M, Zhang W, Lu W, Zhang M, Zhang Z, Zhang X, Yuan Z. MicroRNA-939 restricts Hepatitis B virus by targeting Jmjd3-mediated and C/EBPα-coordinated chromatin remodeling. Sci Rep 2016; 6:35974. [PMID: 27779233 PMCID: PMC5078794 DOI: 10.1038/srep35974] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
Multi-layered mechanisms of virus host interaction exist for chronic hepatitis B virus (HBV) infection, which have been typically manifested at the microRNA level. Our previous study suggested that miRNA-939 (miR-939) may play a potential role in regulating HBV replication. Here we further investigated the mechanism by which miR-939 regulates HBV life cycle. We found that miR-939 inhibited the abundance of viral RNAs without direct miRNA-mRNA base pairing, but via host factors. Expression profiling and functional validation identified Jmjd3 as a target responsible for miR-939 induced anti-HBV effect. Jmjd3 appeared to enhance the transcription efficiency of HBV enhancer II/core promoter (En II) in a C/EBPα-dependent manner. However, the demethylase activity of Jmjd3 was not required in this process. Rather, Jmjd3’s transactivation activity depended on its interaction with C/EBPα. This coordinated action further recruited the Brm containing SWI/SNF chromatin remodeling complex which promoted the transcription of HBV RNAs. Taken together, we propose that the miR-939-Jmjd3 axis perturbs the accessibility of En II promoter to essential nuclear factors (C/EBPα and SWI/SNF complex) therefore leading to compromised viral RNA synthesis and hence restricted viral multiplication.
Collapse
Affiliation(s)
- Cuncun Chen
- Institute of Medical Microbiology and Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min Wu
- Research Units, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen Zhang
- Institute of Medical Microbiology and Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Hepatology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Zhanqing Zhang
- Department of Hepatology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiaonan Zhang
- Research Units, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Institute of Medical Microbiology and Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
42
|
Badea A, Kane L, Anderson RJ, Qi Y, Foster M, Cofer GP, Medvitz N, Buckley AF, Badea AK, Wetsel WC, Colton CA. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage 2016; 142:498-511. [PMID: 27521741 DOI: 10.1016/j.neuroimage.2016.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.
Collapse
Affiliation(s)
- Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA.
| | - Lauren Kane
- Trinity College of Arts & Sciences, Duke University, Durham, NC 27710, USA
| | - Robert J Anderson
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Mark Foster
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - Neil Medvitz
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Anne F Buckley
- Department of Pathology, and Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Andreas K Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Department of Radiology, Durham, NC 27710, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carol A Colton
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
43
|
McDonald MK, Ramanathan S, Touati A, Zhou Y, Thanawala RU, Alexander GM, Sacan A, Ajit SK. Regulation of proinflammatory genes by the circulating microRNA hsa-miR-939. Sci Rep 2016; 6:30976. [PMID: 27498764 PMCID: PMC4976376 DOI: 10.1038/srep30976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Circulating microRNAs are beneficial biomarkers because of their stability and dysregulation in diseases. Here we sought to determine the role of miR-939, a miRNA downregulated in patients with complex regional pain syndrome (CRPS). Hsa-miR-939 is predicted to target several proinflammatory genes, including IL-6, VEGFA, TNFα, NFκB2, and nitric oxide synthase 2 (NOS2A). Binding of miR-939 to the 3' untranslated region of these genes was confirmed by reporter assay. Overexpression of miR-939 in vitro resulted in reduction of IL-6, NOS2A and NFκB2 mRNAs, IL-6, VEGFA, and NOS2 proteins and NFκB activation. We observed a significant decrease in the NOS substrate l-arginine in plasma from CRPS patients, suggesting reduced miR-939 levels may contribute to an increase in endogenous NOS2A levels and NO, and thereby to pain and inflammation. Pathway analysis showed that miR-939 represents a critical regulatory node in a network of inflammatory mediators. Collectively, our data suggest that miR-939 may regulate multiple proinflammatory genes and that downregulation of miR-939 in CRPS patients may increase expression of these genes, resulting in amplification of the inflammatory pain signal transduction cascade. Circulating miRNAs may function as crucial signaling nodes, and small changes in miRNA levels may influence target gene expression and thus disease.
Collapse
Affiliation(s)
- Marguerite K McDonald
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.,Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Suite 2000, Translational Research Laboratories (TRL), 125 S. 31st Street, Philadelphia, PA 19104-3403, USA
| | - Sujay Ramanathan
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Andrew Touati
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Yiqian Zhou
- School of Biomedical Engineering, Science &Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Rushi U Thanawala
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Guillermo M Alexander
- Neurology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science &Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Seena K Ajit
- Pharmacology &Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
44
|
Bobowicz M, Skrzypski M, Czapiewski P, Marczyk M, Maciejewska A, Jankowski M, Szulgo-Paczkowska A, Zegarski W, Pawłowski R, Polańska J, Biernat W, Jaśkiewicz J, Jassem J. Prognostic value of 5-microRNA based signature in T2-T3N0 colon cancer. Clin Exp Metastasis 2016; 33:765-773. [PMID: 27485175 PMCID: PMC5110606 DOI: 10.1007/s10585-016-9810-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/06/2016] [Indexed: 01/07/2023]
Abstract
The role of adjuvant chemotherapy in stage T2-T3N0 colon cancer (CC) is controversial and there are currently no reliable factors allowing for individual selection of patients with high risk of relapse for such therapy. We searched for microRNA-based signature with prognostic significance in this group. We assessed by qRT-PCR expression of 754 microRNAs (miRNAs) in tumour samples from 85 stage pT2-3N0 CC patients treated with surgery alone. MiRNA expression was compared between two groups of patients: 40 and 45 patients who did and did not develop distant metastases after resection, respectively. Additionally, miRNA expression was compared between CC and normal colon mucosa samples and between the mismatch repair (MMR) competent and deficient tumours. Low expression of miR-1300 and miR-939 was significantly correlated with shorter distant metastasis-free survival (DMFS) in Cox univariate analysis (p.adjusted = 0.049). The expression signature of five miRNAs (miR-1296, miR-135b, miR-539, miR-572 and miR-185) was found to be prognostic [p = 1.28E−07, HR 8.4 (95 % CI: 3.81–18.52)] for DMFS and cross-validated in a leave-one-out analysis, with the sensitivity and specificity of 74 and 78 %, respectively. The expression of miR-592 was significantly associated with the MMR status (p.adjusted <0.01). The expression of several novel miRNAs were found to be tumour specific, e.g. miR-888, miR-523, miR-18b, miR-302a, miR-423-5p, miR-582-3p (p < 0.05). We developed a miRNA expression signature that may be predictive for the risk of distant relapse in early stage CC and confirmed previously reported association between miR-592 expression and MMR status.
Collapse
Affiliation(s)
- Maciej Bobowicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Skrzypski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 7 Dębinki St., 80-211, Gdańsk, Poland.
| | - Piotr Czapiewski
- Department of Pathomorfology, Medical University of Gdansk, Gdańsk, Poland
| | - Michał Marczyk
- Institute of Automatic Control, Data Mining Group, Silesian University of Technology, Gliwice, Poland
| | | | - Michał Jankowski
- Department and Clinic of Oncologic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Wojciech Zegarski
- Department and Clinic of Oncologic Surgery, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ryszard Pawłowski
- Institute of Forensic Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Joanna Polańska
- Institute of Automatic Control, Data Mining Group, Silesian University of Technology, Gliwice, Poland
| | - Wojciech Biernat
- Department of Pathomorfology, Medical University of Gdansk, Gdańsk, Poland
| | - Janusz Jaśkiewicz
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 7 Dębinki St., 80-211, Gdańsk, Poland
| |
Collapse
|
45
|
microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production. Sci Rep 2016; 6:23351. [PMID: 27025258 PMCID: PMC4812255 DOI: 10.1038/srep23351] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Macrophages play a crucial role in host innate anti-mycobacterial defense, which is tightly regulated by multiple factors, including microRNAs. Our previous study showed that a panel of microRNAs was markedly up-regulated in macrophages upon mycobacterial infection. Here, we investigated the biological function of miR-146a during mycobacterial infection. miR-146a expression was induced both in vitro and in vivo after Mycobacterium bovis BCG infection. The inducible miR-146a could suppress the inducible nitric oxide (NO) synthase (iNOS) expression and NO generation, thus promoting mycobacterial survival in macrophages. Inhibition of endogenous miR-146a increased NO production and mycobacterial clearance. Moreover, miR-146a attenuated the activation of nuclear factor κB and mitogen-activated protein kinases signaling pathways during BCG infection, which in turn repressed iNOS expression. Mechanistically, miR-146a directly targeted tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) at post-transcriptional level. Silencing TRAF6 decreased iNOS expression and NO production in BCG-infected macrophages, while overexpression of TRAF6 reversed miR-146a-mediated inhibition of NO production and clearance of mycobacteria. Therefore, we demonstrated a novel role of miR-146a in the modulation of host defense against mycobacterial infection by repressing NO production via targeting TRAF6, which may provide a promising therapeutic target for tuberculosis.
Collapse
|
46
|
Laavola M, Haavikko R, Hämäläinen M, Leppänen T, Nieminen R, Alakurtti S, Moreira VM, Yli-Kauhaluoma J, Moilanen E. Betulin Derivatives Effectively Suppress Inflammation in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2016; 79:274-280. [PMID: 26915998 DOI: 10.1021/acs.jnatprod.5b00709] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Betulin is a pharmacologically active triterpenoid found in the bark of the birch tree (Betula sp. L.). Betulin and betulinic acid are structurally related to anti-inflammatory steroids, but little is known about their potential anti-inflammatory properties. In the present study, the inflammatory gene expression and the anti-inflammatory properties of betulin, betulinic acid, and 16 semisynthetic betulin derivatives were investigated. Betulin derivatives 3, 4, and 5 selectively inhibited the expression of the inducible nitric oxide synthase (iNOS) in a post-transcriptional manner. They also inhibited nitric oxide (NO) production but had no effect on the other inflammatory factors studied. More interestingly, a new anti-inflammatory betulin derivative 9 with a wide-spectrum anti-inflammatory activity was discovered. Compound 9 was found to suppress the expression of cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1), as well as that of prostaglandin synthase-2 (COX-2) in addition to iNOS. The in vivo anti-inflammatory effect of compound 9 was indicated via significant suppression of the carrageenan-induced paw inflammation in mice. The results show, for the first time, that the pyrazole-fused betulin derivative (9) and related compounds have anti-inflammatory properties that could be utilized in drug development.
Collapse
Affiliation(s)
- Mirka Laavola
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Raisa Haavikko
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| | - Sami Alakurtti
- Process Chemistry and Environmental Engineering, VTT Technical Research Centre of Finland , FI-02044 Espoo, Finland
| | - Vânia M Moreira
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , FI-33014 Tampere, Finland
| |
Collapse
|
47
|
Huang YP, Qiu LZ, Zhou GP. MicroRNA-939 down-regulates CD2-associated protein by targeting promoter in HEK-293T cells. Ren Fail 2016; 38:508-13. [DOI: 10.3109/0886022x.2016.1144443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Baydoun HH, Cherian MA, Green P, Ratner L. Inducible nitric oxide synthase mediates DNA double strand breaks in Human T-Cell Leukemia Virus Type 1-induced leukemia/lymphoma. Retrovirology 2015; 12:71. [PMID: 26265053 PMCID: PMC4534112 DOI: 10.1186/s12977-015-0196-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/30/2015] [Indexed: 01/23/2023] Open
Abstract
Background Adult T-cell leukemia/lymphoma (ATLL) is an aggressive and fatal malignancy of CD4+ T-lymphocytes infected by the Human T-Cell Virus Type 1 (HTLV-1). The molecular mechanisms of transformation in ATLL have not been fully elucidated. However, genomic instability and cumulative DNA damage during the long period of latency is believed to be essential for HTLV-1 induced leukemogenesis. In addition, constitutive activation of the NF-κB pathway was found to be a critical determinant for transformation. Whether a connection exists between NF-κB activation and accumulation of DNA damage is not clear. We recently found that the HTLV-1 viral oncoprotein, Tax, the activator of the NF-κB pathway, induces DNA double strand breaks (DSBs). Results Here, we investigated whether any of the NF-κB target genes are critical in inducing DSBs. Of note, we found that inducible nitric oxide synthase (iNOS) that catalyzes the production of nitric oxide (NO) in macrophages, neutrophils and T-cells is over expressed in HTLV-1 infected and Tax-expressing cells. Interestingly, we show that in HTLV-1 infected cells, iNOS expression is Tax-dependent and specifically requires the activation of the classical NF-κB and JAK/STAT pathways. A dramatic reduction of DSBs was observed when NO production was inhibited, indicating that Tax induces DSBs through the activation of NO synthesis. Conclusions Determination of the impact of NO on HTLV-1-induced leukemogenesis opens a new area for treatment or prevention of ATLL and perhaps other cancers in which NO is produced.
Collapse
Affiliation(s)
- Hicham H Baydoun
- Division of Molecular Oncology, Department of Medicine Campus, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Mathew A Cherian
- Division of Molecular Oncology, Department of Medicine Campus, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Patrick Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine Campus, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
49
|
Abstract
The pathogenesis of Alzheimer's disease (AD) is a critical unsolved question; and although recent studies have demonstrated a strong association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition, hyperphosphorylated and aggregated tau, behavioral changes, and age-dependent hippocampal neuronal loss. Using this mouse model, we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology is driven by proinflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of hippocampal neuronal death are associated with the presence of immunosuppressive CD11c(+) microglia and extracellular arginase, resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism mediating the age-dependent and regional loss of neurons in humans with AD.
Collapse
|
50
|
Fischer D, Wahlfors T, Mattila H, Oja H, Tammela TLJ, Schleutker J. MiRNA Profiles in Lymphoblastoid Cell Lines of Finnish Prostate Cancer Families. PLoS One 2015; 10:e0127427. [PMID: 26020509 PMCID: PMC4447459 DOI: 10.1371/journal.pone.0127427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Heritable factors are evidently involved in prostate cancer (PrCa) carcinogenesis, but currently, genetic markers are not routinely used in screening or diagnostics of the disease. More precise information is needed for making treatment decisions to distinguish aggressive cases from indolent disease, for which heritable factors could be a useful tool. The genetic makeup of PrCa has only recently begun to be unravelled through large-scale genome-wide association studies (GWAS). The thus far identified Single Nucleotide Polymorphisms (SNPs) explain, however, only a fraction of familial clustering. Moreover, the known risk SNPs are not associated with the clinical outcome of the disease, such as aggressive or metastasised disease, and therefore cannot be used to predict the prognosis. Annotating the SNPs with deep clinical data together with miRNA expression profiles can improve the understanding of the underlying mechanisms of different phenotypes of prostate cancer. Results In this study microRNA (miRNA) profiles were studied as potential biomarkers to predict the disease outcome. The study subjects were from Finnish high risk prostate cancer families. To identify potential biomarkers we combined a novel non-parametrical test with an importance measure provided from a Random Forest classifier. This combination delivered a set of nine miRNAs that was able to separate cases from controls. The detected miRNA expression profiles could predict the development of the disease years before the actual PrCa diagnosis or detect the existence of other cancers in the studied individuals. Furthermore, using an expression Quantitative Trait Loci (eQTL) analysis, regulatory SNPs for miRNA miR-483-3p that were also directly associated with PrCa were found. Conclusion Based on our findings, we suggest that blood-based miRNA expression profiling can be used in the diagnosis and maybe even prognosis of the disease. In the future, miRNA profiling could possibly be used in targeted screening, together with Prostate Specific Antigene (PSA) testing, to identify men with an elevated PrCa risk.
Collapse
Affiliation(s)
- Daniel Fischer
- School of Health Sciences, University of Tampere, 33014 Tampere, Finland
| | - Tiina Wahlfors
- BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere, Finland
| | - Henna Mattila
- BioMediTech, University of Tampere, and Fimlab Laboratories, Tampere, Finland
| | - Hannu Oja
- Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland
| | - Teuvo L. J. Tammela
- Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
| | - Johanna Schleutker
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|