1
|
De Niz M, Pereira SS, Kirchenbuechler D, Lemgruber L, Arvanitis C. Artificial intelligence-powered microscopy: Transforming the landscape of parasitology. J Microsc 2025. [PMID: 40492595 DOI: 10.1111/jmi.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 06/12/2025]
Abstract
Microscopy and image analysis play a vital role in parasitology research; they are critical for identifying parasitic organisms and elucidating their complex life cycles. Despite major advancements in imaging and analysis, several challenges remain. These include the integration of interdisciplinary data; information derived from various model organisms; and data acquired from clinical research. In our view, artificial intelligence-with the latest advances in machine and deep learning-holds enormous potential to address many of these challenges. This review addresses how artificial intelligence, machine learning and deep learning have been used in the field of parasitology-mainly focused on Apicomplexan, Diplomonad, and Kinetoplastid groups. We explore how gaps in our understanding could be filled by AI in future parasitology research and diagnosis in the field. Moreover, it addresses challenges and limitations currently faced in implementing and expanding the use of artificial intelligence across biomedical fields. The necessary increased collaboration between biologists and computational scientists will facilitate understanding, development, and implementation of the latest advances for both scientific discovery and clinical impact. Current and future AI tools hold the potential to revolutionise parasitology and expand One Health principles.
Collapse
Affiliation(s)
- Mariana De Niz
- Center for Advanced Microscopy and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sara Silva Pereira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - David Kirchenbuechler
- Center for Advanced Microscopy and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leandro Lemgruber
- Cellular Analysis Facility, MVLS Shared Research Facilities, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Constadina Arvanitis
- Center for Advanced Microscopy and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Azargoshasb H, Lee HJ, Sullivan DJ, Rimer JD, Vekilov PG. The Hematin-dihydroartemisinin Adduct Mobilizes a Potent Mechanism to Suppress β-hematin Crystallization. J Biol Chem 2025:110310. [PMID: 40449598 DOI: 10.1016/j.jbc.2025.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/21/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
Malaria remains a significant public health challenge in equatorial regions of the world largely owing to the parasite's emerging resistance to the recently introduced drugs of the artemisinin (ART) family. In the human body most ART-derivative drugs are metabolized to dihydroartemisinin (DHA), which, in the parasite, after activation by heme, can form a hematin-dihydroartemisinin adduct (H-DHA). Here we test whether and how H-DHA inhibits hematin crystallization, the main constituent of the heme detoxification pathway of malaria parasites. We find that H-DHA is a poor inhibitor of classical crystal growth- it weakly blocks the growth sites on crystal surfaces-and, counterproductively, a promotor of β-hematin nucleation, driven by a boost in the formation of precursors. We establish that at elevated hematin concentrations H-DHA activates two non-classical pathways that transform it into a potent β-hematin growth inhibitor. First, β-hematin crystallites, whose nucleation is promoted by H-DHA, incorporate into large β-hematin crystals and suppress their growth, likely by straining the crystal lattice. A second consequence of H-DHA is the generation of macrosteps on β-hematin crystal surfaces that hinder growth. Importantly, the induced growth suppression is irreversible and persists even in the absence of H-DHA. Our findings suggest that a partial resistance mechanism to artemisinin-class drugs in trophozoite-stage parasites may be due to the reduced concentrations of hematin and H-DHA, which deactivate the dual non-classical mode of action of the adduct in the delayed-clearance parasite strains.
Collapse
Affiliation(s)
- Hamidreza Azargoshasb
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA
| | - Huan-Jui Lee
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205-2103, USA
| | - Jeffrey D Rimer
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA; Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204-5003, USA
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA; Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204-5003, USA.
| |
Collapse
|
3
|
Hastings EM, Skora T, Carney KR, Fu HC, Bidone TC, Sigala PA. Chemical propulsion of hemozoin crystal motion in malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.25.650681. [PMID: 40406465 PMCID: PMC12097498 DOI: 10.1101/2025.04.25.650681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Malaria parasites infect red blood cells where they digest host hemoglobin and release free heme inside a lysosome-like organelle called the food vacuole. To detoxify excess heme, parasites form hemozoin crystals that rapidly tumble inside this compartment. Hemozoin formation is critical for parasite survival and antimalarial drug activity, but crystal motion and its underlying mechanism are unexplored. We used quantitative image analysis to determine the timescale of motion, which requires the intact vacuole but does not require the parasite itself. Using single-particle tracking and Brownian dynamics simulations with experimentally derived interaction potentials, we found that hemozoin motion exhibits unexpectedly tight confinement but is much faster than thermal diffusion. Hydrogen peroxide, which is generated at high concentrations in the food vacuole, has been shown to stimulate metallic nanoparticle motion via surface-catalyzed peroxide decomposition that generates propulsive kinetic energy. We observed that peroxide stimulated the motion of isolated crystals in solution and that conditions that suppress peroxide formation slowed hemozoin motion inside parasites. These data suggest that surface-exposed metals on hemozoin catalyze peroxide decomposition to drive crystal motion and strengthen oxidative stress protection during blood-stage infection. This work reveals hemozoin motion in malaria parasites as a biological example of a self-propelled nanoparticle.
Collapse
Affiliation(s)
- Erica M. Hastings
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
- These authors contributed equally to this work
| | - Tomasz Skora
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- These authors contributed equally to this work
| | - Keith R. Carney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Henry C. Fu
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Tamara C. Bidone
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Klar PB, Waterman DG, Gruene T, Mullick D, Song Y, Gilchrist JB, Owen CD, Wen W, Biran I, Houben L, Regev-Rudzki N, Dzikowski R, Marom N, Palatinus L, Zhang P, Leiserowitz L, Elbaum M. Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin. ACS CENTRAL SCIENCE 2024; 10:1504-1514. [PMID: 39220700 PMCID: PMC11363319 DOI: 10.1021/acscentsci.4c00162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like β-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.
Collapse
Affiliation(s)
- Paul Benjamin Klar
- Faculty
of Geosciences and MAPEX Center for Materials and Processes, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - David Geoffrey Waterman
- STFC, Rutherford Appleton Laboratory, Didcot OX11 0FA, U.K.
- CCP4,
Research Complex at Harwell, Rutherford
Appleton Laboratory, Didcot OX11 0FA, U.K.
| | - Tim Gruene
- Department
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Debakshi Mullick
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Yun Song
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - C. David Owen
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Wen Wen
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Idan Biran
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 76100 Rehovot, Israel
| | - Ron Dzikowski
- Department
of Microbiology and Molecular Genetics, Institute for Medical Research
Israel-Canada, and The Kuvin Center for the Study of Infectious and
Tropical Diseases, The Hebrew University-Hadassah
Medical School, Jerusalem 9112010, Israel
| | - Noa Marom
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lukas Palatinus
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182
21 Prague 8, Czechia
| | - Peijun Zhang
- Diamond
Light
Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.
- Division
of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Leslie Leiserowitz
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Elbaum
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
5
|
Wendt C, Miranda K. Endocytosis in malaria parasites: An ultrastructural perspective of membrane interplay in a unique infection model. CURRENT TOPICS IN MEMBRANES 2024; 93:27-49. [PMID: 39181577 DOI: 10.1016/bs.ctm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Malaria remains a major global threat, representing a severe public health problem worldwide. Annually, it is responsible for a high rate of morbidity and mortality in many tropical developing countries where the disease is endemic. The causative agent of malaria, Plasmodium spp., exhibits a complex life cycle, alternating between an invertebrate vector, which transmits the disease, and the vertebrate host. The disease pathology observed in the vertebrate host is attributed to the asexual development of Plasmodium spp. inside the erythrocyte. Once inside the red blood cell, malaria parasites cause extensive changes in the host cell, increasing membrane rigidity and altering its normal discoid shape. Additionally, during their intraerythrocytic development, malaria parasites incorporate and degrade up to 70 % of host cell hemoglobin. This mechanism is essential for parasite development and represents an important drug target. Blocking the steps related to hemoglobin endocytosis or degradation impairs parasite development and can lead to its death. The ultrastructural analysis of hemoglobin endocytosis on Plasmodium spp. has been broadly explored along the years. However, it is only recently that the proteins involved in this process have started to emerge. Here, we will review the most important features related to hemoglobin endocytosis and catabolism on malaria parasites. A special focus will be given to the recent analysis obtained through 3D visualization approaches and to the molecules involved in these mechanisms.
Collapse
Affiliation(s)
- Camila Wendt
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Biomineralização, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Orbán Á, Schumacher JJ, Mucza S, Strinic A, Molnár P, Babai R, Halbritter A, Vértessy BG, Karl S, Krohns S, Kézsmárki I. Magneto-optical assessment of Plasmodium parasite growth via hemozoin crystal size. Sci Rep 2024; 14:14318. [PMID: 38906910 PMCID: PMC11192761 DOI: 10.1038/s41598-024-60988-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Hemozoin is a natural biomarker formed during the hemoglobin metabolism of Plasmodium parasites, the causative agents of malaria. The rotating-crystal magneto-optical detection (RMOD) has been developed for its rapid and sensitive detection both in cell cultures and patient samples. In the current article we demonstrate that, besides quantifying the overall concentration of hemozoin produced by the parasites, RMOD can also track the size distribution of the hemozoin crystals. We establish the relations between the magneto-optical signal, the mean parasite age and the median crystal size throughout one erythrocytic cycle of Plasmodium falciparum parasites, where the latter two are determined by optical and scanning electron microscopy, respectively. The significant correlation between the magneto-optical signal and the stage distribution of the parasites indicates that the RMOD method can be utilized for species-specific malaria diagnosis and for the quick assessment of drug efficacy.
Collapse
Affiliation(s)
- Ágnes Orbán
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary.
| | - Jan-Jonas Schumacher
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Szilvia Mucza
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Ana Strinic
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - Petra Molnár
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Réka Babai
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - András Halbritter
- Department of Physics, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Beáta G Vértessy
- Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111, Hungary
| | - Stephan Karl
- Vector-Borne Diseases Unit, PNG Institute of Medical Research, Madang, Madang Province, 511, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLS, Australia
| | - Stephan Krohns
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany
| | - István Kézsmárki
- Experimental Physics 5, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159, Augsburg, Germany.
| |
Collapse
|
7
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
8
|
Omorou R, Delabie B, Lavoignat A, Chaker V, Bonnot G, Traore K, Bienvenu AL, Picot S. Nanoparticle tracking analysis of natural hemozoin from Plasmodium parasites. Acta Trop 2024; 250:107105. [PMID: 38135133 DOI: 10.1016/j.actatropica.2023.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Hemozoin is a byproduct of hemoglobin digestion crucial for parasite survival. It forms crystals that can be of interest as drug targets or biomarkers of malaria infection. However, hemozoin has long been considered as an amorphous crystal of simple morphology. Studying the consequences of biomineralization of this crystal during the parasite growth may provide more comprehensive evidence of its role during malaria. OBJECTIVES This study aimed to investigate the interest of nanoparticles tracker analysis for measuring the concentration and size of hemozoin particles produced from different parasite sources and conditions. METHODS Hemozoin was extracted from several clones of Plasmodium falciparum both asexual and sexual parasites. Hemozoin was also extracted from blood samples of malaria patients and from saliva of asymptomatic malaria carriers. Nanoparticles tracking analysis (NTA) was performed to assess the size and concentration of hemozoin. RESULTS NTA data showed variation in hemozoin concentration, size, and crystal clusters between parasite clones, species, and stages. Among parasite clones, hemozoin concentration ranged from 131 to 2663 particles/infected red blood cell (iRBC) and size ranged from 149.6 ± 6.3 nm to 234.8 ± 40.1 nm. The mean size was lower for Plasmodium vivax (176 ± 79.2 nm) than for Plasmodium falciparum (254.8 ± 74.0 nm). Sexual NF54 parasites showed a 7.5-fold higher concentration of hemozoin particles (28.7 particles/iRBC) compared to asexual parasites (3.8 particles/iRBC). In addition, the mean hemozoin size also increased by approximately 60 % for sexual parasites. Compared to in vitro cultures of parasites, blood samples showed low hemozoin concentrations. CONCLUSIONS This study highlights the potential of NTA as a useful method for analyzing hemozoin, demonstrating its ability to provide detailed information on hemozoin characterization. However, further research is needed to adapt the NTA for hemozoin analysis.
Collapse
Affiliation(s)
- Roukayatou Omorou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France.
| | - Blanche Delabie
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Adeline Lavoignat
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Victorien Chaker
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Guillaume Bonnot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Anne-Lise Bienvenu
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France; Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon 69004, France
| | - Stephane Picot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France; Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon 69004, France
| |
Collapse
|
9
|
Singh R, Singh R, Srihari V, Makde RD. In Vitro Investigation Unveiling New Insights into the Antimalarial Mechanism of Chloroquine: Role in Perturbing Nucleation Events during Heme to β-Hematin Transformation. ACS Infect Dis 2023; 9:1647-1657. [PMID: 37471056 DOI: 10.1021/acsinfecdis.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Malaria parasites generate toxic heme during hemoglobin digestion, which is neutralized by crystallizing into inert hemozoin (β-hematin). Chloroquine blocks this detoxification process, resulting in heme-mediated toxicity in malaria parasites. However, the exact mechanism of chloroquine's action remains unknown. This study investigates the impact of chloroquine on the transformation of heme into β-hematin. The results show that chloroquine does not completely halt the transformation process but rather slows it down. Additionally, chloroquine complexation with free heme does not affect substrate availability or inhibit β-hematin formation. Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) studies indicate that the size of β-hematin crystal particles and crystallites increases in the presence of chloroquine, suggesting that chloroquine does not impede crystal growth. These findings suggest that chloroquine delays hemozoin production by perturbing the nucleation events of crystals and/or the stability of crystal nuclei. Thus, contrary to prevailing beliefs, this study provides a new perspective on the working mechanism of chloroquine.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Rashmi Singh
- Laser & Functional Materials Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Velaga Srihari
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 40008, Maharashtra, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| |
Collapse
|
10
|
Mullick D, Rechav K, Leiserowitz L, Regev-Rudzki N, Dzikowski R, Elbaum M. Diffraction contrast in cryo-scanning transmission electron tomography reveals the boundary of hemozoin crystals in situ. Faraday Discuss 2022; 240:127-141. [PMID: 35938388 DOI: 10.1039/d2fd00088a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.
Collapse
Affiliation(s)
- Debakshi Mullick
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Katya Rechav
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Leslie Leiserowitz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, and The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Vásquez-Ocmín PG, Gallard JF, Van Baelen AC, Leblanc K, Cojean S, Mouray E, Grellier P, Guerra CAA, Beniddir MA, Evanno L, Figadère B, Maciuk A. Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant Piper coruscans Kunth. Molecules 2022; 27:7638. [PMID: 36364460 PMCID: PMC9656727 DOI: 10.3390/molecules27217638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 09/08/2024] Open
Abstract
Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant Piper coruscans Kunth (Piperaceae) showing an IC50 of 1.36 µg/mL on the 3D7 Plasmodium falciparum strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC50 values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts.
Collapse
Affiliation(s)
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Anne-Cécile Van Baelen
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, SIMoS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Karine Leblanc
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | | - Elisabeth Mouray
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Carlos A. Amasifuén Guerra
- Dirección de Recursos Genéticos y Biotecnología (DRGB), Instituto Nacional de Innovación Agraria (INIA), Avenida La Molina N° 1981, La Molina, Lima 15024, Peru
| | | | - Laurent Evanno
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | - Bruno Figadère
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | |
Collapse
|
12
|
Singh R, Makde RD. An assay procedure to investigate the transformation of toxic heme into inert hemozoin via plasmodial heme detoxification protein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140832. [PMID: 35934300 DOI: 10.1016/j.bbapap.2022.140832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Most antimalarial therapeutics, including chloroquine and artemisinin, induce free heme-mediated toxicity in Plasmodium. This cytotoxic heme is produced as a by-product during the large-scale digestion of host hemoglobin. Conversion of this host-derived heme into inert crystalline hemozoin is the only defense mechanism in Plasmodium against heme-induced cytotoxicity. Heme detoxification protein (HDP), a highly conserved plasmodial protein, is reported to be the most efficient biological mediator for heme to hemozoin transformation. Despite its significance, HDP has never been extensively studied for heme transformation into hemozoin. Therefore, we wish to develop a method to study the HDP-mediated transformation of heme into hemozoin. We have adopted, modified, and optimized the pyridine hemochrome assay to study HDP catalysis and use substrate and time kinetics to study the HDP-mediated transformation of heme into hemozoin. In contrast to the previously reported assay for HDP, we found that the new assay is more precise, accurate, and handy, making it more suitable for kinetic studies. HDP-mediated transformation of heme into hemozoin is not a single-step process, and involves a transient intermediate, most likely a cyclic heme dimer. The kinetics and the manner of HDP-mediated hemozoin production are dependent on the substrate concentration, and a small fraction of substrate remains untransformed to hemozoin irrespective of reaction time. Combining HDP as a catalyst and the pyridine hemochrome assay will facilitate the efficient screening of future antimalarials.
Collapse
Affiliation(s)
- Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
13
|
A nuclear redox sensor modulates gene activation and var switching in Plasmodium falciparum. Proc Natl Acad Sci U S A 2022; 119:e2201247119. [PMID: 35939693 PMCID: PMC9388093 DOI: 10.1073/pnas.2201247119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence of Plasmodium falciparum, which causes the deadliest form of human malaria, is attributed to its ability to evade the human immune response. These parasites "choose" to express a single variant from a repertoire of surface antigens called PfEMP1, which are placed on the surface of the infected red cell. Immune evasion is achieved by switches in expression between var genes, each encoding a different PfEMP1 variant. While the mechanisms that regulate mutually exclusive expression of var genes are still elusive, antisense long-noncoding RNAs (lncRNAs) transcribed from the intron of the active var gene were implicated in the "choice" of the single active var gene. Here, we show that this lncRNA colocalizes with the site of var mRNA transcription and is anchored to the var locus via DNA:RNA interactions. We define the var lncRNA interactome and identify a redox sensor, P. falciparum thioredoxin peroxidase I (PfTPx-1), as one of the proteins associated with the var antisense lncRNA. We show that PfTPx-1 localizes to a nuclear subcompartment associated with active transcription on the nuclear periphery, in ring-stage parasite, when var transcription occurs. In addition, PfTPx-1 colocalizes with S-adenosylmethionine synthetase (PfSAMS) in the nucleus, and its overexpression leads to activation of var2csa, similar to overexpression of PfSAMS. Furthermore, we show that PfTPx-1 knockdown alters the var switch rate as well as activation of additional gene subsets. Taken together, our data indicate that nuclear PfTPx-1 plays a role in gene activation possibly by providing a redox-controlled nuclear microenvironment ideal for active transcription.
Collapse
|
14
|
Leussa ANN, Rautenbach M. Antiplasmodial Cyclodecapeptides from Tyrothricin Share a Target with Chloroquine. Antibiotics (Basel) 2022; 11:antibiotics11060801. [PMID: 35740207 PMCID: PMC9219824 DOI: 10.3390/antibiotics11060801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
Previous research found that the six major cyclodecapeptides from the tyrothricin complex, produced by Brevibacillus parabrevis, showed potent activity against chloroquine sensitive (CQS) Plasmodium falciparum. The identity of the aromatic residues in the aromatic dipeptide unit in cyclo-(D-Phe1-Pro2-(Phe3/Trp3)-D-Phe4/D-Trp4)-Asn5-Gln6-(Tyr7/Phe7/Trp7)-Val8-(Orn9/Lys9)-Leu10 was proposed to have an important role in activity. CQS and resistant (CQR) P. falciparum strains were challenged with three representative cyclodecapeptides. Our results confirmed that cyclodecapeptides from tyrothricin had significantly higher antiplasmodial activity than the analogous gramicidin S, rivaling that of CQ. However, the previously hypothesized size and hydrophobicity dependent activity for these peptides did not hold true for P. falciparum strains, other than for the CQS 3D7 strain. The Tyr7 in tyrocidine A (TrcA) with Phe3-D-Phe4 seem to be related with loss in activity correlating with CQ antagonism and resistance, indicating a shared target and/or resistance mechanism in which the phenolic groups play a role. Phe7 in phenycidine A, the second peptide containing Phe3-D-Phe4, also showed CQ antagonism. Conversely, Trp7 in tryptocidine C (TpcC) with Trp3-D-Trp4 showed improved peptide selectivity and activity towards the more resistant strains, without overt antagonism towards CQ. However, TpcC lead to similar parasite stage inhibition and parasite morphology changes than previously observed for TrcA. The disorganization of chromatin packing and neutral lipid structures, combined with amorphous hemozoin crystals, could account for halted growth in late trophozoite/early schizont stage and the nanomolar non-lytic activity of these peptides. These targets related to CQ antagonism, changes in neural lipid distribution, leading to hemozoin malformation, indicate that the tyrothricin cyclodecapeptides and CQ share a target in the malaria parasite. The differing activities of these cyclic peptides towards CQS and CQR P. falciparum strains could be due to variable target interaction in multiple modes of activity. This indicated that the cyclodecapeptide activity and parasite resistance response depended on the aromatic residues in positions 3, 4 and 7. This new insight on these natural cyclic decapeptides could also benefit the design of unique small peptidomimetics in which activity and resistance can be modulated.
Collapse
|
15
|
Ommi NB, Abdullah M, Guruprasad L, Babu PP. Docosahexaenoic acid is potent against the growth of mature stages of Plasmodium falciparum; inhibition of hematin polymerization a possible target. Parasitol Int 2022; 89:102581. [PMID: 35395394 DOI: 10.1016/j.parint.2022.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
The present study investigates the potential effect of externally added unsaturated fatty acids on P. falciparum growth. Our results indicate that polyunsaturated fatty acids (PUFAs) inhibit the growth of Plasmodium in proportional to their degree of unsaturation. At higher concentration the PUFA Docosahexaenoic acid (DHA) induces pyknotic nuclei in infected erythrocytes. When Plasmodium stages were treated transiently with DHA, the ring stage culture recovered from the drug effect and parasitemia was increased post DHA removal with delayed growth of 12 h, compared to untreated control. Schizont stage treated culture displayed a 36 h delay in growth to infect fresh erythrocytes signifying its recovery is less than the ring stage. However the trophozoite stage failed to recover and showed a decrease in parasitemia, similar to that of continuous treated culture. PUFAs inhibited β- hematin polymerization by binding to free heme derived from hemoglobin degradation. Digestive vacuole neutral lipid bodies, which are pivotal for β- hematin polymerization, decreased and subsequently abrogated with increasing concentration of DHA in trophozoite stage treated culture. Our study concludes that DHA interacts with heme monomers and inhibits the β- hematin polymerization and growth of mature stages i.e., trophozoite and schizont stages of plasmodium.
Collapse
Affiliation(s)
- Naidu Babu Ommi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Maaged Abdullah
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Lalitha Guruprasad
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
16
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
17
|
Edgar RCS, Counihan NA, McGowan S, de Koning-Ward TF. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front Cell Infect Microbiol 2022; 11:829823. [PMID: 35096663 PMCID: PMC8794586 DOI: 10.3389/fcimb.2021.829823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum malaria remains a global health problem as parasites continue to develop resistance to all antimalarials in use. Infection causes clinical symptoms during the intra-erythrocytic stage of the lifecycle where the parasite infects and replicates within red blood cells (RBC). During this stage, P. falciparum digests the main constituent of the RBC, hemoglobin, in a specialized acidic compartment termed the digestive vacuole (DV), a process essential for survival. Many therapeutics in use target one or multiple aspects of the DV, with chloroquine and its derivatives, as well as artemisinin, having mechanisms of action within this organelle. In order to better understand how current therapeutics and those under development target DV processes, techniques used to investigate the DV are paramount. This review outlines the involvement of the DV in therapeutics currently in use and focuses on the range of techniques that are currently utilized to study this organelle including microscopy, biochemical analysis, genetic approaches and metabolomic studies. Importantly, continued development and application of these techniques will aid in our understanding of the DV and in the development of new therapeutics or therapeutic partners for the future.
Collapse
Affiliation(s)
- Rebecca C. S. Edgar
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Natalie A. Counihan
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
- Centre to Impact AMR, Monash University, Monash University, Clayton, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
18
|
The Role of the Iron Protoporphyrins Heme and Hematin in the Antimalarial Activity of Endoperoxide Drugs. Pharmaceuticals (Basel) 2022; 15:ph15010060. [PMID: 35056117 PMCID: PMC8779033 DOI: 10.3390/ph15010060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Plasmodium has evolved to regulate the levels and oxidative states of iron protoporphyrin IX (Fe-PPIX). Antimalarial endoperoxides such as 1,2,4-trioxane artemisinin and 1,2,4-trioxolane arterolane undergo a bioreductive activation step mediated by heme (FeII-PPIX) but not by hematin (FeIII-PPIX), leading to the generation of a radical species. This can alkylate proteins vital for parasite survival and alkylate heme into hematin–drug adducts. Heme alkylation is abundant and accompanied by interconversion from the ferrous to the ferric state, which may induce an imbalance in the iron redox homeostasis. In addition to this, hematin–artemisinin adducts antagonize the spontaneous biomineralization of hematin into hemozoin crystals, differing strikingly from artemisinins, which do not directly suppress hematin biomineralization. These hematin–drug adducts, despite being devoid of the peroxide bond required for radical-induced alkylation, are powerful antiplasmodial agents. This review addresses our current understanding of Fe-PPIX as a bioreductive activator and molecular target. A compelling pharmacological model is that by alkylating heme, endoperoxide drugs can cause an imbalance in the iron homeostasis and that the hematin–drug adducts formed have strong cytocidal effects by possibly reproducing some of the toxifying effects of free Fe-PPIX. The antiplasmodial phenotype and the mode of action of hematin–drug adducts open new possibilities for reconciliating the mechanism of endoperoxide drugs and for malaria intervention.
Collapse
|
19
|
Verma L, Vekilov PG, Palmer JC. Solvent Structure and Dynamics near the Surfaces of β-Hematin Crystals. J Phys Chem B 2021; 125:11264-11274. [PMID: 34609878 DOI: 10.1021/acs.jpcb.1c06589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hematin crystallization, which is an essential component of the physiology of malaria parasites and the most successful target for antimalarial drugs, proceeds in mixed organic-aqueous solvents both in vivo and in vitro. Here we employ molecular dynamics simulations to examine the structuring and dynamics of a water-normal octanol mixture (a solvent that mimics the environment hosting hematin crystallization in vivo) in the vicinity of the typical faces in the habit of a hematin crystal. The simulations reveal that the properties of the solvent in the layer adjacent to the crystal are strongly impacted by the distinct chemical and topological features presented by each crystal face. The solvent organizes into at least three distinct layers. We also show that structuring of the solvent near the different faces of β-hematin strongly impacts the interfacial dynamics. The relaxation time of n-octanol molecules is longest in the contact layers and correlates with the degree of structural ordering at the respective face. We show that the macroscopically homogeneous water-octanol solution holds clusters of water and n-octanol connected by hydrogen bonds that entrap the majority of the water but are mostly smaller than 30 water molecules. Near the crystal surface the clusters anchor on hematin carboxyl groups. These results provide a direct example that solvent structuring is not restricted to aqueous and other hydrogen-bonded solutions. Our findings illuminate two fundamental features of the mechanisms of hematin crystallization: the elongated shapes of natural and synthetic hematin crystals and the stabilization of charged groups of hematin and antimalarials by encasing in water clusters. In addition, these findings suggest that hematin crystallization may be controlled by additives that disrupt or reinforce solvent structuring.
Collapse
Affiliation(s)
- Laksmanji Verma
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.,Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C Palmer
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
20
|
Elbaum M, Seifer S, Houben L, Wolf SG, Rez P. Toward Compositional Contrast by Cryo-STEM. Acc Chem Res 2021; 54:3621-3631. [PMID: 34491730 DOI: 10.1021/acs.accounts.1c00279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electron microscopy (EM) is the most versatile tool for the study of matter at scales ranging from subatomic to visible. The high vacuum environment and the charged irradiation require careful stabilization of many specimens of interest. Biological samples are particularly sensitive due to their composition of light elements suspended in an aqueous medium. Early investigators developed techniques of embedding and staining with heavy metal salts for contrast enhancement. Indeed, the Nobel Prize in 1974 recognized Claude, de Duve, and Palade for establishment of the field of cell biology, largely due to their developments in separation and preservation of cellular components for electron microscopy. A decade later, cryogenic fixation was introduced. Vitrification of the water avoids the need for dehydration and provides an ideal matrix in which the organic macromolecules are suspended; the specimen represents a native state, suddenly frozen in time at temperatures below -150 °C. The low temperature maintains a low vapor pressure for the electron microscope, and the amorphous nature of the medium avoids diffraction contrast from crystalline ice. Such samples are extremely delicate, however, and cryo-EM imaging is a race for information in the face of ongoing damage by electron irradiation. Through this journey, cryo-EM enhanced the resolution scale from membranes to molecules and most recently to atoms. Cryo-EM pioneers, Dubochet, Frank, and Henderson, were awarded the Nobel Prize in 2017 for high resolution structure determination of biological macromolecules.A relatively untapped feature of cryo-EM is its preservation of composition. Nothing is added and nothing removed. Analytical spectroscopies based on electron energy loss or X-ray emission can be applied, but the very small interaction cross sections conflict with the weak exposures required to preserve sample integrity. To what extent can we interpret quantitatively the pixel intensities in images themselves? Conventional cryo-transmission electron microscopy (TEM) is limited in this respect, due to the strong dependence of the contrast transfer on defocus and the absence of contrast at low spatial frequencies.Inspiration comes largely from a different modality for cryo-tomography, using soft X-rays. Contrast depends on the difference in atomic absorption between carbon and oxygen in a region of the spectrum between their core level ionization energies, the so-called water window. Three dimensional (3D) reconstruction provides a map of the local X-ray absorption coefficient. The quantitative contrast enables the visualization of organic materials without stain and measurement of their concentration quantitatively. We asked, what aspects of the quantitative contrast might be transferred to cryo-electron microscopy?Compositional contrast is accessible in scanning transmission EM (STEM) via incoherent elastic scattering, which is sensitive to the atomic number Z. STEM can be regarded as a high energy, low angle diffraction measurement performed pixel by pixel with a weakly convergent beam. When coherent diffraction effects are absent, that is, in amorphous materials, a dark field signal measures quantitatively the flux scattered from the specimen integrated over the detector area. Learning to interpret these signals will open a new dimension in cryo-EM. This Account describes our efforts so far to introduce STEM for cryo-EM and tomography of biological specimens. We conclude with some thoughts on further developments.
Collapse
Affiliation(s)
| | | | | | | | - Peter Rez
- Department of Physics, Arizona State University, 550 E Tyler Drive, Tempe, Arizona 85287, United States
| |
Collapse
|
21
|
de Villiers KA, Egan TJ. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Acc Chem Res 2021; 54:2649-2659. [PMID: 33982570 DOI: 10.1021/acs.accounts.1c00154] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Over the last century, malaria deaths have decreased by more than 85%. Nonetheless, there were 405 000 deaths in 2018, mostly resulting from Plasmodium falciparum infection. In the 21st century, much of the advance has arisen from the deployment of insecticide-treated bed nets and artemisinin combination therapy. However, over the past few decades parasites with a delayed artemisinin clearance phenotype have appeared in Southeast Asia, threatening further gains. The effort to find new drugs is thus urgent. A prominent process in blood stage malaria parasites, which we contend remains a viable drug target, is hemozoin formation. This crystalline material consisting of heme can be readily seen when parasites are viewed microscopically. The process of its formation in the parasite, however, is still not fully understood.In early work, we recognized hemozoin formation as a biomineralization process. We have subsequently investigated the kinetics of synthetic hemozoin (β-hematin) crystallization catalyzed at lipid-aqueous interfaces under biomimetic conditions. This led us to the use of neutral detergent-based high-throughput screening (HTS) for inhibitors of β-hematin formation. A good hit rate against malaria parasites was obtained. Simultaneously, we developed a pyridine-based assay which proved successful in measuring the concentrations of hematin not converted to β-hematin.The pyridine assay was adapted to determine the effects of chloroquine and other clinical antimalarials on hemozoin formation in the cell. This permitted the determination of the dose-dependent amounts of exchangeable heme and hemozoin in P. falciparum for the first time. These studies have shown that hemozoin inhibitors cause a dose-dependent increase in exchangeable heme, correlated with decreased parasite survival. Electron spectroscopic imaging (ESI) showed a relocation of heme iron into the parasite cytoplasm, while electron microscopy provided evidence of the disruption of hemozoin crystals. This cellular assay was subsequently extended to top-ranked hits from a wide range of scaffolds found by HTS. Intriguingly, the amounts of exchangeable heme at the parasite growth IC50 values of these scaffolds showed substantial variation. The amount of exchangeable heme was found to be correlated with the amount of inhibitor accumulated in the parasitized red blood cell. This suggests that heme-inhibitor complexes, rather than free heme, lead to parasite death. This was supported by ESI using a Br-containing compound which showed the colocalization of Fe and Br as well as by confocal Raman microscopy which confirmed the presence of a complex in the parasite. Current evidence indicates that inhibitors block hemozoin formation by surface adsorption. Indeed, we have successfully introduced molecular docking with hemozoin to find new inhibitors. It follows that the resulting increase in free heme leads to the formation of the parasiticidal heme-inhibitor complex. We have reported crystal structures of heme-drug complexes for several aryl methanol antimalarials in nonaqueous media. These form coordination complexes but most other inhibitors interact noncovalently, and the determination of their structures remains a major challenge.It is our view that key future developments will include improved assays to measure cellular heme levels, better in silico approaches for predicting β-hematin inhibition, and a concerted effort to determine the structure and properties of heme-inhibitor complexes.
Collapse
Affiliation(s)
- Katherine A. de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag, Matieland 7600, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7945, South Africa
| |
Collapse
|
22
|
Kapishnikov S, Hempelmann E, Elbaum M, Als‐Nielsen J, Leiserowitz L. Malaria Pigment Crystals: The Achilles' Heel of the Malaria Parasite. ChemMedChem 2021; 16:1515-1532. [PMID: 33523575 PMCID: PMC8252759 DOI: 10.1002/cmdc.202000895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine-hematin complex, at the vacuole's membrane.
Collapse
Affiliation(s)
- Sergey Kapishnikov
- Dept. of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Ernst Hempelmann
- Center of Cellular and Molecular Biology of DiseasesInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)City of Knowledge0843 (Republic ofPanama
| | - Michael Elbaum
- Dept. of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Jens Als‐Nielsen
- Niels Bohr InstituteUniversity of Copenhagen2100CopenhagenDenmark
| | - Leslie Leiserowitz
- Dept. of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
23
|
Spedalieri C, Szekeres GP, Werner S, Guttmann P, Kneipp J. Probing the Intracellular Bio-Nano Interface in Different Cell Lines with Gold Nanostars. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1183. [PMID: 33946192 PMCID: PMC8145934 DOI: 10.3390/nano11051183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Gold nanostars are a versatile plasmonic nanomaterial with many applications in bioanalysis. Their interactions with animal cells of three different cell lines are studied here at the molecular and ultrastructural level at an early stage of endolysosomal processing. Using the gold nanostars themselves as substrate for surface-enhanced Raman scattering, their protein corona and the molecules in the endolysosomal environment were characterized. Localization, morphology, and size of the nanostar aggregates in the endolysosomal compartment of the cells were probed by cryo soft-X-ray nanotomography. The processing of the nanostars by macrophages of cell line J774 differed greatly from that in the fibroblast cell line 3T3 and in the epithelial cell line HCT-116, and the structure and composition of the biomolecular corona was found to resemble that of spherical gold nanoparticles in the same cells. Data obtained with gold nanostars of varied morphology indicate that the biomolecular interactions at the surface in vivo are influenced by the spike length, with increased interaction with hydrophobic groups of proteins and lipids for longer spike lengths, and independent of the cell line. The results will support optimized nanostar synthesis and delivery for sensing, imaging, and theranostics.
Collapse
Affiliation(s)
- Cecilia Spedalieri
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany; (C.S.); (G.P.S.)
| | - Gergo Péter Szekeres
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany; (C.S.); (G.P.S.)
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489 Berlin, Germany
| | - Stephan Werner
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany; (S.W.); (P.G.)
| | - Peter Guttmann
- Department X-ray Microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany; (S.W.); (P.G.)
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany; (C.S.); (G.P.S.)
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin, Albert-Einstein-Str. 5-9, 12489 Berlin, Germany
| |
Collapse
|
24
|
Weiner A. Step-by-step guide to post-acquisition correlation of confocal and FIB/SEM volumes using Amira software. Methods Cell Biol 2020; 162:333-351. [PMID: 33707018 DOI: 10.1016/bs.mcb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In recent years new methodologies and workflow pipelines for acquiring correlated fluorescence microscopy and volume electron microscopy datasets have been extensively described and made accessible to users of different levels. Post-acquisition image processing, and particularly correlation of the optical and electron data in a single integrated three-dimensional framework can be key for extracting valuable information, especially when imaging large sample volumes such as whole cells or tissues. These tasks remain challenging and are often rate-limiting to most users. Here we provide a step-by-step guide to image processing and manual correlation using ImageJ and Amira software of a confocal microscopy stack and a focused ion beam/scanning electron microscopy (FIB/SEM) tomogram acquired using a correlative pipeline. These previously published datasets capture a highly transient invasion event by the bacterium Shigella flexneri infecting an epithelial cell grown in culture, and are made available here in their pre-processed form for readers who wish to gain hands-on experience in image processing and correlation using existing data. In this guide we describe a simple protocol for correlation based on internal sample features clearly visible by both fluorescence and electron microscopy, which is normally sufficient when correlating standard fluorescence microscopy stacks with FIB/SEM data. While the guide describes the treatment of specific datasets, it is applicable to a wide variety of samples and different microscopy approaches that require basic correlation and visualization of two or more datasets in a single integrated framework.
Collapse
Affiliation(s)
- Allon Weiner
- Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Inserm, Sorbonne Université, Paris, France.
| |
Collapse
|
25
|
Peter Szekeres G, Werner S, Guttmann P, Spedalieri C, Drescher D, Živanović V, Montes-Bayón M, Bettmer J, Kneipp J. Relating the composition and interface interactions in the hard corona of gold nanoparticles to the induced response mechanisms in living cells. NANOSCALE 2020; 12:17450-17461. [PMID: 32856032 DOI: 10.1039/d0nr03581e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the formation of the intracellular protein corona of nanoparticles is essential for a wide range of bio- and nanomedical applications. The innermost layer of the protein corona, the hard corona, directly interacts with the nanoparticle surface, and by shielding the surface, it has a deterministic effect on the intracellular processing of the nanoparticle. Here, we combine a direct qualitative analysis of the hard corona composition of gold nanoparticles with a detailed structural characterization of the molecules in their interaction with the nanoparticle surface and relate both to the effects they have on the ultrastructure of living cells and the processing of the gold nanoparticles. Cells from the cell lines HCT-116 and A549 were incubated with 30 nm citrate-stabilized gold nanoparticles and with their aggregates in different culture media. The combined results of mass spectrometry based proteomics, cryo soft X-ray nanotomography and surface-enhanced Raman scattering experiments together revealed different uptake mechanisms in the two cell lines and distinct levels of induced cellular stress when incubation conditions were varied. The data indicate that the different incubation conditions lead to changes in the nanoparticle processing via different protein-nanoparticle interfacial interactions. Specifically, they suggest that the protein-nanoparticle surface interactions depend mainly on the surface properties of the gold nanoparticles, that is, the ζ-potential and the resulting changes in the hydrophilicity of the nanoparticle surface, and are largely independent of the cell line, the uptake mechanism and intracellular processing, or the extent of the induced cellular stress.
Collapse
Affiliation(s)
- Gergo Peter Szekeres
- Humboldt-Universität zu Berlin, School of Analytical Sciences Adlershof, Albert-Einstein-Str. 5-9, 12489 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hempel C, Kapishnikov S, Perez-Berna AJ, Werner S, Guttmann P, Pereiro E, Qvortrup K, Andresen TL. The need to freeze-Dehydration during specimen preparation for electron microscopy collapses the endothelial glycocalyx regardless of fixation method. Microcirculation 2020; 27:e12643. [PMID: 32542908 DOI: 10.1111/micc.12643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The endothelial glycocalyx covers the luminal surface of the endothelium and plays key roles in vascular function. Despite its biological importance, ideal visualization techniques are lacking. The current study aimed to improve the preservation and subsequent imaging quality of the endothelial glycocalyx. METHODS In mice, the endothelial glycocalyx was contrasted with a mixture of lanthanum and dysprosium (LaDy). Standard chemical fixation was compared with high-pressure frozen specimens processed with freeze substitution. Also, isolated brain microvessels and cultured endothelial cells were high-pressure frozen and by transmission soft x-rays, imaged under cryogenic conditions. RESULTS The endothelial glycocalyx was in some tissues significantly more voluminous from chemically fixed specimens compared with high-pressure frozen specimens. LaDy labeling introduced excessive absorption contrast, which impeded glycocalyx measurements in isolated brain microvessels when using transmission soft x-rays. In non-contrasted vessels, the glycocalyx was not resolved. LaDy-contrasted, cultured brain endothelial cells allowed to assess glycocalyx volume in vitro. CONCLUSIONS Both chemical and cryogenic fixation followed by dehydration lead to substantial collapse of the glycocalyx. Cryogenic fixation without freeze substitution could be a way forward although transmission soft x-ray tomography based solely on amplitude contrast seems unsuitable.
Collapse
Affiliation(s)
- Casper Hempel
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Centre for Medical Parasitology, Department for Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Kapishnikov
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephan Werner
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Peter Guttmann
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy (CFIM), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
27
|
Stewart TJ. Across the spectrum: integrating multidimensional metal analytics for in situ metallomic imaging. Metallomics 2020; 11:29-49. [PMID: 30499574 PMCID: PMC6350628 DOI: 10.1039/c8mt00235e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To know how much of a metal species is in a particular location within a biological context at any given time is essential for understanding the intricate roles of metals in biology and is the fundamental question upon which the field of metallomics was born. Simply put, seeing is powerful. With the combination of spectroscopy and microscopy, we can now see metals within complex biological matrices complemented by information about associated molecules and their structures. With the addition of mass spectrometry and particle beam based techniques, the field of view grows to cover greater sensitivities and spatial resolutions, addressing structural, functional and quantitative metallomic questions from the atomic level to whole body processes. In this perspective, I present a paradigm shift in the way we relate to and integrate current and developing metallomic analytics, highlighting both familiar and perhaps less well-known state of the art techniques for in situ metallomic imaging, specific biological applications, and their use in correlative studies. There is a genuine need to abandon scientific silos and, through the establishment of a metallomic scientific platform for further development of multidimensional analytics for in situ metallomic imaging, we have an incredible opportunity to enhance the field of metallomics and demonstrate how discovery research can be done more effectively.
Collapse
Affiliation(s)
- Theodora J Stewart
- King's College London, Mass Spectrometry, London Metallomics Facility, 4th Floor Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
28
|
Kördel M, Arsana KGY, Hertz HM, Vogt U. Stability investigation of a cryo soft x-ray microscope by fiber interferometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:023701. [PMID: 32113420 DOI: 10.1063/1.5138369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
We present a stability investigation of the Stockholm laboratory cryo soft x-ray microscope. The microscope operates at a wavelength of 2.48 nm and can image biological samples at liquid-nitrogen temperatures in order to mitigate radiation damage. We measured the stability of the two most critical components, sample holder and optics holder, in vacuo and at cryo temperatures at both short and long time scales with a fiber interferometer. Results revealed vibrations in the kHz range, originating mainly from a turbo pump, as well as long term drifts in connection with temperature fluctuations. With improvements in the microscope, earlier stability issues vanished and close-to diffraction-limited imaging could be achieved. Moreover, our investigation shows that fiber interferometers are a powerful tool in order to investigate position-sensitive setups at the nanometer level.
Collapse
Affiliation(s)
- M Kördel
- KTH Royal Institute of Technology, Department of Applied Physics, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - K G Y Arsana
- KTH Royal Institute of Technology, Department of Applied Physics, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - H M Hertz
- KTH Royal Institute of Technology, Department of Applied Physics, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - U Vogt
- KTH Royal Institute of Technology, Department of Applied Physics, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Mode of action of quinoline antimalarial drugs in red blood cells infected by Plasmodium falciparum revealed in vivo. Proc Natl Acad Sci U S A 2019; 116:22946-22952. [PMID: 31659055 PMCID: PMC6859308 DOI: 10.1073/pnas.1910123116] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most widely used antimalarial drugs belong to the quinoline family. The question of their mode of action has been open for centuries. It has been recently narrowed down to whether these drugs interfere with the process of crystallization of heme in the malaria parasite. To date, all studies of the drug action on heme crystals have been done either on model systems or on dried parasites, which yielded limited data and ambiguity. This study was done in actual parasites in their near-native environment, revealing the mode of action of these drugs in vivo. The approach adopted in this study can be extended to other families of antimalarial drugs, such as artemisinins, provided appropriate derivatives can be synthesized. The most widely used antimalarial drugs belong to the quinoline family. Their mode of action has not been characterized at the molecular level in vivo. We report the in vivo mode of action of a bromo analog of the drug chloroquine in rapidly frozen Plasmodium falciparum-infected red blood cells. The Plasmodium parasite digests hemoglobin, liberating the heme as a byproduct, toxic to the parasite. It is detoxified by crystallization into inert hemozoin within the parasitic digestive vacuole. By mapping such infected red blood cells with nondestructive X-ray microscopy, we observe that bromoquine caps hemozoin crystals. The measured crystal surface coverage is sufficient to inhibit further hemozoin crystal growth, thereby sabotaging heme detoxification. Moreover, we find that bromoquine accumulates in the digestive vacuole, reaching submillimolar concentration, 1,000-fold more than that of the drug in the culture medium. Such a dramatic increase in bromoquine concentration enhances the drug’s efficiency in depriving heme from docking onto the hemozoin crystal surface. Based on direct observation of bromoquine distribution in the digestive vacuole and at its membrane surface, we deduce that the excess bromoquine forms a complex with the remaining heme deprived from crystallization. This complex is driven toward the digestive vacuole membrane, increasing the chances of membrane puncture and spillage of heme into the interior of the parasite.
Collapse
|
30
|
Antimalarial, antiproliferative, and apoptotic activity of quinoline-chalcone and quinoline-pyrazoline hybrids. A dual action. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02435-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Drescher D, Büchner T, Guttmann P, Werner S, Schneider G, Kneipp J. X-ray tomography shows the varying three-dimensional morphology of gold nanoaggregates in the cellular ultrastructure. NANOSCALE ADVANCES 2019; 1:2937-2945. [PMID: 36133586 PMCID: PMC9418343 DOI: 10.1039/c9na00198k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/08/2019] [Indexed: 05/28/2023]
Abstract
The processing of nanoparticles inside eukaryotic cells is a key step in many wanted and unwanted nano-bio-interactions. In order to understand the effects and functions of the intracellular aggregates that are formed, their properties and their interaction with the biological matrix must be characterized. High quality synchrotron soft X-ray tomography (SXT) data were obtained from cells containing gold nanoparticles that are commonly applied as tools for optical probing or drug delivery. 3D volume rendering of both cellular organelles and the nanoparticle aggregates of different sizes in the intact cells of two cell lines reveals variation in localization, size, shape and density of the intracellular gold nanoaggregates. The dependence of such variation on incubation time and cell type, as well as on the influence of pre-aggregation of primary nanoparticles is shown. The SXT results provide a detailed picture of intracellular aggregation and will improve the design of safe and efficient nanoparticle platforms for biomedical use.
Collapse
Affiliation(s)
- Daniela Drescher
- Humboldt-Universität zu Berlin, Department of Chemistry Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Tina Büchner
- Humboldt-Universität zu Berlin, Department of Chemistry Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Research Group X-ray Microscopy Albert-Einstein-Str. 15 12489 Berlin Germany
| | - Stephan Werner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Research Group X-ray Microscopy Albert-Einstein-Str. 15 12489 Berlin Germany
| | - Gerd Schneider
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Research Group X-ray Microscopy Albert-Einstein-Str. 15 12489 Berlin Germany
| | - Janina Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry Brook-Taylor-Str. 2 12489 Berlin Germany
- School of Analytical Sciences Adlershof, Humboldt-Universität zu Berlin Albert-Einstein-Str. 5-9 12489 Berlin Germany
| |
Collapse
|
32
|
Weiner A, Enninga J. The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends Microbiol 2019; 27:426-439. [DOI: 10.1016/j.tim.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
33
|
Pasupureddy R, Atul, Seshadri S, Pande V, Dixit R, Pandey KC. Current scenario and future strategies to fight artemisinin resistance. Parasitol Res 2019; 118:29-42. [PMID: 30478733 DOI: 10.1007/s00436-018-6126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
Despite several setbacks in the fight against malaria such as insecticide and drug resistance as well as low efficacy of available vaccines, considerable success in reducing malaria burden has been achieved in the past decade. Artemisinins (ARTs and their combination therapies, ACTs), the current frontline drugs against uncomplicated malaria, rapidly kill plasmodial parasites and are non-toxic at short exposures. Though the exact mode of action remains unclear, the endoperoxide bridge, indispensable for ART activity, is thought to react with heme released from hemoglobin hydrolysis and generate free radicals that alkylate multiple protein targets, thereby disrupting proteostasis pathways. However, rapid development of ART resistance in recent years with no potential alternatives on the horizon threaten the elimination efforts. The Greater Mekong Subregion in South-East Asia continues to churn out mutants resistant to multiple ACTs and detected in increasingly expanding geographies. Extensive research on ART-resistant strains have identified a potential candidate Kelch13, crucial for mediating ART resistance. Parasites with mutations in the propeller domains of Plasmodium falciparum Kelch13 protein were shown to have enhanced phosphatidylinositol 3-kinase levels that were concomitant with delayed parasite clearance. Current research focused on understanding the mechanism of Kelch13-mediated ART resistance could provide better insights into Plasmodium resistome. This review covers the current proposed mechanisms of ART activity, resistance strategies adopted by the parasite in response to ACTs and possible future approaches to mitigate the spread of resistance from South-East Asia.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Atul
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
| | - Kailash C Pandey
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India.
- Department of Biochemistry, Indian Council of Medical Research, National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
34
|
Ziblat R, Weaver JC, Arriaga LR, Chong S, Weitz DA. Determining the lipid specificity of insoluble protein transmembrane domains. LAB ON A CHIP 2018; 18:3561-3569. [PMID: 30406786 DOI: 10.1039/c8lc00311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While the specificity of protein-lipid interactions is a key feature in the function of biological membranes, studying the specifics of these interactions is challenging because most membrane proteins are insoluble in water due to the hydrophobic nature of their transmembrane domains (TMDs). Here, we introduce a method that overcomes this solubility limitation and identifies the affinity profile of protein TMDs to specific lipid formulations. Using 5 human TMDs as a sample group, our results demonstrate that TMDs are highly selective and that these specific lipid-TMD interactions can involve either a single lipid, or the combination of multiple lipid species.
Collapse
Affiliation(s)
- R Ziblat
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - J C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - L R Arriaga
- Department of Physical Chemistry, Universidad Complutense, Madrid, 28040, Spain
| | - S Chong
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - D A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. and Department of Physics, Harvard University, Cambridge, MA02138, USA
| |
Collapse
|
35
|
Delpe Acharige AMDS, Brennan MPC, Lauder K, McMahon F, Odebunmi AO, Durrant MC. Computational insights into the inhibition of β-haematin crystallization by antimalarial drugs. Dalton Trans 2018; 47:15364-15381. [PMID: 30298161 DOI: 10.1039/c8dt03369b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the red blood cell phase of their life cycle, malaria parasites digest their host's haemoglobin, with concomitant release of potentially toxic iron(iii) protoporphyrin IX (FePPIX). The parasites' strategy for detoxification of FePPIX involves its crystallization to haemozoin, such that the build-up of free haem in solution is avoided. Antimalarial drugs of both historical importance and current clinical use are known to be capable of disrupting the growth of crystals of β-haematin, which is the synthetic equivalent of haemozoin. Hence, the disruption of haemozoin crystal growth is implicated as a possible mode of action of such drugs. However, the details of β-haematin crystal poisoning at the molecular level have yet to be fully elucidated. In this study, we have used a combination of density functional theory (DFT) and molecular modelling to examine the possible modes of action of ten different antimalarial drugs, including quinine-type aliphatic alcohols, amodiaquine-type phenols, and chloroquine-type aliphatic diamines. The DFT calculations indicate that each of the drugs can form at least one molecular complex with FePPIX. These complexes have 1 : 1 or 2 : 1 FePPIX : drug stoichiometries and all of them incorporate Fe-O bonds, formed either by direct coordination of a zwitterionic form of the drug, or by deprotonation of water. Most of the drugs can form more than one such complex. We have used the DFT model structures to explore the possible formation of a monolayer of each drug-haem complex on four of the β-haematin crystal faces. In all cases, the drug complexes can form a monolayer on the fast-growing {001} and {011} faces, but not on the slower growing {010} and {100} faces. Additional modelling of the chloroquine and quinidine complexes shows that individual molecules of these species can also obstruct the growth of new layers on other crystal faces. The implications of these observations for antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Anjana M D S Delpe Acharige
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne NE2 8ST, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Samant P, Burt TA, Zhao ZJ, Xiang L. Nanoscale photoacoustic tomography for label-free super-resolution imaging: simulation study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 30411552 DOI: 10.1117/1.jbo.23.11.116501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Resolutions higher than the optical diffraction limit are often desired in the context of cellular imaging and the study of disease progression at the cellular level. However, three-dimensional super-resolution imaging without reliance on exogenous contrast agents has so far not been achieved. We present nanoscale photoacoustic tomography (nPAT), an imaging modality based on the photoacoustic effect. nPAT can achieve a dramatic improvement in the axial resolution of the photoacoustic imaging. We derive the theoretical resolution and sensitivity of nPAT and demonstrate that nPAT can achieve a maximum axial resolution of 9.2 nm. We also demonstrate that nPAT can theoretically detect smaller numbers of molecules (∼273) than conventional photoacoustic microscopy due to its ability to detect acoustic signals very close to the photoacoustic source. We simulate nPAT imaging of malaria-infected red blood cells (RBCs) using digital phantoms generated from real biological samples, showing nPAT imaging of the RBC at different stages of infection. These simulations show the potential of nPAT to nondestructively image RBCs at the nanometer resolutions for in vivo samples without the use of exogenous contrast agents. Simulations of nPAT-enabled functional imaging show that nPAT can yield insight into malarial metabolism and biocrystallization processes. We believe that the experimental realization of nPAT has important applications in biomedicine.
Collapse
Affiliation(s)
- Pratik Samant
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Timothy A Burt
- University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, Norman, Oklahoma, United States
| | - Zhizhuang Joe Zhao
- University of Oklahoma Health Sciences Center, Department of Pathology, Oklahoma City, Oklahoma, United States
| | - Liangzhong Xiang
- University of Oklahoma, School of Electric and Computer Engineering, Norman, Oklahoma, United States
| |
Collapse
|
37
|
Woodland JG, Hunter R, Smith PJ, Egan TJ. Chemical Proteomics and Super-resolution Imaging Reveal That Chloroquine Interacts with Plasmodium falciparum Multidrug Resistance-Associated Protein and Lipids. ACS Chem Biol 2018; 13:2939-2948. [PMID: 30208272 DOI: 10.1021/acschembio.8b00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well established that chloroquine, a quinoline antimalarial, inhibits hemozoin formation in the malaria parasite. Counterintuitively, this archetypal antimalarial is also used in the treatment of diseases in which hemozoin biocrystallization does not play a role. Hence, we decided to investigate whether chloroquine possesses binding targets other than Fe(III) protoporphyrin IX in blood stage Plasmodium falciparum parasites and whether these are related to sites of accumulation within the parasite other than the digestive vacuole. A 7-nitrobenz-2-oxa-1,3-diazole (NBD)-labeled fluorescent derivative of chloroquine, especially sensitive to regions outside the digestive vacuole and retaining the antiplasmodial pharmacophore, was synthesized to investigate subcellular localization in the parasite. Super-resolution microscopy revealed association with membranes including the parasite plasma membrane, the endoplasmic reticulum, and possibly also the mitochondrion. A drug-labeled affinity matrix was then prepared to capture protein binding targets of chloroquine. SDS-PAGE revealed a single prominent band between 200 and 250 kDa from the membrane-associated fraction. Subsequent proteomic analysis revealed that this band corresponded to P. falciparum multidrug resistance-associated protein (PfMRP1). Intrigued by this finding, we demonstrated pull-down of PfMRP1 by matrices labeled with Cinchona alkaloids quinine and quinidine. While PfMRP1 has been implicated in resistance to quinolines and other antimalarials, this is the first time that these drugs have been found to bind directly to this protein. Based on previous reports, PfMRP1, the only prominent protein found to bind to quinolines in this work, is likely to modulate the activity of these antimalarials in P. falciparum rather than act as a drug target.
Collapse
Affiliation(s)
- John G. Woodland
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | | | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
38
|
Expanding horizons of cryo-tomography to larger volumes. Curr Opin Microbiol 2018; 43:155-161. [DOI: 10.1016/j.mib.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
|
39
|
Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerg Top Life Sci 2018; 2:81-92. [PMID: 33525785 PMCID: PMC7289011 DOI: 10.1042/etls20170086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Cryo-soft X-ray tomography is an imaging technique that addresses the need for mesoscale imaging of cellular ultrastructure of relatively thick samples without the need for staining or chemical modification. It allows the imaging of cellular ultrastructure to a resolution of 25–40 nm and can be used in correlation with other imaging modalities, such as electron tomography and fluorescence microscopy, to further enhance the information content derived from biological samples. An overview of the technique, discussion of sample suitability and information about sample preparation, data collection and data analysis is presented here. Recent developments and future outlook are also discussed.
Collapse
|
40
|
Valverde EA, Romero AH, Acosta ME, Gamboa N, Henriques G, Rodrigues JR, Ciangherotti C, López SE. Synthesis, β-hematin inhibition studies and antimalarial evaluation of new dehydroxy isoquine derivatives against Plasmodium berghei: A promising antimalarial agent. Eur J Med Chem 2018; 148:498-506. [DOI: 10.1016/j.ejmech.2017.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
41
|
Abstract
Water-window x-ray microscopy allows two- and three-dimensional (2D and 3D) imaging of intact unstained cells in their cryofixed near-native state with unique contrast and high resolution. Present operational biological water-window microscopes are based at synchrotron facilities, which limits their accessibility and integration with complementary methods. Laboratory-source microscopes have had difficulty addressing relevant biological tasks with proper resolution and contrast due to long exposure times and limited up-time. Here we report on laboratory cryo x-ray microscopy with the exposure time, contrast, and reliability to allow for routine high-spatial resolution 3D imaging of intact cells and cell-cell interactions. Stabilization of the laser-plasma source combined with new optics and sample preparation provide high-resolution cell imaging, both in 2D with ten-second exposures and in 3D with twenty-minute tomography. Examples include monitoring of the distribution of carbon-dense vesicles in starving HEK293T cells and imaging the interaction between natural killer cells and target cells.
Collapse
|
42
|
Dilanian RA, Streltsov V, Coughlan HD, Quiney HM, Martin AV, Klonis N, Dogovski C, Boutet S, Messerschmidt M, Williams GJ, Williams S, Phillips NW, Nugent KA, Tilley L, Abbey B. Nanocrystallography measurements of early stage synthetic malaria pigment. J Appl Crystallogr 2017; 50:1533-1540. [PMID: 29021736 PMCID: PMC5627683 DOI: 10.1107/s1600576717012663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data. If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.
Collapse
Affiliation(s)
- Ruben A. Dilanian
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Hannah D. Coughlan
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- CSIRO Manufacturing Flagship, Parkville, Victoria, Australia
| | - Harry M. Quiney
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew V. Martin
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nectarios Klonis
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sébastien Boutet
- LiNAC Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Garth J. Williams
- Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000, USA
| | - Sophie Williams
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Nicholas W. Phillips
- CSIRO, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Keith A. Nugent
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brian Abbey
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
43
|
Unraveling heme detoxification in the malaria parasite by in situ correlative X-ray fluorescence microscopy and soft X-ray tomography. Sci Rep 2017; 7:7610. [PMID: 28790371 PMCID: PMC5548722 DOI: 10.1038/s41598-017-06650-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/14/2017] [Indexed: 11/08/2022] Open
Abstract
A key drug target for malaria has been the detoxification pathway of the iron-containing molecule heme, which is the toxic byproduct of hemoglobin digestion. The cornerstone of heme detoxification is its sequestration into hemozoin crystals, but how this occurs remains uncertain. We report new results of in vivo rate of heme crystallization in the malaria parasite, based on a new technique to measure element-specific concentrations at defined locations in cell ultrastructure. Specifically, a high resolution correlative combination of cryo soft X-ray tomography has been developed to obtain 3D parasite ultrastructure with cryo X-ray fluorescence microscopy to measure heme concentrations. Our results are consistent with a model for crystallization via the heme detoxification protein. Our measurements also demonstrate the presence of considerable amounts of non-crystalline heme in the digestive vacuole, which we show is most likely contained in hemoglobin. These results suggest a tight coupling between hemoglobin digestion and heme crystallization, highlighting a new link in the crystallization pathway for drug development.
Collapse
|
44
|
Fitzroy SM, Gildenhuys J, Olivier T, Tshililo NO, Kuter D, de Villiers KA. The Effects of Quinoline and Non-Quinoline Inhibitors on the Kinetics of Lipid-Mediated β-Hematin Crystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7529-7537. [PMID: 28689414 PMCID: PMC5709178 DOI: 10.1021/acs.langmuir.7b01132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The throughput of a biomimetic lipid-mediated assay used to investigate the effects of inhibitors on the kinetics of β-hematin formation has been optimized through the use of 24-well microplates. The rate constant for β-hematin formation mediated by monopalmitoyl-rac-glycerol was reduced from 0.17 ± 0.04 min-1 previously measured in Falcon tubes to 0.019 ± 0.002 min-1 in the optimized assay. While this necessitated longer incubation times, transferring aliquots from multiple 24-well plates to a single 96-well plate for final absorbance measurements actually improved the overall turnaround time per inhibitor. This assay has been applied to investigate the effects of four clinically relevant antimalarial drugs (chloroquine, amodiaquine, quinidine, and quinine) as well as several short-chain 4-aminoquinoline derivatives and non-quinoline (benzamide) compounds on the kinetics of β-hematin formation. The adsorption strength of these inhibitors to crystalline β-hematin (Kads) was quantified using a theoretical kinetic model that is based on the Avrami equation and the Langmuir isotherm. Statistically significant linear correlations between lipid-mediated β-hematin inhibitory activity and Kads values for quinoline (r2 = 0.76, P-value = 0.0046) and non-quinoline compounds (r2 = 0.99, P-stat = 0.0006), as well as between parasite inhibitory activity (D10) and Kads values for quinoline antimalarial drugs and short-chain chloroquine derivatives (r2 = 0.64, P-value = 0.0098), provide a strong indication that drug action involves adsorption to the surface of β-hematin crystals. Independent support in this regard is provided by experiments that spectrophotometrically monitor the direct adsorption of antimalarial drugs to preformed β-hematin.
Collapse
|
45
|
|
46
|
Antimalarials inhibit hematin crystallization by unique drug-surface site interactions. Proc Natl Acad Sci U S A 2017; 114:7531-7536. [PMID: 28559329 DOI: 10.1073/pnas.1700125114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In malaria pathophysiology, divergent hypotheses on the inhibition of hematin crystallization posit that drugs act either by the sequestration of soluble hematin or their interaction with crystal surfaces. We use physiologically relevant, time-resolved in situ surface observations and show that quinoline antimalarials inhibit β-hematin crystal surfaces by three distinct modes of action: step pinning, kink blocking, and step bunch induction. Detailed experimental evidence of kink blocking validates classical theory and demonstrates that this mechanism is not the most effective inhibition pathway. Quinolines also form various complexes with soluble hematin, but complexation is insufficient to suppress heme detoxification and is a poor indicator of drug specificity. Collectively, our findings reveal the significance of drug-crystal interactions and open avenues for rationally designing antimalarial compounds.
Collapse
|
47
|
Biochemistry of malaria parasite infected red blood cells by X-ray microscopy. Sci Rep 2017; 7:802. [PMID: 28400621 PMCID: PMC5429762 DOI: 10.1038/s41598-017-00921-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 01/17/2023] Open
Abstract
Red blood cells infected by the malaria parasite Plasmodium falciparum are correlatively imaged by tomography using soft X-rays as well as by scanning hard nano-X-ray beam to obtain fluorescence maps of various elements such as S and Fe. In this way one can deduce the amount of Fe bound either in hemoglobin or in hemozoin crystals in the digestive vacuole of the malaria parasite as well as determine the hemoglobin concentrations in the cytosols of the red blood cell and of the parasite. Fluorescence map of K shows that in the parasite’s schizont stage the K concentration in the red blood cell cytosol is diminished by a factor of seven relative to a pristine red blood cell but the total amount of K in the infected red blood cell is the same as in the pristine red blood cell.
Collapse
|
48
|
Cárdenes R, Zhang C, Klementieva O, Werner S, Guttmann P, Pratsch C, Cladera J, Bijnens BH. 3D membrane segmentation and quantification of intact thick cells using cryo soft X-ray transmission microscopy: A pilot study. PLoS One 2017; 12:e0174324. [PMID: 28376110 PMCID: PMC5380311 DOI: 10.1371/journal.pone.0174324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
Structural analysis of biological membranes is important for understanding cell and sub-cellular organelle function as well as their interaction with the surrounding environment. Imaging of whole cells in three dimension at high spatial resolution remains a significant challenge, particularly for thick cells. Cryo-transmission soft X-ray microscopy (cryo-TXM) has recently gained popularity to image, in 3D, intact thick cells (∼10μm) with details of sub-cellular architecture and organization in near-native state. This paper reports a new tool to segment and quantify structural changes of biological membranes in 3D from cryo-TXM images by tracking an initial 2D contour along the third axis of the microscope, through a multi-scale ridge detection followed by an active contours-based model, with a subsequent refinement along the other two axes. A quantitative metric that assesses the grayscale profiles perpendicular to the membrane surfaces is introduced and shown to be linearly related to the membrane thickness. Our methodology has been validated on synthetic phantoms using realistic microscope properties and structure dimensions, as well as on real cryo-TXM data. Results demonstrate the validity of our algorithms for cryo-TXM data analysis.
Collapse
Affiliation(s)
| | - Chong Zhang
- Physense, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oxana Klementieva
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, L’Hospitalet de Llobregat, Spain
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Stephan Werner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Berlin, Germany
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Berlin, Germany
| | - Christoph Pratsch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Berlin, Germany
| | - Josep Cladera
- Biophysics Unit & Centre of Studies in Biophysics, Dept. of Biochemistry & Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bart H. Bijnens
- Physense, Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail:
| |
Collapse
|
49
|
Rez P, Larsen T, Elbaum M. Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens. J Struct Biol 2016; 196:466-478. [DOI: 10.1016/j.jsb.2016.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
|
50
|
Varsano N, Dadosh T, Kapishnikov S, Pereiro E, Shimoni E, Jin X, Kruth HS, Leiserowitz L, Addadi L. Development of Correlative Cryo-soft X-ray Tomography and Stochastic Reconstruction Microscopy. A Study of Cholesterol Crystal Early Formation in Cells. J Am Chem Soc 2016; 138:14931-14940. [PMID: 27934213 DOI: 10.1021/jacs.6b07584] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a high resolution correlative method involving cryo-soft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM), which provides information in three dimensions on large cellular volumes at 70 nm resolution. Cryo-SXT morphologically identified and localized aggregations of carbon-rich materials. STORM identified specific markers on the desired epitopes, enabling colocalization between the identified objects, in this case cholesterol crystals, and the cellular environment. The samples were studied under ambient and cryogenic conditions without dehydration or heavy metal staining. The early events of cholesterol crystal development were investigated in relation to atherosclerosis, using as model macrophage cell cultures enriched with LDL particles. Atherosclerotic plaques build up in arteries in a slow process involving cholesterol crystal accumulation. Cholesterol crystal deposition is a crucial stage in the pathological cascade. Our results show that cholesterol crystals can be identified and imaged at a very early stage on the cell plasma membrane and in intracellular locations. This technique can in principle be applied to other biological samples where specific molecular identification is required in conjunction with high resolution 3D-imaging.
Collapse
Affiliation(s)
| | | | - Sergey Kapishnikov
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, 08290 Cerdanyola del Valles, Barcelona, Spain
| | | | - Xueting Jin
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | - Howard S Kruth
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | | | | |
Collapse
|