1
|
Tandon D, Campbell‐Staton S, Cheviron Z, von Holdt BM. Geographic Variation in Epigenetic Responses to Hypoxia in Deer Mice (Peromyscus maniculatus) Distributed Along an Elevational Gradient. Mol Ecol 2025; 34:e17752. [PMID: 40156223 PMCID: PMC12010463 DOI: 10.1111/mec.17752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Lowland and highland Peromyscus maniculatus populations display divergent, locally adapted physiological phenotypes shaped by altitudinal differences in oxygen availability. Many physiological responses to hypoxia seem to have evolved in lowland ancestors to offset episodic and localised bouts of low internal oxygen availability. However, upon chronic hypoxia exposure at high elevation, these responses can lead to physiological complications. Therefore, highland ancestry is often associated with evolved hypoxia responses, particularly traits promoting tolerance of constant hypoxia. Environmentally induced DNA methylation can dynamically alter gene expression patterns, providing a proximate basis for phenotypic plasticity. Given each population's differential reliance on plasticity for hypoxia tolerance, we hypothesised that lowland mice have a more robust epigenetic response to hypoxia exposure, driving trait plasticity, than highland mice. Using DNA methylation data of tissues from the heart's left ventricle, we show that upon hypoxia exposure, lowland mice chemically modulate the epigenetic landscape to a greater extent than highland mice, especially at key hypoxia-relevant genes such as Egln3. This gene is a regulator of the gene Epas1 that is frequently targeted for positive selection at high elevation. We find higher methylation among wild highland mice at gene Egln3 compared to wild lowland mice, suggesting a shared epigenetic ancestral response to episodic and chronic hypoxia. These findings highlight each population's distinct reliance on molecular plasticity driven by their unique evolutionary histories.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Shane Campbell‐Staton
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Zachary Cheviron
- Division of Biological Sciences and Wildlife Biology ProgramUniversity of MontanaMissoulaMontanaUSA
| | - Bridgett M. von Holdt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
2
|
Cao R, Zhang M, Chen Y, Hou G, Liu Q, Zhang J, Zhang Y. The special adaptation to hypoxia facilitated the expansion of the Asian house rat (Rattus tanezumi) into Tibet but not other Rattus species. Integr Zool 2025; 20:568-585. [PMID: 38724481 DOI: 10.1111/1749-4877.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Rattus species are thought to live only at altitudes less than 2500 m, but the Asian house rat (R. tanezumi) (RT) has recently expanded to altitudes greater than 3500 m in China. Other Rattus species, especially brown rats (R. norvegicus) (RN), still reach only low altitudes on the Tibetan Plateau. Comparative genomics revealed the positive selection of hypoxia-inducible transcription factors 1 and 2 (HIFs) in RT, with the rapid evolution of HIF pathway genes in RT and Mus musculus (MM) but not RN or R. rattus. Population genomics revealed that genes associated with energy metabolism and oxygen transport were positively selected in RT compared with the other four Rattus species, and two specific substitutions (arginine 31 serine and leucine 33 methionine) were identified in the hemoglobin subunit beta (HBB) in RT. The above results suggested that RT possesses unique genetic adaptations to hypoxia, which was further confirmed by behavioral experiments on RT and RN. Normobaric hypoxia significantly reduced locomotion in RN but not in RT. Moreover, through intraspecific transcriptome analysis, the expression of Hbb and genes related to angiogenesis, oxygen transport, and glycolysis was upregulated, and the expression of genes associated with immunological functions in the liver, lungs, and/or sperm was downregulated in RT compared to those in RN. Interspecific transcriptome analysis further revealed that HIF-1α plays a role in modulating the hypoxic adaptation of RT rather than RN. Our work provides genomic, behavioral, and physiological insights into why RT, but not other Rattus species, could invade the Tibetan Plateau.
Collapse
Affiliation(s)
- Ruidong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guanmei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Pranckevicius NA, Scott AL, Rourke AJ, Saleem R, Wearing OH, Scott GR. Catecholamine synthesis and secretion by adrenal chromaffin cells are reduced in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2025; 328:R274-R286. [PMID: 39884668 DOI: 10.1152/ajpregu.00194.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Hypoxia at high altitude can constrain aerobic metabolism and elicit physiological responses that are detrimental to health and fitness. Responses of the sympathoadrenal system are vital for coping with acute hypoxia but can become maladaptive with prolonged activation in chronic hypoxia. We examined how adrenal function is altered in high-altitude populations of deer mice (Peromyscus maniculatus), which have evolved to overcome chronic hypoxia in their native environment. High- and low-altitude populations were each born and raised in common laboratory conditions and then acclimated to normoxia or chronic hypoxia during adulthood. High-altitude mice exhibited lower plasma epinephrine concentrations than low-altitude mice in both normoxia and hypoxia. Primary cultures of chromaffin cells were used to examine the cellular mechanisms underlying differences in epinephrine secretion from the adrenal medulla. Chromaffin cells from high-altitude mice did not mount a diminished Ca2+ response to nicotinic stimulation, but cellular catecholamine stores were much lower in high-altitude mice than in low-altitude mice. Histological analyses of the adrenal gland showed that high-altitude mice did not have smaller adrenal medullae. Therefore, reductions in chromaffin cell catecholamine stores were the primary mechanism for lower secretion rates and circulating concentrations of catecholamines in high-altitude mice, which may help avoid sympathoadrenal overactivity in chronic hypoxia. Further exploratory analysis found that high-altitude mice have a larger adrenal cortex and higher plasma concentrations of corticosterone, which could reflect changes in stress responsiveness or metabolic regulation. Therefore, multiple evolved changes in the physiology of the adrenal gland may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Prolonged activation of the sympathoadrenal system can become maladaptive in chronic hypoxia, but few previous studies have examined adrenal function in high-altitude natives. Comparing high-altitude versus low-altitude populations of mice, we show that high-altitude mice synthesize and store fewer catecholamines in adrenal chromaffin cells and thus have lower secretion rates and circulating concentrations of catecholamines in hypoxia.
Collapse
Affiliation(s)
| | - Angela L Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aedan J Rourke
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ranim Saleem
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
deMayo JA, Ragland GJ. (Limited) Predictability of thermal adaptation in invertebrates. J Exp Biol 2025; 228:JEB249450. [PMID: 40052398 DOI: 10.1242/jeb.249450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Evolutionary genomic approaches provide powerful tools to understand variation in and evolution of physiological processes. Untargeted genomic or transcriptomic screens can identify functionally annotated candidate genes linked to specific physiological processes, in turn suggesting evolutionary roles for these processes. Such studies often aim to inform modeling of the potential of natural populations to adapt to climate change, but these models are most accurate when evolutionary responses are repeatable, and thus predictable. Here, we synthesize the evolutionary genetic and comparative transcriptomic literature on terrestrial and marine invertebrates to assess whether evolutionary responses to temperature are repeatable within populations, across populations and across species. There is compelling evidence for repeatability, sometimes even across species. However, responses to laboratory selection and geographic variation across thermal gradients appear to be highly idiosyncratic. We also survey whether genetic/transcriptomic studies repeatedly identify candidate genes in three functional groups previously associated with the response to thermal stress: heat shock protein (Hsp) genes, proteolysis genes and immunity genes. Multiple studies across terrestrial and marine species identify candidates included in these gene sets. Yet, each of the gene sets are identified in only a minority of studies. Together, these patterns suggest that there is limited predictability of evolutionary responses to natural selection, including across studies within species. We discuss specific patterns for the candidate gene sets, implications for predictive modeling, and other potential applications of evolutionary genetics in elucidating physiology and gene function. Finally, we discuss limitations of inferences from available evolutionary genetic studies and directions for future research.
Collapse
Affiliation(s)
- James A deMayo
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
5
|
Chang L, Zhu W, Chen Q, Zhao C, Sui L, Shen C, Zhang Q, Wang B, Jiang J. Adaptive Divergence and Functional Convergence: The Evolution of Pulmonary Gene Expression in Amphibians of the Qingzang Plateau. Mol Ecol 2025; 34:e17663. [PMID: 39895507 DOI: 10.1111/mec.17663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
The Qingzang Plateau, with its harsh environmental conditions-low oxygen, high ultraviolet radiation and significant temperature fluctuations-demands specialised adaptations for survival. While genetic adaptations have been extensively studied, gene expression's role in amphibian adaptation to high elevations remains understudied. This study analysed pulmonary gene expression in 119 amphibians across the plateau to explore how genetic and environmental factors shape expression evolution. Transcriptomic analyses revealed significant interspecies variation, driven by environmental factors like temperature, oxygen levels, UVB radiation and precipitation. Principal Component and Mantel analyses found no significant correlation between gene expression divergence and genetic distance. Instead, species-specific traits and environmental pressures were pivotal in shaping expression patterns. PERMANOVA analysis showed environmental factors had varying impacts on species. For instance, Bufo gargarizans exhibited a strong gene expression response to multiple environmental factors, while Scutiger boulengeri was less influenced, reflecting diverse adaptive strategies. Functional enrichment analysis highlighted convergence in key biological processes, such as energy metabolism, apoptosis and autophagy, despite species-specific gene expression differences. These processes are critical for surviving the plateau's extremes. The findings suggest that gene expression evolution in amphibians on the Qingzang Plateau is shaped by both genetic diversity and environmental pressures. Although gene expression profiles vary, they converge on essential functions, offering insights into adaptation mechanisms in extreme environments.
Collapse
Affiliation(s)
- Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chunlin Zhao
- School of Biological and Chemical Engineering (School of Agriculture), Panzhihua University, Panzhihua, China
| | - Lulu Sui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Shen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qunde Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Proc Natl Acad Sci U S A 2024; 121:e2412526121. [PMID: 39352929 PMCID: PMC11474095 DOI: 10.1073/pnas.2412526121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| |
Collapse
|
7
|
Weng YM, Kavanaugh DH, Schoville SD. Evidence for Admixture and Rapid Evolution During Glacial Climate Change in an Alpine Specialist. Mol Biol Evol 2024; 41:msae130. [PMID: 38935588 PMCID: PMC11247348 DOI: 10.1093/molbev/msae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The pace of current climate change is expected to be problematic for alpine flora and fauna, as their adaptive capacity may be limited by small population size. Yet, despite substantial genetic drift following post-glacial recolonization of alpine habitats, alpine species are notable for their success surviving in highly heterogeneous environments. Population genomic analyses demonstrating how alpine species have adapted to novel environments with limited genetic diversity remain rare, yet are important in understanding the potential for species to respond to contemporary climate change. In this study, we explored the evolutionary history of alpine ground beetles in the Nebria ingens complex, including the demographic and adaptive changes that followed the last glacier retreat. We first tested alternative models of evolutionary divergence in the species complex. Using millions of genome-wide SNP markers from hundreds of beetles, we found evidence that the N. ingens complex has been formed by past admixture of lineages responding to glacial cycles. Recolonization of alpine sites involved a distributional range shift to higher elevation, which was accompanied by a reduction in suitable habitat and the emergence of complex spatial genetic structure. We tested several possible genetic pathways involved in adaptation to heterogeneous local environments using genome scan and genotype-environment association approaches. From the identified genes, we found enriched functions associated with abiotic stress responses, with strong evidence for adaptation to hypoxia-related pathways. The results demonstrate that despite rapid demographic change, alpine beetles in the N. ingens complex underwent rapid physiological evolution.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan
| | - David H Kavanaugh
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600120. [PMID: 38979138 PMCID: PMC11230211 DOI: 10.1101/2024.06.21.600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6000 m. The final elevation of 6000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to a combination of genetically based local adaptation and plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| |
Collapse
|
9
|
Garrett EJ, Prasad SK, Schweizer RM, McClelland GB, Scott GR. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2024; 326:R297-R310. [PMID: 38372126 PMCID: PMC11283899 DOI: 10.1152/ajpregu.00206.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The cold and hypoxic conditions at high altitude necessitate high metabolic O2 demands to support thermogenesis while hypoxia reduces O2 availability. Skeletal muscles play key roles in thermogenesis, but our appreciation of muscle plasticity and adaptation at high altitude has been hindered by past emphasis on only a small number of muscles. We examined this issue in deer mice (Peromyscus maniculatus). Mice derived from both high-altitude and low-altitude populations were born and raised in captivity and then acclimated as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 wk). Maximal activities of citrate synthase (CS), cytochrome c oxidase (COX), β-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) were measured in 20 muscles involved in shivering, locomotion, body posture, ventilation, and mastication. Principal components analysis revealed an overall difference in muscle phenotype between populations but no effect of hypoxia acclimation. High-altitude mice had greater activities of mitochondrial enzymes and/or lower activities of PK or LDH across many (but not all) respiratory, limb, core and mastication muscles compared with low-altitude mice. In contrast, chronic hypoxia had very few effects across muscles. Further examination of CS in the gastrocnemius showed that population differences in enzyme activity stemmed from differences in protein abundance and mRNA expression but not from population differences in CS amino acid sequence. Overall, our results suggest that evolved increases in oxidative capacity across many skeletal muscles, at least partially driven by differences in transcriptional regulation, may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Most previous studies of muscle plasticity and adaptation in high-altitude environments have focused on a very limited number of skeletal muscles. Comparing high-altitude versus low-altitude populations of deer mice, we show that a large number of muscles involved in shivering, locomotion, body posture, ventilation, and mastication exhibit greater mitochondrial enzyme activities in the high-altitude population. Therefore, evolved increases in mitochondrial oxidative capacity across skeletal muscles contribute to high-altitude adaptation.
Collapse
Affiliation(s)
- Emily J Garrett
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Srikripa K Prasad
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States
- United States Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, Utah, United States
| | | | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Lyons SA, McClelland GB. Highland deer mice support increased thermogenesis in response to chronic cold hypoxia by shifting uptake of circulating fatty acids from muscles to brown adipose tissue. J Exp Biol 2024; 227:jeb247340. [PMID: 38506250 PMCID: PMC11057874 DOI: 10.1242/jeb.247340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
During maximal cold challenge (cold-induced V̇O2,max) in hypoxia, highland deer mice (Peromyscus maniculatus) show higher rates of circulatory fatty acid delivery compared with lowland deer mice. Fatty acid delivery also increases with acclimation to cold hypoxia (CH) and probably plays a major role in supporting the high rates of thermogenesis observed in highland deer mice. However, it is unknown which tissues take up these fatty acids and their relative contribution to thermogenesis. The goal of this study was to determine the uptake of circulating fatty acids into 24 different tissues during hypoxic cold-induced V̇O2,max, by using [1-14C]2-bromopalmitic acid. To uncover evolved and environment-induced changes in fatty acid uptake, we compared lab-born and -raised highland and lowland deer mice, acclimated to either thermoneutral (30°C, 21 kPa O2) or CH (5°C, 12 kPa O2) conditions. During hypoxic cold-induced V̇O2,max, CH-acclimated highlanders decreased muscle fatty acid uptake and increased uptake into brown adipose tissue (BAT) relative to thermoneutral highlanders, a response that was absent in lowlanders. CH acclimation was also associated with increased activities of enzymes citrate synthase and β-hydroxyacyl-CoA dehydrogenase in the BAT of highlanders, and higher levels of fatty acid translocase CD36 (FAT/CD36) in both populations. This is the first study to show that cold-induced fatty acid uptake is distributed across a wide range of tissues. Highland deer mice show plasticity in this fatty acid distribution in response to chronic cold hypoxia, and combined with higher rates of tissue delivery, this contributes to their survival in the cold high alpine environment.
Collapse
Affiliation(s)
- Sulayman A. Lyons
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | |
Collapse
|
11
|
Sun Y, Hao Y, Zhang Q, Liu X, Wang L, Li J, Li M, Li D. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167079. [PMID: 37714349 DOI: 10.1016/j.scitotenv.2023.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.
Collapse
Affiliation(s)
- Yanfeng Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Qian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Juyong Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mo Li
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061001, China.
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
12
|
Chen X, Wang Z, Su J, Li H, Xiong J, Fu K, Wang Z, Yuan X, Shi Z, Miao X, Yang M, Yang Y, Shi Z. Altitude-dependent metabolite biomarkers reveal the mechanism of plateau pika adaptation to high altitudes. Integr Zool 2023; 18:1041-1055. [PMID: 36880690 DOI: 10.1111/1749-4877.12710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The harsh environment in the Tibetan plateau, the highest place in the world, poses thermoregulatory challenges and hypoxic stress to animals. The impacts of plateau environment on animal physiology and reproduction include external factors such as strong ultraviolet radiation and low temperature, and internal factors such as animal metabolites and gut microbiota. However, it remains unclear how plateau pika adapt to high altitudes through the combination of serum metabolites and gut microbiota. To this end, we captured 24 wild plateau pikas at the altitudes of 3400, 3600, or 3800 m a.s.l. in a Tibetan alpine grassland. Using the machine learning algorithms (random forest), we identified five biomarkers of serum metabolites indicative of the altitudes, that is, dihydrotestosterone, homo-l-arginine, alpha-ketoglutaric-acid, serotonin, and threonine, which were related to body weight, reproduction, and energy metabolism of pika. Those metabolic biomarkers were positively correlated with Lachnospiraceae_ Agathobacter, Ruminococcaceae, or Prevotellaceae_Prevotella, suggesting the close relationship between metabolites and gut microbiota. By identifying the metabolic biomarkers and gut microbiota analysis, we reveal the mechanisms of adaptation to high altitudes in plateau pika.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Huan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zilong Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ziyue Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiumei Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mei Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yunfeng Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Li W, Chen Y, Zhang Y, Zhao N, Zhang W, Shi M, Zhao Y, Cai C, Lu C, Gao P, Guo X, Li B, Kim SW, Yang Y, Cao G. Transcriptome Analysis Revealed Potential Genes of Skeletal Muscle Thermogenesis in Mashen Pigs and Large White Pigs under Cold Stress. Int J Mol Sci 2023; 24:15534. [PMID: 37958518 PMCID: PMC10650474 DOI: 10.3390/ijms242115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pigs are susceptible to cold stress due to the absence of brown fat caused by the partial deletion of uncoupling protein 1 during their evolution. Some local pig breeds in China exhibit potential cold adaptability, but research has primarily focused on fat and intestinal tissues. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, yet the molecular mechanism of cold adaptation in porcine skeletal muscle remains poorly understood. This study investigated the cold adaptability of two pig breeds, Mashen pigs (MS) and Large White pigs (LW), in a four-day cold (4 °C) or normal temperature (25 °C) environment. We recorded phenotypic changes and collected blood and longissimus dorsi muscle for transcriptome sequencing. Finally, the PRSS8 gene was randomly selected for functional exploration in porcine skeletal muscle satellite cells. A decrease in body temperature and body weight in both LW and MS pigs under cold stress, accompanied by increased shivering frequency and respiratory frequency, were observed. However, the MS pigs demonstrated stable physiological homeostasis, indicating a certain level of cold adaptability. The LW pigs primarily responded to cold stress by regulating their heat production and glycolipid energy metabolism. The MS pigs exhibited a distinct response to cold stress, involving the regulation of heat production, energy metabolism pathways, and robust mitochondrial activity, as well as a stronger immune response. Furthermore, the functional exploration of PRSS8 in porcine skeletal muscle satellite cells revealed that it affected cellular energy metabolism and thermogenesis by regulating ERK phosphorylation. These findings shed light on the diverse transcriptional responses of skeletal muscle in LW and MS pigs under cold stress, offering valuable insights into the molecular mechanisms underlying cold adaptation in pigs.
Collapse
Affiliation(s)
- Wenxia Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yufen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yunting Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Ning Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Sung-Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| |
Collapse
|
14
|
Hao Y, Song G, Zhang YE, Zhai W, Jia C, Ji Y, Tang S, Lv H, Qu Y, Lei F. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:3524-3540. [PMID: 37000417 DOI: 10.1111/mec.16942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.
Collapse
Affiliation(s)
- Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Lv
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Schweizer RM, Ivy CM, Natarajan C, Scott GR, Storz JF, Cheviron ZA. Gene regulatory changes underlie developmental plasticity in respiration and aerobic performance in highland deer mice. Mol Ecol 2023; 32:3483-3496. [PMID: 37073620 PMCID: PMC10330314 DOI: 10.1111/mec.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
Phenotypic plasticity can play an important role in the ability of animals to tolerate environmental stress, but the nature and magnitude of plastic responses are often specific to the developmental timing of exposure. Here, we examine changes in gene expression in the diaphragm of highland deer mice (Peromyscus maniculatus) in response to hypoxia exposure at different stages of development. In highland deer mice, developmental plasticity in diaphragm function may mediate changes in several respiratory traits that influence aerobic metabolism and performance under hypoxia. We generated RNAseq data from diaphragm tissue of adult deer mice exposed to (1) life-long hypoxia (before conception to adulthood), (2) post-natal hypoxia (birth to adulthood), (3) adult hypoxia (6-8 weeks only during adulthood) or (4) normoxia. We found five suites of co-regulated genes that are differentially expressed in response to hypoxia, but the patterns of differential expression depend on the developmental timing of exposure. We also identified four transcriptional modules that are associated with important respiratory traits. Many of the genes in these transcriptional modules bear signatures of altitude-related selection, providing an indirect line of evidence that observed changes in gene expression may be adaptive in hypoxic environments. Our results demonstrate the importance of developmental stage in determining the phenotypic response to environmental stressors.
Collapse
Affiliation(s)
- Rena M. Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Zachary A. Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
16
|
Yang C, Cao C, Liu J, Zhao Y, Pan J, Tao C, Wang Y. Distinct Transcriptional Responses of Skeletal Muscle to Short-Term Cold Exposure in Tibetan Pigs and Bama Pigs. Int J Mol Sci 2023; 24:ijms24087431. [PMID: 37108597 PMCID: PMC10139196 DOI: 10.3390/ijms24087431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Piglets are susceptible to cold, and piglet death caused by cold stress leads to economic losses in the pig industry in cold areas. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, but the related mechanism in pigs is unclear. In this study, cold-tolerant Tibetan pigs and cold-sensitive Bama pigs were subjected to either a cold environment (4 °C) or a room temperature environment (25 °C) for 3 days. The biceps femoris (BF) and longissimus dorsi muscle (LDM) were collected for phenotypic analysis, and the BF was used for genome-wide transcriptional profiling. Our results showed that Tibetan pigs had a higher body temperature than Bama pigs upon cold stimulation. RNA-seq data indicated a stronger transcriptional response in the skeletal muscle of Tibetan pigs upon cold stimulation, as more differentially expressed genes (DEGs) were identified with the same criteria (p < 0.05 and fold change > 2). In addition, distinct pathway signaling patterns in skeletal muscle upon cold exposure were found between the breeds of pigs. Mitochondrial beta-oxidation-related genes and pathways were significantly upregulated in Tibetan pigs, indicating that Tibetan pigs may use fatty acids as the primary fuel source to protect against cold. However, the significant upregulation of inflammatory response- and glycolysis-related genes and pathways in the skeletal muscle of Bama pigs suggested that these pigs may use glucose as the primary fuel source in cold environments. Together, our study revealed the distinct transcriptional responses of skeletal muscle to cold stimulation in Tibetan pigs and Bama pigs and provided novel insights for future investigation of the cold adaptation mechanism in pigs.
Collapse
Affiliation(s)
- Chunhuai Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiali Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianfei Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
17
|
Cai H, Des Marais DL. Revisiting regulatory coherence: accounting for temporal bias in plant gene co-expression analyses. THE NEW PHYTOLOGIST 2023; 238:16-24. [PMID: 36617750 DOI: 10.1111/nph.18720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, 15 Vassar St., Cambridge, MA, 02139, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, 15 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Luo W, Xu Y, Gu X, Zhang J, Wang J, Geng F. Divergence of Liver Lipidomes in Tibetan and Yorkshire Pigs Living at Different Altitudes. Molecules 2023; 28:molecules28072991. [PMID: 37049754 PMCID: PMC10095695 DOI: 10.3390/molecules28072991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The Tibetan pig is a characteristic breed of the Qinghai-Tibet Plateau with distinct physiological and meat quality attributes. The liver lipid profile can offer an important perspective to explore the uniqueness of Tibetan pigs. A quantitative comparison of liver lipidomes revealed significant differences in the lipid profiles between Tibetan and Yorkshire pigs raised at different altitudes. The abundance of lipids in the livers of pigs raised at a high altitude was higher than that of pigs raised at a lower altitude, whereas the abundance of lipids in the livers of Yorkshire pigs was higher than that of Tibetan pigs raised at the same altitude. Of the 1101 lipids identified, 323 and 193 differentially abundant lipids (DALs) were identified in the pairwise comparisons of Tibetan and Yorkshire pigs raised at different altitudes, respectively. The DALs of Tibetan pigs consisted mainly of 161 triglycerides, along with several acylcarnitines, represented by carnitine C2:0, and significant changes in the abundance of some phospholipids. The DALs of Yorkshire pigs were more complex, with significant increases in the abundance of triglycerides, cholesteryl esters, and free fatty acids, and decreases in the abundance of some phospholipids. This research provides strong theoretical and data support for the high-quality development of the highland livestock industry.
Collapse
Affiliation(s)
- Wei Luo
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yisha Xu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinqiu Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Correspondence:
| |
Collapse
|
19
|
Scariot PPM, Papoti M, Polisel EEC, Orsi JB, Van Ginkel PR, Prolla TA, Manchado-Gobatto FB, Gobatto CA. Living high - training low model applied to C57BL/6J mice: Effects on physiological parameters related to aerobic fitness and acid-base balance. Life Sci 2023; 317:121443. [PMID: 36709910 DOI: 10.1016/j.lfs.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Paul R Van Ginkel
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
20
|
Function of left ventricle mitochondria in highland deer mice and lowland mice. J Comp Physiol B 2023; 193:207-217. [PMID: 36795175 DOI: 10.1007/s00360-023-01476-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
To gain insight into the mitochondrial mechanisms of hypoxia tolerance in high-altitude natives, we examined left ventricle mitochondrial function of highland deer mice compared with lowland native deer mice and white-footed mice. Highland and lowland native deer mice (Peromyscus maniculatus) and lowland white-footed mice (P. leucopus) were first-generation born and raised in common lab conditions. Adult mice were acclimated to either normoxia or hypoxia (60 kPa) equivalent to ~ 4300 m for at least 6 weeks. Left ventricle mitochondrial physiology was assessed by determining respiration in permeabilized muscle fibers with carbohydrates, lipids, and lactate as substrates. We also measured the activities of several left ventricle metabolic enzymes. Permeabilized left ventricle muscle fibers of highland deer mice showed greater rates of respiration with lactate than either lowland deer mice or white-footed mice. This was associated with higher activities of lactate dehydrogenase in tissue and isolated mitochondria in highlanders. Normoxia-acclimated highlanders also showed higher respiratory rates with palmitoyl-carnitine than lowland mice. Maximal respiratory capacity through complexes I and II was also greater in highland deer mice but only compared with lowland deer mice. Acclimation to hypoxia had little effect on respiration rates with these substrates. In contrast, left ventricle activities of hexokinase increased in both lowland and highland deer mice after hypoxia acclimation. These data suggest that highland deer mice support an elevated cardiac function in hypoxia, in part, with high ventricle cardiomyocyte respiratory capacities supported by carbohydrates, fatty acids, and lactate.
Collapse
|
21
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
22
|
Wilsterman K, Cunningham K. Evolution in reproductive tempo and investment across the Peromyscus radiation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:13-27. [PMID: 36289026 PMCID: PMC10092142 DOI: 10.1002/jez.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Mammals display diverse reproductive strategies, however, the ultimate and proximate mechanisms that underlie this diversity and its composite traits remain poorly understood from both evolutionary and physiological perspectives. The Peromyscus genus of rodents, which is found throughout the north and central Americas, has diversified along life history gradients, varying both within and among species in reproductive strategies. This variation provides a useful model for studying reproductive diversity. Here, we combine a literature review with new analyses of captive colony breeding records from six Peromyscus species to assess our current understanding of how plasticity and local adaptation contribute to diversity in two classes of reproductive traits: phenology and litter investment. There is substantial evidence that many traits underlying phenology and litter investment have diverged among populations in ways that are likely to be locally adaptive, though plasticity in these traits remains common. However, these conclusions are largely based on data collected from the two most widespread Peromyscus species: P. maniculatus and P. leucopus. The majority of Peromyscus species diversity remains understudied regarding reproductive phenology and litter traits. We conclude by discussing key challenges and considerations relevant to using Peromyscus as a mammalian model for reproductive trait diversity and evolution moving forward.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Kirksey Cunningham
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
23
|
Du W, Liu L, Ma Y, Zhu Q, Jia R, Han Y, Wu Z, Yan X, Ailizire A, Zhang W. Analysis of the gut microbiome in obese native Tibetan children living at different altitudes: A case-control study. Front Public Health 2022; 10:963202. [PMID: 36504960 PMCID: PMC9731119 DOI: 10.3389/fpubh.2022.963202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Objective To explore the relationship between intestinal flora and obesity in Tibetan children at different altitudes. Methods Using16S rRNA gene sequencing results and blood lipid metabolism indexes to study the characteristics of the intestinal flora present in faeces and changes in blood lipid metabolism in obese children in Tibet who reside at different altitudes and to study correlations between blood lipid metabolism indicators and the intestinal flora composition. Results The results showed the following. (a) The triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels in the obesity groups were higher than those in the normal-weight groups, and those in the high-altitude obesity groups were lower than those in the low-altitude obesity groups. (b) The 16S rRNA gene sequencing results showed that altitude affected the composition and relative abundance of the gut microbiota. These parameters were basically the same among the low-altitude groups, while they were significantly lower in the high-altitude groups than in the low-altitude groups. (c) Groups that lived at different altitudes and had different body weights had different dominant bacterial genera. Megamonas was closely related to obesity, and its relative abundance in the low-altitude groups was higher than that in the high-altitude groups. Prevotella was associated with altitude, and its relative abundance in the high-altitude groups was higher than that in the low-altitude groups. In addition, Prevotella elicited changes in the abundance of Escherichia-Shigella. The lower prevalence of obesity and incidence of intestinal inflammation in those living at high altitudes were related to the abundance of Prevotella. (d) There were correlations between the gut microbiota composition and lipid metabolism indicators. The abundance of Romboutsia was positively correlated with TG and LDL-C levels but negatively correlated with high-density lipoprotein cholesterol (HDL-C) levels. The abundance of Akkermansia was negatively correlated with LDL-C levels, and the abundance of Blautia was negatively correlated with body mass index (BMI) and LDL-C levels. Conclusions The intestinal flora diversity varied by body weight and altitude, with lower diversity in those at higher altitudes and with lower body weights. Prevotella likely plays a role in suppressing obesity at high altitudes.
Collapse
Affiliation(s)
- Wenqi Du
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Department of Public Health, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Linxun Liu
- General Surgery Department, Qinghai Provincial People's Hospital, Xining, China
| | - Yan Ma
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China,Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University School of Medicine, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Ying Han
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China
| | - Ziyi Wu
- Department of Public Health, Qinghai University School of Medicine, Xining, China
| | - Xin Yan
- Department of Public Health, Qinghai University School of Medicine, Xining, China
| | - Ainiwaer Ailizire
- Department of Public Health, Qinghai University School of Medicine, Xining, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,Department of Public Health, Qinghai University School of Medicine, Xining, China,Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University, Xining, China,Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University School of Medicine, Xining, China,*Correspondence: Wei Zhang
| |
Collapse
|
24
|
XIONG Y, HAO Y, CHENG Y, FAN L, SONG G, LI D, QU Y, LEI F. Comparative transcriptomic and metabolomic analysis reveals pectoralis highland adaptation across altitudinal songbirds. Integr Zool 2022; 17:1162-1178. [PMID: 34935284 PMCID: PMC9786770 DOI: 10.1111/1749-4877.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pectoralis phenotypic variation plays a fundamental role in locomotion and thermogenesis in highland birds. However, its regulatory and metabolic mechanisms remain enigmatic to date. Here, we integrated phenomic, transcriptomic, and metabolomic approaches to determine muscle variation and its underpinning mechanisms across altitudinal songbirds. Phenomics confirmed that all highland birds had considerable increases in muscle oxidative capacity, capillarity, and mitochondrial abundance in our study. Correspondingly, transcriptomic analyses found that differentially expressed genes in phenotype-associated modules enriched for blood vessel, muscle structure development, and mitochondrial organization. Despite similar traits and functional enrichments across highland birds, different mechanisms drove their occurrence in high-altitude tree sparrow and 2 snow finches. Importantly, a metabolic feature shared by all the 3 highland birds is the improvement in insulin sensitivity and glucose utilization through activating insulin signaling pathway, which is vital to increase muscle oxidative capacity and maintain metabolic homeostasis. Nevertheless, fatty acid biosynthesis and oxidation are enhanced in only 2 snow finches which had a long evolutionary history on the high plateau, also differing from ketone body metabolism in recently introduced colonizer of the tree sparrow of the high plateau. Our study represents a vital contribution to reveal the regulatory and metabolic basis of pectoralis variation across altitudinal songbirds.
Collapse
Affiliation(s)
- Ying XIONG
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yan HAO
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yalin CHENG
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Liqing FAN
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Key Laboratory of Forest Ecology in Tibet Plateau of Ministry of EducationInstitute of Tibet Plateau EcologyTibet Agriculture & Animal Husbandry UniversityNyingchiChina
| | - Gang SONG
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Dongming LI
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yanhua QU
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Fumin LEI
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
25
|
Zhao X, Zhang J, Wang H, Li H, Qu C, Wen J, Zhang X, Zhu T, Nie C, Li X, Muhatai G, Wang L, Lv X, Yang W, Zhao C, Bao H, Li J, Zhu B, Cao G, Xiong W, Ning Z, Qu L. Genomic and transcriptomic analyses reveal genetic adaptation to cold conditions in the chickens. Genomics 2022; 114:110485. [PMID: 36126832 DOI: 10.1016/j.ygeno.2022.110485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Under the pressure of natural and artificial selection, domestic animals, including chickens, have evolved unique mechanisms of genetic adaptations such as high-altitude adaptation, hot and arid climate adaptation, and desert adaptation. Here, we investigated the genetic basis of cold tolerance in chicken by integrating whole-genome and transcriptome sequencing technologies. Genome-wide comparative analyses of 118 chickens living in different latitudes showed 46 genes and several pathways that may be involved in cold adaptation. The results of the functional enrichment analysis of differentially expressed genes proved the important role of metabolic pathways and immune-related pathways in cold tolerance in chickens. The subsequent integration of whole genome and transcriptome sequencing technology further identified six genes - dnah5 (dynein axonemal heavy chain 5), ptgs2 (prostaglandin-endoperoxide synthase 2), inhba (inhibin beta A subunit), irx2 (iroquois homeobox 2), ensgalg00000054917, and ensgalg00000046652 - requiring more detailed studies. In addition, we also discovered different allele frequency distributions of five SNPs (single nucleotide polymorphisms) within ptgs2 and nine SNPs within dnah5 in chickens in different latitudes, suggesting strong selective pressure of these two genes in chickens. We provide a novel insight into the genetic adaptation in chickens to cold environments, and provide a reference for evaluating and developing adaptive chicken breeds in cold environments.
Collapse
Affiliation(s)
- Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China.
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, China.
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinghua Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - XueZe Lv
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - Chunjiang Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Haigang Bao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Junying Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Bo Zhu
- Animal Health Supervision Institute of Zhuozhou, Hebei Province 072750, China.
| | - Guomin Cao
- Animal husbandry station of Fangchenggang, Guangxi Province 538001, China.
| | - Wenjie Xiong
- Animal Disease Prevention and Control Center of Fangchenggang, Guangxi Province 538001, China.
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Lyu T, Yang X, Zhao C, Wang L, Zhou S, Shi L, Dong Y, Dou H, Zhang H. Comparative transcriptomics of high-altitude Vulpes and their low-altitude relatives. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The harsh environment of Qinghai-Tibet Plateau (QTP) imposes strong selective stresses (e.g., hypoxia, high UV-radiation, and extreme temperature) to the native species, which have driven striking phenotypic and genetic adaptations. Although the mechanisms of high-altitude adaptation have been explored for many plateau species, how the phylogenetic background contributes to genetic adaption to high-altitude of Vulpes is largely unknown. In this study, we sequenced transcriptomic data across multiple tissues of two high-altitude Vulpes (Vulpes vulpes montana and Vulpes ferrilata) and their low-altitude relatives (Vulpes corsac and Vulpes lagopus) to search the genetic and gene expression changes caused by high-altitude environment. The results indicated that the positive selection genes (PSGs) identified by both high-altitude Vulpes are related to angiogenesis, suggesting that angiogenesis may be the result of convergent evolution of Vulpes in the face of hypoxic selection pressure. In addition, more PSGs were detected in V. ferrilata than in V. v. montana, which may be related to the longer adaptation time of V. ferrilata to plateau environment and thus more genetic changes. Besides, more PSGs associated with high-altitude adaptation were identified in V. ferrilata compared with V. v. montana, indicating that the longer the adaptation time to the high-altitude environment, the more genetic alterations of the species. Furthermore, the result of expression profiles revealed a tissue-specific pattern between Vulpes. We also observed that differential expressed genes in the high-altitude group exhibited species-specific expression patterns, revealed a convergent expression pattern of Vulpes in high-altitude environment. In general, our research provides a valuable transcriptomic resource for further studies, and expands our understanding of high-altitude adaptation within a phylogenetic context.
Collapse
|
27
|
Tomášek O, Bobek L, Kauzálová T, Kauzál O, Adámková M, Horák K, Kumar SA, Manialeu JP, Munclinger P, Nana ED, Nguelefack TB, Sedláček O, Albrecht T. Latitudinal but not elevational variation in blood glucose level is linked to life history across passerine birds. Ecol Lett 2022; 25:2203-2216. [PMID: 36082485 DOI: 10.1111/ele.14097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Macrophysiological research is vital to our understanding of mechanisms underpinning global life history variation and adaptation to diverse environments. Here, we examined latitudinal and elevational variation in a key substrate of energy metabolism and an emerging physiological component of pace-of-life syndromes, blood glucose concentration. Our data, collected from 61 European temperate and 99 Afrotropical passerine species, revealed that baseline blood glucose increases with both latitude and elevation, whereas blood glucose stress response shows divergent directions, being stronger at low latitudes and high elevations. Low baseline glucose in tropical birds, compared to their temperate counterparts, was mainly explained by their low fecundity, consistent with the slow pace-of-life syndrome in the tropics. In contrast, elevational variation in this trait was decoupled from fecundity, implying a unique montane pace-of-life syndrome combining slow-paced life histories with fast-paced physiology. The observed patterns suggest that pace-of-life syndromes do not evolve along the single fast-slow axis.
Collapse
Affiliation(s)
- Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| | - Lukáš Bobek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Tereza Kauzálová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Ecology, Charles University, Prague, Czechia
| | - Marie Adámková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Kryštof Horák
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Sampath Anandan Kumar
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, Czechia
| | - Judith Pouadjeu Manialeu
- Faculty of Science, Laboratory of Animal Physiology and Phytopharmacology, University of Dschang, Dschang, Cameroon
| | - Pavel Munclinger
- Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| | - Eric Djomo Nana
- Agricultural Research Institute for Development (IRAD), Yaoundé, Cameroon
| | - Télesphore Benoît Nguelefack
- Faculty of Science, Laboratory of Animal Physiology and Phytopharmacology, University of Dschang, Dschang, Cameroon
| | - Ondřej Sedláček
- Faculty of Science, Department of Ecology, Charles University, Prague, Czechia
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Faculty of Science, Department of Zoology, Charles University, Prague, Czechia
| |
Collapse
|
28
|
Yan C, Zhang ZY, Lv Y, Wang Z, Jiang K, Li JT. Genome of Laudakia sacra Provides New Insights into High-Altitude Adaptation of Ectotherms. Int J Mol Sci 2022; 23:ijms231710081. [PMID: 36077479 PMCID: PMC9456099 DOI: 10.3390/ijms231710081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Anan’s rock agama (Laudakia sacra) is a lizard species endemic to the harsh high-altitude environment of the Qinghai–Tibet Plateau, a region characterized by low oxygen tension and high ultraviolet (UV) radiation. To better understand the genetic mechanisms underlying highland adaptation of ectotherms, we assembled a 1.80-Gb L. sacra genome, which contained 284 contigs with an N50 of 20.19 Mb and a BUSCO score of 93.54%. Comparative genomic analysis indicated that mutations in certain genes, including HIF1A, TIE2, and NFAT family members and genes in the respiratory chain, may be common adaptations to hypoxia among high-altitude animals. Compared with lowland reptiles, MLIP showed a convergent mutation in L. sacra and the Tibetan hot-spring snake (Thermophis baileyi), which may affect their hypoxia adaptation. In L. sacra, several genes related to cardiovascular remodeling, erythropoiesis, oxidative phosphorylation, and DNA repair may also be tailored for adaptation to UV radiation and hypoxia. Of note, ERCC6 and MSH2, two genes associated with adaptation to UV radiation in T. baileyi, exhibited L. sacra-specific mutations that may affect peptide function. Thus, this study provides new insights into the potential mechanisms underpinning high-altitude adaptation in ectotherms and reveals certain genetic generalities for animals’ survival on the plateau.
Collapse
Affiliation(s)
- Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Mangkang Biodiversity and Ecological Station, Tibet Ecological Safety Monitor Network, Changdu 854500, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| |
Collapse
|
29
|
Ivy CM, Velotta JP, Cheviron ZA, Scott GR. Genetic variation in HIF-2α attenuates ventilatory sensitivity and carotid body growth in chronic hypoxia in high-altitude deer mice. J Physiol 2022; 600:4207-4225. [PMID: 35797482 DOI: 10.1113/jp282798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS High-altitude natives of many species have experienced natural selection on the gene encoding HIF-2α, Epas1, including high-altitude populations of deer mice. HIF-2α regulates ventilation and carotid body growth in hypoxia, so the genetic variants in Epas1 in high-altitude natives may underlie evolved changes in control of breathing. Deer mice from controlled crosses between high- and low-altitude populations were used to examine the effects of Epas1 genotype on an admixed genomic background. The high-altitude variant was associated with reduced ventilatory chemosensitivity and carotid body growth in chronic hypoxia, but had no effects on haematology. The results help us better understand the genetic basis for the unique physiological phenotype of high-altitude natives. ABSTRACT The gene encoding HIF-2α, Epas1, has experienced a history of natural selection in many high-altitude taxa, but the functional role of mutations in this gene are still poorly understood. We investigated the influence of the high-altitude variant of Epas1 in North American deer mice (Peromyscus maniculatus) on control of breathing and carotid body growth during chronic hypoxia. We created hybrids between high- and low-altitude populations of deer mice to disrupt linkages between genetic loci so physiological effects of Epas1 alleles (Epas1H and Epas1L , respectively) could be examined on an admixed genomic background. In general, chronic hypoxia (4 weeks at 12 kPa O2 ) enhanced ventilatory chemosensitivity (assessed as the acute ventilatory response to hypoxia), increased total ventilation and arterial O2 saturation during progressive poikilocapnic hypoxia, and increased haematocrit and blood haemoglobin content across genotypes. However, effects of chronic hypoxia on ventilatory chemosensitivity were attenuated in mice that were homozygous for the high-altitude Epas1 allele (Epas1H/H ). Carotid body growth and glomus cell hyperplasia, which was strongly induced in Epas1L/L mice in chronic hypoxia, was not observed in Epas1H/H mice. Epas1 genotype also modulated the effects of chronic hypoxia on metabolism and body temperature depression in hypoxia, but had no effects on haematological traits. These findings confirm the important role of HIF-2α in modulating ventilatory sensitivity and carotid body growth in chronic hypoxia, and show that genetic variation in Epas1 is responsible for evolved changes in the control of breathing and metabolism in high-altitude deer mice. Abstract figure legend ventilation and carotid body growth in hypoxia, so we investigated the role genetic variants in Epas1 in highaltitude deer mice on the control of breathing. In the lab, hybrids between high- and lowaltitude populations of deer mice were created to disrupt linkages between genetic loci so physiological effects of Epas1 alleles (Epas1H and Epas1L, respectively) could be examined on an admixed genomic background. The high-altitude variant was associated with reduced ventilatory chemosensitivity and carotid body growth after 4 weeks of chronic hypoxia, compared to mice homozygous for the low-altitude allele (Epas1LL). These results help us better understand the genetic basis for the unique physiological phenotype of high-altitude natives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
30
|
Melcore I, Bertolino S, Boratyński Z. Variation of rodents’ body temperature across elevation in Alps. Physiol Biochem Zool 2022; 95:517-524. [DOI: 10.1086/721477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Dawson NJ, Scott GR. Adaptive increases in respiratory capacity and O 2 affinity of subsarcolemmal mitochondria from skeletal muscle of high-altitude deer mice. FASEB J 2022; 36:e22391. [PMID: 35661419 DOI: 10.1096/fj.202200219r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Aerobic energy demands have led to the evolution of complex mitochondrial reticula in highly oxidative muscles, but the extent to which metabolic challenges can be met with adaptive changes in physiology of specific mitochondrial fractions remains unresolved. We examined mitochondrial mechanisms supporting adaptive increases in aerobic performance in deer mice (Peromyscus maniculatus) adapted to the hypoxic environment at high altitude. High-altitude and low-altitude mice were born and raised in captivity, and exposed as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 weeks). Subsarcolemmal and intermyofibrillar mitochondria were isolated from the gastrocnemius, and a comprehensive substrate titration protocol was used to examine mitochondrial physiology and O2 kinetics by high-resolution respirometry and fluorometry. High-altitude mice had greater yield, respiratory capacity for oxidative phosphorylation, and O2 affinity (lower P50 ) of subsarcolemmal mitochondria compared to low-altitude mice across environments, but there were no species difference in these traits in intermyofibrillar mitochondria. High-altitude mice also had greater capacities of complex II relative to complexes I + II and higher succinate dehydrogenase activities in both mitochondrial fractions. Exposure to chronic hypoxia reduced reactive oxygen species (ROS) emission in high-altitude mice but not in low-altitude mice. Our findings suggest that functional changes in subsarcolemmal mitochondria contribute to improving aerobic performance in hypoxia in high-altitude deer mice. Therefore, physiological variation in specific mitochondrial fractions can help overcome the metabolic challenges of life at high altitude.
Collapse
Affiliation(s)
- Neal J Dawson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Lyons SA, McClelland GB. Thermogenesis is supported by high rates of circulatory fatty acid and triglyceride delivery in highland deer mice. J Exp Biol 2022; 225:275398. [PMID: 35552735 DOI: 10.1242/jeb.244080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Highland native deer mice (Peromyscus maniculatus) have greater rates of lipid oxidation during maximal cold challenge in hypoxia (hypoxic cold-induced V˙O2max) compared to their lowland conspecifics. Lipid oxidation is also increased in deer mice acclimated to simulated high altitude (cold hypoxia), regardless of altitude ancestry. The underlying lipid metabolic pathway traits responsible for sustaining maximal thermogenic demand in deer mice is currently unknown. The objective of this study was to characterize key steps in the lipid oxidation pathway in highland and lowland deer mice acclimated to control (23oC, 21kPa O2) or cold hypoxic (5oC, 12kPa O2) conditions. We hypothesized that capacities for lipid delivery and tissue uptake will be greater in highlanders and further increase with cold hypoxia acclimation. With the transition from rest to hypoxic cold-induced V˙O2max, both highland and lowland deer mice showed increased plasma glycerol concentrations and fatty acid availability. Interestingly, cold hypoxia acclimation led to increased plasma triglyceride concentrations at cold-induced V˙O2max, but only in highlanders. Highlanders also had significantly greater delivery rates of circulatory free fatty acids and triglycerides due to higher plasma flow rates at cold-induced V˙O2max. We found no population or acclimation differences in fatty acid translocase (FAT/CD36) abundance in the gastrocnemius or brown adipose tissue, suggesting fatty acid uptake across membranes is not limiting during thermogenesis. Our data indicate that circulatory lipid delivery plays a major role in supporting the high thermogenic rates observed in highland versus lowland deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
33
|
Cai C, Yang Y, Ga Q, Xu G, Ge R, Tang F. Comparative genomic analysis of high-altitude adaptation for Mongolia Mastiff, Tibetan Mastiff, and Canis Lupus. Genomics 2022; 114:110359. [PMID: 35364265 DOI: 10.1016/j.ygeno.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Tibetan Mastiff has adapted to the extreme environment of the Qinghai-Tibetan Plateau. Yet, the underlying mechanisms of its high-altitude-adaptation and origin remains elusive. Here, we generated the draft genomes of Mongolia Mastiff, Tibetan Mastiff, and Canis Lupus. The phylogenetic tree uncovered that Tibetan Mastiff and Mongolia Mastiff were derived from Canis Lupus species. The comparative genomic analyses identified that the expansion of gene families related to DNA repair and damage response, and contraction related to ATPase activity revealed the genetic adaptations of Tibetan Mastiff and Canis Lupus to high altitude. In addition, the Tibetan Mastiff and Canis Lupus had signals of positive selection for genes involved in fatty-acid α/β- oxidation for highland adaptation. Notably, the positively selected TERT of Tibetan Mastiff should be an adaptive trait for correcting DNA damage. These findings suggested that the Tibetan Mastiff and Canis Lupus evolves basic strategies for adaptation to high altitude.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Yingzhong Yang
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Qin Ga
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Guocai Xu
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Rili Ge
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China.
| | - Feng Tang
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China.
| |
Collapse
|
34
|
Storz JF, Bautista NM. Altitude acclimatization, hemoglobin-oxygen affinity, and circulatory oxygen transport in hypoxia. Mol Aspects Med 2022; 84:101052. [PMID: 34879970 PMCID: PMC8821351 DOI: 10.1016/j.mam.2021.101052] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023]
Abstract
In mammals and other air-breathing vertebrates that live at high altitude, adjustments in convective O2 transport via changes in blood hemoglobin (Hb) content and/or Hb-O2 affinity can potentially mitigate the effects of arterial hypoxemia. However, there are conflicting views about the optimal values of such traits in hypoxia, partly due to the intriguing observation that hypoxia-induced acclimatization responses in humans and other predominantly lowland mammals are frequently not aligned in the same direction as evolved phenotypic changes in high-altitude natives. Here we review relevant theoretical and empirical results and we highlight experimental studies of rodents and humans that provide insights into the combination of hematological changes that help attenuate the decline in aerobic performance in hypoxia. For a given severity of hypoxia, experimental results suggest that optimal values for hematological traits are conditional on the states of other interrelated phenotypes that govern different steps in the O2-transport pathway.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| | - Naim M Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
35
|
Qi Y, Zhang T, Wu Y, Yao Z, Qiu X, Pu P, Tang X, Fu J, Yang W. A Multilevel Assessment of Plasticity in Response to High-Altitude Environment for Agama Lizards. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Upslope range shifting has been documented in diverse species in response to global warming. Plasticity, which refers to the ability of organisms to alter their phenotypes in changing environments, is crucial for the survival of those that newly migrated to a high-altitude environment. The scope and mechanisms of plasticity across biological levels, however, have rarely been examined. We used two agama lizards (genus Phrynocephalus) as model systems and a transplant experiment to comprehensively assess their plasticity on multiple organization levels. Two low-altitude (934 m) agama species, Phrynocephalus axillaris (oviparous) and P. forsythii (viviparous), were transplanted to a high-altitude site (3,400 m). After acclimation for 6 weeks in seminatural enclosures, plasticity was measured from bite force, tail display behavior, gene expression, and metabolome. Both lizards were capable of acclimating to the high-altitude environment without sacrificing their performance in bite force, but they also showed high plasticity in tail display behavior by either decreasing the intensity of a specific display component (P. forsythii) or by the trade-off between display components (P. axillaris). Genes and metabolites associated with lipids, especially fatty acid metabolism, exhibited significant differentiation in expression, compared to individuals from their native habitats. Improved fatty acid storage and metabolism appeared to be a common response among animals at high altitudes. Despite distinct reproductive modes that may differ in response to physiological pressure, the two lizards demonstrated high concordance in plasticity when they faced a novel environment at high altitudes. Taken together, lizards likely acclimate to high-altitude environments by reducing behavioral activity and increasing energy efficiency after range shifting. Our results provide new insights into our understanding of phenotypic plasticity and its importance in today’s changing climate.
Collapse
|
36
|
Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. The genomic basis of high-elevation adaptation in wild house mice (Mus musculus domesticus) from South America. Genetics 2022; 220:iyab226. [PMID: 34897431 PMCID: PMC9097263 DOI: 10.1093/genetics/iyab226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.
Collapse
Affiliation(s)
- Elizabeth J Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Taichi A Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Evolution, Ecology, and Organismal Biology and the Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory A Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kennedy Agwamba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Lu Z, Yuan C, Li J, Guo T, Yue Y, Niu C, Liu J, Yang B. Comprehensive Analysis of Long Non-coding RNA and mRNA Transcriptomes Related to Hypoxia Adaptation in Tibetan Sheep. Front Vet Sci 2022; 8:801278. [PMID: 35141308 PMCID: PMC8818989 DOI: 10.3389/fvets.2021.801278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022] Open
Abstract
Tibetan sheep have lived on the Qinghai-Tibet Plateau for a long time, and after long-term natural selection, they have shown stable genetic adaptability to high-altitude environments. However, little is known about the molecular mechanisms of the long non-coding (lnc)RNAs involved in the adaptation of Tibetan sheep to hypoxia. Here, we collected lung tissues from high-altitude Tibetan sheep and low-altitude Hu sheep for RNA sequencing to study the regulatory mechanisms of the lncRNAs and mRNAs in the adaptation of Tibetan sheep to hypoxia. We identified 254 differentially expressed lncRNAs and 1,502 differentially expressed mRNAs. We found 20 pairs of cis-regulatory relationships between 15 differentially expressed lncRNAs and 14 protein-coding genes and two pairs of trans-regulatory relationships between two differentially expressed lncRNAs and two protein-coding genes. These differentially expressed mRNAs and lncRNA target genes were mainly enriched in pathways related to lipid metabolism and immune function. Interaction network analysis showed that 17 differentially expressed lncRNAs and 15 differentially expressed mRNAs had an interactive relationship. Additionally, we used six differentially expressed lncRNAs and mRNAs to verify the accuracy of the sequencing data via qRT-PCR. Our results provide a comprehensive overview of the expression patterns of the lncRNAs and mRNAs involved in the adaptation of Tibetan sheep to hypoxia, laying a foundation for further analysis of the adaptations of plateau animals.
Collapse
Affiliation(s)
- Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianye Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Jianbin Liu
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Bohui Yang
| |
Collapse
|
38
|
Hayward L, Robertson CE, McClelland GB. Phenotypic plasticity to chronic cold exposure in two species of Peromyscus from different environments. J Comp Physiol B 2022; 192:335-348. [PMID: 34988665 DOI: 10.1007/s00360-021-01423-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Effective thermoregulation is important for mammals, particularly those that remain winter-active. Adjustments in thermoregulatory capacity in response to chronic cold can improve capacities for metabolic heat production (cold-induced maximal oxygen consumption, [Formula: see text]), minimize rates of heat loss (thermal conductance), or both. This can be challenging for animals living in chronically colder habitats where necessary resources (i.e., food, O2) for metabolic heat production are limited. Here we used lowland native white-footed mice (Peromyscus leucopus) and highland deer mice (P. maniculatus) native to 4300 m, to test the hypothesis that small winter-active mammals have evolved distinct cold acclimation responses to tailor their thermal physiology based on the energetic demands of their environment. We found that both species increased their [Formula: see text] after cold acclimation, associated with increases in brown adipose tissue mass and expression of uncoupling protein 1. They also broadened their thermoneutral zone to include lower ambient temperatures. This was accompanied by an increase in basal metabolic rate but only in white-footed mice, and neither species adjusted thermal conductance. Unique to highland deer mice was a mild hypothermia as ambient temperatures decreased, which reduced the gradient for heat loss, possibly to save energy in the chronically cold high alpine. These results highlight that thermal acclimation involves coordinated plasticity of numerous traits and suggest that small, winter-active mammals may adjust different aspects of their physiology in response to changing temperatures to best suit their energetic and thermoregulatory needs.
Collapse
Affiliation(s)
- Leah Hayward
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Cayleih E Robertson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
39
|
Wearing OH, Nelson D, Ivy CM, Crossley DA, Scott GR. Adrenergic control of the cardiovascular system in deer mice native to high altitude. Curr Res Physiol 2022; 5:83-92. [PMID: 35169714 PMCID: PMC8829085 DOI: 10.1016/j.crphys.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 12/26/2022] Open
Abstract
Studies of animals native to high altitude can provide valuable insight into physiological mechanisms and evolution of performance in challenging environments. We investigated how mechanisms controlling cardiovascular function may have evolved in deer mice (Peromyscus maniculatus) native to high altitude. High-altitude deer mice and low-altitude white-footed mice (P. leucopus) were bred in captivity at sea level, and first-generation lab progeny were raised to adulthood and acclimated to normoxia or hypoxia. We then used pharmacological agents to examine the capacity for adrenergic receptor stimulation to modulate heart rate (fH) and mean arterial pressure (Pmean) in anaesthetized mice, and used cardiac pressure-volume catheters to evaluate the contractility of the left ventricle. We found that highlanders had a consistently greater capacity to increase fH via pharmacological stimulation of β1-adrenergic receptors than lowlanders. Also, whereas hypoxia acclimation reduced the capacity for increasing Pmean in response to α-adrenergic stimulation in lowlanders, highlanders exhibited no plasticity in this capacity. These differences in highlanders may help augment cardiac output during locomotion or cold stress, and may preserve their capacity for α-mediated vasoconstriction to more effectively redistribute blood flow to active tissues. Highlanders did not exhibit any differences in some measures of cardiac contractility (maximum pressure derivative, dP/dtmax, or end-systolic elastance, Ees), but ejection fraction was highest in highlanders after hypoxia acclimation. Overall, our results suggest that evolved changes in sensitivity to adrenergic stimulation of cardiovascular function may help deer mice cope with the cold and hypoxic conditions at high altitude. High-altitude deer mice have evolved increased aerobic capacity in hypoxia. Cardiovascular regulation was examined in normoxia and chronic hypoxia. Highland mice had increased capacity for β1-adrenergic stimulation of heart rate. Hypoxia reduced vascular α-adrenergic sensitivity in lowland but not highland mice. Cardiac ejection fraction was elevated in highland mice in chronic hypoxia.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Corresponding author.
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Catherine M. Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
40
|
Cheng Y, Miller MJ, Zhang D, Xiong Y, Hao Y, Jia C, Cai T, Li SH, Johansson US, Liu Y, Chang Y, Song G, Qu Y, Lei F. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. Proc Natl Acad Sci U S A 2021; 118:e2023918118. [PMID: 34873033 PMCID: PMC8685689 DOI: 10.1073/pnas.2023918118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 12/01/2022] Open
Abstract
Parallel evolution can be expected among closely related taxa exposed to similar selective pressures. However, parallelism is typically stronger at the phenotypic level, while genetic solutions to achieve these phenotypic similarities may differ. For polygenic traits, the availability of standing genetic variation (i.e., heterozygosity) may influence such genetic nonparallelism. Here, we examine the extent to which high-elevation adaptation is parallel-and whether the level of parallelism is affected by heterozygosity-by analyzing genomes of 19 Paridae species distributed across East Asia with a dramatic east-west elevation gradient. We find that western highlands endemic parids have consistently lower levels of heterozygosity-likely the result of late-Pleistocene demographic contraction-than do parids found exclusively in eastern lowlands, which remained unglaciated during the late Pleistocene. Three widespread species (east to west) have high levels of heterozygosity similar to that observed in eastern species, although their western populations are less variable than eastern ones. Comparing genomic responses to extreme environments of the Qinghai-Tibet Plateau, we find that the most differentiated genomic regions between each high-elevation taxon and its low-elevation relative are significantly enriched for genes potentially related to the oxygen transport cascade and/or thermogenesis. Despite no parallelism at particular genes, high similarity in gene function is found among comparisons. Furthermore, parallelism is not higher in more heterozygous widespread parids than in highland endemics. Thus, in East Asian parids, parallel functional response to extreme elevation appears to rely on different genes, with differences in heterozygosity having no effect on the degree of genetic parallelism.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthew J Miller
- Reneco International Wildlife Consultants, LLC, Abu Dhabi, UAE
- University of Alaska Museum, University of Alaska Fairbanks, AK
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianlong Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Hsien Li
- Department of Life Sciences, National Taiwan Normal University, Taipei, 116, Taiwan, China
| | - Ulf S Johansson
- Department of Zoology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongbin Chang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
41
|
Nabi G, Xing D, Sun Y, Zhang Q, Li M, Jiang C, Ahmad IM, Wingfield JC, Wu Y, Li D. Coping with extremes: High-altitude sparrows enhance metabolic and thermogenic capacities in the pectoralis muscle and suppress in the liver relative to their lowland counterparts. Gen Comp Endocrinol 2021; 313:113890. [PMID: 34453929 DOI: 10.1016/j.ygcen.2021.113890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Animals living at high altitudes are challenged by the extreme environmental conditions of cold temperature and hypobaric hypoxia. It is not well understood how high-altitude birds enhance the capacity of metabolic thermogenesis and allocate metabolic capacity in different organs to maximize survival in extreme conditions of a cold winter. The Qinghai-Tibet Plateau (QTP) is the largest and highest plateau globally, offering a natural laboratory for investigating coping mechanisms of organisms inhabiting extreme environments. To understand the adaptive strategies in the morphology and physiology of small songbirds on the QTP, we compared plasma triiodothyronine (T3), pectoralis muscle mitochondrial cytochrome c oxidase (COX) and state IV capacities, the expression of peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), adenine nucleotide translocase (ANT), uncoupling protein (UCP), and adenosine monophosphate-dependent kinase (AMPK) α1 mRNA in the pectoralis and liver of Eurasian tree sparrows (Passer montanus) from high-altitude (3,230 m), medium-altitude (1400 m), and low-altitude (80 m) regions. Our results showed that high-altitude sparrows had greater body masses, longer wings and tarsometatarsi, but comparable bill lengths relative to medium- and low-altitude individuals. High-altitude sparrows had higher plasma T3 levels and pectoralis muscle mitochondrial COX capacities than their lowland counterparts. They also upregulated the pectoralis muscle mRNA expression of UCP, PGC-1α, and ANT proteins relative to low-altitude sparrows. Unlike pectoralis, high-altitude sparrows significantly down-regulated hepatic AMPKα1 and ANT protein expression as compared with their lowland counterparts. Our results contribute to understanding the morphological, biochemical, and molecular adaptations in free-living birds to cope with the cold seasons in the extreme environment of the QTP.
Collapse
Affiliation(s)
- Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Danning Xing
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Qian Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mo Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ibrahim M Ahmad
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
42
|
Increased Reliance on Carbohydrates for Aerobic Exercise in Highland Andean Leaf-Eared Mice, but Not in Highland Lima Leaf-Eared Mice. Metabolites 2021; 11:metabo11110750. [PMID: 34822408 PMCID: PMC8618444 DOI: 10.3390/metabo11110750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Exercise is an important performance trait in mammals and variation in aerobic capacity and/or substrate allocation during submaximal exercise may be important for survival at high altitude. Comparisons between lowland and highland populations is a fruitful approach to understanding the mechanisms for altitude differences in exercise performance. However, it has only been applied in very few highland species. The leaf-eared mice (LEM, genus Phyllotis) of South America are a promising taxon to uncover the pervasiveness of hypoxia tolerance mechanisms. Here we use lowland and highland populations of Andean and Lima LEM (P. andium and P. limatus), acclimated to common laboratory conditions, to determine exercise-induced maximal oxygen consumption (V˙O2max), and submaximal exercise metabolism. Lowland and highland populations of both species showed no difference in V˙O2max running in either normoxia or hypoxia. When run at 75% of V˙O2max, highland Andean LEM had a greater reliance on carbohydrate oxidation to power exercise. In contrast, highland Lima LEM showed no difference in exercise fuel use compared to their lowland counterparts. The higher carbohydrate oxidation seen in highland Andean LEM was not explained by maximal activities of glycolytic enzymes in the gastrocnemius muscle, which were equivalent to lowlanders. This result is consistent with data on highland deer mouse populations and suggests changes in metabolic regulation may explain altitude differences in exercise performance.
Collapse
|
43
|
Schweizer RM, Jones MR, Bradburd GS, Storz JF, Senner NR, Wolf C, Cheviron ZA. Broad Concordance in the Spatial Distribution of Adaptive and Neutral Genetic Variation across an Elevational Gradient in Deer Mice. Mol Biol Evol 2021; 38:4286-4300. [PMID: 34037784 PMCID: PMC8476156 DOI: 10.1093/molbev/msab161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When species are continuously distributed across environmental gradients, the relative strength of selection and gene flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci. Determining whether adaptive genetic variation tends to be structured differently than neutral variation along environmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a combination of selection scans, genotype-environment associations, and geographic cline analyses, we found that a large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Southwest Biological Science Center, U.S. Geological Survey, Flagstaff, AZ, USA
| | - Gideon S Bradburd
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Nathan R Senner
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cole Wolf
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
44
|
Colella JP, Blumstein DM, MacManes MD. Disentangling environmental drivers of circadian metabolism in desert-adapted mice. J Exp Biol 2021; 224:jeb242529. [PMID: 34495305 PMCID: PMC8502254 DOI: 10.1242/jeb.242529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/13/2021] [Indexed: 01/21/2023]
Abstract
Metabolism is a complex phenotype shaped by natural environmental rhythms, as well as behavioral, morphological and physiological adaptations. Metabolism has been historically studied under constant environmental conditions, but new methods of continuous metabolic phenotyping now offer a window into organismal responses to dynamic environments, and enable identification of abiotic controls and the timing of physiological responses relative to environmental change. We used indirect calorimetry to characterize metabolic phenotypes of the desert-adapted cactus mouse (Peromyscus eremicus) in response to variable environmental conditions that mimic their native environment versus those recorded under constant warm and constant cool conditions, with a constant photoperiod and full access to resources. We found significant sexual dimorphism, with males being more prone to dehydration than females. Under circadian environmental variation, most metabolic shifts occurred prior to physical environmental change and the timing was disrupted under both constant treatments. The ratio of CO2 produced to O2 consumed (the respiratory quotient) reached greater than 1.0 only during the light phase under diurnally variable conditions, a pattern that strongly suggests that lipogenesis contributes to the production of energy and endogenous water. Our results are consistent with historical descriptions of circadian torpor in this species (torpid by day, active by night), but reject the hypothesis that torpor is initiated by food restriction or negative water balance.
Collapse
Affiliation(s)
| | | | - Matthew D. MacManes
- University of New Hampshire, Department of Molecular, Cellular, and Biomedical Sciences, Durham, NH 03824, USA
| |
Collapse
|
45
|
Ivy CM, Prest H, West CM, Scott GR. Distinct Mechanisms Underlie Developmental Plasticity and Adult Acclimation of Thermogenic Capacity in High-Altitude Deer Mice. Front Physiol 2021; 12:718163. [PMID: 34456754 PMCID: PMC8385410 DOI: 10.3389/fphys.2021.718163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental plasticity can elicit phenotypic adjustments that help organisms cope with environmental change, but the relationship between developmental plasticity and plasticity in adult life (e.g., acclimation) remains unresolved. We sought to examine developmental plasticity and adult acclimation in response to hypoxia of aerobic capacity (V̇O2max) for thermogenesis in deer mice (Peromyscus maniculatus) native to high altitude. Deer mice were bred in captivity and exposed to normoxia or one of four hypoxia treatments (12 kPa O2) across life stages: adult hypoxia (6–8 weeks), post-natal hypoxia (birth to adulthood), life-long hypoxia (before conception to adulthood), and parental hypoxia (mice conceived and raised in normoxia, but parents previously exposed to hypoxia). Hypoxia during perinatal development increased V̇O2max by a much greater magnitude than adult hypoxia. The amplified effect of developmental hypoxia resulted from physiological plasticity that did not occur with adult hypoxia – namely, increases in lung ventilation and volume. Evolved characteristics of deer mice enabled developmental plasticity, because white-footed mice (P. leucopus; a congener restricted to low altitudes) could not raise pups in hypoxia. Parental hypoxia had no persistent effects on V̇O2max. Therefore, developmental plasticity can have much stronger phenotypic effects and can manifest from distinct physiological mechanisms from adult acclimation.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Haley Prest
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Claire M West
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
46
|
The adaptive benefit of evolved increases in hemoglobin-O 2 affinity is contingent on tissue O 2 diffusing capacity in high-altitude deer mice. BMC Biol 2021; 19:128. [PMID: 34158035 PMCID: PMC8218429 DOI: 10.1186/s12915-021-01059-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2 consumption, V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2 inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2 affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2 transport pathway to examine the links between cardiorespiratory traits and V̇O2max. RESULTS Physiological experiments revealed that increases in Hb-O2 affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement in V̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2 affinity on V̇O2max in hypoxia was contingent on the capacity for O2 diffusion in active tissues. CONCLUSIONS These results suggest that increases in Hb-O2 affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2 diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2 affinity is contingent on the capacity to extract O2 from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.
Collapse
|
47
|
Betancourt NJ, Rajpurohit S, Durmaz E, Fabian DK, Kapun M, Flatt T, Schmidt P. Allelic polymorphism at foxo contributes to local adaptation in Drosophila melanogaster. Mol Ecol 2021; 30:2817-2830. [PMID: 33914989 PMCID: PMC8693798 DOI: 10.1111/mec.15939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.
Collapse
Affiliation(s)
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, India
| | - Esra Durmaz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniel K. Fabian
- Department of Genetics, University of Cambridge, Cambridge, UK
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Gutierrez-Pinto N, Londoño GA, Chappell MA, Storz JF. A test of altitude-related variation in aerobic metabolism of Andean birds. J Exp Biol 2021; 224:1-6. [PMID: 34060605 DOI: 10.1242/jeb.237990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Endotherms at high altitude face the combined challenges of cold and hypoxia. Cold increases thermoregulatory costs, and hypoxia may limit both thermogenesis and aerobic exercise capacity. Consequently, in comparisons between closely related highland and lowland taxa, we might expect to observe consistent differences in basal metabolic rate (BMR), maximal metabolic rate (MMR) and aerobic scope. Broad-scale comparative studies of birds reveal no association between BMR and native elevation, and altitude effects on MMR have not been investigated. We tested for altitude-related variation in aerobic metabolism in 10 Andean passerines representing five pairs of closely related species with contrasting elevational ranges. Mass-corrected BMR and MMR were significantly higher in most highland species relative to their lowland counterparts, but there was no uniform elevational trend across all pairs of species. Our results suggest that there is no simple explanation regarding the ecological and physiological causes of elevational variation in aerobic metabolism.
Collapse
Affiliation(s)
| | - Gustavo A Londoño
- Departamento de Ciencias Biológicas, Facultad de Ciencias Naturales, Universidad Icesi, Cali 760031, Colombia
| | - Mark A Chappell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
49
|
Colella JP, Tigano A, Dudchenko O, Omer AD, Khan R, Bochkov ID, Aiden EL, MacManes MD. Limited Evidence for Parallel Evolution Among Desert-Adapted Peromyscus Deer Mice. J Hered 2021; 112:286-302. [PMID: 33686424 PMCID: PMC8141686 DOI: 10.1093/jhered/esab009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/27/2021] [Indexed: 01/14/2023] Open
Abstract
Warming climate and increasing desertification urge the identification of genes involved in heat and dehydration tolerance to better inform and target biodiversity conservation efforts. Comparisons among extant desert-adapted species can highlight parallel or convergent patterns of genome evolution through the identification of shared signatures of selection. We generate a chromosome-level genome assembly for the canyon mouse (Peromyscus crinitus) and test for a signature of parallel evolution by comparing signatures of selective sweeps across population-level genomic resequencing data from another congeneric desert specialist (Peromyscus eremicus) and a widely distributed habitat generalist (Peromyscus maniculatus), that may be locally adapted to arid conditions. We identify few shared candidate loci involved in desert adaptation and do not find support for a shared pattern of parallel evolution. Instead, we hypothesize divergent molecular mechanisms of desert adaptation among deer mice, potentially tied to species-specific historical demography, which may limit or enhance adaptation. We identify a number of candidate loci experiencing selective sweeps in the P. crinitus genome that are implicated in osmoregulation (Trypsin, Prostasin) and metabolic tuning (Kallikrein, eIF2-alpha kinase GCN2, APPL1/2), which may be important for accommodating hot and dry environmental conditions.
Collapse
Affiliation(s)
- Jocelyn P Colella
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH.,Hubbard Genome Center, University of New Hampshire, Durham, NH.,Biodiversity Institute, University of Kansas, Lawrence, KS
| | - Anna Tigano
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH.,Hubbard Genome Center, University of New Hampshire, Durham, NH
| | - Olga Dudchenko
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Center for Theoretical and Biological Physics, Rice University, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX
| | - Arina D Omer
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ruqayya Khan
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX
| | - Ivan D Bochkov
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX
| | - Erez L Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX.,Center for Theoretical and Biological Physics, Rice University, Houston, TX.,Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.,School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH.,Hubbard Genome Center, University of New Hampshire, Durham, NH
| |
Collapse
|
50
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|