1
|
Xue Y, Kang X. Crystal structure of the C1 domain of the surface-layer protein SlpM from Lactobacillus brevis: a module involved in protein self-assembly. Acta Crystallogr F Struct Biol Commun 2025; 81:255-262. [PMID: 40371669 PMCID: PMC12121393 DOI: 10.1107/s2053230x25004194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
Surface-layer proteins (SLPs) play a crucial role in the self-assembly of bacterial surface layers, yet the structural details of their assembly domains remain largely unexplored. Here, we report the crystal structure of SlpM_C1, a structural module within the self-assembly domain of SlpM from Lactobacillus brevis. SlpM_C1 adopts a β-grasp fold, a conserved structural motif found in diverse protein families. Structural comparisons with ubiquitin and the SlpA_II domain from L. acidophilus reveal both shared and distinct features, highlighting elements of structural convergence despite sequence divergence. Furthermore, the dimerization patterns of SlpM_C1 and SlpA_II are compared and discussed. These findings provide new insights into the architecture and evolutionary adaptability of SLPs in Lactobacillus species.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211People’s Republic of China
| | - Xue Kang
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211People’s Republic of China
| |
Collapse
|
2
|
Grill-Walcher S, Schäffer C. A new age in structural S-layer biology - Experimental and in silico milestones. J Biol Chem 2025:110205. [PMID: 40345586 DOI: 10.1016/j.jbc.2025.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
Surface (S-) layer proteins, considered as the most abundant proteins in nature, perform diverse and essential biological roles in many bacteria and most archaea. Their functions range from providing structural support, maintaining cell shape, and protecting against extreme environments to acting as a cell surface display matrix for biologically active molecules, such as S-layer protein-bound glycans, which facilitate interspecies interactions and cellular communication in both health and disease. The intricate, symmetric, nanometer-scale patterns of S-layer lattices have long fascinated structural biologists, yet only recent methodological advances have revealed detailed molecular insights. These advances include a deeper understanding of domain organization, cell wall anchoring mechanisms, and how nascent proteins are incorporated into existing lattices. Significant progress in sample preparation and high-resolution imaging has led to the precise structural characterization of S-layers across various bacterial and archaeal species. Furthermore, the advent of deep learning-based structure prediction has enabled modeling of S-layer proteins in several largely uncultured microbial lineages. This review summarizes major achievements in S-layer protein structural research over the past five years, presenting them with a typical workflow for the experimental structure determination. For the first time, it also explores recent breakthroughs in computational S-layer modelling and offers an outlook on how in silico methods may further advance our understanding of S-layer protein architecture.
Collapse
Affiliation(s)
- Stephanie Grill-Walcher
- Department of Natural Sciences and Sustainable Resources, Institute of Biochemistry, NanoGlycobiology Research Group, BOKU University, Vienna, Austria
| | - Christina Schäffer
- Department of Natural Sciences and Sustainable Resources, Institute of Biochemistry, NanoGlycobiology Research Group, BOKU University, Vienna, Austria.
| |
Collapse
|
3
|
Wang H, Zhang J, Liao S, Henstra AM, Leon D, Erde J, Loo JA, Ogorzalek Loo RR, Zhou ZH, Gunsalus RP. Composition and in situ structure of the Methanospirillum hungatei cell envelope and surface layer. SCIENCE ADVANCES 2024; 10:eadr8596. [PMID: 39671499 PMCID: PMC11641113 DOI: 10.1126/sciadv.adr8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Archaea share genomic similarities with Eukarya and cellular architectural similarities with Bacteria, though archaeal and bacterial surface layers (S-layers) differ. Using cellular cryo-electron tomography, we visualized the S-layer lattice surrounding Methanospirillum hungatei, a methanogenic archaeon. Though more compact than known structures, M. hungatei's S-layer is a flexible hexagonal lattice of dome-shaped tiles, uniformly spaced from both the overlying cell sheath and the underlying cell membrane. Subtomogram averaging resolved the S-layer hexamer tile at 6.4-angstrom resolution. By fitting an AlphaFold model into hexamer tiles in flat and curved conformations, we uncover intra- and intertile interactions that contribute to the S-layer's cylindrical and flexible architecture, along with a spacer extension for cell membrane attachment. M. hungatei cell's end plug structure, likely composed of S-layer isoforms, further highlights the uniqueness of this archaeal cell. These structural features offer advantages for methane release and reflect divergent evolutionary adaptations to environmental pressures during early microbial emergence.
Collapse
Affiliation(s)
- Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Jiayan Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anne M. Henstra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Deborah Leon
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jonathan Erde
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
- UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA
| | | | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- UCLA-DOE Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Buhlheller C, Sagmeister T, Grininger C, Gubensäk N, Sleytr UB, Usón I, Pavkov-Keller T. SymProFold: Structural prediction of symmetrical biological assemblies. Nat Commun 2024; 15:8152. [PMID: 39294115 PMCID: PMC11410804 DOI: 10.1038/s41467-024-52138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Symmetry in nature often emerges from self-assembly processes and serves a wide range of functions. Cell surface layers (S-layers) form symmetrical lattices on many bacterial and archaeal cells, playing essential roles such as facilitating cell adhesion, evading the immune system, and protecting against environmental stress. However, the experimental structural characterization of these S-layers is challenging due to their self-assembly properties and high sequence variability. In this study, we introduce the SymProFold pipeline, which utilizes the high accuracy of AlphaFold-Multimer predictions to derive symmetrical assemblies from protein sequences, specifically focusing on two-dimensional S-layer arrays and spherical viral capsids. The pipeline tests all known symmetry operations observed in these systems (p1, p2, p3, p4, and p6) and identifies the most likely symmetry for the assembly. The predicted models were validated using available experimental data at the cellular level, and additional crystal structures were obtained to confirm the symmetry and interfaces of several SymProFold assemblies. Overall, the SymProFold pipeline enables the determination of symmetric protein assemblies linked to critical functions, thereby opening possibilities for exploring functionalities and designing targeted applications in diverse fields such as nanotechnology, biotechnology, medicine, and materials and environmental sciences.
Collapse
Affiliation(s)
- Christoph Buhlheller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Medical University of Graz, Graz, Austria
| | - Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Nina Gubensäk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Uwe B Sleytr
- Institute of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Isabel Usón
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed-Graz, University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Protasov E, Reeh H, Liu P, Poehlein A, Platt K, Heimerl T, Hervé V, Daniel R, Brune A. Genome reduction in novel, obligately methyl-reducing Methanosarcinales isolated from arthropod guts (Methanolapillus gen. nov. and Methanimicrococcus). FEMS Microbiol Ecol 2024; 100:fiae111. [PMID: 39108084 PMCID: PMC11362671 DOI: 10.1093/femsec/fiae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Recent metagenomic studies have identified numerous lineages of hydrogen-dependent, obligately methyl-reducing methanogens. Yet, only a few representatives have been isolated in pure culture. Here, we describe six new species with this capability in the family Methanosarcinaceae (order Methanosarcinales), which makes up a substantial fraction of the methanogenic community in arthropod guts. Phylogenomic analysis placed the isolates from cockroach hindguts into the genus Methanimicrococcus (M. hacksteinii, M. hongohii, and M. stummii) and the isolates from millipede hindguts into a new genus, Methanolapillus (M. africanus, M. millepedarum, and M. ohkumae). Members of this intestinal clade, which includes also uncultured representatives from termites and vertebrates, have substantially smaller genomes (1.6-2.2 Mbp) than other Methanosarcinales. Genome reduction was accompanied by the loss of the upper part of the Wood-Ljungdahl pathway, several energy-converting membrane complexes (Fpo, Ech, and Rnf), and various biosynthetic pathways. However, genes involved in the protection against reactive oxygen species (catalase and superoxide reductase) were conserved in all genomes, including cytochrome bd (CydAB), a high-affinity terminal oxidase that may confer the capacity for microaerobic respiration. Since host-associated Methanosarcinales are nested within omnivorous lineages, we conclude that the specialization on methyl groups is an adaptation to the intestinal environment.
Collapse
Affiliation(s)
- Evgenii Protasov
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hanna Reeh
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Pengfei Liu
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center for Pan-third Pole Environment, Lanzhou University, 730000 Lanzhou, China
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Université Paris-Saclay, INRAE, AgroParisTech
, UMR SayFood, 91120 Palaiseau, France
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
6
|
Agnew A, Humm E, Zhou K, Gunsalus RP, Zhou ZH. Reconstruction and identification of the native PLP synthase complex from Methanosarcina acetivorans lysate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602819. [PMID: 39026688 PMCID: PMC11257533 DOI: 10.1101/2024.07.09.602819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Many protein-protein interactions behave differently in biochemically purified forms as compared to their in vivo states. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here we apply the bottom-up structural proteomics method, cryoID , toward a model methanogenic archaeon. While they are keystone organisms in the global carbon cycle and active members of the human microbiome, there is a general lack of characterization of methanogen enzyme structure and function. Through the cryoID approach, we successfully reconstructed and identified the native Methanosarcina acetivorans pyridoxal 5'-phosphate (PLP) synthase (PdxS) complex directly from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single 8α/8β TIM-barrel domain, surrounded by seven additional helices to mediate solvent and interface contacts. A density is present at the active site in the cryoEM map and is interpreted as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a heterogeneous cellular sample, our results reveal a departure from previously published archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior cases. This study demonstrates the potential of applying the cryoID workflow to capture native structural states at atomic resolution for archaeal systems, for which traditional biochemical sample preparation is nontrivial.
Collapse
|
7
|
Tan Y, Xiao Y, Hao T. Carbon fixation via volatile fatty acids recovery from sewage sludge through electrochemical-pretreatment-based anaerobic digestion. WATER RESEARCH 2024; 258:121736. [PMID: 38754300 DOI: 10.1016/j.watres.2024.121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Capturing the carbon in volatile fatty acids (VFA) produced from the anaerobic digestion (AD) of sewage sludge has the potential to not only provide economic benefits but also reduce greenhouse gas production. This study demonstrates a chemical-free method to collect VFA from an AD instead of methane that involves electrochemical pretreatment (EPT) of sludge. Experimental results show that applying 15 V EPT for 45 min enhances acidogenesis and selectively inhibits methanogenesis, leading to a substantial VFA accumulation (2563.1 ± 307.9 mg COD/L) and achieving 2.5 times more carbon fixation than via methane production. Interfacial thermodynamic analysis shows that EPT induces a decrease in both the repulsive electrostatic energy (from 152.9 kT to 12.2 kT) and the energy barrier (from 57.0 kT to 2.6 kT) in the sludge, leading to increased sludge aggregation and entrapment of microorganisms. Molecular docking sheds lights on how the methanogens interacts with the organic matter released from EPT (e.g., alanine-tRNA ligase), showing that these interactions potentially interfere with the proteins that are associated with the activities of the methanogens and the electron transfer pathways, thereby impeding methanogenesis. Integrating EPT into AD therefore facilitates the recovery of valuable VFA and the capture of carbon from freshwater sludge, providing notable economic and environmental benefits in sewage sludge treatment.
Collapse
Affiliation(s)
- Yunkai Tan
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, PR China.
| |
Collapse
|
8
|
Li XH, Duan JL, Ma JY, Liu XY, Sun XD, Wang Y, Tan MM, Yuan XZ. Probing the Surface Layer Modulation on Archaeal Mechanics and Adhesion at the Single-Cell Level. Anal Chem 2024; 96:8981-8989. [PMID: 38758609 DOI: 10.1021/acs.analchem.4c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Addressing the challenge of understanding how cellular interfaces dictate the mechanical resilience and adhesion of archaeal cells, this study demonstrates the role of the surface layer (S-layer) in methanogenic archaea. Using a combination of atomic force microscopy and single-cell force spectroscopy, we quantified the impact of S-layer disruption on cell morphology, mechanical properties, and adhesion capabilities. We demonstrate that the S-layer is crucial for maintaining cell morphology, where its removal induces significant cellular enlargement and deformation. Mechanical stability of the cell surface is substantially compromised upon S-layer disruption, as evidenced by decreased Young's modulus values. Adhesion experiments revealed that the S-layer primarily facilitates hydrophobic interactions, which are significantly reduced after its removal, affecting both cell-cell and cell-bubble interactions. Our findings illuminate the S-layer's fundamental role in methanogen architecture and provide a chemical understanding of archaeal cell surfaces, with implications for enhancing methane production in biotechnological applications.
Collapse
Affiliation(s)
- Xiao-Hua Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Jing-Ya Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Yu Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xiao-Dong Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Yue Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Miao-Miao Tan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
- Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, Shandong 266237, P. R. China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai, Shandong 264209, P. R. China
| |
Collapse
|
9
|
Gupta D, Chen K, Elliott SJ, Nayak DD. MmcA is an electron conduit that facilitates both intracellular and extracellular electron transport in Methanosarcina acetivorans. Nat Commun 2024; 15:3300. [PMID: 38632227 PMCID: PMC11024163 DOI: 10.1038/s41467-024-47564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Methanogens are a diverse group of Archaea that obligately couple energy conservation to the production of methane. Some methanogens encode alternate pathways for energy conservation, like anaerobic respiration, but the biochemical details of this process are unknown. We show that a multiheme c-type cytochrome called MmcA from Methanosarcina acetivorans is important for intracellular electron transport during methanogenesis and can also reduce extracellular electron acceptors like soluble Fe3+ and anthraquinone-2,6-disulfonate. Consistent with these observations, MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. Additionally, mutants lacking mmcA have significantly slower Fe3+ reduction rates. The mmcA locus is prevalent in members of the Order Methanosarcinales and is a part of a distinct clade of multiheme cytochromes that are closely related to octaheme tetrathionate reductases. Taken together, MmcA might act as an electron conduit that can potentially support a variety of energy conservation strategies that extend beyond methanogenesis.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Keying Chen
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Dipti D Nayak
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
10
|
Kato S, Tahara YO, Nishimura Y, Uematsu K, Arai T, Nakane D, Ihara A, Nishizaka T, Iwasaki W, Itoh T, Miyata M, Ohkuma M. Cell surface architecture of the cultivated DPANN archaeon Nanobdella aerobiophila. J Bacteriol 2024; 206:e0035123. [PMID: 38289045 PMCID: PMC10882981 DOI: 10.1128/jb.00351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
The DPANN archaeal clade includes obligately ectosymbiotic species. Their cell surfaces potentially play an important role in the symbiotic interaction between the ectosymbionts and their hosts. However, little is known about the mechanism of ectosymbiosis. Here, we show cell surface structures of the cultivated DPANN archaeon Nanobdella aerobiophila strain MJ1T and its host Metallosphaera sedula strain MJ1HA, using a variety of electron microscopy techniques, i.e., negative-staining transmission electron microscopy, quick-freeze deep-etch TEM, and 3D electron tomography. The thickness, unit size, and lattice symmetry of the S-layer of strain MJ1T were different from those of the host archaeon strain MJ1HA. Genomic and transcriptomic analyses highlighted the most highly expressed MJ1T gene for a putative S-layer protein with multiple glycosylation sites and immunoglobulin-like folds, which has no sequence homology to known S-layer proteins. In addition, genes for putative pectin lyase- or lectin-like extracellular proteins, which are potentially involved in symbiotic interaction, were found in the MJ1T genome based on in silico 3D protein structure prediction. Live cell imaging at the optimum growth temperature of 65°C indicated that cell complexes of strains MJ1T and MJ1HA were motile, but sole MJ1T cells were not. Taken together, we propose a model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila.IMPORTANCEDPANN archaea are widely distributed in a variety of natural and artificial environments and may play a considerable role in the microbial ecosystem. All of the cultivated DPANN archaea so far need host organisms for their growth, i.e., obligately ectosymbiotic. However, the mechanism of the ectosymbiosis by DPANN archaea is largely unknown. To this end, we performed a comprehensive analysis of the cultivated DPANN archaeon, Nanobdella aerobiophila, using electron microscopy, live cell imaging, transcriptomics, and genomics, including 3D protein structure prediction. Based on the results, we propose a reasonable model of the symbiotic interaction and cell cycle of Nanobdella aerobiophila, which will enhance our understanding of the enigmatic physiology and ecological significance of DPANN archaea.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yuki Nishimura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | - Daisuke Nakane
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Ayaka Ihara
- Department of Physics, Gakushuin University, Tokyo, Japan
| | | | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Gambelli L, McLaren M, Conners R, Sanders K, Gaines MC, Clark L, Gold VAM, Kattnig D, Sikora M, Hanus C, Isupov MN, Daum B. Structure of the two-component S-layer of the archaeon Sulfolobus acidocaldarius. eLife 2024; 13:e84617. [PMID: 38251732 PMCID: PMC10903991 DOI: 10.7554/elife.84617] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single-particle cryo electron microscopy, cryo electron tomography, and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes in SlaA play important roles in S-layer assembly.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Matthew C Gaines
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Lewis Clark
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel Kattnig
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Mateusz Sikora
- Department of Theoretical Biophysics, Max Planck Institute for Biophysics, Frankfurt, Germany
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Cyril Hanus
- Institute of Psychiatry and Neurosciences of Paris, Inserm UMR1266 - Université Paris Cité, Paris, France
- GHU Psychiatrie et Neurosciences de Paris, Paris, France
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
12
|
Williams AM, Jolley EA, Santiago-Martínez MG, Chan CX, Gutell RR, Ferry JG, Bevilacqua PC. In vivo structure probing of RNA in Archaea: novel insights into the ribosome structure of Methanosarcina acetivorans. RNA (NEW YORK, N.Y.) 2023; 29:1610-1620. [PMID: 37491319 PMCID: PMC10578495 DOI: 10.1261/rna.079687.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/24/2023] [Indexed: 07/27/2023]
Abstract
Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.
Collapse
Affiliation(s)
- Allison M Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth A Jolley
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Robin R Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
13
|
Abstract
Methanogenic archaea are the only organisms that produce CH4 as part of their energy-generating metabolism. They are ubiquitous in oxidant-depleted, anoxic environments such as aquatic sediments, anaerobic digesters, inundated agricultural fields, the rumen of cattle, and the hindgut of termites, where they catalyze the terminal reactions in the degradation of organic matter. Methanogenesis is the only metabolism that is restricted to members of the domain Archaea. Here, we discuss the importance of model organisms in the history of methanogen research, including their role in the discovery of the archaea and in the biochemical and genetic characterization of methanogenesis. We also discuss outstanding questions in the field and newly emerging model systems that will expand our understanding of this uniquely archaeal metabolism.
Collapse
Affiliation(s)
- Kyle C. Costa
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | | |
Collapse
|
14
|
Abdel Azim A, Vizzarro A, Bellini R, Bassani I, Baudino L, Pirri CF, Verga F, Lamberti A, Menin B. Perspective on the use of methanogens in lithium recovery from brines. Front Microbiol 2023; 14:1233221. [PMID: 37601371 PMCID: PMC10434214 DOI: 10.3389/fmicb.2023.1233221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Methanogenic archaea stand out as multipurpose biocatalysts for different applications in wide-ranging industrial sectors due to their crucial role in the methane (CH4) cycle and ubiquity in natural environments. The increasing demand for raw materials required by the manufacturing sector (i.e., metals-, concrete-, chemicals-, plastic- and lubricants-based industries) represents a milestone for the global economy and one of the main sources of CO2 emissions. Recovery of critical raw materials (CRMs) from byproducts generated along their supply chain, rather than massive mining operations for mineral extraction and metal smelting, represents a sustainable choice. Demand for lithium (Li), included among CRMs in 2023, grew by 17.1% in the last decades, mostly due to its application in rechargeable lithium-ion batteries. In addition to mineral deposits, the natural resources of Li comprise water, ranging from low Li concentrations (seawater and freshwater) to higher ones (salt lakes and artificial brines). Brines from water desalination can be high in Li content which can be recovered. However, biological brine treatment is not a popular methodology. The methanogenic community has already demonstrated its ability to recover several CRMs which are not essential to their metabolism. Here, we attempt to interconnect the well-established biomethanation process with Li recovery from brines, by analyzing the methanogenic species which may be suitable to grow in brine-like environments and the corresponding mechanism of recovery. Moreover, key factors which should be considered to establish the techno-economic feasibility of this process are here discussed.
Collapse
Affiliation(s)
- Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Arianna Vizzarro
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Ruggero Bellini
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Luisa Baudino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Francesca Verga
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Lamberti
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche, Milan, Italy
| |
Collapse
|
15
|
Feregrino-Mondragón RD, Santiago-Martínez MG, Silva-Flores M, Encalada R, Reyes-Prieto A, Rodríguez-Zavala JS, Peña-Ocaña BA, Moreno-Sánchez R, Saavedra E, Jasso-Chávez R. Lactate oxidation is linked to energy conservation and to oxygen detoxification via a putative terminal cytochrome oxidase in Methanosarcina acetivorans. Arch Biochem Biophys 2023:109667. [PMID: 37327962 DOI: 10.1016/j.abb.2023.109667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.
Collapse
Affiliation(s)
| | - Michel Geovanni Santiago-Martínez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico; Department of Molecular and Cell Biology, The University of Connecticut, Storrs, 06269, Connecticut, USA
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Adrián Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico.
| |
Collapse
|
16
|
Gupta D, Chen K, Elliott SJ, Nayak DD. MmcA is an electron conduit that facilitates both intracellular and extracellular electron transport in Methanosarcina acetivorans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537704. [PMID: 37131651 PMCID: PMC10153276 DOI: 10.1101/2023.04.20.537704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Methanogens are a diverse group of Archaea that couple energy conservation to the production of methane gas. While most methanogens have no alternate mode of energy conservation, strains like Methanosarcina acetivorans are known to also conserve energy by dissimilatory metal reduction (DSMR) in the presence of soluble ferric iron or iron-containing minerals. The ecological ramifications of energy conservation decoupled from methane production in methanogens are substantial, yet the molecular details are poorly understood. In this work, we conducted in vitro and in vivo studies with a multiheme c-type cytochrome (MHC), called MmcA, to establish its role during methanogenesis and DSMR in M. acetivorans. MmcA purified from M. acetivorans can donate electrons to methanophenazine, a membrane-bound electron carrier, to facilitate methanogenesis. In addition, MmcA can also reduce Fe(III) and the humic acid analog anthraquinone-2,6-disulfonate (AQDS) during DSMR. Furthermore, mutants lacking mmcA have slower Fe(III) reduction rates. The redox reactivities of MmcA are consistent with the electrochemical data where MmcA displays reversible redox features ranging from -100 to -450 mV versus SHE. MmcA is prevalent in members of the Order Methanosarcinales but does not belong to a known family of MHCs linked to extracellular electron transfer, bioinformatically, and instead forms a distinct clade that is closely related to octaheme tetrathionate reductases. Taken together, this study shows that MmcA is widespread in methanogens with cytochromes where it acts as an electron conduit to support a variety of energy conservation strategies that extend beyond methanogenesis.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Keying Chen
- Department of Chemistry, Boston University, Boston, MA, USA
| | | | - Dipti D. Nayak
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
17
|
von Kügelgen A, van Dorst S, Yamashita K, Sexton DL, Tocheva EI, Murshudov G, Alva V, Bharat TAM. Interdigitated immunoglobulin arrays form the hyperstable surface layer of the extremophilic bacterium Deinococcus radiodurans. Proc Natl Acad Sci U S A 2023; 120:e2215808120. [PMID: 37043530 PMCID: PMC10120038 DOI: 10.1073/pnas.2215808120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Deinococcus radiodurans is an atypical diderm bacterium with a remarkable ability to tolerate various environmental stresses, due in part to its complex cell envelope encapsulated within a hyperstable surface layer (S-layer). Despite decades of research on this cell envelope, atomic structural details of the S-layer have remained obscure. In this study, we report the electron cryomicroscopy structure of the D. radiodurans S-layer, showing how it is formed by the Hexagonally Packed Intermediate-layer (HPI) protein arranged in a planar hexagonal lattice. The HPI protein forms an array of immunoglobulin-like folds within the S-layer, with each monomer extending into the adjacent hexamer, resulting in a highly interconnected, stable, sheet-like arrangement. Using electron cryotomography and subtomogram averaging from focused ion beam-milled D. radiodurans cells, we have obtained a structure of the cellular S-layer, showing how this HPI S-layer coats native membranes on the surface of cells. Our S-layer structure from the diderm bacterium D. radiodurans shows similarities to immunoglobulin-like domain-containing S-layers from monoderm bacteria and archaea, highlighting common features in cell surface organization across different domains of life, with connotations on the evolution of immunoglobulin-based molecular recognition systems in eukaryotes.
Collapse
Affiliation(s)
- Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Sofie van Dorst
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| | - Keitaro Yamashita
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Danielle L. Sexton
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Elitza I. Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Garib Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen72076, Germany
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, OxfordOX1 3RE, United Kingdom
| |
Collapse
|
18
|
Rao R, Hu J, Lee PH. Theoretical characterisation of electron tunnelling from granular activated carbon to electron accepting organisms in direct interspecies electron transfer. Sci Rep 2022; 12:12426. [PMID: 35858919 PMCID: PMC9300713 DOI: 10.1038/s41598-022-15606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Direct interspecies electron transfer (DIET) has been identified as an efficient metabolism between symbiotically interacting organisms. One method of DIET uses conductive materials (e.g., granular activated carbon (GAC)) as a medium to shuttle electrons from electron donating organisms (eg., Geobacter metallireducens) to electron accepting organisms (e.g., Geobacter sulfurreducens and Methanosarcina barkeri). Conductive materials such as GAC, become negatively charged in DIET processes due to reduction by electron donating organisms. This high excess electron density in GAC leads to quantum tunnelling of electrons being a significant electron transfer mechanism for DIET. Thus, a theoretical model obeying the Wentzel–Kramers–Brillouin (WKB) approximation and Fermi–Dirac statistics was developed and simulated. In the model, the electron tunnelling transfer barrier was described by an effective rectangular barrier. The result of our 1D tunnelling simulations indicates that within 29.4 nm of the GAC, tunnelling can sufficiently supply electrons from GAC to G. sulfurreducens and M. barkeri. The phenomenon of tunnelling may also have significance as a stimulant of chemotaxis for G. sulfurreducens and other electron accepting microbes when attempting to adsorb onto GAC. This study sheds light on quantum tunnelling’s significant potential in both bacterium and archaeon DIET-centric processes.
Collapse
Affiliation(s)
- Rohan Rao
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, UK.,Department of Physics, Oxford University, Oxford, UK
| | - Jing Hu
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
19
|
Lanzoni-Mangutchi P, Banerji O, Wilson J, Barwinska-Sendra A, Kirk JA, Vaz F, O'Beirne S, Baslé A, El Omari K, Wagner A, Fairweather NF, Douce GR, Bullough PA, Fagan RP, Salgado PS. Structure and assembly of the S-layer in C. difficile. Nat Commun 2022; 13:970. [PMID: 35217634 PMCID: PMC8881574 DOI: 10.1038/s41467-022-28196-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30-100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.
Collapse
Affiliation(s)
- Paola Lanzoni-Mangutchi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oishik Banerji
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Royal Society of Chemistry, Burlington House, Piccadilly, London, UK
| | - Jason Wilson
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph A Kirk
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Filipa Vaz
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Shauna O'Beirne
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Per A Bullough
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Robert P Fagan
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Paula S Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
20
|
Kim NH, Choi H, Shahzad ZM, Ki H, Lee J, Chae H, Kim YH. Supramolecular assembly of protein building blocks: from folding to function. NANO CONVERGENCE 2022; 9:4. [PMID: 35024976 PMCID: PMC8755899 DOI: 10.1186/s40580-021-00294-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Several phenomena occurring throughout the life of living things start and end with proteins. Various proteins form one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein folding and protein-protein interfaces, considerable progress has recently been made in the de novo design of protein assemblies. Our review presents a description of the components of supramolecular protein assembly and their application in understanding biological phenomena to therapeutics.
Collapse
Affiliation(s)
- Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Zafar Muhammad Shahzad
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heesoo Ki
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaekyoung Lee
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
| |
Collapse
|
21
|
Abstract
In previous publications, it was hypothesized that Micrarchaeota cells are covered by two individual membrane systems. This study proves that at least the recently cultivated "Candidatus Micrarchaeum harzensis A_DKE" possesses an S-layer covering its cytoplasmic membrane. The potential S-layer protein was found to be among the proteins with the highest abundance in "Ca. Micrarchaeum harzensis A_DKE" and in silico characterisation of its primary structure indicated homologies to other known S-layer proteins. Homologues of this protein were found in other Micrarchaeota genomes, which raises the question of whether the ability to form an S-layer is a common trait within this phylum. The S-layer protein seems to be glycosylated and the Micrarchaeon expresses genes for N-glycosylation under cultivation conditions, despite not being able to synthesize carbohydrates. Electron micrographs of freeze-etched samples of a previously described co-culture, containing Micrarchaeum A_DKE and a Thermoplasmatales member as its host organism, verified the hypothesis of an S-layer on the surface of "Ca. Micrarchaeum harzensis A_DKE". Both organisms are clearly distinguishable by cell size, shape and surface structure. Importance Our knowledge about the DPANN superphylum, which comprises several archaeal phyla with limited metabolic capacities, is mostly based on genomic data derived from cultivation-independent approaches. This study examined the surface structure of a recently cultivated member "Candidatus Micrarchaeum harzensis A_DKE", an archaeal symbiont dependent on an interaction with a host organism for growth. The interaction requires direct cell contact between interaction partners, a mechanism which is also described for other DPANN archaea. Investigating the surface structure of "Ca. Micrarchaeum harzensis A_DKE" is an important step towards understanding the interaction between Micrarchaeota and their host organisms and living with limited metabolic capabilities, a trait shared by several DPANN archaea.
Collapse
|
22
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
23
|
Gambelli L, Mesman R, Versantvoort W, Diebolder CA, Engel A, Evers W, Jetten MSM, Pabst M, Daum B, van Niftrik L. The Polygonal Cell Shape and Surface Protein Layer of Anaerobic Methane-Oxidizing Methylomirabilis lanthanidiphila Bacteria. Front Microbiol 2021; 12:766527. [PMID: 34925275 PMCID: PMC8671808 DOI: 10.3389/fmicb.2021.766527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Methylomirabilis bacteria perform anaerobic methane oxidation coupled to nitrite reduction via an intra-aerobic pathway, producing carbon dioxide and dinitrogen gas. These diderm bacteria possess an unusual polygonal cell shape with sharp ridges that run along the cell body. Previously, a putative surface protein layer (S-layer) was observed as the outermost cell layer of these bacteria. We hypothesized that this S-layer is the determining factor for their polygonal cell shape. Therefore, we enriched the S-layer from M. lanthanidiphila cells and through LC-MS/MS identified a 31 kDa candidate S-layer protein, mela_00855, which had no homology to any other known protein. Antibodies were generated against a synthesized peptide derived from the mela_00855 protein sequence and used in immunogold localization to verify its identity and location. Both on thin sections of M. lanthanidiphila cells and in negative-stained enriched S-layer patches, the immunogold localization identified mela_00855 as the S-layer protein. Using electron cryo-tomography and sub-tomogram averaging of S-layer patches, we observed that the S-layer has a hexagonal symmetry. Cryo-tomography of whole cells showed that the S-layer and the outer membrane, but not the peptidoglycan layer and the cytoplasmic membrane, exhibited the polygonal shape. Moreover, the S-layer consisted of multiple rigid sheets that partially overlapped, most likely giving rise to the unique polygonal cell shape. These characteristics make the S-layer of M. lanthanidiphila a distinctive and intriguing case to study.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands.,Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Rob Mesman
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Christoph A Diebolder
- Netherlands Centre for Electron Nanoscopy (NeCEN), Leiden University, Leiden, Netherlands
| | - Andreas Engel
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | - Wiel Evers
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands.,Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Laura van Niftrik
- Department of Microbiology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
24
|
von Kügelgen A, Alva V, Bharat TAM. Complete atomic structure of a native archaeal cell surface. Cell Rep 2021; 37:110052. [PMID: 34818541 PMCID: PMC8640222 DOI: 10.1016/j.celrep.2021.110052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Many prokaryotic cells are covered by an ordered, proteinaceous, sheet-like structure called a surface layer (S-layer). S-layer proteins (SLPs) are usually the highest copy number macromolecules in prokaryotes, playing critical roles in cellular physiology such as blocking predators, scaffolding membranes, and facilitating environmental interactions. Using electron cryomicroscopy of two-dimensional sheets, we report the atomic structure of the S-layer from the archaeal model organism Haloferax volcanii. This S-layer consists of a hexagonal array of tightly interacting immunoglobulin-like domains, which are also found in SLPs across several classes of archaea. Cellular tomography reveal that the S-layer is nearly continuous on the cell surface, completed by pentameric defects in the hexagonal lattice. We further report the atomic structure of the SLP pentamer, which shows markedly different relative arrangements of SLP domains needed to complete the S-layer. Our structural data provide a framework for understanding cell surfaces of archaea at the atomic level.
Collapse
Affiliation(s)
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
25
|
Wakai M, Hayashi S, Chiba Y, Koike S, Nagashima K, Kobayashi Y. Growth and morphologic response of rumen methanogenic archaea and bacteria to cashew nut shell liquid and its alkylphenol components. Anim Sci J 2021; 92:e13598. [PMID: 34350672 DOI: 10.1111/asj.13598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
The growth and morphology of rumen methanogenic archaea (15 strains of 10 species in 5 genera, including 7 strains newly isolated in the present study) and bacteria (14 species in 12 genera) were investigated using unsupplemented in vitro pure cultures and cultures supplemented with cashew nut shell liquid (CNSL) and its phenolic compound components, anti-methanogenic agents for ruminant animals. Growth of most of the methanogens tested was inhibited by CNSL and alkylphenols at different concentrations ranging from 1.56 to 12.5 μg/ml. Of the alkylphenols tested, anacardic acid exhibited the most potent growth inhibition. Three gram-negative bacterial species involved in propionate production were resistant to CNSL and alkylphenols (>50 μg/ml). All the methanogens and bacteria that were sensitive to CNSL and alkylphenols exhibited altered morphology; disruption of the cell surface was notable, possibly due to surfactant activity of the tested materials. Cells division was inhibited in some organisms, with cell elongation and unclear septum formation observed. These results indicate that CNSL and alkylphenols, particularly anacardic acid, inhibit both rumen bacteria and methanogens in a selective manner, which could help mitigate rumen methane generation.
Collapse
Affiliation(s)
- Makimi Wakai
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shusuke Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuko Chiba
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kyo Nagashima
- Agri-Bio Technology Scetion, Agri-Bio Business Department, Idemitsu Kosan Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
26
|
Bharat TAM, von Kügelgen A, Alva V. Molecular Logic of Prokaryotic Surface Layer Structures. Trends Microbiol 2021; 29:405-415. [PMID: 33121898 PMCID: PMC8559796 DOI: 10.1016/j.tim.2020.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Most prokaryotic cells are encased in a surface layer (S-layer) consisting of a paracrystalline array of repeating lattice-forming proteins. S-layer proteins populate a vast and diverse sequence space, performing disparate functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. This article highlights recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods. We underscore shared assembly principles revealed by recent work and discuss a common molecular framework that may be used to understand the structural organization of S-layer proteins across bacteria and archaea.
Collapse
Affiliation(s)
- Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK.
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
27
|
Ali S, Jenkins B, Cheng J, Lobb B, Wei X, Egan S, Charles TC, McConkey BJ, Austin J, Doxey AC. Slr4, a newly identified S-layer protein from marine Gammaproteobacteria, is a major biofilm matrix component. Mol Microbiol 2020; 114:979-990. [PMID: 32804439 PMCID: PMC7821379 DOI: 10.1111/mmi.14588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/06/2020] [Indexed: 01/03/2023]
Abstract
S‐layers are paracrystalline proteinaceous lattices that surround prokaryotic cells, forming a critical interface between the cells and their extracellular environment. Here, we report the discovery of a novel S‐layer protein present in the Gram‐negative marine organism, Pseudoalteromonas tunicata D2. An uncharacterized protein (EAR28894) was identified as the most abundant protein in planktonic cultures and biofilms. Bioinformatic methods predicted a beta‐helical structure for EAR28894 similar to the Caulobacter S‐layer protein, RsaA, despite sharing less than 20% sequence identity. Transmission electron microscopy revealed that purified EAR28894 protein assembled into paracrystalline sheets with a unique square lattice symmetry and a unit cell spacing of ~9.1 nm. An S‐layer was found surrounding the outer membrane in wild‐type cells and completely removed from cells in an EAR28894 deletion mutant. S‐layer material also appeared to be “shed” from wild‐type cells and was highly abundant in the extracellular matrix where it is associated with outer membrane vesicles and other matrix components. EAR28894 and its homologs form a new family of S‐layer proteins that are widely distributed in Gammaproteobacteria including species of Pseudoalteromonas and Vibrio, and found exclusively in marine metagenomes. We propose the name Slr4 for this novel protein family.
Collapse
Affiliation(s)
- Sura Ali
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Jenkins
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | - Briallen Lobb
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Xin Wei
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Suhelen Egan
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Trevor C Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.,Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| | | | - John Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
28
|
Simonin P, Lombard C, Huguet A, Kish A. Improved Isolation of SlaA and SlaB S-layer proteins in Sulfolobus acidocaldarius. Extremophiles 2020; 24:673-680. [PMID: 32494965 DOI: 10.1007/s00792-020-01179-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 01/19/2023]
Abstract
The Sulfolobus acidocaldarius S-layer is composed of two main proteins: SlaA, which forms the ordered structure of the S-layer matrix, and SlaB, which supports and anchors the S-layer into the tetraether lipid membrane. While SlaA has previously been purified by exploiting its thermotolerance and high resistance to detergents, SlaB has resisted isolation, particularly from the cell membrane. Removal of proteins other than those of the S-layer is especially difficult if large batch-scale culture volumes are unavailable. Here, we describe a benchtop-scale protocol for the purification of SlaA from S. acidocaldarius, enabling isolation of SlaB using size exclusion chromatography (gel filtration). Using this protocol, we were able to identify for the first time tetraether lipids strongly attached to SlaB via heat- and detergent-resistant interactions.
Collapse
Affiliation(s)
- Pierre Simonin
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Carine Lombard
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Arnaud Huguet
- Sorbonne Université, CNRS, École Pratique des Hautes Études, UMR 7619 METIS, 4, place Jussieu, 75005, Paris, France
| | - Adrienne Kish
- Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d'Histoire naturelle, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
29
|
Farci D, Aksoyoglu MA, Farci SF, Bafna JA, Bodrenko I, Ceccarelli M, Kirkpatrick J, Winterhalter M, Kereïche S, Piano D. Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features. J Biol Chem 2020; 295:4224-4236. [PMID: 32071085 PMCID: PMC7105295 DOI: 10.1074/jbc.ra119.012174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Indexed: 11/06/2022] Open
Abstract
In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-β-d-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02776 Warsaw, Poland.
| | | | - Stefano Francesco Farci
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Igor Bodrenko
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Joanna Kirkpatrick
- Leibniz Institute on Ageing-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague 128 00, Czech Republic.
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02776 Warsaw, Poland.
| |
Collapse
|
30
|
von Kügelgen A, Tang H, Hardy GG, Kureisaite-Ciziene D, Brun YV, Stansfeld PJ, Robinson CV, Bharat TAM. In Situ Structure of an Intact Lipopolysaccharide-Bound Bacterial Surface Layer. Cell 2020; 180:348-358.e15. [PMID: 31883796 PMCID: PMC6978808 DOI: 10.1016/j.cell.2019.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022]
Abstract
Most bacterial and all archaeal cells are encapsulated by a paracrystalline, protective, and cell-shape-determining proteinaceous surface layer (S-layer). On Gram-negative bacteria, S-layers are anchored to cells via lipopolysaccharide. Here, we report an electron cryomicroscopy structure of the Caulobacter crescentus S-layer bound to the O-antigen of lipopolysaccharide. Using native mass spectrometry and molecular dynamics simulations, we deduce the length of the O-antigen on cells and show how lipopolysaccharide binding and S-layer assembly is regulated by calcium. Finally, we present a near-atomic resolution in situ structure of the complete S-layer using cellular electron cryotomography, showing S-layer arrangement at the tip of the O-antigen. A complete atomic structure of the S-layer shows the power of cellular tomography for in situ structural biology and sheds light on a very abundant class of self-assembling molecules with important roles in prokaryotic physiology with marked potential for synthetic biology and surface-display applications.
Collapse
Affiliation(s)
- Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Haiping Tang
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Gail G Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom; Central Oxford Structural Microscopy and Imaging Centre, South Parks Road, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
31
|
Li PN, Herrmann J, Wakatsuki S, van den Bedem H. Transport Properties of Nanoporous, Chemically Forced Biological Lattices. J Phys Chem B 2019; 123:10331-10342. [PMID: 31721579 DOI: 10.1021/acs.jpcb.9b05882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Permselective nanochannels are ubiquitous in biological systems, controlling ion transport and maintaining a potential difference across a cell surface. Surface layers (S-layers) are proteinaceous, generally charged lattices punctuated with nanoscale pores that form the outermost cell envelope component of virtually all archaea and many bacteria. Ammonia oxidizing archaea (AOA) obtain their energy exclusively from oxidizing ammonia directly below the S-layer lattice, but how the charged surfaces and nanochannels affect availability of NH4+ at the reaction site is unknown. Here, we examine the electrochemical properties of negatively charged S-layers for asymmetrically forced ion transport governed by Michaelis-Menten kinetics at ultralow concentrations. Our 3-dimensional electrodiffusion reaction simulations revealed that a negatively charged S-layer can invert the potential across the nanochannel to favor chemically forced NH4+ transport, analogous to polarity switching in nanofluidic field-effect transistors. Polarity switching was not observed when only the interior of the nanochannels was charged. We found that S-layer charge, nanochannel geometry, and enzymatic turnover rate are finely tuned to elevate NH4+ concentration at the active site, potentially enabling AOA to occupy nutrient-poor ecological niches. Strikingly, and in contrast to voltage-biased systems, magnitudes of the co- and counterion currents in the charged nanochannels were nearly equal and amplified disproportionally to the NH4+ current. Our simulations suggest that engineered arrays of crystalline proteinaceous membranes could find unique applications in industrial energy conversion or separation processes.
Collapse
Affiliation(s)
- Po-Nan Li
- Department of Electrical Engineering , Stanford University , 318 Campus Drive , Stanford , California 94305 , United States.,Biosciences Division, SLAC National Accelerator Laboratory , Stanford University , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Jonathan Herrmann
- Department of Structural Biology , Stanford University , 318 Campus Drive , Stanford , California 94305 , United States
| | - Soichi Wakatsuki
- Biosciences Division, SLAC National Accelerator Laboratory , Stanford University , 2575 Sand Hill Road , Menlo Park , California 94025 , United States.,Department of Structural Biology , Stanford University , 318 Campus Drive , Stanford , California 94305 , United States
| | - Henry van den Bedem
- Biosciences Division, SLAC National Accelerator Laboratory , Stanford University , 2575 Sand Hill Road , Menlo Park , California 94025 , United States.,Department of Bioengineering and Therapeutic Sciences , University of California San Francisco , 1700 Fourth Street , San Francisco , California 94158 , United States
| |
Collapse
|
32
|
Li L, Ren M, Xu Y, Jin C, Zhang W, Dong X. Enhanced glycosylation of an S-layer protein enables a psychrophilic methanogenic archaeon to adapt to elevated temperatures in abundant substrates. FEBS Lett 2019; 594:665-677. [PMID: 31665542 DOI: 10.1002/1873-3468.13650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Adaptation to higher temperatures would increase the environmental competitiveness of psychrophiles, organisms that thrive in low-temperature environments. Methanolobus psychrophilus, a cold wetland methanogen, 'evolved' as a mesophile, growing optimally at 30 °C after subculturings, and cells grown with ample substrates exhibited higher integrity. Here, we investigated N-glycosylation of S-layer proteins, the major archaeal envelope component, with respect to mesophilic adaptation. Lectin affinity enriched a glycoprotein in cells grown at 30 °C under ample substrate availability, which was identified as the S-layer protein Mpsy_1486. Four N-glycosylation sites were identified on Mpsy_1486, which exhibited different glycosylation profiles, with N94 only found in cells cultured at 30 °C. An N-linked glycosylation inhibitor, tunicamycin, reduced glycosylation levels of Mpsy_1486 and growth at 30 °C, thus establishing a link between S-layer protein glycosylation and higher temperature adaptation of the psychrophilic archaeon M. psychrophilus.
Collapse
Affiliation(s)
- Lingyan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mifang Ren
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqiang Xu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Guangxi Academy of Sciences, Nanning, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Rodrigues-Oliveira T, Souza AA, Kruger R, Schuster B, Maria de Freitas S, Kyaw CM. Environmental factors influence the Haloferax volcanii S-layer protein structure. PLoS One 2019; 14:e0216863. [PMID: 31075115 PMCID: PMC6607943 DOI: 10.1371/journal.pone.0216863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
S-layers commonly cover archaeal cell envelopes and are composed of proteins that self-assemble into a paracrystalline surface structure. Despite their detection in almost all archaea, there are few reports investigating the structural properties of these proteins, with no reports exploring this topic for halophilic S-layers. The objective of the present study was to investigate the secondary and tertiary organization of the Haloferax volcanii S-layer protein. Such investigations were performed using circular dichroism, fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The protein secondary structure is centered on β-sheets and is affected by environmental pH, with higher disorder in more alkaline conditions. The pH can also affect the protein's tertiary structure, with higher tryptophan side-chain exposure to the medium under the same conditions. The concentrations of Na, Mg and Ca ions in the environment also affect the protein structures, with small changes in α-helix and β-sheet content, as well as changes in tryptophan side chain exposure. These changes in turn influence the protein's functional properties, with cell envelope preparations revealing striking differences when in different salt conditions. Thermal denaturation assays revealed that the protein is stable. It has been reported that the S-layer protein N-glycosylation process is affected by external factors and the present study indicates for the first time changes in the protein structure.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Amanda Araújo Souza
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Ricardo Kruger
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic
Bioarchitectures, University of Natural Resources and Life Sciences, Vienna,
Austria
| | - Sonia Maria de Freitas
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| | - Cynthia Maria Kyaw
- Department of Cell Biology, Institute of Biological Sciences, University
of Brasília, Brasília, Brazil
| |
Collapse
|
34
|
Abstract
The cell wall of archaea, as of any other prokaryote, is surrounding the cell outside the cytoplasmic membrane and is mediating the interaction with the environment. In this regard, it can be involved in cell shape maintenance, protection against virus, heat, acidity or alkalinity. Throughout the formation of pore like structures, it can resemble a micro sieve and thereby enable or disable transport processes. In some cases, cell wall components can make up more than 10% of the whole cellular protein. So far, a great variety of different cell envelope structures and compounds have be found and described in detail. From all archaeal cell walls described so far, the most common structure is the S-layer. Other archaeal cell wall structures are pseudomurein, methanochondroitin, glutaminylglycan, sulfated heteropolysaccharides and protein sheaths and they are sometimes associated with additional proteins and protein complexes like the STABLE protease or the bindosome. Recent advances in electron microscopy also illustrated the presence of an outer(most) cellular membrane within several archaeal groups, comparable to the Gram-negative cell wall within bacteria. Each new cell wall structure that can be investigated in detail and that can be assigned with a specific function helps us to understand, how the earliest cells on earth might have looked like.
Collapse
Affiliation(s)
- Andreas Klingl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.
| | - Carolin Pickl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jennifer Flechsler
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter LMU Munich, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
35
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
36
|
Richards E, Bouché L, Panico M, Arbeloa A, Vinogradov E, Morris H, Wren B, Logan SM, Dell A, Fairweather NF. The S-layer protein of a Clostridium difficile SLCT-11 strain displays a complex glycan required for normal cell growth and morphology. J Biol Chem 2018; 293:18123-18137. [PMID: 30275012 PMCID: PMC6254364 DOI: 10.1074/jbc.ra118.004530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Indexed: 12/16/2022] Open
Abstract
Clostridium difficile is a bacterial pathogen that causes major health challenges worldwide. It has a well-characterized surface (S)-layer, a para-crystalline proteinaceous layer surrounding the cell wall. In many bacterial and archaeal species, the S-layer is glycosylated, but no such modifications have been demonstrated in C. difficile. Here, we show that a C. difficile strain of S-layer cassette type 11, Ox247, has a complex glycan attached via an O-linkage to Thr-38 of the S-layer low-molecular-weight subunit. Using MS and NMR, we fully characterized this glycan. We present evidence that it is composed of three domains: (i) a core peptide-linked tetrasaccharide with the sequence -4-α-Rha-3-α-Rha-3-α-Rha-3-β-Gal-peptide; (ii) a repeating pentasaccharide with the sequence -4-β-Rha-4-α-Glc-3-β-Rha-4-(α-Rib-3-)β-Rha-; and (iii) a nonreducing end-terminal 2,3 cyclophosphoryl-rhamnose attached to a ribose-branched sub-terminal rhamnose residue. The Ox247 genome contains a 24-kb locus containing genes for synthesis and protein attachment of this glycan. Mutations in genes within this locus altered or completely abrogated formation of this glycan, and their phenotypes suggested that this S-layer modification may affect sporulation, cell length, and biofilm formation of C. difficile In summary, our findings indicate that the S-layer protein of SLCT-11 strains displays a complex glycan and suggest that this glycan is required for C. difficile sporulation and control of cell shape, a discovery with implications for the development of antimicrobials targeting the S-layer.
Collapse
Affiliation(s)
- Emma Richards
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Laura Bouché
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Ana Arbeloa
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Howard Morris
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,; Biopharmaspec, Suite 3.1, Lido Medical Centre, St. Saviours Road, JE2 7LA Jersey, United Kingdom, and
| | - Brendan Wren
- the London School of Hygiene and Tropical Medicine, WC1E 7HT, London, United Kingdom
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| | - Neil F Fairweather
- From the Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom,.
| |
Collapse
|
37
|
Blackler RJ, López-Guzmán A, Hager FF, Janesch B, Martinz G, Gagnon SML, Haji-Ghassemi O, Kosma P, Messner P, Schäffer C, Evans SV. Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei. Nat Commun 2018; 9:3120. [PMID: 30087354 PMCID: PMC6081394 DOI: 10.1038/s41467-018-05471-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Self-assembling protein surface (S-) layers are common cell envelope structures of prokaryotes and have critical roles from structural maintenance to virulence. S-layers of Gram-positive bacteria are often attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Here we present an in-depth characterization of this interaction, with co-crystal structures of the three consecutive SLH domains from the Paenibacillus alvei S-layer protein SpaA with defined SCWP ligands. The most highly conserved SLH domain residue SLH-Gly29 is shown to enable a peptide backbone flip essential for SCWP binding in both biophysical and cellular experiments. Furthermore, we find that a significant domain movement mediates binding by two different sites in the SLH domain trimer, which may allow anchoring readjustment to relieve S-layer strain caused by cell growth and division. Gram-positive bacterial envelopes comprise proteinaceous surface layers (S-layers) important for survival and virulence that are often anchored to the cell wall through secondary cell wall polymers. Here the authors use a structural and biophysical approach to define the molecular mechanism of this important interaction.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Zymeworks Inc., Vancouver, BC, V6H 3V9, Canada
| | - Arturo López-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Gudrun Martinz
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Susannah M L Gagnon
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Paul Kosma
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria.
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
38
|
Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins. ISME JOURNAL 2018; 12:2389-2402. [PMID: 29899515 DOI: 10.1038/s41396-018-0191-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 01/17/2023]
Abstract
Surface layers (S-layers) are two-dimensional, proteinaceous, porous lattices that form the outermost cell envelope component of virtually all archaea and many bacteria. Despite exceptional sequence diversity, S-layer proteins (SLPs) share important characteristics such as their ability to form crystalline sheets punctuated with nano-scale pores, and their propensity for charged amino acids, leading to acidic or basic isoelectric points. However, the precise function of S-layers, or the role of charged SLPs and how they relate to cellular metabolism is unknown. Nano-scale lattices affect the diffusion behavior of low-concentration solutes, even if they are significantly smaller than the pore size. Here, we offer a rationale for charged S-layer proteins in the context of the structural evolution of S-layers. Using the ammonia-oxidizing archaea (AOA) as a model for S-layer geometry, and a 2D electrodiffusion reaction computational framework to simulate diffusion and consumption of the charged solute ammonium (NH4+), we find that the characteristic length scales of nanoporous S-layers elevate the concentration of NH4+ in the pseudo-periplasmic space. Our simulations suggest an evolutionary, mechanistic basis for S-layer charge and shed light on the unique ability of some AOA to oxidize ammonia in environments with nanomolar NH4+ availability, with broad implications for comparisons of ecologically distinct populations.
Collapse
|
39
|
A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nat Commun 2018; 9:1642. [PMID: 29691409 PMCID: PMC5915437 DOI: 10.1038/s41467-018-04097-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/04/2018] [Indexed: 12/02/2022] Open
Abstract
Consumption of methane by aerobic and anaerobic microbes governs the atmospheric level of this powerful greenhouse gas. Whereas a biochemical understanding of aerobic methanotrophy is well developed, a mechanistic understanding of anaerobic methanotrophy has been prevented by the unavailability of pure cultures. Here we report a biochemical investigation of Methanosarcina acetivorans, a methane-producing species capable of anaerobic methanotrophic growth dependent on reduction of Fe(III). Our findings support a pathway anchored by Fe(III)-dependent mechanisms for energy conservation driving endergonic reactions that are key to methanotrophic growth. The pathway is remarkably similar to pathways hypothesized for uncultured anaerobic methanotrophic archaea. The results contribute to an improved understanding of the methane cycle that is paramount to understanding human interventions influencing Earth’s climate. Finally, the pathway enables advanced development and optimization of biotechnologies converting methane to value-added products through metabolic engineering of M. acetivorans. The unavailability of pure cultures has prevented a mechanistic understanding of anaerobic methanotrophy. Here the authors report a biochemical investigation of Methanosarcina acetivorans that supports a pathway anchored by Fe(III)-dependent mechanisms for energy conservation and driving endergonic reactions.
Collapse
|
40
|
Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM. Archaeal S-Layers: Overview and Current State of the Art. Front Microbiol 2017; 8:2597. [PMID: 29312266 PMCID: PMC5744192 DOI: 10.3389/fmicb.2017.02597] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 01/01/2023] Open
Abstract
In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aline Belmok
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Deborah Vasconcellos
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Bernhard Schuster
- Department of NanoBiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cynthia M. Kyaw
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
41
|
Li X, Bai Y, Huang Z, Si C, Dong Z, Luo Q, Liu J. A highly controllable protein self-assembly system with morphological versatility induced by reengineered host-guest interactions. NANOSCALE 2017; 9:7991-7997. [PMID: 28574092 DOI: 10.1039/c7nr01612c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manipulating proteins to self-assemble into highly ordered nanostructures not only provides insights into the natural protein assembly process but also allows access to advanced biomaterials. Host-guest interactions have been widely used in the construction of artificial protein assemblies in recent years. CB[8] can selectively associate with two tripeptide Phe-Gly-Gly (FGG) tags with an extraordinarily high binding affinity (Kter = 1.5 × 1011 M-2). However, the FGG tags utilized before are all fixed to the N-termini via genetic fusion; this spatial limitation greatly confined the availability of the CB[8]/FGG pair in the construction of more sophisticated protein nanostructures. Here we first designed and synthesized a maleimide-functionalized Phe-Gly-Gly tag as a versatile site-specific protein modification tool; this designed tag can site-selectively introduce desired guest moieties onto protein surfaces for host-guest driven protein assembly. When regulating the self-assembly process of proteins and CB[8], the constructed protein nanosystem can exhibit distinctive morphological diversities ranging from nanorings, nanospirals, nanowires to superwires. This work developed a new strategy for site-specific protein modification of the CB[8] binding tag and provides a possible direction for the construction of 'smart', dynamic self-assembly systems.
Collapse
Affiliation(s)
- Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Herrmann J, Jabbarpour F, Bargar PG, Nomellini JF, Li PN, Lane TJ, Weiss TM, Smit J, Shapiro L, Wakatsuki S. Environmental Calcium Controls Alternate Physical States of the Caulobacter Surface Layer. Biophys J 2017; 112:1841-1851. [PMID: 28494955 PMCID: PMC5425405 DOI: 10.1016/j.bpj.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 11/23/2022] Open
Abstract
Surface layers (S-layers) are paracrystalline, proteinaceous structures found in most archaea and many bacteria. Often the outermost cell envelope component, S-layers serve diverse functions including aiding pathogenicity and protecting against predators. We report that the S-layer of Caulobacter crescentus exhibits calcium-mediated structural plasticity, switching irreversibly between an amorphous aggregate state and the crystalline state. This finding invalidates the common assumption that S-layers serve only as static wall-like structures. In vitro, the Caulobacter S-layer protein, RsaA, enters the aggregate state at physiological temperatures and low divalent calcium ion concentrations. At higher concentrations, calcium ions stabilize monomeric RsaA, which can then transition to the two-dimensional crystalline state. Caulobacter requires micromolar concentrations of calcium for normal growth and development. Without an S-layer, Caulobacter is even more sensitive to changes in environmental calcium concentration. Therefore, this structurally dynamic S-layer responds to environmental conditions as an ion sensor and protects Caulobacter from calcium deficiency stress, a unique mechanism of bacterial adaptation. These findings provide a biochemical and physiological basis for RsaA's calcium-binding behavior, which extends far beyond calcium's commonly accepted role in aiding S-layer biogenesis or oligomerization and demonstrates a connection to cellular fitness.
Collapse
Affiliation(s)
- Jonathan Herrmann
- Department of Structural Biology, Stanford University, Stanford, California; Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, California.
| | - Fatemeh Jabbarpour
- Department of Structural Biology, Stanford University, Stanford, California
| | | | - John F Nomellini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Po-Nan Li
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Thomas J Lane
- Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, California
| | - Thomas M Weiss
- Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, California
| | - John Smit
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, California.
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Stanford, California; Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, California.
| |
Collapse
|
43
|
Bharat TA, Kureisaite-Ciziene D, Hardy GG, Yu EW, Devant JM, Hagen WJ, Brun YV, Briggs JA, Löwe J. Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat Microbiol 2017; 2:17059. [PMID: 28418382 PMCID: PMC5699643 DOI: 10.1038/nmicrobiol.2017.59] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
Many prokaryotic cells are encapsulated by a surface layer (S-layer) consisting of repeating units of S-layer proteins. S-layer proteins are a diverse class of molecules found in Gram-positive and Gram-negative bacteria and most archaea1-5. S-layers protect cells from the outside, provide mechanical stability and also play roles in pathogenicity. In situ structural information about this highly abundant class of proteins is scarce, so atomic details of how S-layers are arranged on the surface of cells have remained elusive. Here, using purified Caulobacter crescentus' sole S-layer protein RsaA, we obtained a 2.7 Å X-ray structure that shows the hexameric S-layer lattice. We also solved a 7.4 Å structure of the S-layer through electron cryotomography and sub-tomogram averaging of cell stalks. The X-ray structure was docked unambiguously into the electron cryotomography map, resulting in a pseudo-atomic-level description of the in vivo S-layer, which agrees completely with the atomic X-ray lattice model. The cellular S-layer atomic structure shows that the S-layer is porous, with a largest gap dimension of 27 Å, and is stabilized by multiple Ca2+ ions bound near the interfaces. This study spans different spatial scales from atoms to cells by combining X-ray crystallography with electron cryotomography and sub-nanometre-resolution sub-tomogram averaging.
Collapse
Affiliation(s)
- Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | - Gail G. Hardy
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ellen W. Yu
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jessica M. Devant
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Wim J.H. Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, Heidelberg 69117, Germany
| | - Yves V. Brun
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John A.G. Briggs
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, Heidelberg 69117, Germany
| | - Jan Löwe
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
44
|
Li Y, Leahy SC, Jeyanathan J, Henderson G, Cox F, Altermann E, Kelly WJ, Lambie SC, Janssen PH, Rakonjac J, Attwood GT. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand Genomic Sci 2016; 11:59. [PMID: 27602181 PMCID: PMC5011839 DOI: 10.1186/s40793-016-0183-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022] Open
Abstract
Methane emissions from agriculture represent around 9 % of global anthropogenic greenhouse emissions. The single largest source of this methane is animal enteric fermentation, predominantly from ruminant livestock where it is produced mainly in their fermentative forestomach (or reticulo-rumen) by a group of archaea known as methanogens. In order to reduce methane emissions from ruminants, it is necessary to understand the role of methanogenic archaea in the rumen, and to identify their distinguishing characteristics that can be used to develop methane mitigation technologies. To gain insights into the role of methylotrophic methanogens in the rumen environment, the genome of a methanogenic archaeon has been sequenced. This isolate, strain ISO4-H5, was isolated from the ovine rumen and belongs to the order Methanomassiliicoccales. Genomic analysis suggests ISO4-H5 is an obligate hydrogen-dependent methylotrophic methanogen, able to use methanol and methylamines as substrates for methanogenesis. Like other organisms within this order, ISO4-H5 does not possess genes required for the first six steps of hydrogenotrophic methanogenesis. Comparison between the genomes of different members of the order Methanomassiliicoccales revealed strong conservation in energy metabolism, particularly in genes of the methylotrophic methanogenesis pathway, as well as in the biosynthesis and use of pyrrolysine. Unlike members of Methanomassiliicoccales from human sources, ISO4-H5 does not contain the genes required for production of coenzyme M, and so likely requires external coenzyme M to survive.
Collapse
Affiliation(s)
- Yang Li
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Sinead C. Leahy
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Gemma Henderson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Faith Cox
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Eric Altermann
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - William J. Kelly
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Suzanne C. Lambie
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H. Janssen
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Graeme T. Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
45
|
Zhu C, Guo G, Ma Q, Zhang F, Ma F, Liu J, Xiao D, Yang X, Sun M. Diversity in S-layers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 123:1-15. [PMID: 27498171 DOI: 10.1016/j.pbiomolbio.2016.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 01/29/2023]
Abstract
Surface layers, referred simply as S-layers, are the two-dimensional crystalline arrays of protein or glycoprotein subunits on cell surface. They are one of the most common outermost envelope components observed in prokaryotic organisms (Archaea and Bacteria). Over the past decades, S-layers have become an issue of increasing interest due to their ubiquitousness, special features and functions. Substantial work in this field provides evidences of an enormous diversity in S-layers. This paper reviews and illustrates the diversity from several different aspects, involving the S-layer-carrying strains, the structure of S-layers, the S-layer proteins and genes, as well as the functions of S-layers.
Collapse
Affiliation(s)
- Chaohua Zhu
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Gang Guo
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China; State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Qiqi Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Fengjuan Zhang
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Funing Ma
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Jianping Liu
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm 17177, Sweden
| | - Dao Xiao
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Xiaolin Yang
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
46
|
Preservation of Archaeal Surface Layer Structure During Mineralization. Sci Rep 2016; 6:26152. [PMID: 27221593 PMCID: PMC4879539 DOI: 10.1038/srep26152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer "ghosts" during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
Collapse
|
47
|
Lambie SC, Kelly WJ, Leahy SC, Li D, Reilly K, McAllister TA, Valle ER, Attwood GT, Altermann E. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand Genomic Sci 2015; 10:57. [PMID: 26413197 PMCID: PMC4582637 DOI: 10.1186/s40793-015-0038-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 07/09/2015] [Indexed: 01/05/2023] Open
Abstract
Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 4.5 Mb chromosome has an average G + C content of 39 %, and encodes 3523 protein-coding genes, but has no plasmid or prophage sequences. The gene content is very similar to that of M. barkeri Fusaro which was isolated from freshwater sediment. CM1 has a full complement of genes for all three methanogenesis pathways, but its genome shows many differences from those of other sequenced rumen methanogens. Consequently strategies to mitigate ruminant methane need to include information on the different methanogens that occur in the rumen.
Collapse
Affiliation(s)
- Suzanne C Lambie
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - William J Kelly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Sinead C Leahy
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand ; New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Dong Li
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Kerri Reilly
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1 Canada
| | - Edith R Valle
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta T1J 4B1 Canada
| | - Graeme T Attwood
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand ; New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Eric Altermann
- Rumen Microbiology, Animal Nutrition and Health, AgResearch Limited, Tennent Drive, Private Bag 11008, Palmerston North, 4442 New Zealand ; Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
| |
Collapse
|
48
|
Perras AK, Daum B, Ziegler C, Takahashi LK, Ahmed M, Wanner G, Klingl A, Leitinger G, Kolb-Lenz D, Gribaldo S, Auerbach A, Mora M, Probst AJ, Bellack A, Moissl-Eichinger C. S-layers at second glance? Altiarchaeal grappling hooks (hami) resemble archaeal S-layer proteins in structure and sequence. Front Microbiol 2015; 6:543. [PMID: 26106369 PMCID: PMC4460559 DOI: 10.3389/fmicb.2015.00543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/17/2015] [Indexed: 01/02/2023] Open
Abstract
The uncultivated “Candidatus Altiarchaeum hamiconexum” (formerly known as SM1 Euryarchaeon) carries highly specialized nano-grappling hooks (“hami”) on its cell surface. Until now little is known about the major protein forming these structured fibrous cell surface appendages, the genes involved or membrane anchoring of these filaments. These aspects were analyzed in depth in this study using environmental transcriptomics combined with imaging methods. Since a laboratory culture of this archaeon is not yet available, natural biofilm samples with high Ca. A. hamiconexum abundance were used for the entire analyses. The filamentous surface appendages spanned both membranes of the cell, which are composed of glycosyl-archaeol. The hami consisted of multiple copies of the same protein, the corresponding gene of which was identified via metagenome-mapped transcriptome analysis. The hamus subunit proteins, which are likely to self-assemble due to their predicted beta sheet topology, revealed no similiarity to known microbial flagella-, archaella-, fimbriae- or pili-proteins, but a high similarity to known S-layer proteins of the archaeal domain at their N-terminal region (44–47% identity). Our results provide new insights into the structure of the unique hami and their major protein and indicate their divergent evolution with S-layer proteins.
Collapse
Affiliation(s)
- Alexandra K Perras
- Department of Internal Medicine, Medical University of Graz Graz, Austria ; Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Bertram Daum
- Department of Structural Biology, Max Planck Institute of Biophysics Frankfurt, Germany
| | - Christine Ziegler
- Department of Biophysics, University of Regensburg Regensburg, Germany
| | - Lynelle K Takahashi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Gerhard Wanner
- Faculty of Biology, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Andreas Klingl
- Faculty of Biology, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Gerd Leitinger
- Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology and Embryology, Medical University of Graz Graz, Austria
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz Graz, Austria ; Core Facility Ultrastructure, Analysis, Center for Medical Research Institute, Medical University of Graz Graz, Austria
| | - Simonetta Gribaldo
- Unité Biologie Moléculaire du Gene chez les Extrêmophiles, Departément de Microbiologie, Institut Pasteur Paris, France
| | - Anna Auerbach
- Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Maximilian Mora
- Department of Internal Medicine, Medical University of Graz Graz, Austria
| | - Alexander J Probst
- Department of Earth and Planetary Science, University of California, Berkeley Berkeley, CA, USA
| | - Annett Bellack
- Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz Graz, Austria ; Department of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany ; BioTechMed-Graz Graz, Austria
| |
Collapse
|
49
|
Mechanical and cell-to-cell adhesive properties of aggregated Methanosarcina. Colloids Surf B Biointerfaces 2015; 126:303-12. [PMID: 25578422 DOI: 10.1016/j.colsurfb.2014.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/15/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
The mechanical and adhesive properties as well as the turgor pressure of microbes play an important role in cell growth and aggregation. By applying AFM together with finite element modelling, one can determine the cell wall structural homogeneity, mechanical and cell-to-cell adhesive properties for aggregated Methanosarcina barkeri cells. This also allows a novel approach to determine in-aggregate turgor pressure determination. Analyzing the AFM force-indentation response of the aggregates under loads less than 10 nN, our study reveals structural inhomogeneity of the polymeric part of the cell wall material and suggests that the cell wall consists of two layers of methanochondroitin (external: with a thickness of 3 ± 1 nm and internal: with a thickness of 169 ± 30 nm). On average, the hyperelastic finite element model showed that the internal layer is more rigid (μ = 14 ± 4 MPa) than the external layer (μ = 2.8 ± 0.9 MPa). To determine the turgor pressure and adhesiveness of the cells, a specific mode of indentation (under a load of 45 nN), aimed towards the centre of the individual aggregate, was performed. By modelling the AFM induced decohesion of the aggregate, the turgor pressure and the cell-to-cell adhesive interface properties could be determined. On average, the turgor pressure is estimated to be 59 ± 22 kPa, the interface strength is 78 ± 12 kPa and the polymer network extensibility is 2.8 ± 0.9 nm. We predict that internal cell wall comprised highly compressed methanochondroitin chains and we are able to identify a conceptual model for stress dependent inner cell wall growth.
Collapse
|
50
|
Milkevych V, Batstone DJ. Controlling mechanisms in directional growth of aggregated archaeal cells. SOFT MATTER 2014; 10:9615-9625. [PMID: 25361175 DOI: 10.1039/c4sm01870b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Members of the family Methanosarcinaceae are important archaeal representatives due to their broad functionality, ubiquitous presence, and functionality in harsh environments. A key characteristic is their multicellular (packet) morphology represented by aggregates of spatially confined cells. This morphology is driven by directed growth of cells in confinement with sequential variation in growth direction. To further understand why spatially confined Methanosarcina cells (and in general, confined prokaryotes) change their direction of growth during consecutive growth-division stages, and how a particular cell senses its wall topology and responds to changes on it a theoretical model for stress dependent growth of aggregated archaeal cells was developed. The model utilizes a confined elastic shell representation of aggregated archaeal cell and is derived based on a work-energy principle. The growth law takes into account the fine structure of archaeal cell wall, polymeric nature of methanochondroitin layer, molecular-biochemical processes and is based on thermodynamic laws. The developed model has been applied to three typical configurations of aggregated cell in 3D. The developed model predicted a geometry response with delayed growth of aggregated archaeal cells explained from mechanistic principles, as well as continuous changes in direction of growth during the consecutive growth-division stages. This means that cell wall topology sensing and growth anisotropy can be predicted using simple cellular mechanisms without the need for dedicated cellular machinery.
Collapse
Affiliation(s)
- Viktor Milkevych
- Department of Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus N, Denmark
| | | |
Collapse
|