1
|
Mohanty P, Rizuan A, Kim YC, Fawzi NL, Mittal J. A complex network of interdomain interactions underlies the conformational ensemble of monomeric TDP-43 and modulates its phase behavior. Protein Sci 2024; 33:e4891. [PMID: 38160320 PMCID: PMC10804676 DOI: 10.1002/pro.4891] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a multidomain protein involved in the regulation of RNA metabolism, and its aggregates have been observed in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Numerous studies indicate TDP-43 can undergo liquid-liquid phase separation (LLPS) in vitro and is a component of biological condensates. Homo-oligomerization via the folded N-terminal domain (aa:1-77) and the conserved helical region (aa:319-341) of the disordered, C-terminal domain is found to be an important driver of TDP-43 phase separation. However, a comprehensive molecular view of TDP-43 phase separation, particularly regarding the nature of heterodomain interactions, is lacking due to the challenges associated with its stability and purification. Here, we utilize all-atom and coarse-grained (CG) molecular dynamics (MD) simulations to uncover the network of interdomain interactions implicated in TDP-43 phase separation. All-atom simulations uncovered the presence of transient, interdomain interactions involving flexible linkers, RNA-recognition motif (RRM) domains and a charged segment of disordered C-terminal domain (CTD). CG simulations indicate these inter-domain interactions which affect the conformational landscape of TDP-43 in the dilute phase are also prevalent in the condensed phase. Finally, sequence and surface charge distribution analysis coupled with all-atom simulations (at high salt) confirmed that the transient interdomain contacts are predominantly electrostatic in nature. Overall, our findings from multiscale simulations lead to a greater appreciation of the complex interaction network underlying the structural landscape and phase separation of TDP-43.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Young C. Kim
- Naval Research LaboratoryCenter for Materials Physics and TechnologyWashingtonDistrict of ColumbiaUSA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology and BiochemistryProvidenceRhode IslandUSA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationTexasUSA
- Department of ChemistryTexas A&M UniversityCollege StationTexasUSA
- Interdisciplinary Graduate Program in Genetics and GenomicsTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
2
|
Singh NK, Bhardwaj P, Radhakrishna M. Hydrophobicity─A Single Parameter for the Accurate Prediction of Disordered Regions in Proteins. J Chem Inf Model 2023; 63:5375-5383. [PMID: 37581491 DOI: 10.1021/acs.jcim.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The prediction of disordered regions in proteins is crucial for understanding their functions, dynamics, and interactions. Intrinsically disordered proteins (IDPs) play a key role in many biological processes like cell signaling, recognition, and regulation, but experimentally determining these regions can be challenging due to their high mobility. To address this challenge, we present an algorithm called HydroDisPred (HDP). HDP uses a single parameter, the fraction of hydrophobicity (λ) in each segment of the protein, to accurately predict disordered regions. The algorithm was validated using experimental data from the DisProt database and was found to be on par and, in some cases, more effective than the existing algorithms. HDP is a simple and effective method for identifying disordered regions in proteins, and its prediction is not affected by the availability of training data, unlike other ML approaches. The application is housed in the web server and can be accessed through the URL https://proseqanalyser.iitgn.ac.in/hydrodispred/.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Pratyasha Bhardwaj
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| | - Mithun Radhakrishna
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
- Center for Biomedical Engineering, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
3
|
Krishnamohan A, Hamilton GL, Goutam R, Sanabria H, Morcos F. Coevolution and smFRET Enhances Conformation Sampling and FRET Experimental Design in Tandem PDZ1-2 Proteins. J Phys Chem B 2023; 127:884-898. [PMID: 36693159 PMCID: PMC9900596 DOI: 10.1021/acs.jpcb.2c06720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structural flexibility of proteins is crucial for their functions. Many experimental and computational approaches can probe protein dynamics across a range of time and length-scales. Integrative approaches synthesize the complementary outputs of these techniques and provide a comprehensive view of the dynamic conformational space of proteins, including the functionally relevant limiting conformational states and transition pathways between them. Here, we introduce an integrative paradigm to model the conformational states of multidomain proteins. As a model system, we use the first two tandem PDZ domains of postsynaptic density protein 95. First, we utilize available sequence information collected from genomic databases to identify potential amino acid interactions in the PDZ1-2 tandem that underlie modeling of the functionally relevant conformations maintained through evolution. This was accomplished through combination of coarse-grained structural modeling with outputs from direct coupling analysis measuring amino acid coevolution, a hybrid approach called SBM+DCA. We recapitulated five distinct, experimentally derived PDZ1-2 tandem conformations. In addition, SBM+DCA unveiled an unidentified, twisted conformation of the PDZ1-2 tandem. Finally, we implemented an integrative framework for the design of single-molecule Förster resonance energy transfer (smFRET) experiments incorporating the outputs of SBM+DCA with simulated FRET observables. This resulting FRET network is designed to mutually resolve the predicted limiting state conformations through global analysis. Using simulated FRET observables, we demonstrate that structural modeling with the newly designed FRET network is expected to outperform a previously used empirical FRET network at resolving all states simultaneously. Integrative approaches to experimental design have the potential to provide a new level of detail in characterizing the evolutionarily conserved conformational landscapes of proteins, and thus new insights into functional relevance of protein dynamics in biological function.
Collapse
Affiliation(s)
- Aishwarya Krishnamohan
- Departments of Biological Sciences and Bioengineering, University of Texas at Dallas, Richardson, Texas75080, United States
| | - George L Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Rajen Goutam
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Faruck Morcos
- Departments of Biological Sciences and Bioengineering, University of Texas at Dallas, Richardson, Texas75080, United States.,Center for Systems Biology, University of Texas at Dallas, Richardson, Texas75080, United States
| |
Collapse
|
4
|
Basak S, Saikia N, Kwun D, Choi UB, Ding F, Bowen ME. Different Forms of Disorder in NMDA-Sensitive Glutamate Receptor Cytoplasmic Domains Are Associated with Differences in Condensate Formation. Biomolecules 2022; 13:4. [PMID: 36671389 PMCID: PMC9855357 DOI: 10.3390/biom13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA)-sensitive glutamate receptor (NMDAR) helps assemble downstream signaling pathways through protein interactions within the postsynaptic density (PSD), which are mediated by its intracellular C-terminal domain (CTD). The most abundant NMDAR subunits in the brain are GluN2A and GluN2B, which are associated with a developmental switch in NMDAR composition. Previously, we used single molecule fluorescence resonance energy transfer (smFRET) to show that the GluN2B CTD contained an intrinsically disordered region with slow, hop-like conformational dynamics. The CTD from GluN2B also undergoes liquid-liquid phase separation (LLPS) with synaptic proteins. Here, we extend these observations to the GluN2A CTD. Sequence analysis showed that both subunits contain a form of intrinsic disorder classified as weak polyampholytes. However, only GluN2B contained matched patterning of arginine and aromatic residues, which are linked to LLPS. To examine the conformational distribution, we used discrete molecular dynamics (DMD), which revealed that GluN2A favors extended disordered states containing secondary structures while GluN2B favors disordered globular states. In contrast to GluN2B, smFRET measurements found that GluN2A lacked slow conformational dynamics. Thus, simulation and experiments found differences in the form of disorder. To understand how this affects protein interactions, we compared the ability of these two NMDAR isoforms to undergo LLPS. We found that GluN2B readily formed condensates with PSD-95 and SynGAP, while GluN2A failed to support LLPS and instead showed a propensity for colloidal aggregation. That GluN2A fails to support this same condensate formation suggests a developmental switch in LLPS propensity.
Collapse
Affiliation(s)
- Sujit Basak
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nabanita Saikia
- Department of Chemistry, Navajo Technical University, Crownpoint, NM 87313, USA
| | - David Kwun
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA
| | - Mark E. Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Rajeev P, Singh N, Kechkar A, Butler C, Ramanan N, Sibarita JB, Jose M, Nair D. Nanoscale regulation of Ca2+ dependent phase transitions and real-time dynamics of SAP97/hDLG. Nat Commun 2022; 13:4236. [PMID: 35869063 PMCID: PMC9307800 DOI: 10.1038/s41467-022-31912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Synapse associated protein-97/Human Disk Large (SAP97/hDLG) is a conserved, alternatively spliced, modular, scaffolding protein critical in regulating the molecular organization of cell-cell junctions in vertebrates. We confirm that the molecular determinants of first order phase transition of SAP97/hDLG is controlled by morpho-functional changes in its nanoscale organization. Furthermore, the nanoscale molecular signatures of these signalling islands and phase transitions are altered in response to changes in cytosolic Ca2+. Additionally, exchange kinetics of alternatively spliced isoforms of the intrinsically disordered region in SAP97/hDLG C-terminus shows differential sensitivities to Ca2+ bound Calmodulin, affirming that the molecular signatures of local phase transitions of SAP97/hDLG depends on their nanoscale heterogeneity and compositionality of isoforms. SAP97/hDLG is a ubiquitous, alternatively spliced, and conserved modular scaffolding protein involved in the organization cell junctions and excitatory synapses. Here, authors confirm that SAP97/hDLG condenses in to nanosized molecular domains in both heterologous cells and hippocampal pyramidal neurons. Authors demonstrate that in vivo and in vitro condensation, molecular signatures of nanoscale condensates and exchange kinetics of SAP97/hDLG is modulated by the local availability of alternatively spliced isoforms. Additionally, SAP97/hDLG isoforms exhibits a differential sensitivity to Ca2+ bound Calmodulin, resulting in altered properties of nanocondensates and their real-time regulation
Collapse
|
6
|
Maslov I, Hendrix J. Unmasking a two-faced protein. eLife 2022; 11:83482. [PMID: 36260068 PMCID: PMC9581526 DOI: 10.7554/elife.83482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-molecule fluorescence spectroscopy and molecular dynamics simulations illuminate the structure and dynamics of PSD-95, a protein involved in neural plasticity.
Collapse
Affiliation(s)
- Ivan Maslov
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| |
Collapse
|
7
|
Hamilton GL, Saikia N, Basak S, Welcome FS, Wu F, Kubiak J, Zhang C, Hao Y, Seidel CAM, Ding F, Sanabria H, Bowen ME. Fuzzy supertertiary interactions within PSD-95 enable ligand binding. eLife 2022; 11:e77242. [PMID: 36069777 PMCID: PMC9581536 DOI: 10.7554/elife.77242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
The scaffold protein PSD-95 links postsynaptic receptors to sites of presynaptic neurotransmitter release. Flexible linkers between folded domains in PSD-95 enable a dynamic supertertiary structure. Interdomain interactions within the PSG supramodule, formed by PDZ3, SH3, and Guanylate Kinase domains, regulate PSD-95 activity. Here we combined discrete molecular dynamics and single molecule Förster resonance energy transfer (FRET) to characterize the PSG supramodule, with time resolution spanning picoseconds to seconds. We used a FRET network to measure distances in full-length PSD-95 and model the conformational ensemble. We found that PDZ3 samples two conformational basins, which we confirmed with disulfide mapping. To understand effects on activity, we measured binding of the synaptic adhesion protein neuroligin. We found that PSD-95 bound neuroligin well at physiological pH while truncated PDZ3 bound poorly. Our hybrid structural models reveal how the supertertiary context of PDZ3 enables recognition of this critical synaptic ligand.
Collapse
Affiliation(s)
- George L Hamilton
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Sujit Basak
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Franceine S Welcome
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Fang Wu
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Jakub Kubiak
- Molecular Physical Chemistry, Heinrich Heine UniversityDüsseldorfGermany
| | - Changcheng Zhang
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Yan Hao
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| | - Claus AM Seidel
- Molecular Physical Chemistry, Heinrich Heine UniversityDüsseldorfGermany
| | - Feng Ding
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson UniversityClemsonUnited States
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
8
|
Khoury MJ, Bilder D. Minimal functional domains of the core polarity regulator Dlg. Biol Open 2022; 11:276053. [PMID: 35722710 PMCID: PMC9346270 DOI: 10.1242/bio.059408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalized domains of polarized epithelial cells arise from mutually antagonistic actions between the apical Par complex and the basolateral Scrib module. In Drosophila, the Scrib module proteins Scribble (Scrib) and Discs-large (Dlg) are required to limit Lgl phosphorylation at the basolateral cortex, but how Scrib and Dlg could carry out such a ‘protection’ activity is not clear. We tested Protein Phosphatase 1α (PP1) as a potential mediator of this activity, but demonstrate that a significant component of Scrib and Dlg regulation of Lgl is PP1 independent, and found no evidence for a Scrib-Dlg-PP1 protein complex. However, the Dlg SH3 domain plays a role in Lgl protection and, in combination with the N-terminal region of the Dlg HOOK domain, in recruitment of Scrib to the membrane. We identify a ‘minimal Dlg’ comprised of the SH3 and HOOK domains that is both necessary and sufficient for Scrib localization and epithelial polarity function in vivo. This article has an associated First Person interview with the first author of the paper. Summary: A minimal SH3-HOOK fragment of Dlg is sufficient to support epithelial polarity through mechanisms independent of the PP1 phosphatase.
Collapse
Affiliation(s)
- Mark J Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
9
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
10
|
Neurodevelopmental Disorders Associated with PSD-95 and Its Interaction Partners. Int J Mol Sci 2022; 23:ijms23084390. [PMID: 35457207 PMCID: PMC9025546 DOI: 10.3390/ijms23084390] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023] Open
Abstract
The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.
Collapse
|
11
|
On the Effects of Disordered Tails, Supertertiary Structure and Quinary Interactions on the Folding and Function of Protein Domains. Biomolecules 2022; 12:biom12020209. [PMID: 35204709 PMCID: PMC8961636 DOI: 10.3390/biom12020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
The vast majority of our current knowledge about the biochemical and biophysical properties of proteins derives from in vitro studies conducted on isolated globular domains. However, a very large fraction of the proteins expressed in the eukaryotic cell are structurally more complex. In particular, the discovery that up to 40% of the eukaryotic proteins are intrinsically disordered, or possess intrinsically disordered regions, and are highly dynamic entities lacking a well-defined three-dimensional structure, revolutionized the structure–function paradigm and our understanding of proteins. Moreover, proteins are mostly characterized by the presence of multiple domains, influencing each other by intramolecular interactions. Furthermore, proteins exert their function in a crowded intracellular milieu, transiently interacting with a myriad of other macromolecules. In this review we summarize the literature tackling these themes from both the theoretical and experimental perspectives, highlighting the effects on protein folding and function that are played by (i) flanking disordered tails; (ii) contiguous protein domains; (iii) interactions with the cellular environment, defined as quinary structures. We show that, in many cases, both the folding and function of protein domains is remarkably perturbed by the presence of these interactions, pinpointing the importance to increase the level of complexity of the experimental work and to extend the efforts to characterize protein domains in more complex contexts.
Collapse
|
12
|
Kolimi N, Pabbathi A, Saikia N, Ding F, Sanabria H, Alper J. Out-of-Equilibrium Biophysical Chemistry: The Case for Multidimensional, Integrated Single-Molecule Approaches. J Phys Chem B 2021; 125:10404-10418. [PMID: 34506140 PMCID: PMC8474109 DOI: 10.1021/acs.jpcb.1c02424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Out-of-equilibrium
processes are ubiquitous across living organisms
and all structural hierarchies of life. At the molecular scale, out-of-equilibrium
processes (for example, enzyme catalysis, gene regulation, and motor
protein functions) cause biological macromolecules to sample an ensemble
of conformations over a wide range of time scales. Quantifying and
conceptualizing the structure–dynamics to function relationship
is challenging because continuously evolving multidimensional energy
landscapes are necessary to describe nonequilibrium biological processes
in biological macromolecules. In this perspective, we explore the
challenges associated with state-of-the-art experimental techniques
to understanding biological macromolecular function. We argue that
it is time to revisit how we probe and model functional out-of-equilibrium
biomolecular dynamics. We suggest that developing integrated single-molecule
multiparametric force–fluorescence instruments and using advanced
molecular dynamics simulations to study out-of-equilibrium biomolecules
will provide a path towards understanding the principles of and mechanisms
behind the structure–dynamics to function paradigm in biological
macromolecules.
Collapse
Affiliation(s)
- Narendar Kolimi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Ashok Pabbathi
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Joshua Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
13
|
Ayuso-Dolado S, Esteban-Ortega GM, Vidaurre ÓG, Díaz-Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics 2021; 11:6746-6765. [PMID: 34093851 PMCID: PMC8171078 DOI: 10.7150/thno.60701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a multidomain protein critical to the assembly of signaling complexes at excitatory synapses, required for neuronal survival and function. However, calpain-processing challenges PSD-95 function after overactivation of excitatory glutamate receptors (excitotoxicity) in stroke, a leading cause of death, disability and dementia in need of efficient pharmacological treatments. A promising strategy is neuroprotection of the infarct penumbra, a potentially recoverable area, by promotion of survival signaling. Interference of PSD-95 processing induced by excitotoxicity might thus be a therapeutic target for stroke and other excitotoxicity-associated pathologies. Methods: The nature and stability of PSD-95 calpain-fragments was analyzed using in vitro assays or excitotoxic conditions induced in rat primary neuronal cultures or a mouse model of stroke. We then sequenced PSD-95 cleavage-sites and rationally designed three cell-penetrating peptides (CPPs) containing these sequences. The peptides effects on PSD-95 stability and neuronal viability were investigated in the cultured neurons, subjected to acute or chronic excitotoxicity. We also analyzed the effect of one of these peptides in the mouse model of stroke by measuring infarct size and evaluating motor coordination and balance. Results: Calpain cleaves three interdomain linker regions in PSD-95 and produces stable fragments corresponding to previously described PSD-95 supramodules (PDZ1-2 and P-S-G) as well as a truncated form SH3-GK. Peptide TP95414, containing the cleavage site in the PDZ3-SH3 linker, is able to interfere PSD-95 downregulation and reduces neuronal death by excitotoxicity. Additionally, TP95414 is delivered to mice cortex and, in a severe model of permanent ischemia, significantly improves the neurological outcome after brain damage. Conclusions: Interference of excitotoxicity-induced PSD-95-processing with specific CPPs constitutes a novel and promising therapeutic approach for stroke treatment.
Collapse
|
14
|
Prikas E, Ahel H, Stefanoska K, Asih PR, Volkerling A, Ittner LM, Ittner A. Interaction between the guanylate kinase domain of PSD-95 and the proline-rich region and microtubule binding repeats 2 and 3 of tau. Biochem Cell Biol 2021; 99:606-616. [PMID: 33794133 DOI: 10.1139/bcb-2020-0604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The microtubule-associated protein tau is a key factor in neurodegenerative proteinopathies and is predominantly found in the neuronal axon. However, somatodendritic localization of tau occurs for a subset of pathological and physiologic tau. Dendritic tau can localize to post-synapses where it interacts with proteins of the post-synaptic density (PSD) protein PSD-95, a membrane-associated guanylate kinase (MAGUK) scaffold factor for organization of protein complexes within the PSD, to mediate downstream signals. The sub-molecular details of this interaction, however, remain unclear. Here, we use interaction mapping in cultured cells to demonstrate that tau interacts with the guanylate kinase (GUK) domain in the C-terminal region of PSD-95. The PSD-95 GUK domain is required and sufficient for a complex with full-length human tau. Mapping the interaction of the MAGUK core on tau revealed the microtubule binding repeats 2 and 3 and the proline-rich region contribute to this interaction, while the N- and C-terminal regions of tau inhibit interaction. These results reveal intramolecular determinants of the protein complex of tau and PSD-95 and increase our understanding of tau interactions regulating neurotoxic signaling at the molecular level.
Collapse
Affiliation(s)
- Emmanuel Prikas
- Macquarie University, 7788, Sydney, New South Wales, Australia;
| | - Holly Ahel
- Macquarie University, 7788, Sydney, New South Wales, Australia;
| | | | | | | | - Lars M Ittner
- Macquarie University, 7788, Biomedical Sciences, Sydney, New South Wales, Australia;
| | - Arne Ittner
- Macquarie University, 7788, Biomedical Sciences, Sydney, New South Wales, Australia;
| |
Collapse
|
15
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
16
|
Abstract
Protein function can be allosterically regulated by changes in structure or dynamics. PDZ domains are classic examples for studies of allostery in single protein domains. However, PDZ domains are often found in multidomain proteins; in particular, PDZ3 is located in a supramodule containing three domains. The allosteric network in PDZ3 has never been studied in the presence of the adjacent domains. Here we map the allosteric network for a PDZ3:ligand complex, both in isolation and in the context of a supramodule. We demonstrate that the allosteric network is highly dependent on this supertertiary structure, with broad implications for studies of allostery in single domains. The notion that protein function is allosterically regulated by structural or dynamic changes in proteins has been extensively investigated in several protein domains in isolation. In particular, PDZ domains have represented a paradigm for these studies, despite providing conflicting results. Furthermore, it is still unknown how the association between protein domains in supramodules, consitituting so-called supertertiary structures, affects allosteric networks. Here, we experimentally mapped the allosteric network in a PDZ:ligand complex, both in isolation and in the context of a supramodular structure, and show that allosteric networks in a PDZ domain are highly dependent on the supertertiary structure in which they are present. This striking sensitivity of allosteric networks to the presence of adjacent protein domains is likely a common property of supertertiary structures in proteins. Our findings have general implications for prediction of allosteric networks from primary and tertiary structures and for quantitative descriptions of allostery.
Collapse
|
17
|
Laursen L, Karlsson E, Gianni S, Jemth P. Functional interplay between protein domains in a supramodular structure involving the postsynaptic density protein PSD-95. J Biol Chem 2019; 295:1992-2000. [PMID: 31831623 DOI: 10.1074/jbc.ra119.011050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cell scaffolding and signaling are governed by protein-protein interactions. Although a particular interaction is often defined by two specific domains binding to each other, this interaction often occurs in the context of other domains in multidomain proteins. How such adjacent domains form supertertiary structures and modulate protein-protein interactions has only recently been addressed and is incompletely understood. The postsynaptic density protein PSD-95 contains a three-domain supramodule, denoted PSG, which consists of PDZ, Src homology 3 (SH3), and guanylate kinase-like domains. The PDZ domain binds to the C terminus of its proposed natural ligand, CXXC repeat-containing interactor of PDZ3 domain (CRIPT), and results from previous experiments using only the isolated PDZ domain are consistent with the simplest scenario for a protein-protein interaction; namely, a two-state mechanism. Here we analyzed the binding kinetics of the PSG supramodule with CRIPT. We show that PSG binds CRIPT via a more complex mechanism involving two conformational states interconverting on the second timescale. Both conformational states bound a CRIPT peptide with similar affinities but with different rates, and the distribution of the two conformational states was slightly shifted upon CRIPT binding. Our results are consistent with recent structural findings of conformational changes in PSD-95 and demonstrate how conformational transitions in supertertiary structures can shape the ligand-binding energy landscape and modulate protein-protein interactions.
Collapse
Affiliation(s)
- Louise Laursen
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza Università di Roma, 00185 Rome, Italy.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, 75123 Uppsala, Sweden.
| |
Collapse
|
18
|
Kovács B, Zajácz-Epresi N, Gáspári Z. Ligand-dependent intra- and interdomain motions in the PDZ12 tandem regulate binding interfaces in postsynaptic density protein-95. FEBS Lett 2019; 594:887-902. [PMID: 31562775 DOI: 10.1002/1873-3468.13626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022]
Abstract
The postsynaptic density protein-95 (PSD-95) regulates synaptic plasticity through interactions mediated by its peptide-binding PDZ domains. The two N-terminal PDZ domains of PSD-95 form an autonomous structural unit, and their interdomain orientation and dynamics depend on ligand binding. To understand the mechanistic details of the effect of ligand binding, we generated conformational ensembles using available experimentally determined nuclear Overhauser effect interatomic distances and S2 order parameters. In our approach, the fast dynamics of the two domains is treated independently. We find that intradomain structural changes induced by ligand binding modulate the probability of the occurrence of specific domain-domain orientations. Our results suggest that the β2-β3 loop in the PDZ domains is a key regulatory region, which influences both intradomain motions and supramodular rearrangement.
Collapse
Affiliation(s)
- Bertalan Kovács
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,3in Research Group, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Esztergom, Hungary
| | - Nóra Zajácz-Epresi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
19
|
Kursula P. Shanks — multidomain molecular scaffolds of the postsynaptic density. Curr Opin Struct Biol 2019; 54:122-128. [DOI: 10.1016/j.sbi.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/24/2018] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
20
|
Ingargiola A, Weiss S, Lerner E. Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET. J Phys Chem B 2018; 122:11598-11615. [PMID: 30252475 DOI: 10.1021/acs.jpcb.8b07608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is utilized to study the structure and dynamics of many biomolecules, such as proteins, DNA, and their various complexes. The structural assessment is based on the well-known Förster relationship between the measured efficiency of energy transfer between a donor (D) and an acceptor (A) dye and the distance between them. Classical smFRET analysis methods called photon distribution analysis (PDA) take into account photon shot-noise, D-A distance distribution, and, more recently, interconversion between states in order to extract accurate distance information. It is known that rapid D-A distance fluctuations on the order of the D lifetime (or shorter) can increase the measured mean FRET efficiency and thus decrease the estimated D-A distance. Nonetheless, this effect has been so far neglected in smFRET experiments, potentially leading to biases in estimated distances. Here we introduce a PDA approach dubbed Monte Carlo diffusion-enhanced photon inference (MC-DEPI). MC-DEPI recolor detected photons of smFRET experiments taking into account dynamics of D-A distance fluctuations, multiple interconverting states, and photoblinking. Using this approach, we show how different underlying conditions may yield identical FRET histograms and how the additional information from fluorescence decays helps in distinguishing between the different conditions. We also introduce a machine learning fitting approach for retrieving the D-A distance distribution, decoupled from the above-mentioned effects. We show that distance interpretation of smFRET experiments of even the simplest dsDNA is nontrivial and requires decoupling the effects of rapid D-A distance fluctuations on FRET in order to avoid systematic biases in the estimation of the D-A distance distribution.
Collapse
Affiliation(s)
- Antonino Ingargiola
- Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California , United States
| | - Shimon Weiss
- Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California , United States
| | - Eitan Lerner
- Department of Chemistry and Biochemistry , University of California Los Angeles , Los Angeles , California , United States.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences , The Hebrew University , Jerusalem , Israel
| |
Collapse
|
21
|
Lerner E, Ingargiola A, Weiss S. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. J Chem Phys 2018; 148:123315. [PMID: 29604842 DOI: 10.1063/1.5004606] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bio-macromolecules carry out complicated functions through structural changes. To understand their mechanism of action, the structure of each step has to be characterized. While classical structural biology techniques allow the characterization of a few "structural snapshots" along the enzymatic cycle (usually of stable conformations), they do not cover all (and often fast interconverting) structures in the ensemble, where each may play an important functional role. Recently, several groups have demonstrated that structures of different conformations in solution could be solved by measuring multiple distances between different pairs of residues using single-molecule Förster resonance energy transfer (smFRET) and using them as constrains for hybrid/integrative structural modeling. However, this approach is limited in cases where the conformational dynamics is faster than the technique's temporal resolution. In this study, we combine existing tools that elucidate sub-millisecond conformational dynamics together with hybrid/integrative structural modeling to study the conformational states of the transcription bubble in the bacterial RNA polymerase-promoter open complex (RPo). We measured microsecond alternating laser excitation-smFRET of differently labeled lacCONS promoter dsDNA constructs. We used a combination of burst variance analysis, photon-by-photon hidden Markov modeling, and the FRET-restrained positioning and screening approach to identify two conformational states for RPo. The experimentally derived distances of one conformational state match the known crystal structure of bacterial RPo. The experimentally derived distances of the other conformational state have characteristics of a scrunched RPo. These findings support the hypothesis that sub-millisecond dynamics in the transcription bubble are responsible for transcription start site selection.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
22
|
Challenges in the Structural-Functional Characterization of Multidomain, Partially Disordered Proteins CBP and p300: Preparing Native Proteins and Developing Nanobody Tools. Methods Enzymol 2018; 611:607-675. [PMID: 30471702 DOI: 10.1016/bs.mie.2018.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and functional characterization of large multidomain signaling proteins containing long disordered linker regions represents special methodological and conceptual challenges. These proteins show extreme structural heterogeneity and have complex posttranslational modification patterns, due to which traditional structural biology techniques provide results that are often difficult to interpret. As demonstrated through the example of two such multidomain proteins, CREB-binding protein (CBP) and its paralogue, p300, even the expression and purification of such proteins are compromised by their extreme proteolytic sensitivity and structural heterogeneity. In this chapter, we describe the effective expression of CBP and p300 in a eukaryotic host, Sf9 insect cells, followed by their tandem affinity purification based on two terminal tags to ensure their structural integrity. The major focus of this chapter is on the development of novel accessory tools, single-domain camelid antibodies (nanobodies), for structural-functional characterization. Specific nanobodies against full-length CBP and p300 can specifically target their different regions and can be used for their marking, labeling, and structural stabilization in a broad range of in vitro and in vivo studies. Here, we describe four high-affinity nanobodies binding to the KIX and the HAT domains, either mimicking known interacting partners or revealing new functionally relevant conformations. As immunization of llamas results in nanobody libraries with a great sequence variation, deep sequencing and interaction analysis with different regions of the proteins provide a novel approach toward developing a panel of specific nanobodies.
Collapse
|
23
|
Yanez Orozco IS, Mindlin FA, Ma J, Wang B, Levesque B, Spencer M, Rezaei Adariani S, Hamilton G, Ding F, Bowen ME, Sanabria H. Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nat Commun 2018; 9:3724. [PMID: 30214057 PMCID: PMC6137104 DOI: 10.1038/s41467-018-06133-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/16/2018] [Indexed: 01/01/2023] Open
Abstract
Previous studies of the N-terminal PDZ tandem from PSD-95 produced divergent models and failed to identify interdomain contacts stabilizing the structure. We used ensemble and single-molecule FRET along with replica-exchange molecular dynamics to fully characterize the energy landscape. Simulations and experiments identified two conformations: an open-like conformation with a small contact interface stabilized by salt bridges, and a closed-like conformation with a larger contact interface stabilized by surface-exposed hydrophobic residues. Both interfaces were confirmed experimentally. Proximity of interdomain contacts to the binding pockets may explain the observed coupling between conformation and binding. The low-energy barrier between conformations allows submillisecond dynamics, which were time-averaged in previous NMR and FRET studies. Moreover, the small contact interfaces were likely overridden by lattice contacts as crystal structures were rarely sampled in simulations. Our hybrid approach can identify transient interdomain interactions, which are abundant in multidomain proteins yet often obscured by dynamic averaging.
Collapse
Affiliation(s)
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Junyan Ma
- Department of Chemistry, Clemson University, Clemson, SC, USA
- Center for Optical Materials Science and Engineering Technology, Clemson, SC, USA
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Brie Levesque
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Matheu Spencer
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | | | - George Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA.
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
- Center for Optical Materials Science and Engineering Technology, Clemson, SC, USA.
| |
Collapse
|
24
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
25
|
Caria S, Magtoto CM, Samiei T, Portela M, Lim KYB, How JY, Stewart BZ, Humbert PO, Richardson HE, Kvansakul M. Drosophila melanogaster Guk-holder interacts with the Scribbled PDZ1 domain and regulates epithelial development with Scribbled and Discs Large. J Biol Chem 2018; 293:4519-4531. [PMID: 29378849 DOI: 10.1074/jbc.m117.817528] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/22/2018] [Indexed: 11/06/2022] Open
Abstract
Epithelial cell polarity is controlled by components of the Scribble polarity module, and its regulation is critical for tissue architecture and cell proliferation and migration. In Drosophila melanogaster, the adaptor protein Guk-holder (Gukh) binds to the Scribbled (Scrib) and Discs Large (Dlg) components of the Scribble polarity module and plays an important role in the formation of neuromuscular junctions. However, Gukh's role in epithelial tissue formation and the molecular basis for the Scrib-Gukh interaction remain to be defined. We now show using isothermal titration calorimetry that the Scrib PDZ1 domain is the major site for an interaction with Gukh. Furthermore, we defined the structural basis of this interaction by determining the crystal structure of the Scrib PDZ1-Gukh complex. The C-terminal PDZ-binding motif of Gukh is located in the canonical ligand-binding groove of Scrib PDZ1 and utilizes an unusually extensive network of hydrogen bonds and ionic interactions to enable binding to PDZ1 with high affinity. We next examined the role of Gukh along with those of Scrib and Dlg in Drosophila epithelial tissues and found that Gukh is expressed in larval-wing and eye-epithelial tissues and co-localizes with Scrib and Dlg at the apical cell cortex. Importantly, we show that Gukh functions with Scrib and Dlg in the development of Drosophila epithelial tissues, with depletion of Gukh enhancing the eye- and wing-tissue defects caused by Scrib or Dlg depletion. Overall, our findings reveal that Scrib's PDZ1 domain functions in the interaction with Gukh and that the Scrib-Gukh interaction has a key role in epithelial tissue development in Drosophila.
Collapse
Affiliation(s)
- Sofia Caria
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Charlene M Magtoto
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086.,Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, and.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3002, and
| | - Tinaz Samiei
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086.,the Cell Cycle and Development Laboratory
| | - Marta Portela
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086.,the Cell Cycle and Development Laboratory
| | - Krystle Y B Lim
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Jing Yuan How
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Bryce Z Stewart
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Patrick O Humbert
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086.,Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, and.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3002, and.,the Departments of Biochemistry and Molecular Biology.,Pathology, and
| | - Helena E Richardson
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3002, and.,the Cell Cycle and Development Laboratory.,the Departments of Biochemistry and Molecular Biology.,Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086,
| |
Collapse
|
26
|
Zeng M, Ye F, Xu J, Zhang M. PDZ Ligand Binding-Induced Conformational Coupling of the PDZ-SH3-GK Tandems in PSD-95 Family MAGUKs. J Mol Biol 2017; 430:69-86. [PMID: 29138001 DOI: 10.1016/j.jmb.2017.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Discs large (DLG) MAGUKs are abundantly expressed in glutamatergic synapses, crucial for synaptic transmission, and plasticity by anchoring various postsynaptic components including glutamate receptors, downstream scaffold proteins and signaling enzymes. Different DLG members have shared structures and functions, but also contain unique features. How DLG family proteins function individually and cooperatively is largely unknown. Here, we report that PSD-95 PDZ3 directly couples with SH3-GK tandem in a PDZ ligand binding-dependent manner, and the coupling can promote PSD-95 dimerization and multimerization. Aided by sortase-mediated protein ligation and selectively labeling, we elucidated the PDZ3/SH3-GK conformational coupling mechanism using NMR spectroscopy. We further demonstrated that PSD-93, but not SAP102, can also undergo PDZ3 ligand binding-induced conformational coupling with SH3-GK and form homo-oligomers. Interestingly, PSD-95 and PSD-93 can also form ligand binding-induced hetero-oligomers, suggesting a cooperative assembly mechanism for the mega-N-methyl-d-aspartate receptor synaptic signaling complex. Finally, we provide evidence showing that ligand binding-induced conformational coupling between PDZ and SH3-GK is a common feature for other MAGUKs including CASK and PALS1.
Collapse
Affiliation(s)
- Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jia Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
27
|
Mechanisms of MAGUK-mediated cellular junctional complex organization. Curr Opin Struct Biol 2017; 48:6-15. [PMID: 28917202 DOI: 10.1016/j.sbi.2017.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023]
Abstract
Membrane-associated guanylate kinases (MAGUKs) are a family of scaffold proteins that are enriched in cellular junctions and essential for tissue development and homeostasis. Mutations of MAGUKs are linked to many human diseases including cancers, psychiatric disorders, and intellectual disabilities. MAGUKs share a common PDZ-SH3-GK tandem domain organization at the C-terminal end. In this review, we summarize the mechanistic basis governing target recognition and regulations of this binding by the PDZ-SH3-GK tandem of various MAGUKs. We also discuss recent discoveries showing unique folding features of MAGUK PDZ-SH3-GK tandems that facilitate ligand-induced oligomerization of MAGUKs and phase transition of MAGUK-assembled synaptic signaling complexes.
Collapse
|
28
|
Peulen TO, Opanasyuk O, Seidel CAM. Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately. J Phys Chem B 2017; 121:8211-8241. [PMID: 28709377 PMCID: PMC5592652 DOI: 10.1021/acs.jpcb.7b03441] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Förster resonance energy transfer
(FRET) measurements from
a donor, D, to an acceptor, A, fluorophore are frequently used in vitro and in live cells to reveal information on the
structure and dynamics of DA labeled macromolecules. Accurate descriptions
of FRET measurements by molecular models are complicated because the
fluorophores are usually coupled to the macromolecule via flexible
long linkers allowing for diffusional exchange between multiple states
with different fluorescence properties caused by distinct environmental
quenching, dye mobilities, and variable DA distances. It is often
assumed for the analysis of fluorescence intensity decays that DA
distances and D quenching are uncorrelated (homogeneous quenching
by FRET) and that the exchange between distinct fluorophore states
is slow (quasistatic). This allows us to introduce the FRET-induced
donor decay, εD(t), a function solely
depending on the species fraction distribution of the rate constants
of energy transfer by FRET, for a convenient joint analysis of fluorescence
decays of FRET and reference samples by integrated graphical and analytical
procedures. Additionally, we developed a simulation toolkit to model
dye diffusion, fluorescence quenching by the protein surface, and
FRET. A benchmark study with simulated fluorescence decays of 500
protein structures demonstrates that the quasistatic homogeneous model
works very well and recovers for single conformations the average
DA distances with an accuracy of < 2%. For more complex
cases, where proteins adopt multiple conformations with significantly
different dye environments (heterogeneous case), we introduce a general
analysis framework and evaluate its power in resolving heterogeneities
in DA distances. The developed fast simulation methods, relying on
Brownian dynamics of a coarse-grained dye in its sterically accessible
volume, allow us to incorporate structural information in the decay
analysis for heterogeneous cases by relating dye states with protein
conformations to pave the way for fluorescence and FRET-based dynamic
structural biology. Finally, we present theories and simulations to
assess the accuracy and precision of steady-state and time-resolved
FRET measurements in resolving DA distances on the single-molecule
and ensemble level and provide a rigorous framework for estimating
approximation, systematic, and statistical errors.
Collapse
Affiliation(s)
- Thomas-Otavio Peulen
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Oleg Opanasyuk
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität , Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Ma J, Yanez-Orozco IS, Rezaei Adariani S, Dolino D, Jayaraman V, Sanabria H. High Precision FRET at Single-molecule Level for Biomolecule Structure Determination. J Vis Exp 2017. [PMID: 28570518 DOI: 10.3791/55623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A protocol on how to perform high-precision interdye distance measurements using Förster resonance energy transfer (FRET) at the single-molecule level in multiparameter fluorescence detection (MFD) mode is presented here. MFD maximizes the usage of all "dimensions" of fluorescence to reduce photophysical and experimental artifacts and allows for the measurement of interdye distance with an accuracy up to ~1 Å in rigid biomolecules. This method was used to identify three conformational states of the ligand-binding domain of the N-methyl-D-aspartate (NMDA) receptor to explain the activation of the receptor upon ligand binding. When comparing the known crystallographic structures with experimental measurements, they agreed within less than 3 Å for more dynamic biomolecules. Gathering a set of distance restraints that covers the entire dimensionality of the biomolecules would make it possible to provide a structural model of dynamic biomolecules.
Collapse
Affiliation(s)
- Junyan Ma
- Department of Chemistry, Clemson University
| | | | | | - Drew Dolino
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University;
| |
Collapse
|
30
|
Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell 2016; 166:1163-1175.e12. [PMID: 27565345 DOI: 10.1016/j.cell.2016.07.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/15/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
Abstract
Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD.
Collapse
Affiliation(s)
- Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuan Shang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yoichi Araki
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tingfeng Guo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard L Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
31
|
Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr Opin Struct Biol 2016; 40:163-185. [PMID: 27939973 DOI: 10.1016/j.sbi.2016.11.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 01/11/2023]
Abstract
Förster Resonance Energy Transfer (FRET) combined with single-molecule spectroscopy probes macromolecular structure and dynamics and identifies coexisting conformational states. We review recent methodological developments in integrative structural modeling by satisfying spatial restraints on networks of FRET pairs (hybrid-FRET). We discuss procedures to incorporate prior structural knowledge and to obtain optimal distance networks. Finally, a workflow for hybrid-FRET is presented that automates integrative structural modeling and experiment planning to put hybrid-FRET on rails. To test this workflow, we simulate realistic single-molecule experiments and resolve three protein conformers, exchanging at 30μs and 10ms, with accuracies of 1-3Å RMSD versus the target structure. Incorporation of data from other spectroscopies and imaging is also discussed.
Collapse
Affiliation(s)
- Mykola Dimura
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas O Peulen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christian A Hanke
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Aiswaria Prakash
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus Am Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
32
|
Choi UB, Zhao M, Zhang Y, Lai Y, Brunger AT. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. eLife 2016; 5. [PMID: 27253060 PMCID: PMC4927292 DOI: 10.7554/elife.16886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 01/14/2023] Open
Abstract
Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI:http://dx.doi.org/10.7554/eLife.16886.001 Nerve cells communicate via electrical signals that travel at high speeds. However, these signals cannot pass across the gaps – called synapses – that separate one nerve cell from the next. Instead, signals pass between nerve cells via molecules called neurotransmitters that are released from the membrane of the first cell and recognized by receptors in the membrane of the next. Prior to being released, neurotransmitters are packaged inside bubble-like structures called vesicles. The synaptic vesicles must fuse with the cell membrane in order to release their contents into the synaptic cleft. Proteins called SNAREs work together with other proteins to allow this membrane fusion to occur rapidly after the electrical signal arrives. Complexin is a synaptic protein that binds tightly to a complex of SNARE proteins to regulate membrane fusion. This protein activates the quick release of neurotransmitters, which is triggered by an increase in calcium ions as the electrical signal reachess the synapse. Complexin also regulates a different type of neurotransmitter release, which is known as “spontaneous release”. The complexin protein is made up of different regions, each of which is required for one or more of the protein’s activities. However, it is not clear how these regions, or domains, interact with SNAREs and other proteins to enable complexin to perform these roles. Choi et al. have now investigated whether the different activities of mammalian complexin are related to the structure that it adopts when it interacts with the SNARE complex. Complexes of SNARE proteins were assembled with one of the SNARE proteins tethered to a surface for imaging. Next, a light-based imaging technique called single molecule Förster resonance energy transfer (or FRET) was used to monitor how complexin interacts with the SNARE complex. This technique allows individual proteins that have been labeled with fluorescent markers to be followed under a microscope and can show how they interact in real-time. Using this approach, Choi et al. showed that complexin could adopt two different shapes or conformations when it binds to the SNARE complex. In one, complexin interacted closely with the SNARE complex so that it made part of the complex change shape. In the other, complexin was able to bridge two SNARE complexes. Complexin can therefore interact with SNARE complexes in different ways by using different regions of the protein. These findings provide insight into how complexin may regulate membrane fusion via the SNARE complex. In the future, single molecule FRET could be used to study other proteins found at synapses and understand the other steps that regulate the release of neurotransmitters. DOI:http://dx.doi.org/10.7554/eLife.16886.002
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Structural Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
33
|
Zhu J, Shang Y, Zhang M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat Rev Neurosci 2016; 17:209-23. [DOI: 10.1038/nrn.2016.18] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Toto A, Pedersen SW, Karlsson OA, Moran GE, Andersson E, Chi CN, Strømgaard K, Gianni S, Jemth P. Ligand binding to the PDZ domains of postsynaptic density protein 95. Protein Eng Des Sel 2016; 29:169-75. [PMID: 26941280 DOI: 10.1093/protein/gzw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain.
Collapse
Affiliation(s)
- Angelo Toto
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy
| | - Søren W Pedersen
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Griffin E Moran
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| |
Collapse
|
35
|
Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 2016; 54:1759-1776. [PMID: 26884267 DOI: 10.1007/s12035-016-9745-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Collapse
|
36
|
Abstract
Specific conformations of signaling proteins can serve as “signals” in signal transduction by being recognized by receptors.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC)
- Brussels
- Belgium
- Vrije Universiteit Brussel
- Brussels
| |
Collapse
|
37
|
Rahamim G, Chemerovski-Glikman M, Rahimipour S, Amir D, Haas E. Resolution of Two Sub-Populations of Conformers and Their Individual Dynamics by Time Resolved Ensemble Level FRET Measurements. PLoS One 2015; 10:e0143732. [PMID: 26699718 PMCID: PMC4689530 DOI: 10.1371/journal.pone.0143732] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/08/2015] [Indexed: 11/19/2022] Open
Abstract
Most active biopolymers are dynamic structures; thus, ensembles of such molecules should be characterized by distributions of intra- or intermolecular distances and their fast fluctuations. A method of choice to determine intramolecular distances is based on Förster resonance energy transfer (FRET) measurements. Major advances in such measurements were achieved by single molecule FRET measurements. Here, we show that by global analysis of the decay of the emission of both the donor and the acceptor it is also possible to resolve two sub-populations in a mixture of two ensembles of biopolymers by time resolved FRET (trFRET) measurements at the ensemble level. We show that two individual intramolecular distance distributions can be determined and characterized in terms of their individual means, full width at half maximum (FWHM), and two corresponding diffusion coefficients which reflect the rates of fast ns fluctuations within each sub-population. An important advantage of the ensemble level trFRET measurements is the ability to use low molecular weight small-sized probes and to determine nanosecond fluctuations of the distance between the probes. The limits of the possible resolution were first tested by simulation and then by preparation of mixtures of two model peptides. The first labeled polypeptide was a relatively rigid Pro7 and the second polypeptide was a flexible molecule consisting of (Gly-Ser)7 repeats. The end to end distance distributions and the diffusion coefficients of each peptide were determined. Global analysis of trFRET measurements of a series of mixtures of polypeptides recovered two end-to-end distance distributions and associated intramolecular diffusion coefficients, which were very close to those determined from each of the pure samples. This study is a proof of concept study demonstrating the power of ensemble level trFRET based methods in resolution of subpopulations in ensembles of flexible macromolecules.
Collapse
Affiliation(s)
- Gil Rahamim
- The Goodman Faculty of Life Sciences Bar Ilan University, Ramat Gan Israel 52900
| | | | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat Gan Israel 52900
| | - Dan Amir
- The Goodman Faculty of Life Sciences Bar Ilan University, Ramat Gan Israel 52900
| | - Elisha Haas
- The Goodman Faculty of Life Sciences Bar Ilan University, Ramat Gan Israel 52900
- * E-mail:
| |
Collapse
|
38
|
Hoffmann B, Klöcker N, Benndorf K, Biskup C. Visualization of the dynamics of PSD-95 and Kir2.1 interaction by fluorescence lifetime-based resonance energy transfer imaging. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Nissen KB, Haugaard-Kedström LM, Wilbek TS, Nielsen LS, Åberg E, Kristensen AS, Bach A, Jemth P, Strømgaard K. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family. PLoS One 2015; 10:e0117668. [PMID: 25658767 PMCID: PMC4319893 DOI: 10.1371/journal.pone.0117668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/29/2014] [Indexed: 12/02/2022] Open
Abstract
PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.
Collapse
Affiliation(s)
- Klaus B. Nissen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Linda M. Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Theis S. Wilbek
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Line S. Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Emma Åberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Anders S. Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
40
|
Cook DE, Mesarich CH, Thomma BPHJ. Understanding plant immunity as a surveillance system to detect invasion. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:541-63. [PMID: 26047564 DOI: 10.1146/annurev-phyto-080614-120114] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in a single model. This review focuses on the limitations of the current paradigm of molecular plant-microbe interactions and how it too narrowly defines the plant immune system. As such, we discuss an alternative view of plant innate immunity as a system that evolves to detect invasion. This view accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives. Finally, how this view can contribute to the current practice of resistance breeding is discussed.
Collapse
Affiliation(s)
- David E Cook
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; ,
| | | | | |
Collapse
|
41
|
Garcia JD, Dewey EB, Johnston CA. Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila. PLoS One 2014; 9:e114235. [PMID: 25461409 PMCID: PMC4252473 DOI: 10.1371/journal.pone.0114235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh), a key regulator of planar cell polarity, and Discs large (Dlg), a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced “I3-insert” of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH). These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.
Collapse
Affiliation(s)
- Joshua D. Garcia
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Evan B. Dewey
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Christopher A. Johnston
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
42
|
|
43
|
Eildal JNN, Bach A, Dogan J, Ye F, Zhang M, Jemth P, Strømgaard K. Rigidified Clicked Dimeric Ligands for Studying the Dynamics of the PDZ1-2 Supramodule of PSD-95. Chembiochem 2014; 16:64-9. [DOI: 10.1002/cbic.201402547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 11/06/2022]
|
44
|
Structure of Crumbs tail in complex with the PALS1 PDZ-SH3-GK tandem reveals a highly specific assembly mechanism for the apical Crumbs complex. Proc Natl Acad Sci U S A 2014; 111:17444-9. [PMID: 25385611 DOI: 10.1073/pnas.1416515111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Crumbs (Crb) complex, formed by Crb, PALS1, and PATJ, is evolutionarily conserved in metazoans and acts as a master cell-growth and -polarity regulator at the apical membranes in polarized epithelia. Crb intracellular functions, including its direct binding to PALS1, are mediated by Crb's highly conserved 37-residue cytoplasmic tail. However, the mechanistic basis governing the highly specific Crb-PALS1 complex formation is unclear, as reported interaction between the Crb tail (Crb-CT) and PALS1 PSD-95/DLG/ZO-1 (PDZ) domain is weak and promiscuous. Here we have discovered that the PDZ-Src homolgy 3 (SH3)-Guanylate kinase (GK) tandem of PALS1 binds to Crb-CT with a dissociation constant of 70 nM, which is ∼ 100-fold stronger than the PALS1 PDZ-Crb-CT interaction. The crystal structure of the PALS1 PDZ-SH3-GK-Crb-CT complex reveals that PDZ-SH3-GK forms a structural supramodule with all three domains contributing to the tight binding to Crb. Mutations disrupting the tertiary interactions of the PDZ-SH3-GK supramodule weaken the PALS1-Crb interaction and compromise PALS1-mediated polarity establishment in Madin-Darby canine kidney (MDCK) cysts. We further show that specific target binding of other members of membrane-associated guanylate kinases (MAGUKs) (e.g., CASK binding to neurexin) also requires the presence of their PDZ-SH3-GK tandems.
Collapse
|
45
|
Hohlbein J, Craggs TD, Cordes T. Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 2014; 43:1156-71. [PMID: 24037326 DOI: 10.1039/c3cs60233h] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Förster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables the sorting of fluorescently labelled species based on the number and type of fluorophores present. ALEX also provides a convenient way of accessing the correction factors necessary for determining accurate molecular distances. Here, we provide a comprehensive overview of the concept and current applications of ALEX and we explicitly discuss how to obtain fully corrected distance information across the entire FRET range. We also present new ideas for applications of ALEX which will push the limits of smFRET-based experiments in terms of temporal and spatial resolution for the study of complex biological systems.
Collapse
Affiliation(s)
- Johannes Hohlbein
- Laboratory of Biophysics, Wageningen UR, Wageningen, The Netherlands.
| | | | | |
Collapse
|
46
|
McCann JJ, Choi UB, Bowen ME. Reconstitution of multivalent PDZ domain binding to the scaffold protein PSD-95 reveals ternary-complex specificity of combinatorial inhibition. Structure 2014; 22:1458-66. [PMID: 25220472 DOI: 10.1016/j.str.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/01/2014] [Accepted: 08/09/2014] [Indexed: 01/07/2023]
Abstract
Multidomain scaffold proteins serve as hubs in the signal transduction network. By physically colocalizing sequential steps in a transduction pathway, scaffolds catalyze and direct incoming signals. Much is known about binary interactions with individual domains, but it is unknown whether "scaffolding activity" is predictable from pairwise affinities. Here, we characterized multivalent binding to PSD-95, a scaffold protein containing three PDZ domains connected in series by disordered linkers. We used single molecule fluorescence to watch soluble PSD-95 recruit diffusing proteins to a surface-attached receptor cytoplasmic domain. Different ternary complexes showed unique concentration dependence for scaffolding despite similar pairwise affinity. The concentration dependence of scaffolding activity was not predictable based on binary interactions. PSD-95 did not stabilize specific complexes, but rather increased the frequency of transient binding events. Our results suggest that PSD-95 maintains a loosely connected pleomorphic ensemble rather than forming a stereospecific complex containing all components.
Collapse
Affiliation(s)
- James J McCann
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ucheor B Choi
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mark E Bowen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
47
|
Synaptic MAGUK multimer formation is mediated by PDZ domains and promoted by ligand binding. ACTA ACUST UNITED AC 2014; 20:1044-54. [PMID: 23973190 DOI: 10.1016/j.chembiol.2013.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 11/22/2022]
Abstract
To examine the scaffolding properties of PSD-95, we have taken advantage of established ligand/PDZ domain interactions and developed a cell-based assay for investigating protein complex formation. This assay enables quantitative analysis of PDZ domain-mediated protein clustering using bimolecular fluorescence complementation (BiFC). Two nonfluorescent halves of EYFP were fused to C-terminal PDZ ligand sequences to generate probes that sense for PDZ domain binding grooves of adjacent (interacting) molecules. When these probes are brought into proximity by the PDZ domains of a multiprotein scaffold, a functional fluorescent EYFP molecule can be detected. We have used this system to examine the properties of selected PSD-95 variants and thereby delineated regions of importance for PSD-95 complex formation. Further analysis led to the finding that PSD-95 multimerization is PDZ domain-mediated and promoted by ligand binding.
Collapse
|
48
|
Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:19-43. [PMID: 24820995 DOI: 10.1146/annurev-phyto-102313-045907] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Crop diseases emerge without warning. In many cases, diseases cross borders, or even oceans, before plant pathologists have time to identify and characterize the causative agents. Genome sequencing, in combination with intensive sampling of pathogen populations and application of population genetic tools, is now providing the means to unravel how bacterial crop pathogens emerge from environmental reservoirs, how they evolve and adapt to crops, and what international and intercontinental routes they follow during dissemination. Here, we introduce the field of population genomics and review the population genomics research of bacterial plant pathogens over the past 10 years. We highlight the potential of population genomics for investigating plant pathogens, using examples of population genomics studies of human pathogens. We also describe the complementary nature of the fields of population genomics and molecular plant-microbe interactions and propose how to translate new insights into improved disease prevention and control.
Collapse
Affiliation(s)
- Boris A Vinatzer
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia 24061; ,
| | | | | |
Collapse
|
49
|
Tompa P. Multisteric Regulation by Structural Disorder in Modular Signaling Proteins: An Extension of the Concept of Allostery. Chem Rev 2013; 114:6715-32. [DOI: 10.1021/cr4005082] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peter Tompa
- VIB Department of Structural
Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Biological Research Center, Hungarian Academy
of Sciences, Budapest H-1113, Hungary
| |
Collapse
|
50
|
Fuson K, Rice A, Mahling R, Snow A, Nayak K, Shanbhogue P, Meyer AG, Redpath GMI, Hinderliter A, Cooper ST, Sutton RB. Alternate splicing of dysferlin C2A confers Ca²⁺-dependent and Ca²⁺-independent binding for membrane repair. Structure 2013; 22:104-15. [PMID: 24239457 DOI: 10.1016/j.str.2013.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 12/01/2022]
Abstract
Dysferlin plays a critical role in the Ca²⁺-dependent repair of microlesions that occur in the muscle sarcolemma. Of the seven C2 domains in dysferlin, only C2A is reported to bind both Ca²⁺ and phospholipid, thus acting as a key sensor in membrane repair. Dysferlin C2A exists as two isoforms, the "canonical" C2A and C2A variant 1 (C2Av1). Interestingly, these isoforms have markedly different responses to Ca²⁺ and phospholipid. Structural and thermodynamic analyses are consistent with the canonical C2A domain as a Ca²⁺-dependent, phospholipid-binding domain, whereas C2Av1 would likely be Ca²⁺-independent under physiological conditions. Additionally, both isoforms display remarkably low free energies of stability, indicative of a highly flexible structure. The inverted ligand preference and flexibility for both C2A isoforms suggest the capability for both constitutive and Ca²⁺-regulated effector interactions, an activity that would be essential in its role as a mediator of membrane repair.
Collapse
Affiliation(s)
- Kerry Fuson
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anne Rice
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth 55812 MN, USA
| | - Ryan Mahling
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth 55812 MN, USA
| | - Adam Snow
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kamakshi Nayak
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Prajna Shanbhogue
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Austin G Meyer
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gregory M I Redpath
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Anne Hinderliter
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth 55812 MN, USA
| | - Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - R Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|