1
|
Patel TP, Jun JY, Seo AY, Levi NJ, Elizondo DM, Chen J, Wong AM, Tugarinov N, Altman EK, Gehle DB, Jung SM, Patel P, Ericson M, Haskell-Luevano C, Demby TC, Cougnoux A, Wolska A, Yanovski JA. Melanocortin 3 receptor regulates hepatic autophagy and systemic adiposity. Nat Commun 2025; 16:1690. [PMID: 39956805 PMCID: PMC11830824 DOI: 10.1038/s41467-025-56936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/05/2025] [Indexed: 02/18/2025] Open
Abstract
Systemic lipid homeostasis requires hepatic autophagy, a major cellular program for intracellular fat recycling. Here, we find melanocortin 3 receptor (MC3R) regulates hepatic autophagy in addition to its previously established CNS role in systemic energy partitioning and puberty. Mice with Mc3r deficiency develop obesity with hepatic triglyceride accumulation and disrupted hepatocellular autophagosome turnover. Mice with partially inactive human MC3R due to obesogenic variants demonstrate similar hepatic autophagic dysfunction. In vitro and in vivo activation of hepatic MC3R upregulates autophagy through LC3II activation, TFEB cytoplasmic-to-nuclear translocation, and subsequent downstream gene activation. MC3R-deficient hepatocytes had blunted autophagosome-lysosome docking and lipid droplet clearance. Finally, the liver-specific rescue of Mc3r was sufficient to restore hepatocellular autophagy, improve hepatocyte mitochondrial function and systemic energy expenditures, reduce adipose tissue lipid accumulation, and partially restore body weight in both male and female mice. We thus report a role for MC3R in regulating hepatic autophagy and systemic adiposity.
Collapse
Affiliation(s)
- Tushar P Patel
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Arnold Y Seo
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Noah J Levi
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Diana M Elizondo
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Jocelyn Chen
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Adrian M Wong
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Nicol Tugarinov
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Elizabeth K Altman
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Daniel B Gehle
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Sun Min Jung
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Pooja Patel
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Mark Ericson
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Tamar C Demby
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Yanik T, Durhan ST. Pro-Opiomelanocortin and Melanocortin Receptor 3 and 4 Mutations in Genetic Obesity. Biomolecules 2025; 15:209. [PMID: 40001512 PMCID: PMC11853658 DOI: 10.3390/biom15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Genetic obesity results from loss-of-function mutations, including those affecting the leptin-melanocortin system, which regulates body weight. Pro-opiomelanocortin (POMC)-derived neurohormones act as ligands for melanocortin receptors (MCRs), regulating the leptin-melanocortin pathway through protein-protein interactions. Loss-of-function mutations in the genes encoding POMC, MC3R, and MC4R can lead to the dysregulation of energy expenditure and feeding balance, early-onset obesity, and developmental dysregulation. Recent studies have identified new genetic regulatory mechanisms and potential biomarker regions for the POMC gene and MC4R secondary messenger pathway associated with obesity. Recent advances in crystal structure studies have enhanced our understanding of the protein interactions in this pathway. This narrative review focuses on recent developments in two key areas related to POMC regulation and the leptin-melanocortin pathway: (1) genetic variations in and functions of POMC, and (2) MC3R and MC4R variants that lead to genetic obesity in humans. Understanding these novel mutations in POMC and MC4R/MC3R, as well as their structural and intracellular mechanisms, may help identify strategies for the treatment and diagnosis of obesity, particularly childhood obesity.
Collapse
MESH Headings
- Humans
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/chemistry
- Obesity/genetics
- Obesity/metabolism
- Mutation
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 3/chemistry
- Leptin/metabolism
- Leptin/genetics
- Animals
Collapse
Affiliation(s)
- Tulin Yanik
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Türkiye
| | - Seyda Tugce Durhan
- Department of Biochemistry, Middle East Technical University, Ankara 06800, Türkiye;
| |
Collapse
|
3
|
Possa‐Paranhos IC, Butts J, Pyszka E, Nelson C, Congdon S, Cho D, Sweeney P. Medial hypothalamic MC3R signalling regulates energy rheostasis in adult mice. J Physiol 2025; 603:379-410. [PMID: 39718394 PMCID: PMC11737543 DOI: 10.1113/jp286699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioural response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e. impaired energy rheostasis). However, the brain regions mediating this phenotype are not well understood. Here, we utilized MC3R floxed mice and viral injections of Cre-recombinase to selectively delete MC3R from the medial hypothalamus (MH) in adult mice. Behavioural assays were performed on these animals to test the role of MC3R in MH in the acute response to orexigenic and anorexic challenges. Complementary chemogenetic approaches were used in MC3R-Cre mice to localize and characterize the specific medial hypothalamic brain regions mediating the role of MC3R in energy homeostasis. Finally, we performed RNAscope in situ hybridization to map changes in the mRNA expression of MC3R, pro-opiomelanocortin and agouti-related peptide following energy rheostatic challenges, as well as to characterize the MC3R expressing cells in dorsal MH. Our results demonstrate that MC3R deletion in MH increases feeding and weight gain following high-fat diet feeding, and enhances the anorexic effects of semaglutide, in a sexually dimorphic manner. Furthermore, although the arcuate nucleus exerts an important role in MC3R-mediated effects on energy homeostasis, viral deletion in the dorsal MH also resulted in altered energy rheostasis, indicating that brain regions outside of the arcuate nucleus also contribute to the role of MC3R in energy rheostasis. Together, these results demonstrate that MC3R-mediated effects on energy rheostasis result from the loss of MC3R signalling in medial hypothalamic neurons and suggest an important role for dorsal-MH MC3R signalling in energy rheostasis. KEY POINTS: Melanocortin-3-receptor (MC3R) signalling regulates energy rheostasis in adult mice. Medial hypothalamus regulates energy rheostasis in adult mice. Energy rheostatic stimuli alter mRNA levels of agouti-related peptide, pro-opiomelanocortin and MC3R. Dorsal-medial hypothalamus (DMH) MC3R neurons increase locomotion and energy expenditure. MC3R cell types in DMH are sexually dimorphic.
Collapse
Affiliation(s)
| | - Jared Butts
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
- University of Illinois Urbana‐Champaign Neuroscience ProgramUrbanaILUSA
| | - Emma Pyszka
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Christina Nelson
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Samuel Congdon
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Dajin Cho
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
- University of Illinois Urbana‐Champaign Neuroscience ProgramUrbanaILUSA
| | - Patrick Sweeney
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
- University of Illinois Urbana‐Champaign Neuroscience ProgramUrbanaILUSA
| |
Collapse
|
4
|
Rosendo-Silva D, Lopes E, Monteiro-Alfredo T, Falcão-Pires I, Eickhoff H, Viana S, Reis F, Pires AS, Abrantes AM, Botelho MF, Seiça R, Matafome P. The adipose tissue melanocortin 3 receptor is targeted by ghrelin and leptin and may be a therapeutic target in obesity. Mol Cell Endocrinol 2024; 594:112367. [PMID: 39293775 DOI: 10.1016/j.mce.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Obesity is linked to perturbations in energy balance mechanisms, including ghrelin and leptin actions at the hypothalamic circuitry of neuropeptide Y (NPY) and melanocortin. However, information about the regulation of this system in the periphery is still scarce. Our objective was to study the regulation of the NPY/melanocortin system in the adipose tissue (AT) and evaluate its therapeutic potential for obesity and type 2 diabetes. METHODS The expression of the NPY/melanocortin receptors' levels was assessed in the visceral AT of individuals with obesity and altered metabolism. Protein levels of these receptors were evaluated in cultured adipocytes incubated with ghrelin (30 and 100 ng/mL) and leptin (1 and 10 nM) and in the AT of an animal model with a mutation in the leptin receptor (ZSF1 rat), to understand their regulation by leptin and ghrelin. The vertical sleeve gastrectomy animal model was used to evaluate the putative therapeutic potential of the NPY/melanocortin system. RESULTS In this study, we unravelled that leptin (1 nM and 10 nM) selectively reduced the levels of NPY5R and MC3R but no other NPYR/MCRs in cultured adipocytes. In turn, acylated ghrelin (100 ng/mL) significantly increased NPY1R, but the inhibition of its receptor also abrogates MC3R levels. However, in the Lepr-deficient ZSF1 rat, both NPY5R and MC3R levels were reduced, along with other NPYRs and MCRs, suggesting that leptin resistance negatively affects NPY and melanocortin signalling. In human adipose tissue, we found a downregulation of genes encoding the NPY and melanocortin receptors in the visceral AT of individuals with obesity and insulin resistance, being correlated with genes regulating metabolic activity. Additionally, diabetic obese rats submitted to vertical sleeve gastrectomy showed increased levels of NPY, melanocortin, ghrelin, and leptin receptors in the AT, including MC3R, suggesting it may constitute a therapeutic target in obesity. CONCLUSIONS Our results suggest that the AT NPY/melanocortin system, particularly the MC3R, may be involved in the neuroendocrine regulation of adipocyte metabolism. Altogether, our work shows MC3R is under the control of the ghrelin/leptin duo, is reduced in patients with obesity and prediabetes, and may constitute a therapeutic target in obesity.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Eduardo Lopes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Tamaeh Monteiro-Alfredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Hans Eickhoff
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
| | - Sofia Viana
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Flávio Reis
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Ana Margarida Abrantes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Raquel Seiça
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
| | - Paulo Matafome
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
| |
Collapse
|
5
|
Chesters RA, Zhu J, Coull BM, Baidoe-Ansah D, Baumer L, Palm L, Klinghammer N, Chen S, Hahm A, Yagoub S, Cantacorps L, Bernardi D, Ritter K, Lippert RN. Fasting-induced activity changes in MC3R neurons of the paraventricular nucleus of the thalamus. Life Sci Alliance 2024; 7:e202402754. [PMID: 39107065 PMCID: PMC11303869 DOI: 10.26508/lsa.202402754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The brain controls energy homeostasis by regulating food intake through signaling within the melanocortin system. Whilst we understand the role of the hypothalamus within this system, how extra-hypothalamic brain regions are involved in controlling energy balance remains unclear. Here we show that the melanocortin 3 receptor (MC3R) is expressed in the paraventricular nucleus of the thalamus (PVT). We tested whether fasting would change the activity of MC3R neurons in this region by assessing the levels of c-Fos and pCREB as neuronal activity markers. We determined that overnight fasting causes a significant reduction in pCREB levels within PVT-MC3R neurons. We then questioned whether perturbation of MC3R signaling, during fasting, would result in altered refeeding. Using chemogenetic approaches, we show that modulation of MC3R activity, during the fasting period, does not impact body weight regain or total food intake in the refeeding period. However, we did observe significant differences in the pattern of feeding-related behavior. These findings suggest that the PVT is a region where MC3R neurons respond to energy deprivation and modulate refeeding behavior.
Collapse
Affiliation(s)
- Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Lea Baumer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Lydia Palm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Niklas Klinghammer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Seve Chen
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Anneke Hahm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Nuthetal, Germany
| | - Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel Bernardi
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
6
|
Catalbas K, Pattnaik T, Congdon S, Nelson C, Villano LC, Sweeney P. Hypothalamic AgRP neurons regulate the hyperphagia of lactation. Mol Metab 2024; 86:101975. [PMID: 38925247 PMCID: PMC11268337 DOI: 10.1016/j.molmet.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.
Collapse
Affiliation(s)
- Kerem Catalbas
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA
| | - Tanya Pattnaik
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Samuel Congdon
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Lara C Villano
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology, USA; University of Illinois Urbana-Champaign Neuroscience Program, USA.
| |
Collapse
|
7
|
Dahir NS, Gui Y, Wu Y, Sweeney PR, Rouault AA, Williams SY, Gimenez LE, Sawyer TK, Joy ST, Mapp AK, Cone RD. Subthreshold activation of the melanocortin system causes generalized sensitization to anorectic agents in mice. J Clin Invest 2024; 134:e178250. [PMID: 39007271 PMCID: PMC11245150 DOI: 10.1172/jci178250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
The melanocortin-3 receptor (MC3R) regulates GABA release from agouti-related protein (AgRP) nerve terminals and thus tonically suppresses multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of the MC3R and the melanocortin system in regulating the response to various anorexigenic agents. The genetic deletion or pharmacological inhibition of the MC3R, or subthreshold doses of an MC4R agonist, improved the dose responsiveness to glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss. An enhanced anorectic response to the acute satiety factors peptide YY (PYY3-36) and cholecystokinin (CCK) and the long-term adipostatic factor leptin demonstrated that increased sensitivity to anorectic agents was a generalized result of MC3R antagonism. We observed enhanced neuronal activation in multiple hypothalamic nuclei using Fos IHC following low-dose liraglutide in MC3R-KO mice (Mc3r-/-), supporting the hypothesis that the MC3R is a negative regulator of circuits that control multiple aspects of feeding behavior. The enhanced anorectic response in Mc3r-/- mice after administration of GLP1 analogs was also independent of the incretin effects and malaise induced by GLP1 receptor (GLP1R) analogs, suggesting that MC3R antagonists or MC4R agonists may have value in enhancing the dose-response range of obesity therapeutics.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Appetite Depressants/pharmacology
- Cholecystokinin/metabolism
- Eating/drug effects
- Glucagon-Like Peptide 1/metabolism
- Hypothalamus/metabolism
- Leptin/metabolism
- Liraglutide/pharmacology
- Mice, Inbred C57BL
- Mice, Knockout
- Peptide YY/metabolism
- Peptide YY/genetics
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/agonists
Collapse
Affiliation(s)
- Naima S. Dahir
- Life Sciences Institute
- Department of Molecular and Integrative Physiology, and
| | - Yijun Gui
- Life Sciences Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanan Wu
- Life Sciences Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick R. Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Alix A.J. Rouault
- Life Sciences Institute
- Department of Molecular and Integrative Physiology, and
| | | | | | | | | | - Anna K. Mapp
- Life Sciences Institute
- Department of Chemistry, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute
- Department of Molecular and Integrative Physiology, and
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Possa-Paranhos IC, Butts J, Pyszka E, Nelson C, Cho D, Sweeney P. Neuroanatomical dissection of the MC3R circuitry regulating energy rheostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590573. [PMID: 38712101 PMCID: PMC11071362 DOI: 10.1101/2024.04.22.590573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioral response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e. impaired energy rheostasis). However, the brain regions mediating this phenotype remain incompletely understood. Here, we utilized MC3R floxed mice and viral injections of Cre-recombinase to selectively delete MC3R from medial hypothalamus (MH) in adult mice. Behavioral assays were performed on these animals to test the role of MC3R in MH in the acute response to orexigenic and anorexic challenges. Complementary chemogenetic approaches were used in MC3R-Cre mice to localize and characterize the specific medial hypothalamic brain regions mediating the role of MC3R in energy homeostasis. Finally, we performed RNAscope in situ hybridization to map changes in the mRNA expression of MC3R, POMC, and AgRP following energy rheostatic challenges. Our results demonstrate that MC3R deletion in MH increased feeding and weight gain following acute high fat diet feeding in males, and enhanced the anorexic effects of semaglutide, in a sexually dimorphic manner. Additionally, activation of DMH MC3R neurons increased energy expenditure and locomotion. Together, these results demonstrate that MC3R mediated effects on energy rheostasis result from the loss of MC3R signaling in the medial hypothalamus of adult animals and suggest an important role for DMH MC3R signaling in energy rheostasis.
Collapse
Affiliation(s)
| | - Jared Butts
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| | - Emma Pyszka
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
| | - Dajin Cho
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| |
Collapse
|
9
|
Dahir NS, Gui Y, Wu Y, Sweeney PR, Williams SY, Gimenez LE, Sawyer TK, Joy ST, Mapp AK, Cone RD. Inhibition of the melanocortin-3 receptor (MC3R) causes generalized sensitization to anorectic agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570114. [PMID: 38106197 PMCID: PMC10723368 DOI: 10.1101/2023.12.05.570114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The melanocortin-3 receptor (MC3R) acts presynaptically to regulate GABA release from agouti-related protein (AgRP) nerve terminals and thus may be a negative regulator of multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of MC3R in regulating the response to various anorexigenic agents. Our findings reveal that genetic deletion or pharmacological inhibition of MC3R improves the dose responsiveness to Glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss. An enhanced anorectic response to other agents, including the acute satiety factors peptide YY (PYY3-36) and cholecystokinin (CCK) and the long-term adipostatic factor, leptin, demonstrated that increased sensitivity to anorectic agents is a generalized result of MC3R antagonism. Enhanced neuronal activation in multiple nuclei, including ARH, VMH, and DMH, was observed using Fos immunohistochemistry following low-dose liraglutide in MC3R knockout mice (Mc3r-/-), supporting the hypothesis that the MC3R is a negative regulator of circuits regulating multiple aspects of feeding behavior. The enhanced anorectic response in Mc3r -/- mice after administration of GLP1 analogs was also independent of the incretin effects and malaise induced by GLP1R analogs, suggesting that MC3R antagonists may have value in enhancing the dose-response range of obesity therapeutics.
Collapse
Affiliation(s)
- Naima S. Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Yijun Gui
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Yanan Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Patrick R. Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL
| | | | - Luis E. Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Tomi K. Sawyer
- Courage Therapeutics, 64 Homer Street, Newton, Massachusetts 02459, United States
| | - Stephen T. Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Gui Y, Dahir NS, Wu Y, Downing G, Sweeney P, Cone RD. Melanocortin-3 receptor expression in AgRP neurons is required for normal activation of the neurons in response to energy deficiency. Cell Rep 2023; 42:113188. [PMID: 37792535 PMCID: PMC10728878 DOI: 10.1016/j.celrep.2023.113188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
The melanocortin-3 receptor (MC3R) is a negative regulator of the central melanocortin circuitry via presynaptic expression on agouti-related protein (AgRP) nerve terminals, from where it regulates GABA release onto secondary MC4R-expressing neurons. However, MC3R knockout (KO) mice also exhibit defective behavioral and neuroendocrine responses to fasting. Here, we demonstrate that MC3R KO mice exhibit defective activation of AgRP neurons in response to fasting, cold exposure, or ghrelin while exhibiting normal inhibition of AgRP neurons by sensory detection of food in the ad libitum-fed state. Using a conditional MC3R KO model, we show that the control of AgRP neuron activation by fasting and ghrelin requires the specific presence of MC3R within AgRP neurons. Thus, MC3R is a crucial player in the responsiveness of the AgRP soma to both hormonal and neuronal signals of energy need.
Collapse
Affiliation(s)
- Yijun Gui
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Yanan Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Griffin Downing
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Patrick Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL 61801-3633, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
11
|
Sweeney P, Gimenez LE, Hernandez CC, Cone RD. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat Rev Endocrinol 2023; 19:507-519. [PMID: 37365323 DOI: 10.1038/s41574-023-00855-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.
Collapse
Affiliation(s)
- Patrick Sweeney
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, College of Literature Science and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Gui Y, Dahir NS, Downing G, Sweeney P, Cone RD. Cell autonomous regulation of the activation of AgRP neurons by the melanocortin-3 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546874. [PMID: 37425887 PMCID: PMC10327035 DOI: 10.1101/2023.06.28.546874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The melanocortin-3 receptor (MC3R) is a negative regulator of the central melanocortin circuitry via presynaptic expression on AgRP nerve terminals, from where it regulates GABA release onto secondary MC4R-expressing neurons. Hence, animals lacking MC3R (MC3R KO) exhibit hypersensitivity to MC4R agonists. However, MC3R KO mice also exhibit defective behavioral and neuroendocrine responses to fasting. Here, we demonstrate that MC3R KO mice exhibit defective activation of AgRP neurons in response to fasting and cold exposure, while exhibiting normal inhibition of AgRP neurons by sensory detection of food. Further, using an AgRP-specific MC3R knockout model, we show that the control of AgRP neuron activation by MC3R is cell-autonomous. One mechanism underlying this involves the response to ghrelin, which is also blunted in mice with AgRP-specific deletion of the MC3R. Thus, MC3R is a crucial player in the control of energy homeostasis by the central melanocortin system, not only acting presynaptically on AgRP neurons, but via AgRP cell-autonomous regulation of fasting- and cold-induced neuronal activation as well.
Collapse
|
13
|
Janssen H, Kahles F, Liu D, Downey J, Koekkoek LL, Roudko V, D'Souza D, McAlpine CS, Halle L, Poller WC, Chan CT, He S, Mindur JE, Kiss MG, Singh S, Anzai A, Iwamoto Y, Kohler RH, Chetal K, Sadreyev RI, Weissleder R, Kim-Schulze S, Merad M, Nahrendorf M, Swirski FK. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 2023; 56:783-796.e7. [PMID: 36827982 PMCID: PMC10101885 DOI: 10.1016/j.immuni.2023.01.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023]
Abstract
Diet profoundly influences physiology. Whereas over-nutrition elevates risk for disease via its influence on immunity and metabolism, caloric restriction and fasting appear to be salutogenic. Despite multiple correlations observed between diet and health, the underlying biology remains unclear. Here, we identified a fasting-induced switch in leukocyte migration that prolongs monocyte lifespan and alters susceptibility to disease in mice. We show that fasting during the active phase induced the rapid return of monocytes from the blood to the bone marrow. Monocyte re-entry was orchestrated by hypothalamic-pituitary-adrenal (HPA) axis-dependent release of corticosterone, which augmented the CXCR4 chemokine receptor. Although the marrow is a safe haven for monocytes during nutrient scarcity, re-feeding prompted mobilization culminating in monocytosis of chronologically older and transcriptionally distinct monocytes. These shifts altered response to infection. Our study shows that diet-in particular, a diet's temporal dynamic balance-modulates monocyte lifespan with consequences for adaptation to external stressors.
Collapse
Affiliation(s)
- Henrike Janssen
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Florian Kahles
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan Liu
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey Downey
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura L Koekkoek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cameron S McAlpine
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lennard Halle
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfram C Poller
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher T Chan
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shun He
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John E Mindur
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Máté G Kiss
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sumnima Singh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Atsushi Anzai
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kashish Chetal
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Yanik T, Durhan ST. Specific Functions of Melanocortin 3 Receptor (MC3R). J Clin Res Pediatr Endocrinol 2023; 15:1-6. [PMID: 36053086 PMCID: PMC9976164 DOI: 10.4274/jcrpe.galenos.2022.2022-5-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Melanocortin 3 receptor (MC3R) is a G-protein coupled receptor which has been defined mostly as a regulator of the appetite/hunger balance mechanisms to date. In addition to its function regarding the weight gain and appetite control mechanisms of MC3R, recent studies have shown that MC3R controls growth, puberty, and circadian rhythms as well. Despite the drastic effects of MC3R deficiency in humans and other mammals, its cellular mechanisms are still under investigation. In this review paper, we aimed to point out the importance of MC3R regulations in three main areas: 1) its impact on weight and appetite control, 2) its role in the control of growth, puberty, and the circadian rhythm, and, 3) its protein-protein interactions and cellular mechanisms.
Collapse
Affiliation(s)
- Tulin Yanik
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey,* Address for Correspondence: Middle East Technical University, Department of Biological Sciences, Ankara, Turkey Phone: +90 312 210 64 65 E-mail:
| | - Seyda Tugce Durhan
- Middle East Technical University, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
15
|
Xu C, He Z, Song Y, Shao S, Yang G, Zhao J. Atypical pituitary hormone-target tissue axis. Front Med 2023; 17:1-17. [PMID: 36849623 DOI: 10.1007/s11684-022-0973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
A long-held belief is that pituitary hormones bind to their cognate receptors in classical target glands to actuate their manifold functions. However, a number of studies have shown that multiple types of pituitary hormone receptors are widely expressed in non-classical target organs. Each pituitary gland-derived hormone exhibits a wide range of nonconventional biological effects in these non-classical target organs. Herein, the extra biological functions of pituitary hormones, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotrophic hormone, and prolactin when they act on non-classical organs were summarized, defined by the novel concept of an "atypical pituitary hormone-target tissue axis." This novel proposal explains the pathomechanisms of abnormal glucose and lipid metabolism, obesity, hypertension, fatty liver, and atherosclerosis while offering a more comprehensive and systematic insights into the coordinated regulation of environmental factors, genetic factors, and neuroendocrine hormones on human biological functions. The continued exploration of the physiology of the "atypical pituitary hormone-target tissue axis" could enable the identification of novel therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zhao He
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Shanshan Shao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Guang Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China. .,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
16
|
Ji LQ, Rao YZ, Zhang Y, Chen R, Tao YX. Pharmacology of orange-spotted grouper (Epinephelus coioides) melanocortin-5 receptor and its modulation by Mrap2. Gen Comp Endocrinol 2023; 332:114180. [PMID: 36455644 DOI: 10.1016/j.ygcen.2022.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The mammalian melanocortin-5 receptors (MC5Rs) are involved in various functions, including exocrine gland secretion, glucose uptake, adipocyte lipolysis, and immunity. However, the physiological role of fish Mc5r is rarely studied. Melanocortin-2 receptor accessory protein 2 (MRAP2) modulates pharmacological properties of melanocortin receptors. Herein, to lay the foundation for future physiological studies, we cloned the orange-spotted grouper (Epinephelus coioides) mc5r, with a 1008 bp open reading frame and a predicted protein of 334 amino acids. Grouper mc5r had abundant expression in the brain, skin, and kidney. Four ligands could bind to grouper Mc5r and dose-dependently increase intracellular cAMP levels. Grouper Mrap2 did not affect binding affinity or potency of Mc5r; however, grouper Mrap2 decreased cell surface expression and maximal binding of Mc5r. Mrap2 also significantly decreased the maximal response to a superpotent agonist but not the endogenous agonist. This study provided new data on fish Mc5r pharmacology and its regulation by Mrap2.
Collapse
Affiliation(s)
- Li-Qin Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ying-Zhu Rao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Southern Laboratory of Ocean Science and Engineering (Zhuhai, Guangdong), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Zhuhai 51900, China
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
17
|
Vasileva A, Marx T, Beaudry JL, Stern JH. Glucagon receptor signaling at white adipose tissue does not regulate lipolysis. Am J Physiol Endocrinol Metab 2022; 323:E389-E401. [PMID: 36002172 PMCID: PMC9576180 DOI: 10.1152/ajpendo.00078.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the physiological role of glucagon receptor signaling in the liver is well defined, the impact of glucagon receptor (Gcgr) signaling on white adipose tissue (WAT) continues to be debated. Although numerous studies propose that glucagon stimulates WAT lipolysis, we lack evidence that physiological concentrations of glucagon regulate WAT lipolysis. In turn, we performed studies in both wild-type and WAT Gcgr knockout mice to determine if glucagon regulates lipolysis at WAT in the mouse. We assessed the effects of fasting and acute exogenous glucagon administration in wild-type C57BL/6J and GcgrAdipocyte+/+ versus GcgrAdipocyte-/- mice. Using an ex vivo lipolysis protocol, we further examined the direct effects of glucagon on physiologically (fasted) and pharmacologically stimulated lipolysis. We found that adipocyte Gcgr expression did not affect fasting-induced lipolysis or hepatic lipid accumulation in lean or diet-induced obese (DIO) mice. Acute glucagon administration did not affect serum nonesterified fatty acids (NEFA), leptin, or adiponectin concentration, but did increase serum glucose and FGF21, regardless of genotype. Glucagon did not affect ex vivo lipolysis in explants from either GcgrAdipocyte+/+ or GcgrAdipocyte-/- mice. Gcgr expression did not affect fasting-induced or isoproterenol-stimulated lipolysis from WAT explants. Moreover, glucagon receptor signaling at WAT did not affect body weight or glucose homeostasis in lean or DIO mice. Our studies have established that physiological levels of glucagon do not regulate WAT lipolysis, either directly or indirectly. Given that glucagon receptor agonism can improve dyslipidemia and decrease hepatic lipid accumulation, it is critical to understand the tissue-specific effects of glucagon receptor action. Unlike the crucial role of hepatic glucagon receptor signaling in maintaining glucose and lipid homeostasis, we observed no metabolic consequence of WAT glucagon receptor deletion.NEW & NOTEWORTHY It has been postulated that glucagon stimulates lipolysis and fatty acid release from white adipose tissue. We observed no metabolic effects of eliminating or activating glucagon receptor signaling at white adipose tissue.
Collapse
Affiliation(s)
- Anastasiia Vasileva
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Tyler Marx
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
18
|
Melanocortin-5 Receptor: Pharmacology and Its Regulation of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23158727. [PMID: 35955857 PMCID: PMC9369360 DOI: 10.3390/ijms23158727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
As the most recent melanocortin receptor (MCR) identified, melanocortin-5 receptor (MC5R) has unique tissue expression patterns, pharmacological properties, and physiological functions. Different from the other four MCR subtypes, MC5R is widely distributed in both the central nervous system and peripheral tissues and is associated with multiple functions. MC5R in sebaceous and preputial glands regulates lipid production and sexual behavior, respectively. MC5R expressed in immune cells is involved in immunomodulation. Among the five MCRs, MC5R is the predominant subtype expressed in skeletal muscle and white adipose tissue, tissues critical for energy metabolism. Activated MC5R triggers lipid mobilization in adipocytes and glucose uptake in skeletal muscle. Therefore, MC5R is a potential target for treating patients with obesity and diabetes mellitus. Melanocortin-2 receptor accessory proteins can modulate the cell surface expression, dimerization, and pharmacology of MC5R. This minireview summarizes the molecular and pharmacological properties of MC5R and highlights the progress made on MC5R in energy metabolism. We poInt. out knowledge gaps that need to be explored in the future.
Collapse
|
19
|
Competing paradigms of obesity pathogenesis: energy balance versus carbohydrate-insulin models. Eur J Clin Nutr 2022; 76:1209-1221. [PMID: 35896818 PMCID: PMC9436778 DOI: 10.1038/s41430-022-01179-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
The obesity pandemic continues unabated despite a persistent public health campaign to decrease energy intake (“eat less”) and increase energy expenditure (“move more”). One explanation for this failure is that the current approach, based on the notion of energy balance, has not been adequately embraced by the public. Another possibility is that this approach rests on an erroneous paradigm. A new formulation of the energy balance model (EBM), like prior versions, considers overeating (energy intake > expenditure) the primary cause of obesity, incorporating an emphasis on “complex endocrine, metabolic, and nervous system signals” that control food intake below conscious level. This model attributes rising obesity prevalence to inexpensive, convenient, energy-dense, “ultra-processed” foods high in fat and sugar. An alternative view, the carbohydrate-insulin model (CIM), proposes that hormonal responses to highly processed carbohydrates shift energy partitioning toward deposition in adipose tissue, leaving fewer calories available for the body’s metabolic needs. Thus, increasing adiposity causes overeating to compensate for the sequestered calories. Here, we highlight robust contrasts in how the EBM and CIM view obesity pathophysiology and consider deficiencies in the EBM that impede paradigm testing and refinement. Rectifying these deficiencies should assume priority, as a constructive paradigm clash is needed to resolve long-standing scientific controversies and inform the design of new models to guide prevention and treatment. Nevertheless, public health action need not await resolution of this debate, as both models target processed carbohydrates as major drivers of obesity.
Collapse
|
20
|
Gupta R, Wang M, Ma Y, Offermanns S, Whim MD. The β-Hydroxybutyrate-GPR109A Receptor Regulates Fasting-induced Plasticity in the Mouse Adrenal Medulla. Endocrinology 2022; 163:6590010. [PMID: 35595517 PMCID: PMC9188660 DOI: 10.1210/endocr/bqac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/19/2022]
Abstract
During fasting, increased sympathoadrenal activity leads to epinephrine release and multiple forms of plasticity within the adrenal medulla including an increase in the strength of the preganglionic → chromaffin cell synapse and elevated levels of agouti-related peptide (AgRP), a peptidergic cotransmitter in chromaffin cells. Although these changes contribute to the sympathetic response, how fasting evokes this plasticity is not known. Here we report these effects involve activation of GPR109A (HCAR2). The endogenous agonist of this G protein-coupled receptor is β-hydroxybutyrate, a ketone body whose levels rise during fasting. In wild-type animals, 24-hour fasting increased AgRP-ir in adrenal chromaffin cells but this effect was absent in GPR109A knockout mice. GPR109A agonists increased AgRP-ir in isolated chromaffin cells through a GPR109A- and pertussis toxin-sensitive pathway. Incubation of adrenal slices in nicotinic acid, a GPR109A agonist, mimicked the fasting-induced increase in the strength of the preganglionic → chromaffin cell synapse. Finally, reverse transcription polymerase chain reaction experiments confirmed the mouse adrenal medulla contains GPR109A messenger RNA. These results are consistent with the activation of a GPR109A signaling pathway located within the adrenal gland. Because fasting evokes epinephrine release, which stimulates lipolysis and the production of β-hydroxybutyrate, our results indicate that chromaffin cells are components of an autonomic-adipose-hepatic feedback circuit. Coupling a change in adrenal physiology to a metabolite whose levels rise during fasting is presumably an efficient way to coordinate the homeostatic response to food deprivation.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Manqi Wang
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Yunbing Ma
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Matthew D Whim
- Correspondence: Matthew D. Whim, PhD, Department of Cell Biology and Anatomy, LSU Health Sciences Center, Medical Education Bldg (MEB 6142), 1901 Perdido St, New Orleans, LA 70112, USA.
| |
Collapse
|
21
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
22
|
Lam BYH, Williamson A, Finer S, Day FR, Tadross JA, Gonçalves Soares A, Wade K, Sweeney P, Bedenbaugh MN, Porter DT, Melvin A, Ellacott KLJ, Lippert RN, Buller S, Rosmaninho-Salgado J, Dowsett GKC, Ridley KE, Xu Z, Cimino I, Rimmington D, Rainbow K, Duckett K, Holmqvist S, Khan A, Dai X, Bochukova EG, Trembath RC, Martin HC, Coll AP, Rowitch DH, Wareham NJ, van Heel DA, Timpson N, Simerly RB, Ong KK, Cone RD, Langenberg C, Perry JRB, Yeo GS, O'Rahilly S. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 2021; 599:436-441. [PMID: 34732894 PMCID: PMC8819628 DOI: 10.1038/s41586-021-04088-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The state of somatic energy stores in metazoans is communicated to the brain, which regulates key aspects of behaviour, growth, nutrient partitioning and development1. The central melanocortin system acts through melanocortin 4 receptor (MC4R) to control appetite, food intake and energy expenditure2. Here we present evidence that MC3R regulates the timing of sexual maturation, the rate of linear growth and the accrual of lean mass, which are all energy-sensitive processes. We found that humans who carry loss-of-function mutations in MC3R, including a rare homozygote individual, have a later onset of puberty. Consistent with previous findings in mice, they also had reduced linear growth, lean mass and circulating levels of IGF1. Mice lacking Mc3r had delayed sexual maturation and an insensitivity of reproductive cycle length to nutritional perturbation. The expression of Mc3r is enriched in hypothalamic neurons that control reproduction and growth, and expression increases during postnatal development in a manner that is consistent with a role in the regulation of sexual maturation. These findings suggest a bifurcating model of nutrient sensing by the central melanocortin pathway with signalling through MC4R controlling the acquisition and retention of calories, whereas signalling through MC3R primarily regulates the disposition of calories into growth, lean mass and the timing of sexual maturation.
Collapse
Affiliation(s)
- B Y H Lam
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - A Williamson
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - S Finer
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - F R Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - J A Tadross
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - A Gonçalves Soares
- MRC Integrative Epidemiology Unit and Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - K Wade
- MRC Integrative Epidemiology Unit and Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - P Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - M N Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - D T Porter
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - A Melvin
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K L J Ellacott
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - R N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition, Potsdam, Germany
| | - S Buller
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - J Rosmaninho-Salgado
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - G K C Dowsett
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K E Ridley
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Z Xu
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - I Cimino
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - D Rimmington
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K Rainbow
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - K Duckett
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - S Holmqvist
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - A Khan
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - X Dai
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - E G Bochukova
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - R C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - H C Martin
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - A P Coll
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - D H Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - N J Wareham
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - D A van Heel
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - N Timpson
- MRC Integrative Epidemiology Unit and Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - R B Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - K K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - R D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - C Langenberg
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - G S Yeo
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - S O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
23
|
Li Y, Wang X, Lu L, Wang M, Zhai Y, Tai X, Dilimulati D, Lei X, Xu J, Zhang C, Fu Y, Qu S, Li Q, Zhang C. Identification of novel GPCR partners of the central melanocortin signaling. Mol Metab 2021; 53:101317. [PMID: 34400348 PMCID: PMC8458986 DOI: 10.1016/j.molmet.2021.101317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Homo- or heterodimerization of G protein-coupled receptors (GPCRs) generally affects the normal functioning of these receptors and mediates the responses to a variety of physiological stimuli in vivo. It is well known that melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) are key regulators of appetite and energy homeostasis in the central nervous system. However, the GPCR partners of MC3R and MC4R are not well understood. Our objective is to analyze single cell RNA-seq datasets of the hypothalamus to explore and identify novel GPCR partners of MC3R and MC4R and examine the pharmacological effect on the downstream signal transduction and membrane translocation of melanocortin receptors. METHODS We conducted an integrative analysis of multiple single cell RNA-seq datasets to reveal the expression pattern and correlation of GPCR families in the mouse hypothalamus. The emerging GPCRs with important metabolic functions were selected for cloning and co-immunoprecipitation validation. The positive GPCR partners were then tested for the pharmacological activation, competitive binding assay and surface translocation ELISA experiments. RESULTS Based on the expression pattern of GPCRs and their function enrichment results, we narrowed down the range of potential GPCR interaction with MC3R and MC4R for further confirmation. Co-immunoprecipitation assay verified 23 and 32 novel GPCR partners that interacted with MC3R and MC4R in vitro. The presence of these GPCR partners exhibited different effects in the physiological regulation and signal transduction of MC3R and MC4R. CONCLUSIONS This work represented the first large-scale screen for the functional GPCR complex of central melanocortin receptors and defined a composite metabolic regulatory GPCR network of the hypothalamic nucleuses.
Collapse
Affiliation(s)
- Yunpeng Li
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaozhu Wang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Liumei Lu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhai
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaolu Tai
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Diliqingna Dilimulati
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaowei Lei
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Xu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
VTA MC3R neurons control feeding in an activity- and sex-dependent manner in mice. Neuropharmacology 2021; 197:108746. [PMID: 34371079 DOI: 10.1016/j.neuropharm.2021.108746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Increasing evidence indicates that the melanocortin and mesolimbic dopamine (DA) systems interact to regulate feeding and body weight. Because melanocortin-3 receptors (MC3R) are highly expressed in the ventral tegmental area (VTA), we tested whether VTA neurons expressing these receptors (VTA MC3R neurons) control feeding and body weight in vivo. We also tested whether there were sex differences in the ability of VTA MC3R neurons to control feeding, as MC3R -/- mice show sex-dependent alterations in reward feeding and DA levels, and there are clear sex differences in multiple DA-dependent behaviors and disorders. Designer receptors exclusively activated by designer drugs (DREADD) were used to acutely activate and inhibit VTA MC3R neurons and changes in food intake and body weight were measured. Acutely altering the activity of VTA MC3R neurons decreased feeding in an activity- and sex-dependent manner, with acute activation decreasing feeding, but only in females, and acute inhibition decreasing feeding, but only in males. These differences did not appear to be due to sex differences in the number of VTA MC3R neurons, the ability of hM3Dq to activate VTA MC3R neurons, or the proportion of VTA MC3R neurons expressing tyrosine hydroxylase (TH). These studies demonstrate an important role for VTA MC3R neurons in the control of feeding and reveal important sex differences in behavior, whereby opposing changes in neuronal activity in male and female mice cause similar changes in behavior.
Collapse
|
25
|
Rajesh Y, Sarkar D. Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer. Int J Mol Sci 2021; 22:ijms22042163. [PMID: 33671547 PMCID: PMC7926723 DOI: 10.3390/ijms22042163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their role as potential therapeutic targets. The field is rapidly developing, and further research is still required to fully understand the underlying mechanisms for the metabolic actions of adipokines and their role in obesity-associated HCC.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
26
|
Van der Mierden S, Spineli LM, Talbot SR, Yiannakou C, Zentrich E, Weegh N, Struve B, Zur Brügge TF, Bleich A, Leenaars CHC. Extracting data from graphs: A case-study on animal research with implications for meta-analyses. Res Synth Methods 2021; 12:701-710. [PMID: 33555134 DOI: 10.1002/jrsm.1481] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Systematic reviews with meta-analyses are powerful tools that can answer research questions based on data from published studies. Ideally, all relevant data is directly available in the text or tables, but often it is only presented in graphs. In those cases, the data can be extracted from graphs, but this potentially introduces errors. Here, we investigate to what extent the extracted outcome and error values differ from the original data and if these differences could affect the results of a meta-analysis. Six extractors extracted 36 outcome values and corresponding errors from 22 articles. Differences between extractors were compared using overall concordance correlation coefficients (OCCC), differences between the original and extracted data were compared using concordance correlation coefficients (CCC). To test the possible influence on meta-analyses, random-effects meta-analyses on mean difference comparing original and extracted data were performed. The OCCCs and CCCs were high for both outcome values and errors, CCCs were >0.99 for the outcome and >0.92 for errors. The meta-analyses showed that the overall effect on outcome was very small (median: 0.025, interquartile range: 0.016-0.046). Therefore, data extraction from graphs is a good method to harvest data if it is not provided in the text or tables, and the original authors cannot provide the data.
Collapse
Affiliation(s)
| | - Loukia Maria Spineli
- Midwifery Research and Education Unit, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christina Yiannakou
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Eva Zentrich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Nora Weegh
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Birgitta Struve
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
27
|
Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. Int J Mol Sci 2020; 21:ijms21249368. [PMID: 33316927 PMCID: PMC7764544 DOI: 10.3390/ijms21249368] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Since its discovery twenty-five years ago, the fat-derived hormone leptin has provided a revolutionary framework for studying the physiological role of adipose tissue as an endocrine organ. Leptin exerts pleiotropic effects on many metabolic pathways and is tightly connected with the liver, the major player in systemic metabolism. As a consequence, understanding the metabolic and hormonal interplay between the liver and adipose tissue could provide us with new therapeutic targets for some chronic liver diseases, an increasing problem worldwide. In this review, we assess relevant literature regarding the main metabolic effects of leptin on the liver, by direct regulation or through the central nervous system (CNS). We draw special attention to the contribution of leptin to the non-alcoholic fatty liver disease (NAFLD) pathogenesis and its progression to more advanced stages of the disease as non-alcoholic steatohepatitis (NASH). Likewise, we describe the contribution of leptin to the liver regeneration process after partial hepatectomy, the mainstay of treatment for certain hepatic malignant tumors.
Collapse
|
28
|
Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C. The Melanocortin System behind the Dysfunctional Eating Behaviors. Nutrients 2020; 12:E3502. [PMID: 33202557 PMCID: PMC7696960 DOI: 10.3390/nu12113502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | - Daniele Tomassoni
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| | | | - Carlo Cifani
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (E.M.D.B.); (L.B.); (S.K.T.); (C.C.)
| |
Collapse
|
29
|
Zhang HJ, Xie HJ, Wang W, Wang ZQ, Tao YX. Pharmacology of the giant panda (Ailuropoda melanoleuca) melanocortin-3 receptor. Gen Comp Endocrinol 2019; 277:73-81. [PMID: 30391243 DOI: 10.1016/j.ygcen.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a member of the G protein-coupled receptor superfamily that plays a critical role in controlling energy balance and metabolism. Although pharmacological characterization of MC3R has been reported previously in several other species, there is no report on the MC3R from giant panda (Ailuropoda melanoleuca). This ancient species is known as a 'living fossil' and is among the most endangered animals in the world. Giant panda survive on a specialized diet of bamboo despite possessing a typical carnivorous digestive system. We report herein the molecular cloning and pharmacological characterization of amMC3R. Homology and phylogenetic analysis showed that amMC3R was highly homologous (>85%) to several other mammalian MC3Rs. Using human MC3R (hMC3R) as a control, the binding of five agonists, [Nle4, D-Phe7]-α-melanocyte stimulating hormone (NDP-MSH), α-, β-, γ-, and D-Trp8-γ-MSH, was investigated, as well as Gs-cAMP and pERK1/2 signaling. The results showed that amMC3R bound NDP- and D-Trp8-γ-MSH with the highest affinity, followed by α-, β-, and γ-MSH, with the same rank order as hMC3R. When stimulated with agonists, amMC3R displayed increased intracellular cAMP and activation of pERK1/2. These data suggest that the cloned amMC3R was a functional receptor. The availability of amMC3R and knowledge of its pharmacological functions will assist further investigation of its role in controlling energy balance and metabolism.
Collapse
Affiliation(s)
- Hai-Jie Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Hua-Jie Xie
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Wei Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Qiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
30
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
31
|
Fleming KA, Freeman KT, Powers MD, Santos RG, Debevec G, Giulianotti MA, Houghten RA, Doering SR, Pinilla C, Haskell-Luevano C. Discovery of Polypharmacological Melanocortin-3 and -4 Receptor Probes and Identification of a 100-Fold Selective nM MC3R Agonist versus a μM MC4R Partial Agonist. J Med Chem 2019; 62:2738-2749. [PMID: 30741545 PMCID: PMC6463894 DOI: 10.1021/acs.jmedchem.9b00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The centrally expressed melanocortin-3 and melanocortin-4 receptors (MC3R and MC4R, respectively) are established targets to treat diseases of positive- and negative-energy homeostasis. We previously reported [ Doering , S. R. ; J. Med. Chem. 2017 , 60 , 4342 - 4357 ] mixture-based positional scanning approaches to identify dual MC3R agonist and MC4R antagonist tetrapeptides. Herein, 46 tetrapeptides were chosen for MC3R agonist screening selectivity profiles, synthesized, and pharmacologically characterized at the mouse melanocortin-1, -3, -4, and -5 receptors. Substitutions to the tetrapeptide template were selected solely based on MC3R agonist potency from the mixture-based screen. This study resulted in the discovery of compound 42 (Ac-Val-Gln-(pI)DPhe-DTic-NH2), a full MC3R agonist that is 100-fold selective for the MC3R over the μM MC4R partial agonist pharmacology. This compound represents a first-in-class MC3R selective agonist. This ligand will serve as a useful in vivo molecular probe for the investigation of the roles of the MC3R and MC4R in diseases of dysregulated energy homeostasis.
Collapse
Affiliation(s)
- Katlyn A. Fleming
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Mike D. Powers
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Radleigh G. Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, United States
| | - Skye R. Doering
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| | - Clemencia Pinilla
- To whom correspondence about the use of positional scanning libraries should be addressed at at Torrey Pines Institute for Molecular Studies
| | - Carrie Haskell-Luevano
- University of Minnesota, Department of Medicinal Chemistry, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Eerola K, Virtanen S, Vähätalo L, Ailanen L, Cai M, Hruby V, Savontaus M, Savontaus E. Hypothalamic γ-melanocyte stimulating hormone gene delivery reduces fat mass in male mice. J Endocrinol 2018; 239:19–31. [PMID: 30307151 DOI: 10.1530/joe-18-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Melanocyte stimulating hormone (γ-MSH) is an endogenous agonist of the melanocortin 3-receptor (MC3R). Genetic disruption of MC3Rs increases adiposity and blunts responses to fasting, suggesting that increased MC3R signaling could be physiologically beneficial in the long term. Interestingly, several studies have concluded that activation of MC3Rs is orexigenic in the short term. Therefore, we aimed to examine the short- and long-term effects of γ-MSH in the hypothalamic arcuate nucleus (ARC) on energy homeostasis and hypothesized that the effect of MC3R agonism is dependent on the state of energy balance and nutrition. Lentiviral gene delivery was used to induce a continuous expression of γ-Msh only in the ARC of male C57Bl/6N mice. Parameters of body energy homeostasis were monitored as food was changed from chow (6 weeks) to Western diet (13 weeks) and back to chow (7 weeks). The γ-MSH treatment decreased the fat mass to lean mass ratio on chow, but the effect was attenuated on Western diet. After the switch back to chow, an enhanced loss in weight (−15% vs −6%) and fat mass (−37% vs −12%) and reduced cumulative food intake were observed in γ-MSH-treated animals. Fasting-induced feeding was increased on chow diet only; however, voluntary running wheel activity on Western diet was increased. The γ-MSH treatment also modulated the expression of key neuropeptides in the ARC favoring weight loss. We have shown that a chronic treatment intended to target ARC MC3Rs modulates energy balance in nutritional state-dependent manner. Enhancement of diet-induced weight loss could be beneficial in treatment of obesity.
Collapse
Affiliation(s)
- K Eerola
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - S Virtanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - L Vähätalo
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - L Ailanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - M Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - V Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - M Savontaus
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - E Savontaus
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
33
|
Fleming KA, Freeman KT, Ericson MD, Haskell-Luevano C. Synergistic Multiresidue Substitutions of a Macrocyclic c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-dPro] Agouti-Related Protein (AGRP) Scaffold Yield Potent and >600-Fold MC4R versus MC3R Selective Melanocortin Receptor Antagonists. J Med Chem 2018; 61:7729-7740. [PMID: 30035543 PMCID: PMC6174881 DOI: 10.1021/acs.jmedchem.8b00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antagonist ligands of the melanocortin-3 and -4 receptors (MC3R, MC4R), including agouti-related protein (AGRP), are postulated to be targets for the treatment of diseases of negative energy balance. Previous studies reported the macrocyclic MC3R/MC4R antagonist c[Pro1-Arg2-Phe3-Phe4-Asn5-Ala6-Phe7-dPro8], which is 250-fold less potent at the mouse (m) mMC3R and 3-fold less potent at the mMC4R than AGRP. Previous studies explored the structure-activity relationships around individual positions in this template. Herein, a multiresidue substitution strategy is utilized, combining the lead sequence with hPhe4, Dap5, Arg5, Ser6, and Nle7 substitutions previously reported. Two compounds from this study (16, 20) contain an hPhe4/Ser6/Nle7 substitution pattern, are 3-6-fold more potent than AGRP at the mMC4R and are 600-800-fold selective for the mMC4R over the mMC3R. Another lead compound (21), possessing the hPhe4/Arg5 substitutions, is only 5-fold less potent than AGRP at the mMC3R and is equipotent to AGRP at the mMC4R.
Collapse
Affiliation(s)
- Katlyn A. Fleming
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| | - Mark D. Ericson
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- University of Minnesota, Department of Medicinal Chemistry and Institute for Translation Neuroscience, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
Ghamari-Langroudi M, Cakir I, Lippert RN, Sweeney P, Litt MJ, Ellacott KLJ, Cone RD. Regulation of energy rheostasis by the melanocortin-3 receptor. SCIENCE ADVANCES 2018; 4:eaat0866. [PMID: 30140740 PMCID: PMC6105298 DOI: 10.1126/sciadv.aat0866] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Like most homeostatic systems, adiposity in mammals is defended between upper and lower boundary conditions. While leptin and melanocortin-4 receptor (MC4R) signaling are required for defending energy set point, mechanisms controlling upper and lower homeostatic boundaries are less well understood. In contrast to the MC4R, deletion of the MC3R does not produce measurable hyperphagia or hypometabolism under normal conditions. However, we demonstrate that MC3R is required bidirectionally for controlling responses to external homeostatic challenges, such as caloric restriction or calorie-rich diet. MC3R is also required for regulated excursion from set point, or rheostasis, during pregnancy. Further, we demonstrate a molecular mechanism: MC3R provides regulatory inputs to melanocortin signaling, acting presynaptically on agouti-related protein neurons to regulate γ-aminobutyric acid release onto anorexigenic MC4R neurons, exerting boundary control on the activity of MC4R neurons. Thus, the MC3R is a critical regulator of boundary controls on melanocortin signaling, providing rheostatic control on energy storage.
Collapse
Affiliation(s)
- Masoud Ghamari-Langroudi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232, USA
- Corresponding author. (M.G.-L.); (R.D.C.)
| | - Isin Cakir
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232, USA
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109–2216, USA
| | - Rachel N. Lippert
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232, USA
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Patrick Sweeney
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109–2216, USA
| | - Michael J. Litt
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232, USA
| | - Kate L. J. Ellacott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232, USA
- University of Exeter Medical School, Exeter, UK
| | - Roger D. Cone
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN 37232, USA
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109–2216, USA
- Corresponding author. (M.G.-L.); (R.D.C.)
| |
Collapse
|
35
|
Impact of skeletal muscle IL-6 on regulation of liver and adipose tissue metabolism during fasting. Pflugers Arch 2018; 470:1597-1613. [PMID: 30069669 DOI: 10.1007/s00424-018-2185-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
The liver and adipose tissue are important tissues in whole-body metabolic regulation during fasting. Interleukin 6 (IL-6) is a cytokine shown to be secreted from contracting muscle in humans and suggested to signal to the liver and adipose tissue. Furthermore, skeletal muscle IL-6 has been proposed to play a role during fasting. Therefore the aim of the present study was to investigate the role of skeletal muscle IL-6 in the regulation of substrate production in the liver and adipose tissue during fasting. Male skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and littermate floxed (control) mice fasted for 6 or 18 h (6 h fasting or 18 h fasting) with corresponding fed control groups (6 h fed or 18 h fed) and liver and adipose tissue were quickly obtained. Plasma β-hydroxybutyrate increased and hepatic glucose, lactate and glycogen decreased with fasting. In addition, fasting increased phosphoenolpyruvate carboxykinase protein and phosphorylation of pyruvate dehydrogenase (PDH) in the liver as well as hormone-sensitive lipase (HSL)Ser660 and HSLSer563 phosphorylation, PDH phosphorylation, adipose triglyceride lipase phosphorylation and perilipin phosphorylation and protein content in adipose tissue without any effect of lack of skeletal muscle IL-6. In conclusion, fasting induced regulation of enzymes in adipose tissue lipolysis and glyceroneogenesis as well as regulation of hepatic gluconeogenic capacity and hepatic substrate utilization in mice. However, skeletal muscle IL-6 was not required for these fasting-induced effects, but had minor effects on markers of lipolysis and glyceroneogenesis in adipose tissue as well as markers of hepatic gluconeogenesis in the fed state.
Collapse
|
36
|
Subkhangulova A, Malik AR, Hermey G, Popp O, Dittmar G, Rathjen T, Poy MN, Stumpf A, Beed PS, Schmitz D, Breiderhoff T, Willnow TE. SORCS1 and SORCS3 control energy balance and orexigenic peptide production. EMBO Rep 2018; 19:embr.201744810. [PMID: 29440124 PMCID: PMC5891432 DOI: 10.15252/embr.201744810] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
SORCS1 and SORCS3 are two related sorting receptors expressed in neurons of the arcuate nucleus of the hypothalamus. Using mouse models with individual or dual receptor deficiencies, we document a previously unknown function of these receptors in central control of metabolism. Specifically, SORCS1 and SORCS3 act as intracellular trafficking receptors for tropomyosin-related kinase B to attenuate signaling by brain-derived neurotrophic factor, a potent regulator of energy homeostasis. Loss of the joint action of SORCS1 and SORCS3 in mutant mice results in excessive production of the orexigenic neuropeptide agouti-related peptide and in a state of chronic energy excess characterized by enhanced food intake, decreased locomotor activity, diminished usage of lipids as metabolic fuel, and increased adiposity, albeit at overall reduced body weight. Our findings highlight a novel concept in regulation of the melanocortin system and the role played by trafficking receptors SORCS1 and SORCS3 in this process.
Collapse
Affiliation(s)
| | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Popp
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Thomas Rathjen
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | - Prateep Sanker Beed
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité - University Medicine, Berlin, Germany
| | | | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany .,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
37
|
Wang C, Niederstrasser H, Douglas PM, Lin R, Jaramillo J, Li Y, Oswald NW, Zhou A, McMillan EA, Mendiratta S, Wang Z, Zhao T, Lin Z, Luo M, Huang G, Brekken RA, Posner BA, MacMillan JB, Gao J, White MA. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat Commun 2017; 8:2270. [PMID: 29273768 PMCID: PMC5741634 DOI: 10.1038/s41467-017-02332-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Drugs that mirror the cellular effects of starvation mimics are considered promising therapeutics for common metabolic disorders, such as obesity, liver steatosis, and for ageing. Starvation, or caloric restriction, is known to activate the transcription factor EB (TFEB), a master regulator of lipid metabolism and lysosomal biogenesis and function. Here, we report a nanotechnology-enabled high-throughput screen to identify small-molecule agonists of TFEB and discover three novel compounds that promote autophagolysosomal activity. The three lead compounds include the clinically approved drug, digoxin; the marine-derived natural product, ikarugamycin; and the synthetic compound, alexidine dihydrochloride, which is known to act on a mitochondrial target. Mode of action studies reveal that these compounds activate TFEB via three distinct Ca2+-dependent mechanisms. Formulation of these compounds in liver-tropic biodegradable, biocompatible nanoparticles confers hepatoprotection against diet-induced steatosis in murine models and extends lifespan of Caenorhabditis elegans. These results support the therapeutic potential of small-molecule TFEB activators for the treatment of metabolic and age-related disorders. Activation of autophagy, via the transcription factor TFEB, is a promising strategy to treat metabolic diseases. Here, the authors report three novel classes of small molecules that promote TFEB nuclear translocation, and provide evidence for the therapeutic efficacy of these compounds in mice and worms.
Collapse
Affiliation(s)
- Chensu Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Peter M Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Juan Jaramillo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Yang Li
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Nathaniel W Oswald
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Elizabeth A McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Saurabh Mendiratta
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Zhaohui Wang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Tian Zhao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Zhiqaing Lin
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Min Luo
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Gang Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Rolf A Brekken
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Department of Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - John B MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jinming Gao
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
38
|
Gupta R, Ma Y, Wang M, Whim MD. AgRP-Expressing Adrenal Chromaffin Cells Are Involved in the Sympathetic Response to Fasting. Endocrinology 2017; 158:2572-2584. [PMID: 28531318 PMCID: PMC5551550 DOI: 10.1210/en.2016-1268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/16/2017] [Indexed: 01/23/2023]
Abstract
Fasting evokes a homeostatic response that maintains circulating levels of energy-rich metabolites and increases the drive to eat. Centrally, this reflex activates a small population of hypothalamic neurons that are characterized by the expression of AgRP, a neuropeptide with an extremely restricted distribution. Apart from the hypothalamus, the only other site with substantial expression is the adrenal gland, but there is disagreement about which cells synthesize AgRP. Using immunohistochemistry, flow cytometry, and reverse transcription-polymerase chain reaction, we show AgRP is present in the mouse adrenal medulla and is expressed by neuroendocrine chromaffin cells that also synthesize the catecholamines and neuropeptide Y. Short-term fasting led to an increase in adrenal AgRP expression. Because AgRP can act as an antagonist at MC3/4 receptors, we tested whether melanotan II, an MC3/4 receptor agonist, could regulate pre- and postsynaptic signaling within the adrenal medulla. Melanotan II decreased the paired-pulse ratio of evoked synaptic currents recorded in chromaffin cells; this effect was blocked by exogenous AgRP. In contrast, neither melanotan II nor AgRP altered the optogenetically evoked release of catecholamines from isolated chromaffin cells. These results are consistent with the idea that AgRP regulates the strength of the sympathetic input by modulation of presynaptic MC3/4 receptors located on preganglionic neurons. We conclude that a small population of neuroendocrine cells in the adrenal medulla, and the arcuate nucleus of the hypothalamus, express AgRP and neuropeptide Y and are functionally involved in the systemic response to fasting.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Yunbing Ma
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Manqi Wang
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Matthew D. Whim
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
39
|
Chhabra KH, Morgan DA, Tooke BP, Adams JM, Rahmouni K, Low MJ. Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice. Mol Metab 2017; 6:1274-1285. [PMID: 29031726 PMCID: PMC5641634 DOI: 10.1016/j.molmet.2017.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/02/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022] Open
Abstract
Objective Hypothalamic arcuate nucleus-specific pro-opiomelanocortin deficient (ArcPomc−/−) mice exhibit improved glucose tolerance despite massive obesity and insulin resistance. We demonstrated previously that their improved glucose tolerance is due to elevated glycosuria. However, the underlying mechanisms that link glucose reabsorption in the kidney with ArcPomc remain unclear. Given the function of the hypothalamic melanocortin system in controlling sympathetic outflow, we hypothesized that reduced renal sympathetic nerve activity (RSNA) in ArcPomc−/− mice could explain their elevated glycosuria and consequent enhanced glucose tolerance. Methods We measured RSNA by multifiber recording directly from the nerves innervating the kidneys in ArcPomc−/− mice. To further validate the function of RSNA in glucose reabsorption, we denervated the kidneys of WT and diabetic db/db mice before measuring their glucose tolerance and urine glucose levels. Moreover, we performed western blot and immunohistochemistry to determine kidney GLUT2 and SGLT2 levels in either ArcPomc−/− mice or the renal-denervated mice. Results Consistent with our hypothesis, we found that basal RSNA was decreased in ArcPomc−/− mice relative to their wild type (WT) littermates. Remarkably, both WT and db/db mice exhibited elevated glycosuria and improved glucose tolerance after renal denervation. The elevated glycosuria in obese ArcPomc−/−, WT and db/db mice was due to reduced renal GLUT2 levels in the proximal tubules. Overall, we show that renal-denervated WT and diabetic mice recapitulate the phenotype of improved glucose tolerance and elevated glycosuria associated with reduced renal GLUT2 levels observed in obese ArcPomc−/− mice. Conclusion Hence, we conclude that ArcPomc is essential in maintaining basal RSNA and that elevated glycosuria is a possible mechanism to explain improved glucose tolerance after renal denervation in drug resistant hypertensive patients. Hypothalamic POMC is essential in maintaining basal renal sympathetic nerve activity. Renal denervation improves glucose tolerance in wild-type and db/db mice by elevating their glycosuria. Decreased renal GLUT2 is responsible for elevated glycosuria in mice with suppressed renal sympathetic nerve activity.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin P Tooke
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Jessica M Adams
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Lensing CJ, Adank DN, Wilber SL, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH 2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2: A Bivalent Advantage. ACS Chem Neurosci 2017; 8:1262-1278. [PMID: 28128928 DOI: 10.1021/acschemneuro.6b00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH2, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease in vivo food intake, decrease mice's body fat percent, and differentially affect mouse hormone levels demonstrates the distinct characteristics achieved from the current melanocortin agonist bivalent design strategy.
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danielle N. Adank
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, United States
| | - Adam T. Zarth
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
41
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
42
|
Demidowich AP, Jun JY, Yanovski JA. Polymorphisms and mutations in the melanocortin-3 receptor and their relation to human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2468-2476. [PMID: 28363697 DOI: 10.1016/j.bbadis.2017.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Inactivating mutations in the melanocortin 3 receptor (Mc3r) have been described as causing obesity in mice, but the physiologic effects of MC3R mutations in humans have been less clear. Here we review the MC3R polymorphisms and mutations identified in humans, and the in vitro, murine, and human cohort studies examining their putative effects. Some, but not all, studies suggest that the common human MC3R variant T6K+V81I, as well as several other rare, function-altering mutations, are associated with greater adiposity and hyperleptinemia with altered energy partitioning. In vitro, the T6K+V81I variant appears to decrease MC3R expression and therefore cAMP generation in response to ligand binding. Knockin mouse studies confirm that the T6K+V81I variant increases feeding efficiency and the avidity with which adipocytes derived from bone or adipose tissue stem cells store triglycerides. Other MC3R mutations occur too infrequently in the human population to make definitive conclusions regarding their clinical effects. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Andrew P Demidowich
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Joo Yun Jun
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jack A Yanovski
- Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
43
|
Butler AA, Girardet C, Mavrikaki M, Trevaskis JL, Macarthur H, Marks DL, Farr SA. A Life without Hunger: The Ups (and Downs) to Modulating Melanocortin-3 Receptor Signaling. Front Neurosci 2017; 11:128. [PMID: 28360832 PMCID: PMC5352694 DOI: 10.3389/fnins.2017.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Melanocortin neurons conserve body mass in hyper- or hypo-caloric conditions by conveying signals from nutrient sensors into areas of the brain governing appetite and metabolism. In mice, melanocortin-3 receptor (MC3R) deletion alters nutrient partitioning independently of hyperphagia, promoting accumulation of fat over muscle mass. Enhanced rhythms in insulin and insulin-responsive metabolic genes during hypocaloric feeding suggest partial insulin resistance and enhanced lipogenesis. However, exactly where and how MC3Rs affect metabolic control to alter nutrient partitioning is not known. The behavioral phenotypes exhibited by MC3R-deficient mice suggest a contextual role in appetite control. The impact of MC3R-deficiency on feeding behavior when food is freely available is minor. However, homeostatic responses to hypocaloric conditioning involving increased expression of appetite-stimulating (orexigenic) neuropeptides, binge-feeding, food anticipatory activity (FAA), entrainment to nutrient availability and enhanced feeding-related motivational responses are compromised with MC3R-deficiency. Rescuing Mc3r transcription in hypothalamic and limbic neurons improves appetitive responses during hypocaloric conditioning while having minor effects on nutrient partitioning, suggesting orexigenic functions. Rescuing hypothalamic MC3Rs also restores responses of fasting-responsive hypothalamic orexigenic neurons in hypocaloric conditions, suggesting actions that sensitize fasting-responsive neurons to signals from nutrient sensors. MC3R signaling in ventromedial hypothalamic SF1(+ve) neurons improves metabolic control, but does not restore appetitive responses or nutrient partitioning. In summary, desensitization of fasting-responsive orexigenic neurons may underlie attenuated appetitive responses of MC3R-deficient mice in hypocaloric situations. Further studies are needed to identify the specific location(s) of MC3Rs controlling appetitive responses and partitioning of nutrients between fat and lean tissues.
Collapse
Affiliation(s)
- Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Maria Mavrikaki
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - James L Trevaskis
- In vivo Pharmacology, Cardiovascular and Metabolic Disease, Medimmune Gaithersburg, MD, USA
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University Portland, OR, USA
| | - Susan A Farr
- Department of Internal Medicine, Division of Geriatrics, Saint Louis University School of MedicineSt. Louis, MO, USA; VA Medical CenterSt. Louis, MO, USA
| |
Collapse
|
44
|
Melanocortin-3 receptors expressed in Nkx2.1(+ve) neurons are sufficient for controlling appetitive responses to hypocaloric conditioning. Sci Rep 2017; 7:44444. [PMID: 28294152 PMCID: PMC5353610 DOI: 10.1038/srep44444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/08/2017] [Indexed: 01/12/2023] Open
Abstract
Melanocortin-3 receptors (MC3R) have a contextual role in appetite control that is amplified with hypocaloric conditioning. C57BL/6J (B6) mice subjected to hypocaloric feeding schedules (HFS) exhibit compulsive behavioral responses involving food anticipatory activity (FAA) and caloric loading following food access. These homeostatic responses to calorie-poor environs are attenuated in B6 mice in which Mc3r transcription is suppressed by a lox-stop-lox sequence in the 5'UTR (Mc3rTB/TB). Here, we report that optimization of caloric loading in B6 mice subject to HFS, characterized by increased meal size and duration, is not observed in Mc3rTB/TB mice. Analysis of hypothalamic and neuroendocrine responses to HFS throughout the light-dark cycle suggests uncoupling of hypothalamic responses involving appetite-stimulating fasting-responsive hypothalamic neurons expressing agouti-related peptide (AgRP) and neuropeptide Y (Npy). Rescuing Mc3rs expression in Nkx2.1(+ve) neurons is sufficient to restore normal hypothalamic responses to negative energy balance. In addition, Mc3rs expressed in Nkx2.1(+ve) neurons are also sufficient to restore FAA and caloric loading of B6 mice subjected to HFS. In summary, MC3Rs expressed in Nkx2.1(+ve) neurons are sufficient to coordinate hypothalamic response and expression of compulsive behavioral responses involving meal anticipation and consumption of large meals during situations of prolonged negative energy balance.
Collapse
|
45
|
Geisler CE, Hepler C, Higgins MR, Renquist BJ. Hepatic adaptations to maintain metabolic homeostasis in response to fasting and refeeding in mice. Nutr Metab (Lond) 2016; 13:62. [PMID: 27708682 PMCID: PMC5037643 DOI: 10.1186/s12986-016-0122-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/15/2016] [Indexed: 12/26/2022] Open
Abstract
Background The increased incidence of obesity and associated metabolic diseases has driven research focused on genetically or pharmacologically alleviating metabolic dysfunction. These studies employ a range of fasting-refeeding models including 4–24 h fasts, “overnight” fasts, or meal feeding. Still, we lack literature that describes the physiologically relevant adaptations that accompany changes in the duration of fasting and re-feeding. Since the liver is central to whole body metabolic homeostasis, we investigated the timing of the fast-induced shift toward glycogenolysis, gluconeogenesis, and ketogenesis and the meal-induced switch toward glycogenesis and away from ketogenesis. Methods Twelve to fourteen week old male C57BL/6J mice were fasted for 0, 4, 8, 12, or 16 h and sacrificed 4 h after lights on. In a second study, designed to understand the response to a meal, we gave fasted mice access to feed for 1 or 2 h before sacrifice. We analyzed the data using mixed model analysis of variance. Results Fasting initiated robust metabolic shifts, evidenced by changes in serum glucose, non-esterified fatty acids (NEFAs), triacylglycerol, and β-OH butyrate, as well as, liver triacylglycerol, non-esterified fatty acid, and glycogen content. Glycogenolysis is the primary source to maintain serum glucose during the first 8 h of fasting, while de novo gluconeogenesis is the primary source thereafter. The increase in serum β-OH butyrate results from increased enzymatic capacity for fatty acid flux through β-oxidation and shunting of acetyl-CoA toward ketone body synthesis (increased CPT1 (Carnitine Palmitoyltransferase 1) and HMGCS2 (3-Hydroxy-3-Methylglutaryl-CoA Synthase 2) expression, respectively). In opposition to the relatively slow metabolic adaptation to fasting, feeding of a meal results in rapid metabolic changes including full depression of serum β-OH butyrate and NEFAs within an hour. Conclusions Herein, we provide a detailed description of timing of the metabolic adaptations in response to fasting and re-feeding to inform study design in experiments of metabolic homeostasis. Since fasting and obesity are both characterized by elevated adipose tissue lipolysis, hepatic lipid accumulation, ketogenesis, and gluconeogenesis, understanding the drivers behind the metabolic shift from the fasted to the fed state may provide targets to limit aberrant gluconeogenesis and ketogenesis in obesity.
Collapse
Affiliation(s)
- C E Geisler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 4101 North Campbell Avenue, Tucson, AZ 85719 USA
| | - C Hepler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 4101 North Campbell Avenue, Tucson, AZ 85719 USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235 USA
| | - M R Higgins
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 4101 North Campbell Avenue, Tucson, AZ 85719 USA
| | - B J Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 4101 North Campbell Avenue, Tucson, AZ 85719 USA
| |
Collapse
|
46
|
Chhabra KH, Adams JM, Jones GL, Yamashita M, Schlapschy M, Skerra A, Rubinstein M, Low MJ. Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity. Mol Metab 2016; 5:869-881. [PMID: 27689000 PMCID: PMC5034612 DOI: 10.1016/j.molmet.2016.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022] Open
Abstract
Objective A major challenge for obesity treatment is the maintenance of reduced body weight. Diet-induced obese mice are resistant to achieving normoweight once the obesogenic conditions are reversed, in part because lowered circulating leptin leads to a reduction in metabolic rate and a rebound of hyperphagia that defend the previously elevated body weight set point. Because hypothalamic POMC is a central leptin target, we investigated whether changes in circulating leptin modify Pomc expression to maintain normal energy balance in genetically predisposed obese mice. Methods Mice with reversible Pomc silencing in the arcuate nucleus (ArcPomc−/−) become morbidly obese eating low-fat chow. We measured body composition, food intake, plasma leptin, and leptin sensitivity in ArcPomc−/− mice weight-matched to littermate controls by calorie restriction, either from weaning or after developing obesity. Pomc was reactivated by tamoxifen-dependent Cre recombinase transgenes. Long acting PASylated leptin was administered to weight-reduced ArcPomc−/− mice to mimic the super-elevated leptin levels of obese mice. Results ArcPomc−/− mice had increased adiposity and leptin levels shortly after weaning. Despite chronic calorie restriction to achieve normoweight, ArcPomc−/− mice remained moderately hyperleptinemic and resistant to exogenous leptin's effects to reduce weight and food intake. However, subsequent Pomc reactivation in weight-matched ArcPomc−/− mice normalized plasma leptin, leptin sensitivity, adiposity, and food intake. In contrast, extreme hyperleptinemia induced by PASylated leptin blocked the full restoration of hypothalamic Pomc expression in calorie restricted ArcPomc−/− mice, which consequently regained 30% of their lost body weight and attained a metabolic steady state similar to that of tamoxifen treated obese ArcPomc−/− mice. Conclusions Pomc reactivation in previously obese, calorie-restricted ArcPomc−/− mice normalized energy homeostasis, suggesting that their body weight set point was restored to control levels. In contrast, massively obese and hyperleptinemic ArcPomc−/− mice or those weight-matched and treated with PASylated leptin to maintain extreme hyperleptinemia prior to Pomc reactivation converged to an intermediate set point relative to lean control and obese ArcPomc−/− mice. We conclude that restoration of hypothalamic leptin sensitivity and Pomc expression is necessary for obese ArcPomc−/− mice to achieve and sustain normal metabolic homeostasis; whereas deficits in either parameter set a maladaptive allostatic balance that defends increased adiposity and body weight. Hypothalamic POMC-deficiency increases adiposity and induces leptin resistance. PASylated leptin blocks the normalization of Pomc expression, weight and adiposity. Interactions of leptin sensitivity and Pomc expression dictate body weight set point.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica M Adams
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Graham L Jones
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miho Yamashita
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Schlapschy
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Gómez-SanMiguel AB, Villanúa MÁ, Martín AI, López-Calderón A. D-TRP(8)-γMSH Prevents the Effects of Endotoxin in Rat Skeletal Muscle Cells through TNFα/NF-KB Signalling Pathway. PLoS One 2016; 11:e0155645. [PMID: 27177152 PMCID: PMC4866687 DOI: 10.1371/journal.pone.0155645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
Sepsis induces anorexia and muscle wasting secondary to an increase in muscle proteolysis. Melanocyte stimulating hormones (MSH) is a family of peptides that have potent anti-inflammatory effects. Melanocortin receptor-3 (MC3-R) has been reported as the predominant anti-inflammatory receptor for melanocortins. The aim of this work was to analyse whether activation of MC3-R, by administration of its agonist D-Trp(8)-γMSH, is able to modify the response of skeletal muscle to inflammation induced by lipopolysaccharide endotoxin (LPS) or TNFα. Adult male rats were injected with 250 μg/kg LPS and/or 500 μg/kg D-Trp(8)-γMSH 17:00 h and at 8:00 h the following day, and euthanized 4 hours afterwards. D-Trp(8)-γMSH decreased LPS-induced anorexia and prevented the stimulatory effect of LPS on hypothalamic IL-1β, COX-2 and CRH as well as on serum ACTH and corticosterone. Serum IGF-I and its expression in liver and gastrocnemius were decreased in rats injected with LPS, but not in those that also received D-Trp(8)-γMSH. However, D-Trp(8)-γMSH was unable to modify the effect of LPS on IGFBP-3. In the gastrocnemius D-Trp(8)-γMSH blocked LPS-induced decrease in pAkt, pmTOR, MHC I and MCH II, as well as the increase in pNF-κB(p65), FoxO1, FoxO3, LC3b, Bnip-3, Gabarap1, atrogin-1, MuRF1 and in LC3a/b lipidation. In L6 myotube cultures, D-Trp(8)-γMSH was able to prevent TNFα-induced increase of NF-κB(p65) phosphorylation and decrease of Akt phosphorylation as well as of IGF-I and MHC I expression. These data suggest that MC3-R activation prevents the effect of endotoxin on skeletal wasting by modifying inflammation, corticosterone and IGF-I responses and also by directly acting on muscle cells through the TNFα/NF-κB(p65) pathway.
Collapse
Affiliation(s)
- Ana Belén Gómez-SanMiguel
- Department of Physiology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Ángeles Villanúa
- Department of Physiology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Isabel Martín
- Department of Physiology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Asunción López-Calderón
- Department of Physiology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- * E-mail:
| |
Collapse
|
48
|
Mavrikaki M, Girardet C, Kern A, Faruzzi Brantley A, Miller CA, Macarthur H, Marks DL, Butler AA. Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Mol Metab 2016; 5:566-579. [PMID: 27408780 PMCID: PMC4921936 DOI: 10.1016/j.molmet.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Objective Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R) in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behaviors in situations of nutrient scarcity. Here we examined whether MC3Rs expressed in mesolimbic neurons regulate feeding-related motivational responses. Methods Interactions between Mc3r genotype, cognitive function and energy balance on food self-administration were assessed using operant conditioning with fixed- and progressive ratio (FR1/PR1) settings. Inhibition of Mc3r transcription by a loxP-flanked transcriptional blocker (TB) in C57BL/6JN mice (Mc3rTB/TB) was reversed in mesolimbic neurons using DAT-Cre (DAT-MC3R). Results Caloric restriction (CR) caused 10–15% weight loss and increased motivation to acquire food rewards during training sessions. c-Fos-expression in the nucleus accumbens was increased 1 h following food presentation. While exhibiting weight loss, total food self-administration, enhanced motivation to self-administer food rewards in training sessions held during CR and c-Fos-activation in the nucleus accumbens following re-feeding were all markedly attenuated in Mc3rTB/TB mice. In contrast, cognitive abilities were normal in Mc3rTB/TB mice. Total food self-administration during FR1 sessions was not rescued in DAT-MC3R mice, however enhanced motivational responses to self-administer food rewards in PR1 conditions were restored. The nutrient-partitioning phenotype observed with Mc3r-deficiency was not rescued in DAT-MC3R mice. Conclusions Mesolimbic MC3Rs mediate enhanced motivational responses during CR. However, they are insufficient to restore normal caloric loading when food is presented during CR and do not affect metabolic conditions altering nutrient partitioning. Food-related motivational responses in mice increase with caloric restriction (CR). Melanocortin-3 receptors (MC3R) are required for food-related motivational responses. MC3Rs role in food-related motivational responses depends on metabolic condition. Mesolimbic MC3Rs increase food-related motivational responses during CR.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alicia Faruzzi Brantley
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Behavioral Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Courtney A Miller
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Heather Macarthur
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
49
|
Stern JH, Rutkowski JM, Scherer PE. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab 2016; 23:770-84. [PMID: 27166942 PMCID: PMC4864949 DOI: 10.1016/j.cmet.2016.04.011] [Citation(s) in RCA: 724] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolism research has made tremendous progress over the last several decades in establishing the adipocyte as a central rheostat in the regulation of systemic nutrient and energy homeostasis. Operating at multiple levels of control, the adipocyte communicates with organ systems to adjust gene expression, glucoregulatory hormone exocytosis, enzymatic reactions, and nutrient flux to equilibrate the metabolic demands of a positive or negative energy balance. The identification of these mechanisms has great potential to identify novel targets for the treatment of diabetes and related metabolic disorders. Herein, we review the central role of the adipocyte in the maintenance of metabolic homeostasis, highlighting three critical mediators: adiponectin, leptin, and fatty acids.
Collapse
Affiliation(s)
- Jennifer H Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|