1
|
Islam F, Javdan SB, Lewis MR, Craig JD, Wu H, Deans TL. Programming megakaryocytes to produce engineered platelets for delivering non-native proteins. Commun Biol 2025; 8:638. [PMID: 40253534 PMCID: PMC12009418 DOI: 10.1038/s42003-025-08017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/28/2025] [Indexed: 04/21/2025] Open
Abstract
Platelets are anucleate cells naturally filled with secretory granules that store large amounts of protein to be released in response to certain physiological conditions. Cell engineering can endow platelets with the ability to deliver non-native proteins by modifying them as they develop during the cell fate process. This study presents a strategy to efficiently generate mouse platelets from pluripotent stem cells and demonstrates their potential as bioengineered protein delivery platforms. By modifying megakaryocytes, the progenitor cells of platelets, we successfully engineered platelets capable of packaging and delivering non-native proteins. These engineered platelets can offer flexible delivery platforms to release non-native proteins in a controlled manner upon activation when packaged into α-granules or deliver active enzymes to genetically alter recipient cells. Our findings highlight platelets as a promising tool for protein delivery in cell therapy applications.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Shwan B Javdan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Mitchell R Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - James D Craig
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Han Wu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
3
|
Keller CR, Hu Y, Ruud KF, VanDeen AE, Martinez SR, Kahn BT, Zhang Z, Chen RK, Li W. Human Breast Extracellular Matrix Microstructures and Protein Hydrogel 3D Cultures of Mammary Epithelial Cells. Cancers (Basel) 2021; 13:cancers13225857. [PMID: 34831010 PMCID: PMC8616054 DOI: 10.3390/cancers13225857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Human breast tissue extracellular matrix (ECM) is a microenvironment essential for the survival and biological activities of mammary epithelial cells. The ECM structural features of human breast tissues remain poorly defined. In this study, we identified the structural and mechanical properties of human normal breast and invasive ductal carcinoma tissue ECM using histological methods and atomic force microscopy. Additionally, a protein hydrogel was generated using human breast tissue ECM and defined for its microstructural features using immunofluorescence imaging and machine learning. Furthermore, we examined the three-dimensional growth of normal mammary epithelial cells or breast cancer cells cultured on the ECM protein hydrogel, where the cells exhibited biological phenotypes like those seen in native breast tissues. Our data provide novel insights into cancer cell biology, tissue microenvironment mimicry and engineering, and native tissue ECM-based biomedical and pharmaceutical applications. Abstract Tissue extracellular matrix (ECM) is a structurally and compositionally unique microenvironment within which native cells can perform their natural biological activities. Cells grown on artificial substrata differ biologically and phenotypically from those grown within their native tissue microenvironment. Studies examining human tissue ECM structures and the biology of human tissue cells in their corresponding tissue ECM are lacking. Such investigations will improve our understanding about human pathophysiological conditions for better clinical care. We report here human normal breast tissue and invasive ductal carcinoma tissue ECM structural features. For the first time, a hydrogel was successfully fabricated using whole protein extracts of human normal breast ECM. Using immunofluorescence staining of type I collagen (Col I) and machine learning of its fibrous patterns in the polymerized human breast ECM hydrogel, we have defined the microstructural characteristics of the hydrogel and compared the microstructures with those of other native ECM hydrogels. Importantly, the ECM hydrogel supported 3D growth and cell-ECM interaction of both normal and cancerous mammary epithelial cells. This work represents further advancement toward full reconstitution of the human breast tissue microenvironment, an accomplishment that will accelerate the use of human pathophysiological tissue-derived matrices for individualized biomedical research and therapeutic development.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Yang Hu
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Kelsey F. Ruud
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
| | - Anika E. VanDeen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic and Providence Regional Cancer Partnership, Everett, WA 98201, USA;
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Barry T. Kahn
- CellNetix Pathology & Laboratories, Seattle, WA 98104, USA;
- Providence Regional Medical Center, Everett, WA 98201, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA 99164, USA; (Y.H.); (Z.Z.)
| | - Roland K. Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA; (A.E.V.); (R.K.C.)
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (C.R.K.); (K.F.R.)
- Correspondence:
| |
Collapse
|
4
|
Scaffold-based 3D cellular models mimicking the heterogeneity of osteosarcoma stem cell niche. Sci Rep 2020; 10:22294. [PMID: 33339857 PMCID: PMC7749131 DOI: 10.1038/s41598-020-79448-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The failure of the osteosarcoma conventional therapies leads to the growing need for novel therapeutic strategies. The lack of specificity for the Cancer Stem Cells (CSCs) population has been recently identified as the main limitation in the current therapies. Moreover, the traditional two-dimensional (2D) in vitro models, employed in the drug testing and screening as well as in the study of cell and molecular biology, are affected by a poor in vitro-in vivo translation ability. To overcome these limitations, this work provides two tumour engineering approaches as new tools to address osteosarcoma and improve therapy outcomes. In detail, two different hydroxyapatite-based bone-mimicking scaffolds were used to recapitulate aspects of the in vivo tumour microenvironment, focusing on CSCs niche. The biological performance of human osteosarcoma cell lines (MG63 and SAOS-2) and enriched-CSCs were deeply analysed in these complex cell culture models. The results highlight the fundamental role of the tumour microenvironment proving the mimicry of osteosarcoma stem cell niche by the use of CSCs together with the biomimetic scaffolds, compared to conventional 2D culture systems. These advanced 3D cell culture in vitro tumour models could improve the predictivity of preclinical studies and strongly enhance the clinical translation.
Collapse
|
5
|
Abstract
The current COVID-19 pandemic has substantially accelerated the demands for efficient vaccines. A wide spectrum of approaches includes live attenuated and inactivated viruses, protein subunits and peptides, viral vector-based delivery, DNA plasmids, and synthetic mRNA. Preclinical studies have demonstrated robust immune responses, reduced viral loads and protection against challenges with SARS-CoV-2 in rodents and primates. Vaccine candidates based on all delivery systems mentioned above have been subjected to clinical trials in healthy volunteers. Phase I clinical trials have demonstrated in preliminary findings good safety and tolerability. Evaluation of immune responses in a small number of individuals has demonstrated similar or superior levels of neutralizing antibodies in comparison to immunogenicity detected in COVID-19 patients. Both adenovirus- and mRNA-based vaccines have entered phase II and study protocols for phase III trials with 30,000 participants have been finalized.
Collapse
|
6
|
Corbett DC, Fabyan WB, Grigoryan B, O'Connor CE, Johansson F, Batalov I, Regier MC, DeForest CA, Miller JS, Stevens KR. Thermofluidic heat exchangers for actuation of transcription in artificial tissues. SCIENCE ADVANCES 2020; 6:6/40/eabb9062. [PMID: 32998880 PMCID: PMC7527231 DOI: 10.1126/sciadv.abb9062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/13/2020] [Indexed: 05/12/2023]
Abstract
Spatial patterns of gene expression in living organisms orchestrate cell decisions in development, homeostasis, and disease. However, most methods for reconstructing gene patterning in 3D cell culture and artificial tissues are restricted by patterning depth and scale. We introduce a depth- and scale-flexible method to direct volumetric gene expression patterning in 3D artificial tissues, which we call "heat exchangers for actuation of transcription" (HEAT). This approach leverages fluid-based heat transfer from printed networks in the tissues to activate heat-inducible transgenes expressed by embedded cells. We show that gene expression patterning can be tuned both spatially and dynamically by varying channel network architecture, fluid temperature, fluid flow direction, and stimulation timing in a user-defined manner and maintained in vivo. We apply this approach to activate the 3D positional expression of Wnt ligands and Wnt/β-catenin pathway regulators, which are major regulators of development, homeostasis, regeneration, and cancer throughout the animal kingdom.
Collapse
Affiliation(s)
- Daniel C Corbett
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Wesley B Fabyan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Bagrat Grigoryan
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Colleen E O'Connor
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Fredrik Johansson
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Ivan Batalov
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Mary C Regier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Fitzgerald M, Livingston M, Gibbs C, Deans TL. Rosa26 docking sites for investigating genetic circuit silencing in stem cells. Synth Biol (Oxf) 2020; 5:ysaa014. [PMID: 33195816 PMCID: PMC7644442 DOI: 10.1093/synbio/ysaa014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Approaches in mammalian synthetic biology have transformed how cells can be programmed to have reliable and predictable behavior, however, the majority of mammalian synthetic biology has been accomplished using immortalized cell lines that are easy to grow and easy to transfect. Genetic circuits that integrate into the genome of these immortalized cell lines remain functional for many generations, often for the lifetime of the cells, yet when genetic circuits are integrated into the genome of stem cells gene silencing is observed within a few generations. To investigate the reactivation of silenced genetic circuits in stem cells, the Rosa26 locus of mouse pluripotent stem cells was modified to contain docking sites for site-specific integration of genetic circuits. We show that the silencing of genetic circuits can be reversed with the addition of sodium butyrate, a histone deacetylase inhibitor. These findings demonstrate an approach to reactivate the function of genetic circuits in pluripotent stem cells to ensure robust function over many generations. Altogether, this work introduces an approach to overcome the silencing of genetic circuits in pluripotent stem cells that may enable the use of genetic circuits in pluripotent stem cells for long-term function.
Collapse
Affiliation(s)
- Michael Fitzgerald
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chelsea Gibbs
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Gilchrist AE, Harley BA. Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integr Biol (Camb) 2020; 12:175-187. [PMID: 32556172 PMCID: PMC7384206 DOI: 10.1093/intbio/zyaa013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 01/06/2023]
Abstract
Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct coculture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial least squares regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65-fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplifies hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route toward identifying feeder-free culture platforms for HSC expansion. Insight Hematopoietic stem cells within an artificial niche receive maintenance cues in the form of soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression analysis, we identify a reduced set of soluble factors correlated to maintenance of a hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a gelatin-based culture, regardless of the presence of mesenchymal feeder cells. By combining empirical and computational methods, we report an experimentally feasible number of factors from a large dataset, enabling exogenous integration of soluble factors into an engineered hematopoietic stem cell for enhanced maintenance potential of a quiescent stem cell population.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Dozio SM, Montesi M, Campodoni E, Sandri M, Piattelli A, Tampieri A, Panseri S. Differences in osteogenic induction of human mesenchymal stem cells between a tailored 3D hybrid scaffold and a 2D standard culture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:136. [PMID: 31802234 DOI: 10.1007/s10856-019-6346-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Many medical-related scientific discoveries arise from trial-error patterns where the processes involved must be refined and modified continuously before any product could be able to reach the final costumers. One of the elements affecting negatively these processes is the inaccuracy of two-dimension (2D) standard culture systems, carried over in plastic plates or similar, in replicating complex environments and patterns. Consequently, animal tests are required to validate every in vitro finding, at the expenses of more funds and ethical issues. A possible solution relies in the implementation of three-dimension (3D) culture systems as a fitting gear between the 2D tests and in vivo tests, aiming to reduce the negative in vivo outcomes. These 3D structures are depending from the comprehension of the extracellular matrix (ECM) and the ability to replicate it in vitro. In this article a comparison of efficacies between these two culture systems was taken as subject, human mesenchymal stem cells (hMSCs) was utilized and a hybrid scaffold made by a blend of chitosan, gelatin and biomineralized gelatin was used for the 3D culture system.
Collapse
Affiliation(s)
- Samuele M Dozio
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy.
- Scuola Superiore "G. d'Annunzio", University of Chieti-Pescara, Chieti, Italy.
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy.
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| | - Adriano Piattelli
- Scuola Superiore "G. d'Annunzio", University of Chieti-Pescara, Chieti, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| |
Collapse
|
10
|
Justus KB, Hellebrekers T, Lewis DD, Wood A, Ingham C, Majidi C, LeDuc PR, Tan C. A biosensing soft robot: Autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci Robot 2019; 4:4/31/eaax0765. [PMID: 33137770 DOI: 10.1126/scirobotics.aax0765] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
The integration of synthetic biology and soft robotics can fundamentally advance sensory, diagnostic, and therapeutic functionality of bioinspired machines. However, such integration is currently impeded by the lack of soft-matter architectures that interface synthetic cells with electronics and actuators for controlled stimulation and response during robotic operation. Here, we synthesized a soft gripper that uses engineered bacteria for detecting chemicals in the environment, a flexible light-emitting diode (LED) circuit for converting biological to electronic signals, and soft pneu-net actuators for converting the electronic signals to movement of the gripper. We show that the hybrid bio-LED-actuator module enabled the gripper to detect chemical signals by applying pressure and releasing the contents of a chemical-infused hydrogel. The biohybrid gripper used chemical sensing and feedback to make actionable decisions during a pick-and-place operation. This work opens previously unidentified avenues in soft materials, synthetic biology, and integrated interfacial robotic systems.
Collapse
Affiliation(s)
- Kyle B Justus
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tess Hellebrekers
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel D Lewis
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Adam Wood
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Christian Ingham
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. .,Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Departments of Biological Sciences, Computational Biology, and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. .,Departments of Biological Sciences, Computational Biology, and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
12
|
Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018; 45:599-614. [PMID: 29552703 PMCID: PMC6041164 DOI: 10.1007/s10295-018-2027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.
Collapse
Affiliation(s)
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
13
|
Abstract
The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.
Collapse
Affiliation(s)
- Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708; , .,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708; , .,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708.,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
14
|
Fitzgerald M, Gibbs C, Shimpi AA, Deans TL. Adoption of the Q Transcriptional System for Regulating Gene Expression in Stem Cells. ACS Synth Biol 2017; 6:2014-2020. [PMID: 28776984 DOI: 10.1021/acssynbio.7b00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The field of mammalian synthetic biology seeks to engineer enabling technologies to create novel approaches for programming cells to probe, perturb, and regulate gene expression with unprecedented precision. To accomplish this, new genetic parts continue to be identified that can be used to build novel genetic circuits to re-engineer cells to perform specific functions. Here, we establish a new transcription-based genetic circuit that combines genes from the quinic acid sensing metabolism of Neorospora crassa and the bacterial Lac repressor system to create a new orthogonal genetic tool to be used in mammalian cells. This work establishes a novel genetic tool, called LacQ, that functions to regulate gene expression in Chinese hamster ovarian (CHO) cells, human embryonic kidney 293 (HEK293) cells, and in mouse embryonic stem (ES) cells.
Collapse
Affiliation(s)
- Michael Fitzgerald
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Chelsea Gibbs
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Adrian A Shimpi
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| | - Tara L Deans
- Department of Bioengineering, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv Drug Deliv Rev 2016; 105:20-34. [PMID: 27568463 DOI: 10.1016/j.addr.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology. The examples detailed in this review provide insight to further understand genetic circuits, how they are used to program cells with novel functions, and current methods to reliably interface this technology in vivo; thus paving the way for the design of promising novel therapeutic applications.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
16
|
Wagner HJ, Sprenger A, Rebmann B, Weber W. Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv Drug Deliv Rev 2016; 105:77-95. [PMID: 27179764 DOI: 10.1016/j.addr.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
One key aspect of synthetic biology is the development and characterization of modular biological building blocks that can be assembled to construct integrated cell-based circuits performing computational functions. Likewise, the idea of extracting biological modules from the cellular context has led to the development of in vitro operating systems. This principle has attracted substantial interest to extend the repertoire of functional materials by connecting them with modules derived from synthetic biology. In this respect, synthetic biological switches and sensors, as well as biological targeting or structure modules, have been employed to upgrade functions of polymers and solid inorganic material. The resulting systems hold great promise for a variety of applications in diagnosis, tissue engineering, and drug delivery. This review reflects on the most recent developments and critically discusses challenges concerning in vivo functionality and tolerance that must be addressed to allow the future translation of such synthetic biology-upgraded materials from the bench to the bedside.
Collapse
|
17
|
Hughes JH, Kumar S. Synthetic mechanobiology: engineering cellular force generation and signaling. Curr Opin Biotechnol 2016; 40:82-89. [PMID: 27023733 DOI: 10.1016/j.copbio.2016.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 10/24/2022]
Abstract
Mechanobiology seeks to understand and control mechanical and related biophysical communication between cells and their surroundings. While experimental efforts in this field have traditionally emphasized manipulation of the extracellular force environment, a new suite of approaches has recently emerged in which cell phenotype and signaling are controlled by directly engineering the cell itself. One route is to control cell behavior by modulating gene expression using conditional promoters. Alternatively, protein activity can be actuated directly using synthetic protein ligands, chemically induced protein dimerization, optogenetic strategies, or functionalized magnetic nanoparticles. Proof-of-principle studies are already demonstrating the translational potential of these approaches, and future technological development will permit increasingly precise control over cell mechanobiology and improve our understanding of the underlying signaling events.
Collapse
Affiliation(s)
- Jasmine Hannah Hughes
- Department of Bioengineering, University of California, Berkeley, United States; UC Berkeley - UCSF Graduate Program in Bioengineering, United States
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, United States.
| |
Collapse
|
18
|
Rivera-Delgado E, Ward E, von Recum HA. Providing sustained transgene induction through affinity-based drug delivery. J Biomed Mater Res A 2016; 104:1135-42. [DOI: 10.1002/jbm.a.35643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Emily Ward
- Department of Biomedical Engineering; Case Western Reserve University Cleveland; Ohio
| | - Horst A. von Recum
- Department of Biomedical Engineering; Case Western Reserve University Cleveland; Ohio
| |
Collapse
|
19
|
Synthetic Biology--Toward Therapeutic Solutions. J Mol Biol 2015; 428:945-62. [PMID: 26334368 DOI: 10.1016/j.jmb.2015.08.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
Higher multicellular organisms have evolved sophisticated intracellular and intercellular biological networks that enable cell growth and survival to fulfill an organism's needs. Although such networks allow the assembly of complex tissues and even provide healing and protective capabilities, malfunctioning cells can have severe consequences for an organism's survival. In humans, such events can result in severe disorders and diseases, including metabolic and immunological disorders, as well as cancer. Dominating the therapeutic frontier for these potentially lethal disorders, cell and gene therapies aim to relieve or eliminate patient suffering by restoring the function of damaged, diseased, and aging cells and tissues via the introduction of healthy cells or alternative genes. However, despite recent success, these efforts have yet to achieve sufficient therapeutic effects, and further work is needed to ensure the safe and precise control of transgene expression and cellular processes. In this review, we describe the biological tools and devices that are at the forefront of synthetic biology and discuss their potential to advance the specificity, efficiency, and safety of the current generation of cell and gene therapies, including how they can be used to confer curative effects that far surpass those of conventional therapeutics. We also highlight the current therapeutic delivery tools and the current limitations that hamper their use in human applications.
Collapse
|
20
|
|
21
|
Huang C, Kamra T, Chaudhary S, Shen X. Breath figure patterns made easy. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5971-5976. [PMID: 24689785 DOI: 10.1021/am501096k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, a simple breath figure method was proposed to directly fabricate large-area and ordered honeycomb structures on commercial PMMA substrates or PS Petri dishes without the use of an external polymer solution. The obtained honeycomb structure is indeed part of the substrate, providing the honeycomb layer with enough mechanical stability. The breath figure method in this work for the synthesis of honeycomb structure is extremely simple with scale-up capability to large-area production, which offers new insights into surface engineering with great potential in commercial technologies. For example, using the honeycomb-patterned Petri dishes prepared via this method, cells can be easily separated into divided aggregation, which favors understanding of naturally occurring networks in higher organisms and cell-cell and cell-matrix interactions, and the therapeutic control of genetic circuits.
Collapse
Affiliation(s)
- Chuixiu Huang
- G&T Septech , P.O. Box 33, N-1917 Ytre Enebakk, Oslo, Norway
| | | | | | | |
Collapse
|
22
|
Lee EJ, Tabor JJ, Mikos AG. Leveraging synthetic biology for tissue engineering applications. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Javaherian S, Anesiadis N, Mahadevan R, McGuigan AP. Design principles for generating robust gene expression patterns in dynamic engineered tissues. Integr Biol (Camb) 2013; 5:578-89. [PMID: 23369944 DOI: 10.1039/c3ib20274g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recapitulating native tissue organization is a central challenge in regenerative medicine as it is critical for generating functional tissues. One strategy to generate engineered tissues with predictable and appropriate organization is to mimic the gene expression patterning process that organizes tissues in the developing embryo. In a developing embryo, correct organization is accomplished by tissue patterning via the generation of temporal and spatial patterns of gene expression coupled with, and leading to, extensive cellular re-organization. Methods to pattern gene expression in vitro could therefore provide both better models for understanding the cellular and molecular events taking place during tissue morphogenesis and novel strategies for engineering tissues with more realistic and complex architectures. While a few attempts have been made to genetically pattern tissues in vitro, these do not produce sharp predictable patterning. In both the embryo and an in vitro tissue, patterning often occurs during extensive cell re-organization but how the dynamics of gene induction and cell re-distribution interact to impact the final outcome of patterning and ultimately tissue organization is not known. Understanding this relationship and the system parameters that dictate robust pattern formation is critical for engineering genetic patterning in vitro to organize artificial tissues. We set out to identify key requirements for pattern formation by patterning gene expression in vitro in sheets of re-distributing cells using a drug-inducible gene expression system and patterned drug delivery to mimic morphogen gene induction. Based on our experimental observations, we develop a mathematical model that allows us to identify and experimentally verify the conditions under which generation of sharp gene expression patterns is possible in vitro. Our results highlight the importance of coordinating gene induction dynamics and cellular movement in order to achieve robust pattern formation.
Collapse
Affiliation(s)
- Sahar Javaherian
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | | | | | | |
Collapse
|
24
|
Qiu P, Qu X, Brackett DJ, Lerner MR, Li D, Mao C. Silica-based branched hollow microfibers as a biomimetic extracellular matrix for promoting tumor cell growth in vitro and in vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2492-6. [PMID: 23450784 PMCID: PMC3731149 DOI: 10.1002/adma.201204472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/25/2012] [Indexed: 05/27/2023]
Abstract
A novel scaffold composed of loosely branched hollow silica microfibers that has been proven to be highly biocompatible is proposed for the 3D culture of cancer cells. The MCF-7 cancer cells can grow and proliferate freely inside the scaffold in the form of multicellular spheroids. MCF-7 cancer cells cultured on the current 3D silica scaffold retained significantly more oncological characters than those cultured on the conventional 2D substrate and can serve as in vitro tumor model for studying cancer treatment.
Collapse
Affiliation(s)
- Penghe Qiu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, 73019, USA
| | - Xuewei Qu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, 73019, USA
| | - Daniel J. Brackett
- Health Science Center, University of Oklahoma and Veterans Research and Education Foundation, Oklahoma City, OK 73104, USA
| | - Megan R. Lerner
- Health Science Center, University of Oklahoma and Veterans Research and Education Foundation, Oklahoma City, OK 73104, USA
| | - Dong Li
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, 73019, USA
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
25
|
Singh A, Deans TL, Elisseeff JH. Photomodulation of Cellular Gene Expression in Hydrogels. ACS Macro Lett 2013; 2:269-272. [PMID: 35581895 DOI: 10.1021/mz300591m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomaterials are designed to mimic aspects of various extracellular matrix environments, through chemical modifications to input biological or chemical signals. However, the dynamic nature and timing of gene expression during cellular events is much more difficult to mimic and control in these synthetic environments. Here, we utilized concepts of photochemistry combined with click chemistry for synthetic biology applications to modulate cellular gene expression in poly(ethylene glycol) (PEG) hydrogels. Specifically, a genetic inducer, isopropyl β-d-1-thiogalactopyranoside (IPTG), is covalently linked to PEG via a biocompatible and easy to synthesize 2-(2-azido-6-nitrophenyl)ethoxycarbonyl (ANPEOC) photocleavable moiety that, on a short exposure to UV light, effectively releases IPTG and activates gene expression of enhanced green fluorescence protein (EGFP). We anticipate that combining concepts of material chemistry with synthetic biology will further enable the construction of highly defined engineered niches that are capable of controlling both intrinsic and extrinsic cellular events.
Collapse
Affiliation(s)
- Anirudha Singh
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, Maryland
21231, United States
| | - Tara L. Deans
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, Maryland
21231, United States
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, Maryland
21231, United States
| |
Collapse
|
26
|
Zhan J, Singh A, Zhang Z, Huang L, Elisseeff JH. Multifunctional aliphatic polyester nanofibers for tissue engineering. BIOMATTER 2012; 2:202-12. [PMID: 23507886 PMCID: PMC3568106 DOI: 10.4161/biom.22723] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electrospun fibers based on aliphatic polyesters, such as poly(ε-caprolactone) (PCL), have been widely used in regenerative medicine and drug delivery applications due to their biocompatibility, low cost and ease of fabrication. However, these aliphatic polyester fibers are hydrophobic in nature, resulting in poor wettability, and they lack functional groups for decorating the scaffold with chemical and biological cues. Current strategies employed to overcome these challenges include coating and blending the fibers with bioactive components or chemically modifying the fibers with plasma treatment and reactants. In the present study, we report on designing multifunctional electrospun nanofibers based on the inclusion complex of PCL-α-cyclodextrin (PCL-α-CD), which provides both structural support and multiple functionalities for further conjugation of bioactive components. This strategy is independent of any chemical modification of the PCL main chain, and electrospinning of PCL-α-CD is as easy as electrospinning PCL. Here, we describe synthesis of the PCL-α-CD electrospun nanofibers, elucidate composition and structure, and demonstrate the utility of functional groups on the fibers by conjugating a fluorescent small molecule and a polymeric-nanobead to the nanofibers. Furthermore, we demonstrate the application of PCL-α-CD nanofibers for promoting osteogenic differentiation of human adipose-derived stem cells (hADSCs), which induced a higher level of expression of osteogenic markers and enhanced production of extracellular matrix (ECM) proteins or molecules compared with control PCL fibers.
Collapse
Affiliation(s)
- Jianan Zhan
- Wilmer Eye Institute and Department of Biomedical Engineering; Johns Hopkins University; Baltimore, MD USA
| | - Anirudha Singh
- Wilmer Eye Institute and Department of Biomedical Engineering; Johns Hopkins University; Baltimore, MD USA
| | - Zhe Zhang
- Center for Biomedical Imaging Research; Department of Biomedical Engineering; School of Medicine; Tsinghua University; Beijing, P.R. China
| | - Ling Huang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore, MD USA
| | - Jennifer H. Elisseeff
- Wilmer Eye Institute and Department of Biomedical Engineering; Johns Hopkins University; Baltimore, MD USA
| |
Collapse
|