1
|
Kuzikova I, Zaytseva T, Chernova E, Povolotckaia A, Pankin D, Sazanova A, Medvedeva N. Impact of algicidal fungus Aspergillus welwitschiae GF6 on harmful bloom-forming cyanobacterium Microcystis aeruginosa: Growth and physiological responses. CHEMOSPHERE 2025; 372:144090. [PMID: 39793903 DOI: 10.1016/j.chemosphere.2025.144090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Harmful cyanobacterial blooms (HCBs) have become a common issue in freshwater worldwide. Biological methods for controlling HCBs are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland. Based on cultural and morphological features and data of phylogenetic analysis, the strain was identified as Aspergillus welwitschiae GF6. The isolated GF6 strain has algicidal activity against both cyanobacteria and green algae. The highest sensitivity to the algicidal action of strain GF6 was found in cyanobacteria (98.5-100%). The algicidal effect on green algae did not exceed 63-70%. It was shown that GF6 strain exhibited an indirect attack mode by releasing metabolites that inhibit and/or degrade algal cells. In this study, significantly increased malondialdehyde content in Microcystis aeruginosa cells indicated that GF6 strain caused oxidative damage to the algal cell membrane. Enhanced production of phytosynthetic pigments, increase in lifetime chlorophyll a fluorescence and in the levels of antioxidants were noted in Microcystis aeruginosa cells. Besides this, GF6 strain could reduce the microcystins content in the medium under inhibiting the growth of M. aeruginosa. Apart from the growth inhibition and cell degradation of M. aeruginosa, GF6 strain is able to remove microcystin-LR (MC-LR). The content of MC-LR at an initial concentration of 0.51 μg/mL decreased by 61% after 72 h of A.welwitschiae GF6 strain cultivation. In the process of MC-LR biodestruction, transformation products were identified - the conjugate of microcystin with glutathione and the linearized form of MC-LR. The isolated strain with algicidal activity and the ability to degrade microcystin is of interest for further research in order to be able to use it for convergent technology to prevent the mass development of cyanobacteria and detoxification of cyanotoxins in water bodies.
Collapse
Affiliation(s)
- Irina Kuzikova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
| | - Tatyana Zaytseva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia
| | - Ekaterina Chernova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia
| | - Anastasia Povolotckaia
- Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Dmitrii Pankin
- Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, Saint-Petersburg, 196608, Russia
| | - Nadezda Medvedeva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia
| |
Collapse
|
2
|
Ghezzi A, Avanzi E, García Fleitas A, Sieno LD, Mora AD, Santabarbara S, Bassi A, Valentini G, Farina A, D'Andrea C. High throughput compressive fluorescence lifetime imaging with a silicon photomultiplier detector. OPTICS EXPRESS 2024; 32:24553-24562. [PMID: 39538892 DOI: 10.1364/oe.519995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/20/2024] [Indexed: 11/16/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique for studying biological processes. There exists a growing interest in developing strategies to enhance throughput and reduce acquisition time of FLIM systems, which commonly employ laser scanning excitation and time-correlated single-photon counting (TCSPC) detection. In this work, we propose a wide-field FLIM microscope based on compressive sensing and high photon rate detection (beyond pile-up limit) based on a high-efficiency silicon photomultiplier detector as a single-pixel camera. We experimentally validate the capabilities of this design achieving 20 frames per second FLIM images on free-moving green algae sample.
Collapse
|
3
|
Steen CJ, Burlacot A, Short AH, Niyogi KK, Fleming GR. Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. PLANT, CELL & ENVIRONMENT 2022; 45:2428-2445. [PMID: 35678230 PMCID: PMC9540987 DOI: 10.1111/pce.14372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.
Collapse
Affiliation(s)
- Collin J. Steen
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
| | - Adrien Burlacot
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Audrey H. Short
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Graham R. Fleming
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
4
|
Photoprotective conformational dynamics of photosynthetic light-harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148543. [PMID: 35202576 DOI: 10.1016/j.bbabio.2022.148543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Under high light conditions, excess energy can damage the machinery of oxygenic photosynthesis. Plants have evolved a series of photoprotective processes, including conformational changes of the light-harvesting complexes that activate dissipation of energy as heat. In this mini-review, we will summarize our recent work developing and applying single-molecule methods to investigate the conformational states of the light-harvesting complexes. Through these measurements, we identified dissipative conformations and how they depend on conditions that mimic high light. Our studies revealed an equilibrium between the light-harvesting and dissipative conformations, and that the nature of the equilibrium varies with cellular environment, between proteins, and between species. Finally, we conclude with an outlook on open questions and implications for photosynthetic yields.
Collapse
|
5
|
Abstract
Plants contain abundant autofluorescent molecules that can be used for biochemical, physiological, or imaging studies. The two most studied molecules are chlorophyll (orange/red fluorescence) and lignin (blue/green fluorescence). Chlorophyll fluorescence is used to measure the physiological state of plants using handheld devices that can measure photosynthesis, linear electron flux, and CO2 assimilation by directly scanning leaves, or by using reconnaissance imaging from a drone, an aircraft or a satellite. Lignin fluorescence can be used in imaging studies of wood for phenotyping of genetic variants in order to evaluate reaction wood formation, assess chemical modification of wood, and study fundamental cell wall properties using Förster Resonant Energy Transfer (FRET) and other methods. Many other fluorescent molecules have been characterized both within the protoplast and as components of cell walls. Such molecules have fluorescence emissions across the visible spectrum and can potentially be differentiated by spectral imaging or by evaluating their response to change in pH (ferulates) or chemicals such as Naturstoff reagent (flavonoids). Induced autofluorescence using glutaraldehyde fixation has been used to enable imaging of proteins/organelles in the cell protoplast and to allow fluorescence imaging of fungal mycelium.
Collapse
|
6
|
Rochaix JD. The Dynamics of the Photosynthetic Apparatus in Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Chukhutsina VU, Holzwarth AR, Croce R. Time-resolved fluorescence measurements on leaves: principles and recent developments. PHOTOSYNTHESIS RESEARCH 2019; 140:355-369. [PMID: 30478711 PMCID: PMC6509100 DOI: 10.1007/s11120-018-0607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/15/2018] [Indexed: 05/03/2023]
Abstract
Photosynthesis starts when a pigment in the photosynthetic antennae absorbs a photon. The electronic excitation energy is then transferred through the network of light-harvesting pigments to special chlorophyll (Chl) molecules in the reaction centres, where electron transfer is initiated. Energy transfer and primary electron transfer processes take place on timescales ranging from femtoseconds to nanoseconds, and can be monitored in real time via time-resolved fluorescence spectroscopy. This method is widely used for measurements on unicellular photosynthetic organisms, isolated photosynthetic membranes, and individual complexes. Measurements on intact leaves remain a challenge due to their high structural heterogeneity, high scattering, and high optical density, which can lead to optical artefacts. However, detailed information on the dynamics of these early steps, and the underlying structure-function relationships, is highly informative and urgently required in order to get deeper insights into the physiological regulation mechanisms of primary photosynthesis. Here, we describe a current methodology of time-resolved fluorescence measurements on intact leaves in the picosecond to nanosecond time range. Principles of fluorescence measurements on intact leaves, possible sources of alterations of fluorescence kinetics and the ways to overcome them are addressed. We also describe how our understanding of the organisation and function of photosynthetic proteins and energy flow dynamics in intact leaves can be enriched through the application of time-resolved fluorescence spectroscopy on leaves. For that, an example of a measurement on Zea mays leaves is presented.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Alfred R Holzwarth
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
de la Cruz
Valbuena G, V. A. Camargo F, Borrego-Varillas R, Perozeni F, D’Andrea C, Ballottari M, Cerullo G. Molecular Mechanisms of Nonphotochemical Quenching in the LHCSR3 Protein of Chlamydomonas reinhardtii. J Phys Chem Lett 2019; 10:2500-2505. [PMID: 31042040 PMCID: PMC6613783 DOI: 10.1021/acs.jpclett.9b01184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photosynthetic organisms possess photoprotection mechanisms from excess light conditions. The fastest response consists in the pH-triggered activation of a dissipation channel of the energy absorbed by the chlorophylls into heat, called nonphotochemical quenching. In green algae, the pigment binding complex LHCSR3 acts both as a chlorophyll quencher and as a pH detector. In this work, we study the quenching of the LHCSR3 protein in vitro considering two different protein aggregation states and two pH conditions using a combination of picosecond time-resolved photoluminescence and femtosecond transient absorption in the visible and NIR spectral regions. We find that the mechanisms at the basis of LHCSR3 quenching activity are always active, even at pH 7.5 and low aggregation. However, quenching efficiency is strongly enhanced by pH and by aggregation conditions. In particular, we find that electron transfer from carotenoids to chlorophylls is enhanced at low pH, while quenching mediated by protein-protein interactions is increased by going to a high aggregation state. We also observe a weak pH-dependent energy transfer from the chlorophylls to the S1 state of carotenoids.
Collapse
Affiliation(s)
| | - Franco V. A. Camargo
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Rocio Borrego-Varillas
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Federico Perozeni
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D’Andrea
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
- Center
for NanoScience and Technology@PoliMi, Istituto
Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- E-mail:
| | - Matteo Ballottari
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
- E-mail:
| | - Giulio Cerullo
- IFN-CNR,
Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
- E-mail:
| |
Collapse
|
9
|
Bennett DIG, Amarnath K, Park S, Steen CJ, Morris JM, Fleming GR. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biol 2019; 9:190043. [PMID: 30966997 PMCID: PMC6501642 DOI: 10.1098/rsob.190043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
The rapid response of photosynthetic organisms to fluctuations in ambient light intensity is incompletely understood at both the molecular and membrane levels. In this review, we describe research from our group over a 10-year period aimed at identifying the photophysical mechanisms used by plants, algae and mosses to control the efficiency of light harvesting by photosystem II on the seconds-to-minutes time scale. To complement the spectroscopic data, we describe three models capable of describing the measured response at a quantitative level. The review attempts to provide an integrated view that has emerged from our work, and briefly looks forward to future experimental and modelling efforts that will refine and expand our understanding of a process that significantly influences crop yields.
Collapse
Affiliation(s)
- Doran I. G. Bennett
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kapil Amarnath
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Soomin Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Collin J. Steen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Jonathan M. Morris
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Chlorophyll-carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proc Natl Acad Sci U S A 2019; 116:3385-3390. [PMID: 30808735 DOI: 10.1073/pnas.1819011116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonphotochemical quenching (NPQ) is a proxy for photoprotective thermal dissipation processes that regulate photosynthetic light harvesting. The identification of NPQ mechanisms and their molecular or physiological triggering factors under in vivo conditions is a matter of controversy. Here, to investigate chlorophyll (Chl)-zeaxanthin (Zea) excitation energy transfer (EET) and charge transfer (CT) as possible NPQ mechanisms, we performed transient absorption (TA) spectroscopy on live cells of the microalga Nannochloropsis oceanica We obtained evidence for the operation of both EET and CT quenching by observing spectral features associated with the Zea S1 and Zea●+ excited-state absorption (ESA) signals, respectively, after Chl excitation. Knockout mutants for genes encoding either violaxanthin de-epoxidase or LHCX1 proteins exhibited strongly inhibited NPQ capabilities and lacked detectable Zea S1 and Zea●+ ESA signals in vivo, which strongly suggests that the accumulation of Zea and active LHCX1 is essential for both EET and CT quenching in N. oceanica.
Collapse
|
11
|
Rousset F, Ducros N, Peyrin F, Valentini G, D'Andrea C, Farina A. Time-resolved multispectral imaging based on an adaptive single-pixel camera. OPTICS EXPRESS 2018; 26:10550-10558. [PMID: 29715990 DOI: 10.1364/oe.26.010550] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Time-resolved multispectral imaging has many applications in different fields, which range from characterization of biological tissues to environmental monitoring. In particular, optical techniques, such as lidar and fluorescence lifetime imaging, require imaging at the subnanosecond scales over an extended area. In this paper, we demonstrate experimentally a time-resolved multispectral acquisition scheme based on single-pixel imaging. Single-pixel imaging is an emerging paradigm that provides low-cost high-quality images. Here, we use an adaptive strategy that allows acquisition and image reconstruction times to be reduced drastically or full basis scans. Adaptive time-resolved multispectral imaging scheme can have significant applications in biological imaging, at scales from macroscopic to microscopic.
Collapse
|
12
|
Azadi-Chegeni F, Schiphorst C, Pandit A. In vivo NMR as a tool for probing molecular structure and dynamics in intact Chlamydomonas reinhardtii cells. PHOTOSYNTHESIS RESEARCH 2018; 135:227-237. [PMID: 28646418 PMCID: PMC5783995 DOI: 10.1007/s11120-017-0412-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/07/2017] [Indexed: 06/14/2023]
Abstract
We report the application of NMR dynamic spectral editing for probing the structure and dynamics of molecular constituents in fresh, intact cells and in freshly prepared thylakoid membranes of Chlamydomonas reinhardtii (Cr.) green algae. For isotope labeling, wild-type Cr. cells were grown on 13C acetate-enriched minimal medium. 1D 13C J-coupling based and dipolar-based MAS NMR spectra were applied to distinguish 13C resonances of different molecular components. 1D spectra were recorded over a physiological temperature range, and whole-cell spectra were compared to those taken from thylakoid membranes, evaluating their composition and dynamics. A theoretical model for NMR polarization transfer was used to simulate the relative intensities of direct, J-coupling, and dipolar-based polarization from which the degree of lipid segmental order and rotational dynamics of the lipid acyl chains were estimated. We observe that thylakoid lipid signals dominate the lipid spectral profile of whole algae cells, demonstrating that with our novel method, thylakoid membrane characteristics can be detected with atomistic precision inside intact photosynthetic cells. The experimental procedure is rapid and applicable to fresh cell cultures, and could be used as an original approach for detecting chemical profiles, and molecular structure and dynamics of photosynthetic membranes in vivo in functional states.
Collapse
Affiliation(s)
- Fatemeh Azadi-Chegeni
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Christo Schiphorst
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Anjali Pandit
- Department of Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
13
|
Park S, Fischer AL, Li Z, Bassi R, Niyogi KK, Fleming GR. Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes. J Phys Chem Lett 2017; 8:5548-5554. [PMID: 29083901 DOI: 10.1021/acs.jpclett.7b02486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nonphotochemical quenching mechanisms regulate light harvesting in oxygenic photosynthesis. Measurement techniques for nonphotochemical quenching have typically focused on downstream effects of quenching, such as measuring reduced chlorophyll fluorescence. Here, to directly measure a species involved in quenching, we report snapshot transient absorption (TA) spectroscopy, which rapidly tracks carotenoid radical cation signals as samples acclimate to excess light. The formation of zeaxanthin radical cations, which is possible evidence of zeaxanthin-chlorophyll charge-transfer (CT) quenching, was investigated in spinach thylakoids. Together with fluorescence lifetime snapshot data and time-resolved high-performance liquid chromatography (HPLC) measurements, snapshot TA reveals that Zea•+ formation is closely related to energy-dependent quenching (qE) in nonphotochemical quenching. Quantitative and dynamic information on CT quenching discussed in this work give insight into the design principles of photoprotection in natural photosynthesis.
Collapse
Affiliation(s)
- Soomin Park
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute , Berkeley, California 94720, United States
| | - Alexandra L Fischer
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute , Berkeley, California 94720, United States
| | - Zhirong Li
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California , Berkeley, California 94720, United States
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Universitá di Verona , Strada Le Grazie, I-37134 Verona, Italia
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California , Berkeley, California 94720, United States
| | - Graham R Fleming
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute , Berkeley, California 94720, United States
| |
Collapse
|
14
|
Kim E, Akimoto S, Tokutsu R, Yokono M, Minagawa J. Fluorescence lifetime analyses reveal how the high light-responsive protein LHCSR3 transforms PSII light-harvesting complexes into an energy-dissipative state. J Biol Chem 2017; 292:18951-18960. [PMID: 28972177 DOI: 10.1074/jbc.m117.805192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
In green algae, light-harvesting complex stress-related 3 (LHCSR3) is responsible for the pH-dependent dissipation of absorbed light energy, a function vital for survival under high-light conditions. LHCSR3 binds the photosystem II and light-harvesting complex II (PSII-LHCII) supercomplex and transforms it into an energy-dissipative form under acidic conditions, but the molecular mechanism remains unclear. Here we show that in the green alga Chlamydomonas reinhardtii, LHCSR3 modulates the excitation energy flow and dissipates the excitation energy within the light-harvesting complexes of the PSII supercomplex. Using fluorescence decay-associated spectra analysis, we found that, when the PSII supercomplex is associated with LHCSR3 under high-light conditions, excitation energy transfer from light-harvesting complexes to chlorophyll-binding protein CP43 is selectively inhibited compared with that to CP47, preventing excess excitation energy from overloading the reaction center. By analyzing femtosecond up-conversion fluorescence kinetics, we further found that pH- and LHCSR3-dependent quenching of the PSII-LHCII-LHCSR3 supercomplex is accompanied by a fluorescence emission centered at 684 nm, with a decay time constant of 18.6 ps, which is equivalent to the rise time constant of the lutein radical cation generated within a chlorophyll-lutein heterodimer. These results suggest a mechanism in which LHCSR3 transforms the PSII supercomplex into an energy-dissipative state and provide critical insight into the molecular events and characteristics in LHCSR3-dependent energy quenching.
Collapse
Affiliation(s)
- Eunchul Kim
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585
| | - Seiji Akimoto
- the Graduate School of Science, Kobe University, Kobe 657-8501, and
| | - Ryutaro Tokutsu
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585
| | - Makio Yokono
- the Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Jun Minagawa
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585,
| |
Collapse
|
15
|
Leuenberger M, Morris JM, Chan AM, Leonelli L, Niyogi KK, Fleming GR. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E7009-E7017. [PMID: 28652334 PMCID: PMC5565437 DOI: 10.1073/pnas.1704502114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms use various photoprotective mechanisms to dissipate excess photoexcitation as heat in a process called nonphotochemical quenching (NPQ). Regulation of NPQ allows for a rapid response to changes in light intensity and in vascular plants, is primarily triggered by a pH gradient across the thylakoid membrane (∆pH). The response is mediated by the PsbS protein and various xanthophylls. Time-correlated single-photon counting (TCSPC) measurements were performed on Arabidopsis thaliana to quantify the dependence of the response of NPQ to changes in light intensity on the presence and accumulation of zeaxanthin and lutein. Measurements were performed on WT and mutant plants deficient in one or both of the xanthophylls as well as a transgenic line that accumulates lutein via an engineered lutein epoxide cycle. Changes in the response of NPQ to light acclimation in WT and mutant plants were observed between two successive light acclimation cycles, suggesting that the character of the rapid and reversible response of NPQ in fully dark-acclimated plants is substantially different from in conditions plants are likely to experience caused by changes in light intensity during daylight. Mathematical models of the response of zeaxanthin- and lutein-dependent reversible NPQ were constructed that accurately describe the observed differences between the light acclimation periods. Finally, the WT response of NPQ was reconstructed from isolated components present in mutant plants with a single common scaling factor, which enabled deconvolution of the relative contributions of zeaxanthin- and lutein-dependent NPQ.
Collapse
Affiliation(s)
- Michelle Leuenberger
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, Berkeley, CA 94720
| | - Jonathan M Morris
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, Berkeley, CA 94720
- Graduate Group in Applied Science & Technology, University of California, Berkeley, CA 94720
| | - Arnold M Chan
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Lauriebeth Leonelli
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, Berkeley, CA 94720
- Graduate Group in Applied Science & Technology, University of California, Berkeley, CA 94720
| |
Collapse
|
16
|
Uwada T, Huang LT, Hee PY, Usman A, Masuhara H. Size-Dependent Optical Properties of Grana Inside Chloroplast of Plant Cells. J Phys Chem B 2017; 121:915-922. [PMID: 28084739 DOI: 10.1021/acs.jpcb.6b10204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Well-packed thylakoids known as grana are one of the major functional sites for photosynthesis in algae and plants. Their highly ordered structures can be considered as a few hundred nanometer-sized particles having distinct scattering cross sections from other various macromolecular organizations inside plant cells. With this background we show that elastic light scattering imaging and microspectroscopy is an important tool for investigating structure and organization of grana inside a single chloroplast in plant cells. We have demonstrated this noninvasive method to identify the distribution of grana in intact fresh leaf of robust and rapidly growing Egaria densa, which is also known as Anachris and among the most popular aquarium plants. The scattering efficiency spectra of their individual grana fairly resemble cooperative absorption spectra of porphyrins and carotenoids. We found that the electronic structure of the stacked thylakoids shows granum size-dependence, indicating that size of grana is one of the critical parameters in the regulation of the photochemical functions in the thylakoid.
Collapse
Affiliation(s)
- Takayuki Uwada
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan.,Department of Chemistry, Faculty of Science, Josai University , Sakado 350-0295, Japan
| | - Ling-Ting Huang
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan
| | - Ping-Yu Hee
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam , Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam
| | - Hiroshi Masuhara
- Department of Applied Chemistry, College of Science, National Chiao Tung University , 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan
| |
Collapse
|
17
|
Lei R, Jiang H, Hu F, Yan J, Zhu S. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. PLANT CELL REPORTS 2017; 36:327-341. [PMID: 27904946 DOI: 10.1007/s00299-016-2083-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine of China, Chinese Academy of Inspection and Quarantine, Beijing, 100762, China
| | - Hongshan Jiang
- Institute of Plant Quarantine of China, Chinese Academy of Inspection and Quarantine, Beijing, 100762, China
| | - Fan Hu
- Institute of Plant Quarantine of China, Chinese Academy of Inspection and Quarantine, Beijing, 100762, China
| | - Jin Yan
- Institute of Plant Quarantine of China, Chinese Academy of Inspection and Quarantine, Beijing, 100762, China
| | - Shuifang Zhu
- Institute of Plant Quarantine of China, Chinese Academy of Inspection and Quarantine, Beijing, 100762, China.
| |
Collapse
|
18
|
Schumann T, Paul S, Melzer M, Dörmann P, Jahns P. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:681. [PMID: 28515734 PMCID: PMC5413563 DOI: 10.3389/fpls.2017.00681] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/13/2017] [Indexed: 05/18/2023]
Abstract
Efficient acclimation to different growth light intensities is essential for plant fitness. So far, most studies on light acclimation have been conducted with plants grown under different constant light regimes, but more recent work indicated that acclimation to fluctuating light or field conditions may result in different physiological properties of plants. Thale cress (Arabidopsis thaliana) was grown under three different constant light intensities (LL: 25 μmol photons m-2 s-1; NL: 100 μmol photons m-2 s-1; HL: 500 μmol photons m-2 s-1) and under natural fluctuating light (NatL) conditions. We performed a thorough characterization of the morphological, physiological, and biochemical properties focusing on photo-protective mechanisms. Our analyses corroborated the known properties of LL, NL, and HL plants. NatL plants, however, were found to combine characteristics of both LL and HL grown plants, leading to efficient and unique light utilization capacities. Strikingly, the high energy dissipation capacity of NatL plants correlated with increased dynamics of thylakoid membrane reorganization upon short-term acclimation to excess light. We conclude that the thylakoid membrane organization and particularly the light-dependent and reversible unstacking of grana membranes likely represent key factors that provide the basis for the high acclimation capacity of NatL grown plants to rapidly changing light intensities.
Collapse
Affiliation(s)
- Tobias Schumann
- Plant Biochemistry, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| | - Suman Paul
- Department of Plant Physiology, Umeå UniversityUmeå, Sweden
| | - Michael Melzer
- Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland, Germany
| | - Peter Dörmann
- Molecular Biotechnology/Biochemistry, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Rheinische Friedrich-Wilhelms-University BonnBonn, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
- *Correspondence: Peter Jahns
| |
Collapse
|
19
|
Correa-Galvis V, Redekop P, Guan K, Griess A, Truong TB, Wakao S, Niyogi KK, Jahns P. Photosystem II Subunit PsbS Is Involved in the Induction of LHCSR Protein-dependent Energy Dissipation in Chlamydomonas reinhardtii. J Biol Chem 2016; 291:17478-87. [PMID: 27358399 DOI: 10.1074/jbc.m116.737312] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Non-photochemical quenching of excess excitation energy is an important photoprotective mechanism in photosynthetic organisms. In Arabidopsis thaliana, a high quenching capacity is constitutively present and depends on the PsbS protein. In the green alga Chlamydomonas reinhardtii, non-photochemical quenching becomes activated upon high light acclimation and requires the accumulation of light harvesting complex stress-related (LHCSR) proteins. Expression of the PsbS protein in C. reinhardtii has not been reported yet. Here, we show that PsbS is a light-induced protein in C. reinhardtii, whose accumulation under high light is further controlled by CO2 availability. PsbS accumulated after several hours of high light illumination at low CO2 At high CO2, however, PsbS was only transiently expressed under high light and was degraded after 1 h of high light exposure. PsbS accumulation correlated with an enhanced non-photochemical quenching capacity in high light-acclimated cells grown at low CO2 However, PsbS could not compensate for the function of LHCSR in an LHCSR-deficient mutant. Knockdown of PsbS accumulation led to reduction of both non-photochemical quenching capacity and LHCSR3 accumulation. Our data suggest that PsbS is essential for the activation of non-photochemical quenching in C. reinhardtii, possibly by promoting conformational changes required for activation of LHCSR3-dependent quenching in the antenna of photosystem II.
Collapse
Affiliation(s)
- Viviana Correa-Galvis
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Petra Redekop
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharine Guan
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Annika Griess
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thuy B Truong
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Setsuko Wakao
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Peter Jahns
- From the Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany,
| |
Collapse
|
20
|
LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc Natl Acad Sci U S A 2016; 113:7673-8. [PMID: 27335457 DOI: 10.1073/pnas.1605380113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To avoid photodamage, photosynthetic organisms are able to thermally dissipate the energy absorbed in excess in a process known as nonphotochemical quenching (NPQ). Although NPQ has been studied extensively, the major players and the mechanism of quenching remain debated. This is a result of the difficulty in extracting molecular information from in vivo experiments and the absence of a validation system for in vitro experiments. Here, we have created a minimal cell of the green alga Chlamydomonas reinhardtii that is able to undergo NPQ. We show that LHCII, the main light harvesting complex of algae, cannot switch to a quenched conformation in response to pH changes by itself. Instead, a small amount of the protein LHCSR1 (light-harvesting complex stress related 1) is able to induce a large, fast, and reversible pH-dependent quenching in an LHCII-containing membrane. These results strongly suggest that LHCSR1 acts as pH sensor and that it modulates the excited state lifetimes of a large array of LHCII, also explaining the NPQ observed in the LHCSR3-less mutant. The possible quenching mechanisms are discussed.
Collapse
|
21
|
Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK. Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii. J Biol Chem 2016; 291:7334-46. [PMID: 26817847 PMCID: PMC4817166 DOI: 10.1074/jbc.m115.704601] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp117, Glu221, and Glu224 were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence lifetime, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide.
Collapse
Affiliation(s)
- Matteo Ballottari
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy
| | - Thuy B Truong
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Eleonora De Re
- the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and the Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720
| | - Erika Erickson
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| | - Giulio R Stella
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy, the Sorbonne Universités, UPMC Univ-Paris 6, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Graham R Fleming
- the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and the Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720 the Department of Chemistry, Hildebrand B77, University of California, Berkeley, California 94720-1460
| | - Roberto Bassi
- From the Department of Biotechnology, University of Verona, Strada Le Grazie, I-37134 Verona, Italy,
| | - Krishna K Niyogi
- the Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, and
| |
Collapse
|
22
|
Sylak-Glassman EJ, Zaks J, Amarnath K, Leuenberger M, Fleming GR. Characterizing non-photochemical quenching in leaves through fluorescence lifetime snapshots. PHOTOSYNTHESIS RESEARCH 2016; 127:69-76. [PMID: 25762378 DOI: 10.1007/s11120-015-0104-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
We describe a technique to measure the fluorescence decay profiles of intact leaves during adaptation to high light and subsequent relaxation to dark conditions. We show how to ensure that photosystem II reaction centers are closed and compare data for wild type Arabidopsis thaliana with conventional pulse-amplitude modulated (PAM) fluorescence measurements. Unlike PAM measurements, the lifetime measurements are not sensitive to photobleaching or chloroplast shielding, and the form of the fluorescence decay provides additional information to test quantitative models of excitation dynamics in intact leaves.
Collapse
Affiliation(s)
- Emily J Sylak-Glassman
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- IDA Science and Technology Policy Institute, 1899 Pennsylvania Avenue Suite 520, Washington, DC, 20006, USA
| | - Julia Zaks
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Graduate Program in Applied Science and Technology, University of California Berkeley, Berkeley, CA, 94720, USA
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA
| | - Kapil Amarnath
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Rm. 440, Cambridge, MA, 02138, USA
| | - Michelle Leuenberger
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham R Fleming
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Graduate Program in Applied Science and Technology, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Kristoffersen AS, Hamre B, Frette Ø, Erga SR. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:259-68. [PMID: 26538330 PMCID: PMC4796335 DOI: 10.1007/s00249-015-1092-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements.
Collapse
Affiliation(s)
- Arne S Kristoffersen
- Department of Physics and Technology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| | - Børge Hamre
- Department of Physics and Technology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Øyvind Frette
- Department of Physics and Technology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Svein R Erga
- Department of Biology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| |
Collapse
|
24
|
Nozue S, Mukuno A, Tsuda Y, Shiina T, Terazima M, Kumazaki S. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:46-59. [PMID: 26474523 DOI: 10.1016/j.bbabio.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 12/01/2022]
Abstract
Fluorescence Lifetime Imaging Microscopy (FLIM) has been applied to plants, algae and cyanobacteria, in which excitation laser conditions affect the chlorophyll fluorescence lifetime due to several mechanisms. However, the dependence of FLIM data on input laser power has not been quantitatively explained by absolute excitation probabilities under actual imaging conditions. In an effort to distinguish between photosystem I and photosystem II (PSI and PSII) in microscopic images, we have obtained dependence of FLIM data on input laser power from a filamentous cyanobacterium Anabaena variabilis and single cellular green alga Parachlorella kessleri. Nitrogen-fixing cells in A. variabilis, heterocysts, are mostly visualized as cells in which short-lived fluorescence (≤0.1 ns) characteristic of PSI is predominant. The other cells in A. variabilis (vegetative cells) and P. kessleri cells show a transition in the status of PSII from an open state with the maximal charge separation rate at a weak excitation limit to a closed state in which charge separation is temporarily prohibited by previous excitation(s) at a relatively high laser power. This transition is successfully reproduced by a computer simulation with a high fidelity to the actual imaging conditions. More details in the fluorescence from heterocysts were examined to assess possible functions of PSII in the anaerobic environment inside the heterocysts for the nitrogen-fixing enzyme, nitrogenase. Photochemically active PSII:PSI ratio in heterocysts is tentatively estimated to be typically below our detection limit or at most about 5% in limited heterocysts in comparison with that in vegetative cells.
Collapse
Affiliation(s)
- Shuho Nozue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Mukuno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumi Tsuda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeichi Kumazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
25
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
26
|
Ciszak K, Kulasek M, Barczak A, Grzelak J, Maćkowski S, Karpiński S. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e982018. [PMID: 25654166 PMCID: PMC4622620 DOI: 10.4161/15592324.2014.982018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 05/19/2023]
Abstract
Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4-1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4-1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4-1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4-1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4-1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress.
Collapse
Key Words
- DCMU, 3,4-dichlorophenyl)-1,1-dimethyl urea
- EEE, Excess Excitation Energy
- EL, Excess Light
- F0, chlorophyll fluorescence zero
- FD, chlorophyll fluorescence decay
- Fm, chlorophyll fluorescence maximum
- Fv, chlorophyll fluorescence variable
- Fv/Fm, maximum quantum efficiency of PSII
- LED, Light Emitting Diode
- LHC, chlorophyll a/b/xanthophyll-binding proteins
- NPQ, Non-Photochemical Quenching
- PSII, Photosystem II
- ROS, Reactive Oxygen Species
- SAA, Systemic Acquired Acclimation
- WT, Wild Type
- dynamics of chlorophyll fluorescence
- excess excitation energy dissipation
- light acclimation
- non-photochemical quenching
- photosystem II
- qE, EEE thermal dissipation
- qI, photoinhibition
- qT, state transition
- qZ, zeaxanthin formation
- systemic acquired acclimation
Collapse
Affiliation(s)
- Kamil Ciszak
- Institute of Physics; Faculty of Physics; Astronomy and Informatics; Nicolaus Copernicus University; Toruń, Poland
| | - Milena Kulasek
- Department of Plant Genetics; Breeding and Biotechnology; Faculty of Horticulture; Biotechnology and Landscape Architecture; Warsaw University of Life Sciences; Warszawa, Poland
| | - Anna Barczak
- Department of Plant Genetics; Breeding and Biotechnology; Faculty of Horticulture; Biotechnology and Landscape Architecture; Warsaw University of Life Sciences; Warszawa, Poland
| | - Justyna Grzelak
- Institute of Physics; Faculty of Physics; Astronomy and Informatics; Nicolaus Copernicus University; Toruń, Poland
| | - Sebastian Maćkowski
- Institute of Physics; Faculty of Physics; Astronomy and Informatics; Nicolaus Copernicus University; Toruń, Poland
- Correspondence to: Stanisław Karpiński; ; Sebastian Maćkowski;
| | - Stanisław Karpiński
- Department of Plant Genetics; Breeding and Biotechnology; Faculty of Horticulture; Biotechnology and Landscape Architecture; Warsaw University of Life Sciences; Warszawa, Poland
- Correspondence to: Stanisław Karpiński; ; Sebastian Maćkowski;
| |
Collapse
|
27
|
Sylak-Glassman EJ, Malnoë A, De Re E, Brooks MD, Fischer AL, Niyogi KK, Fleming GR. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proc Natl Acad Sci U S A 2014; 111:17498-503. [PMID: 25422428 PMCID: PMC4267351 DOI: 10.1073/pnas.1418317111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.
Collapse
Affiliation(s)
- Emily J Sylak-Glassman
- Departments of Chemistry and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Alizée Malnoë
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Plant and Microbial Biology
| | - Eleonora De Re
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Graduate Group in Applied Science and Technology, and
| | - Matthew D Brooks
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and
| | - Alexandra Lee Fischer
- Departments of Chemistry and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Krishna K Niyogi
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and
| | - Graham R Fleming
- Departments of Chemistry and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Graduate Group in Applied Science and Technology, and
| |
Collapse
|
28
|
State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci U S A 2014; 111:3460-5. [PMID: 24550508 DOI: 10.1073/pnas.1319164111] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants and green algae optimize photosynthesis in changing light conditions by balancing the amount of light absorbed by photosystems I and II. These photosystems work in series to extract electrons from water and reduce NADP(+) to NADPH. Light-harvesting complexes (LHCs) are held responsible for maintaining the balance by moving from one photosystem to the other in a process called state transitions. In the green alga Chlamydomonas reinhardtii, a photosynthetic model organism, state transitions are thought to involve 80% of the LHCs. Here, we demonstrate with picosecond-fluorescence spectroscopy on C. reinhardtii cells that, although LHCs indeed detach from photosystem II in state 2 conditions, only a fraction attaches to photosystem I. The detached antenna complexes become protected against photodamage via shortening of the excited-state lifetime. It is discussed how the transition from state 1 to state 2 can protect C. reinhardtii in high-light conditions and how this differs from the situation in plants.
Collapse
|
29
|
Roach T, Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 2014; 15:351-62. [PMID: 24678670 PMCID: PMC4030316 DOI: 10.2174/1389203715666140327105143] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 01/30/2023]
Abstract
Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.
Collapse
|
30
|
Zaks J, Amarnath K, Sylak-Glassman EJ, Fleming GR. Models and measurements of energy-dependent quenching. PHOTOSYNTHESIS RESEARCH 2013; 116:389-409. [PMID: 23793348 PMCID: PMC3824227 DOI: 10.1007/s11120-013-9857-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/21/2013] [Indexed: 05/18/2023]
Abstract
Energy-dependent quenching (qE) in photosystem II (PSII) is a pH-dependent response that enables plants to regulate light harvesting in response to rapid fluctuations in light intensity. In this review, we aim to provide a physical picture for understanding the interplay between the triggering of qE by a pH gradient across the thylakoid membrane and subsequent changes in PSII. We discuss how these changes alter the energy transfer network of chlorophyll in the grana membrane and allow it to switch between an unquenched and quenched state. Within this conceptual framework, we describe the biochemical and spectroscopic measurements and models that have been used to understand the mechanism of qE in plants with a focus on measurements of samples that perform qE in response to light. In addition, we address the outstanding questions and challenges in the field. One of the current challenges in gaining a full understanding of qE is the difficulty in simultaneously measuring both the photophysical mechanism of quenching and the physiological state of the thylakoid membrane. We suggest that new experimental and modeling efforts that can monitor the many processes that occur on multiple timescales and length scales will be important for elucidating the quantitative details of the mechanism of qE.
Collapse
Affiliation(s)
- Julia Zaks
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Graduate Group in Applied Science and Technology, University of California, Berkeley, CA 94720 USA
| | - Kapil Amarnath
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Emily J. Sylak-Glassman
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Graham R. Fleming
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Graduate Group in Applied Science and Technology, University of California, Berkeley, CA 94720 USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
31
|
Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc Natl Acad Sci U S A 2013; 110:E2733-40. [PMID: 23818601 PMCID: PMC3718131 DOI: 10.1073/pnas.1305443110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The light-harvesting complexes of plants have evolved the ability to switch between efficient light harvesting and quenching forms to optimize photosynthesis in response to the environment. Several distinct mechanisms, collectively termed "nonphotochemical quenching" (NPQ), provide flexibility in this response. Here we report the isolation and characterization of a mutant, suppressor of quenching 1 (soq1), that has high NPQ even in the absence of photosystem II subunit S (PsbS), a protein that is necessary for the rapidly reversible component of NPQ. The formation of NPQ in soq1 was light intensity-dependent, and it exhibited slow relaxation kinetics and other characteristics that distinguish it from known NPQ components. Treatment with chemical inhibitors or an uncoupler, as well as crosses to mutants known to affect other NPQ components, showed that the NPQ in soq1 does not require a transthylakoid pH gradient, zeaxanthin formation, or the phosphorylation of light-harvesting complexes, and it appears to be unrelated to the photosystem II damage-and-repair cycle. Measurements of pigments and chlorophyll fluorescence lifetimes indicated that the additional NPQ in soq1 is the result of a decrease in chlorophyll excited-state lifetime and not pigment bleaching. The SOQ1 gene was isolated by map-based cloning, and it encodes a previously uncharacterized thylakoid membrane protein with thioredoxin-like and β-propeller domains located in the lumen and a haloacid-dehalogenase domain exposed to the chloroplast stroma. We propose that the role of SOQ1 is to prevent formation of a slowly reversible form of antenna quenching, thereby maintaining the efficiency of light harvesting.
Collapse
Affiliation(s)
- Matthew D. Brooks
- Howard Hughes Medical Institute
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Emily J. Sylak-Glassman
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Graham R. Fleming
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| |
Collapse
|
32
|
Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:307-14. [PMID: 23583332 DOI: 10.1016/j.pbi.2013.03.011] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 05/17/2023]
Abstract
All photosynthetic organisms need to regulate light harvesting for photoprotection. Three types of flexible non-photochemical quenching (NPQ) mechanisms have been characterized in oxygenic photosynthetic cyanobacteria, algae, and plants: OCP-, LHCSR-, and PSBS-dependent NPQ. OCP-dependent NPQ likely evolved first, to quench excess excitation in the phycobilisome (PB) antenna of cyanobacteria. During evolution of eukaryotic algae, PBs were lost in the green and secondary red plastid lineages, while three-helix light-harvesting complex (LHC) antenna proteins diversified, including LHCSR proteins that function in dissipating excess energy rather than light harvesting. PSBS, an independently evolved member of the LHC protein superfamily, seems to have appeared exclusively in the green lineage, acquired a function as a pH sensor that turns on NPQ, and eventually replaced LHCSR in vascular plants.
Collapse
Affiliation(s)
- Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
33
|
Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2013; 110:10016-21. [PMID: 23716695 DOI: 10.1073/pnas.1222606110] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants and green algae have a low pH-inducible mechanism in photosystem II (PSII) that dissipates excess light energy, measured as the nonphotochemical quenching of chlorophyll fluorescence (qE). Recently, nonphotochemical quenching 4 (npq4), a mutant strain of the green alga Chlamydomonas reinhardtii that is qE-deficient and lacks the light-harvesting complex stress-related protein 3 (LHCSR3), was reported [Peers G, et al. (2009) Nature 462(7272):518-521]. Here, applying a newly established procedure, we isolated the PSII supercomplex and its associated light-harvesting proteins from both WT C. reinhardtii and the npq4 mutant grown in either low light (LL) or high light (HL). LHCSR3 was present in the PSII supercomplex from the HL-grown WT, but not in the supercomplex from the LL-grown WT or mutant. The purified PSII supercomplex containing LHCSR3 exhibited a normal fluorescence lifetime at a neutral pH (7.5) by single-photon counting analysis, but a significantly shorter lifetime at pH 5.5, which mimics the acidified lumen of the thylakoid membranes in HL-exposed chloroplasts. The switch from light-harvesting mode to energy-dissipating mode observed in the LHCSR3-containing PSII supercomplex was sensitive to dicyclohexylcarbodiimide, a protein-modifying agent specific to protonatable amino acid residues. We conclude that the PSII-LHCII-LHCSR3 supercomplex formed in the HL-grown C. reinhardtii cells is capable of energy dissipation on protonation of LHCSR3.
Collapse
|