1
|
Wu D, Zhang S, Bai C, Liu Y, Sun Z, Ma M, Liu H, Yong JWH, Lambers H. Supplementary Calcium Overcomes Nocturnal Chilling-Induced Carbon Source-Sink Limitations of Cyclic Electron Transport in Peanuts. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159655 DOI: 10.1111/pce.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
'Calcium (Ca2+) priming' is an effective strategy to restore efficient carbon assimilation with undergoing unfavourable cold stress (day/night: 25°C/8°C). However, it is unclear how exogenous calcium strengthens the cyclic electron transfer (CET) to attain optimal carbon flux. To assess the nutrient fortification role of Ca2+ (15 mM) in facilitating this process for peanuts, we added antimycin (AA, 100 μM) and rotenone (R, 100 μM) as specific inhibitors. Our results revealed that inhibiting CET caused a negative effect on photosynthesis. The Ca2+ treatment accelerated the turnover of non-structural carbohydrates, and linear electron carriers while balancing the photosystem I (PSI) bilateral redox potential. The treatment also strengthened the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) and the NADH dehydrogenase-like (NDH)-mediated CET, with plausible crosstalk between thioredoxin (Trx) system and Ca2+ signalling, to regulate chloroplast redox homoeostasis. Specifically, exogenous Ca2+ strengthened the PGR5/PGRL1-mediated CET by providing sufficient ATP and adequate photoprotection during the long-term exposure; the NDH-mediated CET served to alleviate limitations on the PSI acceptor side by translocating protons. This study demonstrated the effectiveness of harnessing optimal nutrient supply, in the form of foliar Ca2+-based sprays to strengthen the eco-physiological resilience of peanuts against cold stress.
Collapse
Affiliation(s)
- Di Wu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
- Pratacultural College, Inner Mongolia University for Nationalities, Tongliao, China
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhiyu Sun
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Emrich-Mills TZ, Proctor MS, Degen GE, Jackson PJ, Richardson KH, Hawkings FR, Buchert F, Hitchcock A, Hunter CN, Mackinder LCM, Hippler M, Johnson MP. Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer. THE PLANT CELL 2025; 37:koaf042. [PMID: 40037377 PMCID: PMC11912148 DOI: 10.1093/plcell/koaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Fixing CO2 via photosynthesis requires ATP and NADPH, which can be generated through linear electron transfer (LET). However, depending on the environmental conditions, additional ATP may be required to fix CO2, which can be generated by cyclic electron transfer (CET). How the balance between LET and CET is determined remains largely unknown. Ferredoxin-NADP+ reductase (FNR) may act as the switch between LET and CET, channeling photosynthetic electrons to LET when it is bound to photosystem I (PSI) or to CET when it is bound to cytochrome b6f. The essential role of FNR in LET precludes the use of a direct gene knock-out to test this hypothesis. Nevertheless, we circumvented this problem using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing in Chlamydomonas reinhardtii. Through this approach, we created a chimeric form of FNR tethered to PSI via PSAF. Chimeric FNR mutants exhibited impaired photosynthetic growth and LET along with enhanced PSI acceptor side limitation relative to the wild type due to slower NADPH reduction. However, the chimeric FNR mutants also showed enhanced ΔpH production and NPQ resulting from increased CET. Overall, our results suggest that rather than promoting LET, tethering FNR to PSI promotes CET at the expense of LET and CO2 fixation.
Collapse
Affiliation(s)
- Tom Z Emrich-Mills
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew S Proctor
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Gustaf E Degen
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Philip J Jackson
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 4LZ, UK
| | - Katherine H Richardson
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Frederick R Hawkings
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Didcot OX11 0DE, UK
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48149/48143, Germany
| | - Andrew Hitchcock
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48149/48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Matthew P Johnson
- Plants, Photosynthesis & Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Flori S, Dickenson J, Gaikwad T, Cole I, Smirnoff N, Helliwell KE, Brownlee C, Wheeler GL. Diatoms exhibit dynamic chloroplast calcium signals in response to high light and oxidative stress. PLANT PHYSIOLOGY 2024; 197:kiae591. [PMID: 39515781 DOI: 10.1093/plphys/kiae591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Diatoms are a group of silicified algae that play a major role in marine and freshwater ecosystems. Diatom chloroplasts were acquired by secondary endosymbiosis and exhibit important structural and functional differences from the primary plastids of land plants and green algae. Many functions of primary plastids, including photoacclimation and inorganic carbon acquisition, are regulated by calcium-dependent signaling processes. Calcium signaling has also been implicated in the photoprotective responses of diatoms; however, the nature of calcium elevations in diatom chloroplasts and their wider role in cell signaling remains unknown. Using genetically encoded calcium indicators, we find that the diatom Phaeodactylum tricornutum exhibits dynamic calcium elevations within the chloroplast stroma. Stromal calcium ([Ca2+]str) acts independently from the cytosol and is not elevated by stimuli that induce large cytosolic calcium ([Ca2+]cyt) elevations. In contrast, high light and exogenous hydrogen peroxide (H2O2) induce large, sustained [Ca2+]str elevations that are not replicated in the cytosol. Measurements using the fluorescent H2O2 sensor roGFP2-Oxidant Receptor Peroxidase 1 (Orp1) indicate that [Ca2+]str elevations induced by these stimuli correspond to the accumulation of H2O2 in the chloroplast. [Ca2+]str elevations were also induced by adding methyl viologen, which generates superoxide within the chloroplast, and by treatments that disrupt nonphotochemical quenching (NPQ). The findings indicate that diatoms generate specific [Ca2+]str elevations in response to high light and oxidative stress that likely modulate the activity of calcium-sensitive components in photoprotection and other regulatory pathways.
Collapse
Affiliation(s)
- Serena Flori
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Jack Dickenson
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Trupti Gaikwad
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Isobel Cole
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Katherine E Helliwell
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Colin Brownlee
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| |
Collapse
|
4
|
Hippler M, Khosravitabar F. Light-Driven H 2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2114. [PMID: 39124233 PMCID: PMC11314271 DOI: 10.3390/plants13152114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Fatemeh Khosravitabar
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
5
|
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2103. [PMID: 39124221 PMCID: PMC11314055 DOI: 10.3390/plants13152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.
Collapse
Affiliation(s)
- Yuval Milrad
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
6
|
Mosebach L, Ozawa SI, Younas M, Xue H, Scholz M, Takahashi Y, Hippler M. Chemical Protein Crosslinking-Coupled Mass Spectrometry Reveals Interaction of LHCI with LHCII and LHCSR3 in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1632. [PMID: 38931064 PMCID: PMC11207971 DOI: 10.3390/plants13121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
The photosystem I (PSI) of the green alga Chlamydomonas reinhardtii associates with 10 light-harvesting proteins (LHCIs) to form the PSI-LHCI complex. In the context of state transitions, two LHCII trimers bind to the PSAL, PSAH and PSAO side of PSI to produce the PSI-LHCI-LHCII complex. In this work, we took advantage of chemical crosslinking of proteins in conjunction with mass spectrometry to identify protein-protein interactions between the light-harvesting proteins of PSI and PSII. We detected crosslinks suggesting the binding of LHCBM proteins to the LHCA1-PSAG side of PSI as well as protein-protein interactions of LHCSR3 with LHCA5 and LHCA3. Our data indicate that the binding of LHCII to PSI is more versatile than anticipated and imply that LHCSR3 might be involved in the regulation of excitation energy transfer to the PSI core via LHCA5/LHCA3.
Collapse
Affiliation(s)
- Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| | - Muhammad Younas
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan;
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany; (L.M.); (M.Y.); (M.S.)
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan;
| |
Collapse
|
7
|
Pecherina A, Dimitrieva A, Mudrilov M, Ladeynova M, Zanegina D, Brilkina A, Vodeneev V. Salt-Induced Early Changes in Photosynthesis Activity Caused by Root-to-Shoot Signaling in Potato. Int J Mol Sci 2024; 25:1229. [PMID: 38279229 PMCID: PMC10816847 DOI: 10.3390/ijms25021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.
Collapse
Affiliation(s)
- Anna Pecherina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Anastasia Dimitrieva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maxim Mudrilov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Maria Ladeynova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| | - Daria Zanegina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (D.Z.); (A.B.)
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (A.P.); (A.D.); (M.M.); (M.L.)
| |
Collapse
|
8
|
Hehenberger E, Guo J, Wilken S, Hoadley K, Sudek L, Poirier C, Dannebaum R, Susko E, Worden AZ. Phosphate Limitation Responses in Marine Green Algae Are Linked to Reprogramming of the tRNA Epitranscriptome and Codon Usage Bias. Mol Biol Evol 2023; 40:msad251. [PMID: 37987557 PMCID: PMC10735309 DOI: 10.1093/molbev/msad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Marine algae are central to global carbon fixation, and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change; however, there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA modification enzymes and biased codon usage of transcripts more abundant during phosphate-limiting versus phosphate-replete conditions, consistent with the role of transfer RNA modifications in regulating codon recognition. To associate the observed shift in the expression of the transfer RNA modification enzyme complement with the transfer RNAs encoded by M. commoda, we also determined the transfer RNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing phosphate limitation and photosystem-associated proteins that have ill-characterized putative functions in "light stress." The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in transfer RNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation that extends beyond the catalog of up- or downregulated protein-encoding genes to the cell biological controls that underpin acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, CZ
| | - Jian Guo
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susanne Wilken
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kenneth Hoadley
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Lisa Sudek
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
| | - Richard Dannebaum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, CA
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, DE
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Max Planck Institute for Evolutionary Biology, 24306 Plön, DE
| |
Collapse
|
9
|
Chouhan N, Marriboina S, Kumari A, Singh P, Yadav RM, Gupta KJ, Subramanyam R. Metabolomic response to high light from pgrl1 and pgr5 mutants of Chlamydomonas reinhardtii. Photochem Photobiol Sci 2023; 22:2635-2650. [PMID: 37751074 DOI: 10.1007/s43630-023-00478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Chlamydomonas (C.) reinhardtii metabolomic changes in cyclic electron flow-dependent mutants are still unknown. Here, we used mass spectrometric analysis to monitor the changes in metabolite levels in wild-type, cyclic electron-deficient mutants pgrl1 and pgr5 grown under high-light stress. A total of 55 metabolites were detected using GC-MS analysis. High-light stress-induced selective anaplerotic amino acids in pgr5. In addition, pgr5 showed enhancement in carbohydrate, polyamine, and polyol metabolism by 2.5-fold under high light. In response to high light, pgr5 triggers an increase in several metabolites involved in regulating osmotic pressure. Among these metabolites are glycerol pathway compounds such as glycerol-3-phosphate and glyceryl-glycoside, which increase significantly by 1.55 and 3.07 times, respectively. In addition, pgr5 also enhanced proline and putrescine levels by 2.6- and 1.36-fold under high light. On the other hand, pgrl1-induced metabolites, such as alanine and serine, are crucial for photorespiration when subjected to high-light stress. We also observed a significant increase in levels of polyols and glycerol by 1.37- and 2.97-fold in pgrl1 under high-light stress. Both correlation network studies and KEGG pathway enrichment analysis revealed that metabolites related to several biological pathways, such as amino acid, carbohydrate, TCA cycle, and fatty acid metabolism, were positively correlated in pgrl1 and pgr5 under high-light stress conditions. The relative mRNA expression levels of genes related to the TCA cycle, including PDC3, ACH1, OGD2, OGD3, IDH3, and MDH4, were significantly upregulated in pgrl1 and pgr5 under HL. In pgr5, the MDH1 level was significantly increased, while ACS1, ACS3, IDH2, and IDH3 levels were reduced considerably in pgrl1 under high-light stress. The current study demonstrates both pgr5 and prgl1 showed a differential defense response to high-light stress at the primary metabolites and mRNA expression level, which can be added to the existing knowledge to explore molecular regulatory responses of prg5 and pgrl1 to high-light stress.
Collapse
Affiliation(s)
- Nisha Chouhan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion, 8499000, Beersheba, Israel
| | - Aprajita Kumari
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja Singh
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
10
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
11
|
Kreis E, König K, Misir M, Niemeyer J, Sommer F, Schroda M. TurboID reveals the proxiomes of Chlamydomonas proteins involved in thylakoid biogenesis and stress response. PLANT PHYSIOLOGY 2023; 193:1772-1796. [PMID: 37310689 PMCID: PMC10602608 DOI: 10.1093/plphys/kiad335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/14/2023]
Abstract
In Chlamydomonas (Chlamydomonas reinhardtii), the VESICLE-INDUCING PROTEIN IN PLASTIDS 1 and 2 (VIPP1 and VIPP2) play roles in the sensing and coping with membrane stress and in thylakoid membrane biogenesis. To gain more insight into these processes, we aimed to identify proteins interacting with VIPP1/2 in the chloroplast and chose proximity labeling (PL) for this purpose. We used the transient interaction between the nucleotide exchange factor CHLOROPLAST GRPE HOMOLOG 1 (CGE1) and the stromal HEAT SHOCK PROTEIN 70B (HSP70B) as test system. While PL with APEX2 and BioID proved to be inefficient, TurboID resulted in substantial biotinylation in vivo. TurboID-mediated PL with VIPP1/2 as baits under ambient and H2O2 stress conditions confirmed known interactions of VIPP1 with VIPP2, HSP70B, and the CHLOROPLAST DNAJ HOMOLOG 2 (CDJ2). Proteins identified in the VIPP1/2 proxiomes can be grouped into proteins involved in the biogenesis of thylakoid membrane complexes and the regulation of photosynthetic electron transport, including PROTON GRADIENT REGULATION 5-LIKE 1 (PGRL1). A third group comprises 11 proteins of unknown function whose genes are upregulated under chloroplast stress conditions. We named them VIPP PROXIMITY LABELING (VPL). In reciprocal experiments, we confirmed VIPP1 in the proxiomes of VPL2 and PGRL1. Our results demonstrate the robustness of TurboID-mediated PL for studying protein interaction networks in the chloroplast of Chlamydomonas and pave the way for analyzing functions of VIPPs in thylakoid biogenesis and stress responses.
Collapse
Affiliation(s)
- Elena Kreis
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Katharina König
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Melissa Misir
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, RPTU Kaiserslautern-Landau, Paul-Ehrlich Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Pivato M, Grenzi M, Costa A, Ballottari M. Compartment-specific Ca 2+ imaging in the green alga Chlamydomonas reinhardtii reveals high light-induced chloroplast Ca 2+ signatures. THE NEW PHYTOLOGIST 2023; 240:258-271. [PMID: 37488718 DOI: 10.1111/nph.19142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
To investigate the role of intracellular Ca2+ signaling in the perception and response mechanisms to light in unicellular microalgae, the genetically encoded ratiometric Ca2+ indicator Yellow Cameleon (YC3.6) was expressed in the model organism for green algae Chlamydomonas reinhardtii, targeted to cytosol, chloroplast, and mitochondria. Through in vivo single-cell confocal microscopy imaging, light-induced Ca2+ signaling was investigated in different conditions and different genotypes, including the photoreceptors mutants phot and acry. A genetically encoded H2 O2 sensor was also adopted to investigate the possible role of H2 O2 formation in light-dependent Ca2+ signaling. Light-dependent Ca2+ response was observed in Chlamydomonas reinhardtii cells only in the chloroplast as an organelle-autonomous response, influenced by light intensity and photosynthetic electron transport. The absence of blue and red-light photoreceptor aCRY strongly reduced the light-dependent chloroplast Ca2+ response, while the absence of the blue photoreceptor PHOT had no significant effects. A correlation between high light-induced chloroplast H2 O2 gradients and Ca2+ transients was drawn, supported by H2 O2 -induced chloroplast Ca2+ transients in the dark. In conclusion, different triggers are involved in the light-induced chloroplast Ca2+ signaling as saturation of the photosynthetic electron transport, H2 O2 formation, and aCRY-dependent light perception.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milan, 20133, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
13
|
Kalra I, Wang X, Zhang R, Morgan-Kiss R. High salt-induced PSI-supercomplex is associated with high CEF and attenuation of state transitions. PHOTOSYNTHESIS RESEARCH 2023; 157:65-84. [PMID: 37347385 PMCID: PMC10484818 DOI: 10.1007/s11120-023-01032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
While PSI-driven cyclic electron flow (CEF) and assembly of thylakoid supercomplexes have been described in model organisms like Chlamydomonas reinhardtii, open questions remain regarding their contributions to survival under long-term stress. The Antarctic halophyte, C. priscuii UWO241 (UWO241), possesses constitutive high CEF rates and a stable PSI-supercomplex as a consequence of adaptation to permanent low temperatures and high salinity. To understand whether CEF represents a broader acclimation strategy to short- and long-term stress, we compared high salt acclimation between the halotolerant UWO241, the salt-sensitive model, C. reinhardtii, and a moderately halotolerant Antarctic green alga, C. sp. ICE-MDV (ICE-MDV). CEF was activated under high salt and associated with increased non-photochemical quenching in all three Chlamydomonas species. Furthermore, high salt-acclimated cells of either strain formed a PSI-supercomplex, while state transition capacity was attenuated. How the CEF-associated PSI-supercomplex interferes with state transition response is not yet known. We present a model for interaction between PSI-supercomplex formation, state transitions, and the important role of CEF for survival during long-term exposure to high salt.
Collapse
Affiliation(s)
- Isha Kalra
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
- Present Address: Department of Biology, University of Southern California, Los Angeles, CA 90089 USA
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH 45056 USA
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | | |
Collapse
|
14
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Liu SY, Xie JG, Chen XW, Chen DF. Dunaliella Ds-26-16 acts as a global regulator to enhance salt tolerance by coordinating multiple responses in Arabidopsis seedlings. PLANTA 2023; 257:110. [PMID: 37149499 DOI: 10.1007/s00425-023-04149-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
MAIN CONCLUSION Based on phenotypic, physiological and proteomic analysis, the possible mechanism by which Ds-26-16 regulates salt tolerance in Arabidopsis seedlings was revealed. Functional and mechanistic characterization of salt tolerance genes isolated from natural resources is crucial for their application. In this study, we report the possible mechanism by which Ds-26-16, a gene from Dunaliella, and its point mutation gene EP-5, enhance salt tolerance in Arabidopsis seedlings. Both Ds-26-16 and EP-5 transgenic lines displayed higher seed germination rates, cotyledon-greening rates, soluble sugar contents, decreased relative conductivity and ROS accumulation when germinating under 150 mM NaCl conditions. Comparative proteomic analysis revealed that there were 470 or 391 differentially expressed proteins (DEPs) in Ds-26-16 or EP-5, respectively, compared with the control (3301) under salt stress. The GO and KEGG enrichment analyses showed the DEPs in Ds-26-16 vs. 3301 and EP-5 vs. 3301 were similar and mainly enriched in photosynthesis, regulation of gene expression, carbohydrate metabolism, redox homeostasis, hormonal signal and defense, and regulation of seed germination. Thirty-seven proteins were found to be stably expressed under salt stress due to the expression of Ds-26-16, and eleven of them contain the CCACGT motif which could be bound by the transcription factor in ABA signaling to repress gene transcription. Taken together, we propose that Ds-26-16, as a global regulator, improves salt-tolerance by coordinating stress-induced signal transduction and modulating multiple responses in Arabidopsis seedlings. These results provide valuable information for utilizing natural resources in crop improvement for breeding salt-tolerant crops.
Collapse
Affiliation(s)
- Si-Yue Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin-Ge Xie
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xi-Wen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - De-Fu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
16
|
Wang L, Yang Y, Yang Z, Li W, Hu D, Yu H, Li X, Cheng H, Kan G, Che Z, Zhang D, Zhang H, Wang H, Huang F, Yu D. GmFtsH25 overexpression increases soybean seed yield by enhancing photosynthesis and photosynthates. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1026-1040. [PMID: 36349957 DOI: 10.1111/jipb.13405] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Increasing plant photosynthetic capacity is a promising approach to boost yields, but it is particularly challenging in C3 crops, such as soybean (Glycine max (L.) Merr.). Here, we identified GmFtsH25, encoding a member of the filamentation temperature-sensitive protein H protease family, as a major gene involved in soybean photosynthesis, using linkage mapping and a genome-wide association study. Overexpressing GmFtsH25 resulted in more grana thylakoid stacks in chloroplasts and increased photosynthetic efficiency and starch content, while knocking out GmFtsH25 produced the opposite phenotypes. GmFtsH25 interacted with photosystem I light harvesting complex 2 (GmLHCa2), and this interaction may contribute to the observed enhanced photosynthesis. GmFtsH25 overexpression lines had superior yield traits, such as yield per plant, compared to the wild type and knockout lines. Additionally, we identified an elite haplotype of GmFtsH25, generated by natural mutations, which appears to have been selected during soybean domestication. Our study sheds light on the molecular mechanism by which GmFtsH25 modulates photosynthesis and provides a promising strategy for improving the yields of soybean and other crops.
Collapse
Affiliation(s)
- Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenlong Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huilian Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhijun Che
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hengyou Zhang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
17
|
Joliot P, Sellés J, Wollman FA, Verméglio A. High efficient cyclic electron flow and functional supercomplexes in Chlamydomonas cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148909. [PMID: 35952798 DOI: 10.1016/j.bbabio.2022.148909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A very high rate for cyclic electron flow (CEF) around PSI (~180 s-1 or 210 s-1 in minimum medium or in the presence of a carbon source respectively) is measured in the presence of methyl viologen (MV) in intact cells of Chlamydomonas reinhardtii under anaerobic conditions. The observation of an efficient CEF in the presence of methyl viologen is in agreement with the previous results reports of Asada et al. in broken chloroplasts (Plant Cell Physiol. 31(4) (1990) 557-564). From the analysis of the P700 and PC absorbance changes, we propose that a confinement between 2 PC molecules, 1 PSI and 1 cytb6f corresponding to a functional supercomplex is responsible for these high rates of CEF. Supercomplex formation is also observed in the absence of methyl viologen, but with lower maximal CEF rate (about 100 s-1) suggesting that this compound facilitates the mediation of electron transfer from PSI acceptors to the stromal side of cytb6f. Further analysis of CEF in mutants of Chlamydomonas defective in state transitions shows the requirement of a kinase-driven transition to state 2 to establish this functional supercomplex configuration. However, a movement of the LHCII antennae is not involved in this process. We discuss the possible involvement of auxiliary proteins, among which is a small cytb6f-associated polypeptide, the PETO protein, which is one of the targets of the STT7 kinase.
Collapse
Affiliation(s)
- Pierre Joliot
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France.
| | - Julien Sellés
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France.
| | - Françis-André Wollman
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France
| | - André Verméglio
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Ayyaz A, Fang R, Ma J, Hannan F, Huang Q, Athar HUR, Sun Y, Javed M, Ali S, Zhou W, Farooq MA. Calcium nanoparticles (Ca-NPs) improve drought stress tolerance in Brassica napus by modulating the photosystem II, nutrient acquisition and antioxidant performance. NANOIMPACT 2022; 28:100423. [PMID: 36084849 DOI: 10.1016/j.impact.2022.100423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Foliar-application of nano-particles enhanced the foliar nutrient status and crop growth and yield. It is hypothesized that being second messenger molecule, supplementation of Ca2+ via calcium nanoparticles (Ca-NPs) can trigger various signaling pathways of physiological processes which can lead to alleviate the adverse effects of drought stress on the growth of canola (Brassica napus L.). Nano-enabled foliar-application could be an ideal strategy for advancing agricultural productivity. The present study explored the role of calcium nanoparticles (Ca-NPs) in alleviating drought stress in hydroponic Brassica napus (B. napus) plants. The foliar applied Ca-NPs were spherically shaped with an average size of 86 nm. Foliar application of 100 mg L-1 Ca-NPs enhanced biomass of canola plants and considered as optimal dose. Ca-NPs at 100 mg L-1 has a greater favorable impact on mesophyll ultrastructure, PSI and PSII efficacy, gas exchange parameters, chlorophyll content, and mineral absorption. The Ca-NPs treatment increased NPQ and Y(NPQ) under drought condition, indicating a higher PSII protective response to stressed conditions with better heat dissipation as a photoprotective component of NPQ. Ca-NPs application also reduced oxidative stress damage as measured by a reduction in reactive oxygen species (ROS) generation in terms of hydrogen peroxide and malondialdehyde (H2O2 and MDA). Furthermore, Ca-NPs induced drought tolerance response corresponded to an increased in key antioxidative defense enzymes (SOD, POD, CAT, APX), as well as non-enzymatic components (protease, lipoxygenase, proline, total soluble protein contents, endogenous hormonal biosynthesis), and secondary metabolite expression in B. napus plants. Taken together, the results of this study offer new insights into the physiological and molecular mechanisms by which B. napus responds to Ca-NPs exposure.
Collapse
Affiliation(s)
- Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Rouyi Fang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Junyi Ma
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | | | - Yongqi Sun
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Javed
- Institute of Botany, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, AllamaIqbal Road, 38000 Faisalabad, Pakistan
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Song Q, Zhang S, Bai C, Shi Q, Wu D, Liu Y, Han X, Li T, Yong JWH. Exogenous Ca 2+ priming can improve peanut photosynthetic carbon fixation and pod yield under early sowing scenarios in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1004721. [PMID: 36247552 PMCID: PMC9557924 DOI: 10.3389/fpls.2022.1004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Harnessing cold-resilient and calcium-enriched peanut production technology are crucial for high-yielding peanut cultivation in high-latitude areas. However, there is limited field data about how exogenous calcium (Ca2+) application would improve peanut growth resilience during exposure to chilling stress at early sowing (ES). To help address this problem, a two-year field study was conducted to assess the effects of exogenous foliar Ca2+ application on photosynthetic carbon fixation and pod yield in peanuts under different sowing scenarios. We measured plant growth indexes, leaf photosynthetic gas exchange, photosystems activities, and yield in peanuts. It was indicated that ES chilling stress at the peanut seedling stage led to the reduction of Pn, gs, Tr, Ls, WUE, respectively, and the excessive accumulation of non-structural carbohydrates in leaves, which eventually induced a chilling-dependent feedback inhibition of photosynthesis due mainly to weaken growth/sink demand. While exogenous Ca2+ foliar application improved the export of nonstructural carbohydrates, and photosynthetic capacity, meanwhile activated cyclic electron flow, thereby enhancing growth and biomass accumulation in peanut seedlings undergoing ES chilling stress. Furthermore, ES combined with exogenous Ca2+ application can significantly enhance plant chilling resistance and peanut yield ultimately in the field. In summary, the above results demonstrated that exogenous foliar Ca2+ application restored the ES-linked feedback inhibition of photosynthesis, enhancing the growth/sink demand and the yield of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Research Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
20
|
Li B, Hou L, Song C, Wang Z, Xue Q, Li Y, Qin J, Cao N, Jia C, Zhang Y, Shi W. Biological function of calcium-sensing receptor (CAS) and its coupling calcium signaling in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:74-80. [PMID: 35398653 DOI: 10.1016/j.plaphy.2022.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 05/23/2023]
Abstract
The calcium-sensing receptor (CAS), as a chloroplast thylakoid membrane protein, is involved in the process of external Ca2+-induced cytosolic Ca2+ increase in plants. However, the underlying mechanism regulating this process is lacking. Furthermore, recent evidence suggests that CAS may perform additional roles in plants. Here, we provided an update covering the multiple roles of CAS in stomatal movement regulation and Ca2+ signaling in plants. We also analyzed the possible phosphorylation mechanism of CAS by light and discuss the role of CAS in abiotic stress (drought, salt stress) and biotic stresses (plant immune signaling). Finally, we proposed a perspective for future experiments that are required to fill gaps in our understanding of the biological function of CAS in plants.
Collapse
Affiliation(s)
- Bin Li
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Liyuan Hou
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Chenggang Song
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Zhengbiao Wang
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Qiyang Xue
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Yuanyang Li
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Jianchun Qin
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Ning Cao
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Chengguo Jia
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China
| | - Yubin Zhang
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China.
| | - Wuliang Shi
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
21
|
Fan A, Chen J, Li N, Guo H, Li X, Zhang L, Shao H. Probing Ca2+-induced electron transfer on the surface of self-assembled monolayer using SECM. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Electron transfer via cytochrome b6f complex displays sensitivity to Antimycin A upon STT7 kinase activation. Biochem J 2022; 479:111-127. [PMID: 34981811 DOI: 10.1042/bcj20210802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
The cytochrome b6f complex (b6f) has been initially considered as the ferredoxin-plastoquinone reductase (FQR) during cyclic electron flow (CEF) with photosystem I that is inhibited by antimycin A (AA). The binding of AA to the b6f Qi-site is aggravated by heme-ci, which challenged the FQR function of b6f during CEF. Alternative models suggest that PROTON GRADIENT REGULATION5 (PGR5) is involved in a b6f-independent, AA-sensitive FQR. Here, we show in Chlamydomonas reinhardtii that the b6f is conditionally inhibited by AA in vivo and that the inhibition did not require PGR5. Instead, activation of the STT7 kinase upon anaerobic treatment induced the AA sensitivity of b6f which was absent in stt7-1. However, a lock in State 2 due to persisting phosphorylation in the phosphatase double mutant pph1;pbcp did not increase AA sensitivity of electron transfer. The latter required a redox poise, supporting the view that state transitions and CEF are not coercively coupled. This suggests that the b6f-interacting kinase is required for structure-function modulation of the Qi-site under CEF favoring conditions. We propose that PGR5 and STT7 independently sustain AA-sensitive FQR activity of the b6f. Accordingly, PGR5-mediated electron injection into an STT7-modulated Qi-site drives a Mitchellian Q cycle in CEF conditions.
Collapse
|
23
|
Longoni FP, Goldschmidt-Clermont M. Thylakoid Protein Phosphorylation in Chloroplasts. PLANT & CELL PHYSIOLOGY 2021; 62:1094-1107. [PMID: 33768241 DOI: 10.1093/pcp/pcab043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of light-harvesting complex II (LHCII) and of photosystem II (PSII) are dynamically phosphorylated and dephosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID-ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls the allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain. Phosphorylation of several core subunits of PSII, regulated mainly by STN8 and PBCP, correlates with changes in thylakoid architecture, the repair cycle of PSII after photodamage as well as regulation of light harvesting and of alternative routes of photosynthetic electron transfer. Other kinases, such as the PLASTID CASEIN KINASE II (pCKII), also intervene in thylakoid protein phosphorylation and take part in the chloroplast kinase network. While some features of thylakoid phosphorylation were conserved through the evolution of photosynthetic eukaryotes, others have diverged in different lineages possibly as a result of their adaptation to varied environments.
Collapse
Affiliation(s)
- Fiamma Paolo Longoni
- Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | | |
Collapse
|
24
|
Nagy V, Podmaniczki A, Vidal-Meireles A, Kuntam S, Herman É, Kovács L, Tóth D, Scoma A, Tóth SZ. Thin cell layer cultures of Chlamydomonas reinhardtii L159I-N230Y, pgrl1 and pgr5 mutants perform enhanced hydrogen production at sunlight intensity. BIORESOURCE TECHNOLOGY 2021; 333:125217. [PMID: 33951580 DOI: 10.1016/j.biortech.2021.125217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Photobiological hydrogen (H2) production is a promising renewable energy source. HydA hydrogenases of green algae are efficient but O2-sensitive and compete for electrons with CO2-fixation. Recently, we established a photoautotrophic H2 production system based on anaerobic induction, where the Calvin-Benson cycle is inactive and O2 scavenged by an absorbent. Here, we employed thin layer cultures, resulting in a three-fold increase in H2 production relative to bulk CC-124 cultures (50 µg chlorophyll/ml, 350 µmol photons m-2 s-1). Productivity was maintained when increasing the light intensity to 1000 µmol photons m-2s-1 and the cell density to 150 µg chlorophyll/ml. Remarkably, the L159I-N230Y photosystem II mutant and the pgrl1 photosystem I cyclic electron transport mutant produced 50% more H2 than CC-124, while the pgr5 mutant generated 250% more (1.2 ml H2/ml culture in six days). The photosynthetic apparatus of the pgr5 mutant and its in vitro HydA activity remained remarkably stable.
Collapse
Affiliation(s)
- Valéria Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Anna Podmaniczki
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6722 Szeged, Hungary
| | - André Vidal-Meireles
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Soujanya Kuntam
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Éva Herman
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6722 Szeged, Hungary
| | - Alberto Scoma
- Engineered Microbial Systems Laboratory (EMS-Lab), Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, 8200 Aarhus, Denmark
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| |
Collapse
|
25
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
26
|
PGRL2 triggers degradation of PGR5 in the absence of PGRL1. Nat Commun 2021; 12:3941. [PMID: 34168134 PMCID: PMC8225790 DOI: 10.1038/s41467-021-24107-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
In plants, inactivation of either of the thylakoid proteins PGR5 and PGRL1 impairs cyclic electron flow (CEF) around photosystem I. Because PGR5 is unstable in the absence of the redox-active PGRL1, but not vice versa, PGRL1 is thought to be essential for CEF. However, we show here that inactivation of PGRL2, a distant homolog of PGRL1, relieves the need for PGRL1 itself. Conversely, high levels of PGRL2 destabilize PGR5 even when PGRL1 is present. In the absence of both PGRL1 and PGRL2, PGR5 alters thylakoid electron flow and impairs plant growth. Consequently, PGR5 can operate in CEF on its own, and is the target of the CEF inhibitor antimycin A, but its activity must be modulated by PGRL1. We conclude that PGRL1 channels PGR5 activity, and that PGRL2 triggers the degradation of PGR5 when the latter cannot productively interact with PGRL1. It is currently thought that the thylakoid proteins PGRL1 and PGR5 form a complex to mediate cyclic electron flow (CEF) around photosystem I. Here the authors show that CEF can in fact be mediated by PGR5 alone and that PGRL1 and the homologous PGRL2 modify the process by modulating PGR5 activity and stability.
Collapse
|
27
|
Chen H, Wang Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol Rev Camb Philos Soc 2021; 96:2373-2391. [PMID: 34101323 DOI: 10.1111/brv.12759] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023]
Abstract
Microalgal lipids are highly promising feedstocks for biofuel production. Microalgal lipids, especially triacylglycerol, and practical applications of these compounds have received increasing attention in recent years. For the commercial use of microalgal lipids to be feasible, many fundamental biological questions must be addressed based on detailed studies of algal biology, including how lipid biosynthesis occurs and is regulated. Here, we review the current understanding of microalgal lipid biosynthesis, with a focus on the underlying regulatory mechanisms. We also present possible solutions for overcoming various obstacles to understanding the basic biology of microalgal lipid biosynthesis and the practical application of microalgae-based lipids. This review will provide a theoretical reference for both algal researchers and decision makers regarding the future directions of microalgal research, particularly pertaining to microalgal-based lipid biosynthesis.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
28
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
29
|
Luu Trinh MD, Miyazaki D, Ono S, Nomata J, Kono M, Mino H, Niwa T, Okegawa Y, Motohashi K, Taguchi H, Hisabori T, Masuda S. The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I. iScience 2021; 24:102059. [PMID: 33554065 PMCID: PMC7848650 DOI: 10.1016/j.isci.2021.102059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
In natural habitats, plants have developed sophisticated regulatory mechanisms to optimize the photosynthetic electron transfer rate at the maximum efficiency and cope with the changing environments. Maintaining proper P700 oxidation at photosystem I (PSI) is the common denominator for most regulatory processes of photosynthetic electron transfers. However, the molecular complexes and cofactors involved in these processes and their function(s) have not been fully clarified. Here, we identified a redox-active chloroplast protein, the triplet-cysteine repeat protein (TCR). TCR shared similar expression profiles with known photosynthetic regulators and contained two triplet-cysteine motifs (CxxxCxxxC). Biochemical analysis indicated that TCR localizes in chloroplasts and has a [3Fe-4S] cluster. Loss of TCR limited the electron sink downstream of PSI during dark-to-light transition. Arabidopsis pgr5-tcr double mutant reduced growth significantly and showed unusual oxidation and reduction of plastoquinone pool. These results indicated that TCR is involved in electron flow(s) downstream of PSI, contributing to P700 oxidation. P700 oxidation at photosystem I is important for regulation of photosynthesis TCR is a redox active chloroplast protein harboring a 3Fe-4S iron-sulfur cluster TCR controls electron flow around photosystem I, contributing to P700 oxidation
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Daichi Miyazaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Sumire Ono
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Jiro Nomata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Mino
- Division of Materials Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuki Okegawa
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Corresponding author
| |
Collapse
|
30
|
Wu D, Liu Y, Pang J, Yong JWH, Chen Y, Bai C, Han X, Liu X, Sun Z, Zhang S, Sheng J, Li T, Siddique KH, Lambers H. Exogenous Calcium Alleviates Nocturnal Chilling-Induced Feedback Inhibition of Photosynthesis by Improving Sink Demand in Peanut ( Arachis hypogaea). FRONTIERS IN PLANT SCIENCE 2020; 11:607029. [PMID: 33408732 PMCID: PMC7779555 DOI: 10.3389/fpls.2020.607029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/17/2020] [Indexed: 05/23/2023]
Abstract
Arachis hypogaea (peanut) is a globally important oilseed crop with high nutritional value. However, upon exposure to overnight chilling stress, it shows poor growth and seedling necrosis in many cultivation areas worldwide. Calcium (Ca2+) enhances chilling resistance in various plant species. We undertook a pot experiment to investigate the effects of exogenous Ca2+ and a calmodulin (CaM) inhibitor on growth and photosynthetic characteristics of peanut exposed to low night temperature (LNT) stress following warm sunny days. The LNT stress reduced growth, leaf extension, biomass accumulation, gas exchange rates, and photosynthetic electron transport rates. Following LNT stress, we observed larger starch grains and a concomitant increase in nonstructural carbohydrates and hydrogen peroxide (H2O2) concentrations. The LNT stress further induced photoinhibition and caused structural damage to the chloroplast grana. Exogenous Ca2+ enhanced plant growth following LNT stress, possibly by allowing continued export of carbohydrates from leaves. Foliar Ca2+ likely alleviated the nocturnal chilling-dependent feedback limitation on photosynthesis in the daytime by increasing sink demand. The foliar Ca2+ pretreatment protected the photosystems from photoinhibition by facilitating cyclic electron flow (CEF) and decreasing the proton gradient (ΔpH) across thylakoid membranes during LNT stress. Foliar application of a CaM inhibitor increased the negative impact of LNT stress on photosynthetic processes, confirming that Ca2+-CaM played an important role in alleviating photosynthetic inhibition due to the overnight chilling-dependent feedback.
Collapse
Affiliation(s)
- Di Wu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Yinglong Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Chunming Bai
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Zhiyu Sun
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jing Sheng
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianlai Li
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow. Biochem J 2020; 477:1631-1650. [PMID: 32267468 DOI: 10.1042/bcj20190914] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
Proton gradient regulation 5 (PGR5) is involved in the control of photosynthetic electron transfer, but its mechanistic role is not yet clear. Several models have been proposed to explain phenotypes such as a diminished steady-state proton motive force (pmf) and increased photodamage of photosystem I (PSI). Playing a regulatory role in cyclic electron flow (CEF) around PSI, PGR5 contributes indirectly to PSI protection by enhancing photosynthetic control, which is a pH-dependent down-regulation of electron transfer at the cytochrome b6f complex (b6f). Here, we re-evaluated the role of PGR5 in the green alga Chlamydomonas reinhardtii and conclude that pgr5 possesses a dysfunctional b6f. Our data indicate that the b6f low-potential chain redox activity likely operated in two distinct modes - via the canonical Q cycle during linear electron flow and via an alternative Q cycle during CEF, which allowed efficient oxidation of the low-potential chain in the WT b6f. A switch between the two Q cycle modes was dependent on PGR5 and relied on unknown stromal electron carrier(s), which were a general requirement for b6f activity. In CEF-favoring conditions, the electron transfer bottleneck in pgr5 was the b6f, in which insufficient low-potential chain redox tuning might account for the mutant pmf phenotype. By attributing a ferredoxin-plastoquinone reductase activity to the b6f and investigating a PGR5 cysteine mutant, a current model of CEF is challenged.
Collapse
|
32
|
Zhou L, Gao S, Wu S, Han D, Wang H, Gu W, Hu Q, Wang J, Wang G. PGRL1 overexpression in Phaeodactylum tricornutum inhibits growth and reduces apparent PSII activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1850-1857. [PMID: 32526813 DOI: 10.1111/tpj.14872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 05/11/2023]
Abstract
Proton gradient regulation 5-like photosynthetic phenotype 1 (PGRL1)-dependent cyclic electron transport around photosystem I (PSI) plays important roles in the response to different stresses, including high light. Although the function of PGRL1 in higher plants and green algae has been thoroughly investigated, little information is available on the molecular mechanism of PGRL1 in diatoms. We created PGRL1 overexpression and knockdown transformants of Phaeodactylum tricornutum, the diatom model species, and investigated the impact on growth and photosynthesis under constant and fluctuating light conditions. PGRL1 over-accumulation resulted in significant decreases in growth rate and apparent photosystem II (PSII) activity and led to an opposing change of apparent PSII activity when turning to high light, demonstrating a similar influence on photosynthesis as a PSII inhibitor. Our results suggested that PGRL1 overexpression can reduce the apparent efficiency of PSII and inhibit growth in P. tricornutum. These findings provide physiological evidence that the accumulation of PGRL1 mainly functions around PSII instead of PSI.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songcui Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Hui Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
33
|
Müller-Schüssele SJ, Wang R, Gütle DD, Romer J, Rodriguez-Franco M, Scholz M, Buchert F, Lüth VM, Kopriva S, Dörmann P, Schwarzländer M, Reski R, Hippler M, Meyer AJ. Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1140-1154. [PMID: 32365245 DOI: 10.1111/tpj.14791] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 05/27/2023]
Abstract
Thiol-based redox-regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo-lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH ) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild-type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.
Collapse
Affiliation(s)
- Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| | - Ren Wang
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Desirée D Gütle
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse1, Freiburg, 79104, Germany
| | - Jill Romer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, 79104, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse1, Freiburg, 79104, Germany
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestrasse1, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, Freiburg, 79104, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, Bonn, 53113, Germany
| |
Collapse
|
34
|
Redekop P, Rothhausen N, Rothhausen N, Melzer M, Mosebach L, Dülger E, Bovdilova A, Caffarri S, Hippler M, Jahns P. PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148183. [DOI: 10.1016/j.bbabio.2020.148183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
|
35
|
Kalra I, Wang X, Cvetkovska M, Jeong J, McHargue W, Zhang R, Hüner N, Yuan JS, Morgan-Kiss R. Chlamydomonas sp. UWO 241 Exhibits High Cyclic Electron Flow and Rewired Metabolism under High Salinity. PLANT PHYSIOLOGY 2020; 183:588-601. [PMID: 32229607 PMCID: PMC7271785 DOI: 10.1104/pp.19.01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/08/2020] [Indexed: 06/01/2023]
Abstract
The Antarctic green alga Chlamydomonas sp. UWO 241 (UWO 241) is adapted to permanent low temperatures, hypersalinity, and extreme shade. One of the most striking phenotypes of UWO 241 is an altered PSI organization and constitutive PSI cyclic electron flow (CEF). To date, little attention has been paid to CEF during long-term stress acclimation, and the consequences of sustained CEF in UWO 241 are not known. In this study, we combined photobiology, proteomics, and metabolomics to understand the underlying role of sustained CEF in high-salinity stress acclimation. High salt-grown UWO 241 exhibited increased thylakoid proton motive flux and an increased capacity for nonphotochemical quenching. Under high salt, a significant proportion of the up-regulated enzymes were associated with the Calvin-Benson-Bassham cycle, carbon storage metabolism, and protein translation. Two key enzymes of the shikimate pathway, 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase and chorismate synthase, were also up-regulated, as well as indole-3-glycerol phosphate synthase, an enzyme involved in the biosynthesis of l-Trp and indole acetic acid. In addition, several compatible solutes (glycerol, Pro, and Suc) accumulated to high levels in high salt-grown UWO 241 cultures. We suggest that UWO 241 maintains constitutively high CEF through the associated PSI-cytochrome b 6 f supercomplex to support robust growth and strong photosynthetic capacity under a constant growth regime of low temperatures and high salinity.
Collapse
Affiliation(s)
- Isha Kalra
- Department of Microbiology, Miami University, Oxford, Ohio 45056
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, Ohio 45056
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Jooyeon Jeong
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Norman Hüner
- Department of Biology and Biotron Centre for Experimental Climate Change, University of Western Ontario, London N6A 3K7, Ontario, Canada
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77840
| | | |
Collapse
|
36
|
Grieco M, Roustan V, Dermendjiev G, Rantala S, Jain A, Leonardelli M, Neumann K, Berger V, Engelmeier D, Bachmann G, Ebersberger I, Aro E, Weckwerth W, Teige M. Adjustment of photosynthetic activity to drought and fluctuating light in wheat. PLANT, CELL & ENVIRONMENT 2020; 43:1484-1500. [PMID: 32176335 PMCID: PMC7384038 DOI: 10.1111/pce.13756] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/02/2020] [Indexed: 05/24/2023]
Abstract
Drought is a major cause of losses in crop yield. Under field conditions, plants exposed to drought are usually also experiencing rapid changes in light intensity. Accordingly, plants need to acclimate to both, drought and light stress. Two crucial mechanisms in plant acclimation to changes in light conditions comprise thylakoid protein phosphorylation and dissipation of light energy as heat by non-photochemical quenching (NPQ). Here, we analyzed the acclimation efficacy of two different wheat varieties, by applying fluctuating light for analysis of plants, which had been subjected to a slowly developing drought stress as it usually occurs in the field. This novel approach allowed us to distinguish four drought phases, which are critical for grain yield, and to discover acclimatory responses which are independent of photodamage. In short-term, under fluctuating light, the slowdown of NPQ relaxation adjusts the photosynthetic activity to the reduced metabolic capacity. In long-term, the photosynthetic machinery acquires a drought-specific configuration by changing the PSII-LHCII phosphorylation pattern together with protein stoichiometry. Therefore, the fine-tuning of NPQ relaxation and PSII-LHCII phosphorylation pattern represent promising traits for future crop breeding strategies.
Collapse
Affiliation(s)
- Michele Grieco
- Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Valentin Roustan
- Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | | | - Sanna Rantala
- Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Arpit Jain
- Applied Bioinformatics GroupInstitute of Cell Biology and Neuroscience, Goethe‐University FrankfurtFrankfurtGermany
| | | | - Kerstin Neumann
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Vitus Berger
- Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Doris Engelmeier
- Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Gert Bachmann
- Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Ingo Ebersberger
- Applied Bioinformatics GroupInstitute of Cell Biology and Neuroscience, Goethe‐University FrankfurtFrankfurtGermany
- Senckenberg Biodiversity and Climate Research Centre (S‐BIK‐F)FrankfurtGermany
- LOEWE Center for Translational Biodiversity GenomicsFrankfurtGermany
| | - Eva‐Mari Aro
- Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Wolfram Weckwerth
- Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
- Vienna Metabolomics Center (VIME)University of ViennaViennaAustria
| | - Markus Teige
- Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
- Max Perutz Labs, Department of Biochemistry & Cell BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
37
|
Essemine J, Lyu MJA, Qu M, Perveen S, Khan N, Song Q, Chen G, Zhu XG. Contrasting Responses of Plastid Terminal Oxidase Activity Under Salt Stress in Two C 4 Species With Different Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:1009. [PMID: 32733515 PMCID: PMC7359412 DOI: 10.3389/fpls.2020.01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 05/07/2023]
Abstract
The present study reveals contrasting responses of photosynthesis to salt stress in two C4 species: a glycophyte Setaria viridis (SV) and a halophyte Spartina alterniflora (SA). Specifically, the effect of short-term salt stress treatment on the photosynthetic CO2 uptake and electron transport were investigated in SV and its salt-tolerant close relative SA. In this experiment, at the beginning, plants were grown in soil then were exposed to salt stress under hydroponic conditions for two weeks. SV demonstrated a much higher susceptibility to salt stress than SA; while, SV was incapable to survive subjected to about 100 mM, SA can tolerate salt concentrations up to 550 mM with slight effect on photosynthetic CO2 uptake rates and electrons transport chain conductance (gETC ). Regardless the oxygen concentration used, our results show an enhancement in the P700 oxidation with increasing O2 concentration for SV following NaCl treatment and almost no change for SA. We also observed an activation of the cyclic NDH-dependent pathway in SV by about 2.36 times upon exposure to 50 mM NaCl for 12 days (d); however, its activity in SA drops by about 25% compared to the control without salt treatment. Using PTOX inhibitor (n-PG) and that of the Qo-binding site of Cytb6/f (DBMIB), at two O2 levels (2 and 21%), to restrict electrons flow towards PSI, we successfully revealed the presence of a possible PTOX activity under salt stress for SA but not for SV. However, by q-PCR and western-blot analysis, we showed an increase in PTOX amount by about 3-4 times for SA under salt stress but not or very less for SV. Overall, this study provides strong proof for the existence of PTOX as an alternative electron pathway in C4 species (SA), which might play more than a photoprotective role under salt stress.
Collapse
|
38
|
Regulation of photosynthetic cyclic electron flow pathways by adenylate status in higher plant chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148081. [PMID: 31520615 DOI: 10.1016/j.bbabio.2019.148081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/08/2023]
Abstract
Cylic electron flow (CEF) around Photosystem I in photosynthetic eukaryotes is likely to be necessary to augment ATP production, rapidly- and precisely balancing the plastid ATP/NADPH energy budget to meet the demands of downstream metabolism. Many regulatory aspects of this process are unclear. Here we demonstrate that the higher plant plastid NADH/Fd:plastoquinone reductase (NDH) and proposed PGR5/PGRL1 ferredoxin:plastoquinone reductase (FQR) pathways of CEF are strongly, rapidly and reversibly inhibited in vitro by ATP with Ki values of 670 μM and 240 μM respectively, within the range of physiological changes in ATP concentrations. Control experiments ruled out effects on secondary reactions, e.g. FNR- and cytochrome b6f activity, nonphotochemical quenching of chlorophyll fluorescence etc., supporting the view that ATP is an inhibitor of CEF and its associated pmf generation and subsequent ATP production. The effects are specific to ATP, with the ATP analog AMP-PNP showing little inhibitory effect, and ADP inhibiting only at higher concentrations. For the FQR pathway, inhibition was found to be classically competitive with Fd, and the NDH pathway showing partial competition with Fd. We propose a straightforward model for regulation of CEF in plants in which CEF is activated under conditions when stromal ATP low, but is downregulated as ATP levels build up, allowing for effective ATP homeostasis. The differences in Ki values suggest a two-tiered regulatory system, where the highly efficient proton pumping NDH is activated with moderate decreases in ATP, with the less energetically-efficient FQR pathway being activated under more severe ATP depletion.
Collapse
|
39
|
Scholz M, Gäbelein P, Xue H, Mosebach L, Bergner SV, Hippler M. Light-dependent N-terminal phosphorylation of LHCSR3 and LHCB4 are interlinked in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:877-894. [PMID: 31033075 PMCID: PMC6851877 DOI: 10.1111/tpj.14368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/15/2019] [Accepted: 04/16/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation dynamics of LHCSR3 were investigated in Chlamydomonas reinhardtii by quantitative proteomics and genetic engineering. LHCSR3 protein expression and phosphorylation were induced in high light. Our data revealed synergistic and dynamic N-terminal LHCSR3 phosphorylation. Phosphorylated and nonphosphorylated LHCSR3 associated with PSII-LHCII supercomplexes. The phosphorylation status of LHCB4 was closely linked to the phosphorylation of multiple sites at the N-terminus of LHCSR3, indicating that LHCSR3 phosphorylation may operate as a molecular switch modulating LHCB4 phosphorylation, which in turn is important for PSII-LHCII disassembly. Notably, LHCSR3 phosphorylation diminished under prolonged high light, which coincided with onset of CEF. Hierarchical clustering of significantly altered proteins revealed similar expression profiles of LHCSR3, CRX, and FNR. This finding indicated the existence of a functional link between LHCSR3 protein abundance and phosphorylation, photosynthetic electron flow, and the oxidative stress response.
Collapse
Affiliation(s)
- Martin Scholz
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Philipp Gäbelein
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Huidan Xue
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Laura Mosebach
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
- Present address:
Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 1Potsdam‐Golm14476Germany
| | - Michael Hippler
- Institute of Plant Biology and BiotechnologyUniversity of MünsterSchlossplatz 8Münster48143Germany
| |
Collapse
|
40
|
Grossman A, Sanz-Luque E, Yi H, Yang W. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology (Reading) 2019; 165:697-718. [DOI: 10.1099/mic.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Heng Yi
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
41
|
Nawrocki W, Bailleul B, Cardol P, Rappaport F, Wollman FA, Joliot P. Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:425-432. [DOI: 10.1016/j.bbabio.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/08/2018] [Accepted: 01/25/2019] [Indexed: 11/30/2022]
|
42
|
The Significance of Calcium in Photosynthesis. Int J Mol Sci 2019; 20:ijms20061353. [PMID: 30889814 PMCID: PMC6471148 DOI: 10.3390/ijms20061353] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
As a secondary messenger, calcium participates in various physiological and biochemical reactions in plants. Photosynthesis is the most extensive biosynthesis process on Earth. To date, researchers have found that some chloroplast proteins have Ca2+-binding sites, and the structure and function of some of these proteins have been discussed in detail. Although the roles of Ca2+ signal transduction related to photosynthesis have been discussed, the relationship between calcium and photosynthesis is seldom systematically summarized. In this review, we provide an overview of current knowledge of calcium’s role in photosynthesis.
Collapse
|
43
|
Nawrocki WJ, Bailleul B, Picot D, Cardol P, Rappaport F, Wollman FA, Joliot P. The mechanism of cyclic electron flow. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:433-438. [PMID: 30827891 DOI: 10.1016/j.bbabio.2018.12.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 12/16/2022]
Abstract
Apart from the canonical light-driven linear electron flow (LEF) from water to CO2, numerous regulatory and alternative electron transfer pathways exist in chloroplasts. One of them is the cyclic electron flow around Photosystem I (CEF), contributing to photoprotection of both Photosystem I and II (PSI, PSII) and supplying extra ATP to fix atmospheric carbon. Nonetheless, CEF remains an enigma in the field of functional photosynthesis as we lack understanding of its pathway. Here, we address the discrepancies between functional and genetic/biochemical data in the literature and formulate novel hypotheses about the pathway and regulation of CEF based on recent structural and kinetic information.
Collapse
Affiliation(s)
- W J Nawrocki
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France; Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 4, Chemin de la Vallée, B-4000 Liège, Belgium.
| | - B Bailleul
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - D Picot
- Institut de Biologie Physico-Chimique, UMR 7099 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - P Cardol
- Laboratoire de Génétique et Physiologie des Microalgues, Institut de Botanique, Université de Liège, 4, Chemin de la Vallée, B-4000 Liège, Belgium
| | - F Rappaport
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - F-A Wollman
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| | - P Joliot
- Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie, 75005 Paris, France
| |
Collapse
|
44
|
Teige M. Chloroplasts Use Calcium Signals to Call for Help under Heat Stress. PLANT & CELL PHYSIOLOGY 2019; 60:492-493. [PMID: 30796458 PMCID: PMC6400106 DOI: 10.1093/pcp/pcz039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 05/25/2023]
Affiliation(s)
- Markus Teige
- Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
45
|
Song Q, Liu Y, Pang J, Yong JWH, Chen Y, Bai C, Gille C, Shi Q, Wu D, Han X, Li T, Siddique KHM, Lambers H. Supplementary Calcium Restores Peanut ( Arachis hypogaea) Growth and Photosynthetic Capacity Under Low Nocturnal Temperature. FRONTIERS IN PLANT SCIENCE 2019; 10:1637. [PMID: 32038667 PMCID: PMC6985363 DOI: 10.3389/fpls.2019.01637] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/20/2019] [Indexed: 05/11/2023]
Abstract
Peanut (Arachis hypogaea L.) is a globally important oil crop, which often experiences poor growth and seedling necrosis under low nocturnal temperatures (LNT). This study assessed the effects of supplementary calcium (Ca2+) and a calmodulin inhibitor on peanut growth and photosynthetic characteristics of plants exposed to LNT, followed by recovery at a higher temperature. We monitored key growth and photosynthetic parameters in a climate-controlled chamber in pots containing soil. LNT reduced peanut growth and dry matter accumulation, enhanced leaf nonstructural carbohydrates concentrations and non-photochemical quenching, decreased the electron transport rate, increased the transmembrane proton gradient, and decreased gas exchange rates. In peanuts subjected to LNT, foliar application of Ca2+ restored growth, dry matter production and leaf photosynthetic capacity. In particular, the foliar Ca2+ application restored temperature-dependent photosynthesis feedback inhibition due to improved growth/sink demand. Foliar sprays of a calmodulin inhibitor further deteriorated the effects of LNT which validated the protective role of Ca2+ in facilitating LNT tolerance of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Yifei Liu,
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Yinglong Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Clément Gille
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Station for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | | | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Frank J, Happeck R, Meier B, Hoang MTT, Stribny J, Hause G, Ding H, Morsomme P, Baginsky S, Peiter E. Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. THE NEW PHYTOLOGIST 2019; 221:866-880. [PMID: 30169890 DOI: 10.1111/nph.15407] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/17/2018] [Indexed: 05/18/2023]
Abstract
The photosynthetic machinery of plants must be regulated to maximize the efficiency of light reactions and CO2 fixation. Changes in free Ca2+ in the stroma of chloroplasts have been observed at the transition between light and darkness, and also in response to stress stimuli. Such Ca2+ dynamics have been proposed to regulate photosynthetic capacity. However, the molecular mechanisms of Ca2+ fluxes in the chloroplasts have been unknown. By employing a Ca2+ reporter-based approach, we identified two chloroplast-localized Ca2+ transporters in Arabidopsis thaliana, BICAT1 and BICAT2, that determine the amplitude of the darkness-induced Ca2+ signal in the chloroplast stroma. BICAT2 mediated Ca2+ uptake across the chloroplast envelope, and its knockout mutation strongly dampened the dark-induced [Ca2+ ]stroma signal. Conversely, this Ca2+ transient was increased in knockout mutants of BICAT1, which transports Ca2+ into the thylakoid lumen. Knockout mutation of BICAT2 caused severe defects in chloroplast morphology, pigmentation and photosynthetic light reactions, rendering bicat2 mutants barely viable under autotrophic growth conditions, while bicat1 mutants were less affected. These results show that BICAT transporters play a role in chloroplast Ca2+ homeostasis. They are also involved in the regulation of photosynthesis and plant productivity. Further work will be required to reveal whether the effect on photosynthesis is a direct result of their role as Ca2+ transporters.
Collapse
Affiliation(s)
- Julia Frank
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Ricardo Happeck
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Bastian Meier
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Minh Thi Thanh Hoang
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Haidong Ding
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Sacha Baginsky
- Institute for Biochemistry and Biotechnology, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| | - Edgar Peiter
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, D-06120, Halle (Saale), Germany
| |
Collapse
|
47
|
Buchert F, Hamon M, Gäbelein P, Scholz M, Hippler M, Wollman FA. The labile interactions of cyclic electron flow effector proteins. J Biol Chem 2018; 293:17559-17573. [PMID: 30228184 PMCID: PMC6231120 DOI: 10.1074/jbc.ra118.004475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.
Collapse
Affiliation(s)
- Felix Buchert
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Marion Hamon
- the Institut de Biologie Physico-Chimique, UMR8226/FRC550 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France
| | - Philipp Gäbelein
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Martin Scholz
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Michael Hippler
- the Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany, and
| | - Francis-André Wollman
- From the Institut de Biologie Physico-Chimique, UMR7141 CNRS-Sorbonne-Université, 13 Rue P et M Curie, 75005 Paris, France,
| |
Collapse
|
48
|
Wang C, Takahashi H, Shikanai T. PROTON GRADIENT REGULATION 5 contributes to ferredoxin-dependent cyclic phosphorylation in ruptured chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1173-1179. [DOI: 10.1016/j.bbabio.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|
49
|
Structure of a PSI-LHCI-cyt b 6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proc Natl Acad Sci U S A 2018; 115:10517-10522. [PMID: 30254175 DOI: 10.1073/pnas.1809973115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Photosynthetic linear electron flow (LEF) produces ATP and NADPH, while cyclic electron flow (CEF) exclusively drives photophosphorylation to supply extra ATP. The fine-tuning of linear and cyclic electron transport levels allows photosynthetic organisms to balance light energy absorption with cellular energy requirements under constantly changing light conditions. As LEF and CEF share many electron transfer components, a key question is how the same individual structural units contribute to these two different functional modes. Here, we report the structural identification of a photosystem I (PSI)-light harvesting complex I (LHCI)-cytochrome (cyt) b6f supercomplex isolated from the unicellular alga Chlamydomonas reinhardtii under anaerobic conditions, which induces CEF. This provides strong evidence for the model that enhanced CEF is induced by the formation of CEF supercomplexes, when stromal electron carriers are reduced, to generate additional ATP. The additional identification of PSI-LHCI-LHCII complexes is consistent with recent findings that both CEF enhancement and state transitions are triggered by similar conditions, but can occur independently from each other. Single molecule fluorescence correlation spectroscopy indicates a physical association between cyt b6f and fluorescent chlorophyll containing PSI-LHCI supercomplexes. Single particle analysis identified top-view projections of the corresponding PSI-LHCI-cyt b6f supercomplex. Based on molecular modeling and mass spectrometry analyses, we propose a model in which dissociation of LHCA2 and LHCA9 from PSI supports the formation of this CEF supercomplex. This is supported by the finding that a Δlhca2 knockout mutant has constitutively enhanced CEF.
Collapse
|
50
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|