1
|
Bending GD, Newman A, Picot E, Mushinski RM, Jones DL, Carré IA. Diurnal Rhythmicity in the Rhizosphere Microbiome-Mechanistic Insights and Significance for Rhizosphere Function. PLANT, CELL & ENVIRONMENT 2025; 48:2040-2052. [PMID: 39552493 PMCID: PMC11788953 DOI: 10.1111/pce.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
The rhizosphere is a key interface between plants, microbes and the soil which influences plant health and nutrition and modulates terrestrial biogeochemical cycling. Recent research has shown that the rhizosphere environment is far more dynamic than previously recognised, with evidence emerging for diurnal rhythmicity in rhizosphere chemistry and microbial community composition. This rhythmicity is in part linked to the host plant's circadian rhythm, although some heterotrophic rhizosphere bacteria and fungi may also possess intrinsic rhythmicity. We review the evidence for diurnal rhythmicity in rhizosphere microbial communities and its link to the plant circadian clock. Factors which may drive microbial rhythmicity are discussed, including diurnal change in root exudate flux and composition, rhizosphere physico-chemical properties and plant immunity. Microbial processes which could contribute to community rhythmicity are considered, including self-sustained microbial rhythms, bacterial movement into and out of the rhizosphere, and microbe-microbe interactions. We also consider evidence that changes in microbial composition mediated by the plant circadian clock may affect microbial function and its significance for plant health and broader soil biogeochemical cycling processes. We identify key knowledge gaps and approaches which could help to resolve the spatial and temporal variation and functional significance of rhizosphere microbial rhythmicity. This includes unravelling the factors which determine the oscillation of microbial activity, growth and death, and cross-talk with the host over diurnal time frames. We conclude that diurnal rhythmicity is an inherent characteristic of the rhizosphere and that temporal factors should be considered and reported in rhizosphere studies.
Collapse
Affiliation(s)
| | - Amy Newman
- School of Life SciencesUniversity of WarwickCoventryUK
| | - Emma Picot
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Davey L. Jones
- School of Environmental and Natural SciencesBangor UniversityBangorUK
- Food Futures InstituteMurdoch UniversityPerthWAAustralia
| | | |
Collapse
|
2
|
Yen PL, Lin TA, Chang CH, Yu CW, Kuo YH, Chang TT, Liao VHC. Di(2-ethylhexyl) phthalate disrupts circadian rhythm associated with changes in metabolites and cytochrome P450 gene expression in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125062. [PMID: 39366446 DOI: 10.1016/j.envpol.2024.125062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is a widespread environmental pollutant due to its extensive use. While circadian rhythms are inherent in most living organisms, the detrimental effects of DEHP on circadian rhythm and the underlying mechanisms remain largely unknown. This study investigated the influence of early developmental exposure to DEHP on circadian rhythm and explored the possible relationship between circadian disruption and DEHP metabolism in the model organism Caenorhabditis elegans. We observed that DEHP disrupted circadian rhythm in a dose-dependent fashion. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that DEHP-induced circadian disruption accompanies with altered proportions of DEHP metabolites in C. elegans. RNA sequencing data demonstrated that DEHP-induced circadian rhythm disruption caused differential gene expression. Moreover, DEHP-induced circadian disruption coincided with attenuated inductions of DEHP-induced cytochrome P450 genes, cyp-35A2, cyp-35A3, and cyp-35A4. Notably, cyp-35A2 mRNA exhibited circadian rhythm with entrainment, but DEHP exposure disrupted this rhythm. Our findings suggest that DEHP exposure disrupts circadian rhythm, which is associated with changes in DEHP metabolites and cytochrome P450 gene expression in C. elegans. Given the ubiquitous nature of DEHP pollution and the prevalence of circadian rhythms in living organisms, this study implies a potential negative impact of DEHP on circadian rhythm and DEHP metabolism in organisms.
Collapse
Affiliation(s)
- Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Tzu-Ting Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Spangler RK, Braun K, Ashley GE, van der Does M, Wruck D, Coronado AR, Matthew Ragle J, Iesmantavicius V, Morales Moya LJ, Jonnalagadda K, Partch CL, Großhans H, Ward JD. A conserved chronobiological complex times C. elegans development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593322. [PMID: 38766223 PMCID: PMC11100808 DOI: 10.1101/2024.05.09.593322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The mammalian PAS-domain protein PERIOD (PER) and its C. elegans orthologue LIN-42 have been proposed to constitute an evolutionary link between two distinct, circadian and developmental, timing systems. However, while the function of PER in animal circadian rhythms is well understood molecularly and mechanistically, this is not true for LIN-42's function in timing rhythmic development. Here, using targeted deletions, we find that the LIN-42 PAS domains are dispensable for the protein's function in timing molts. Instead, we observe arrhythmic molts upon deletion of a distinct sequence element, conserved with PER. We show that this element, designated CK1δ-binding domain (CK1BD), mediates stable binding to KIN-20, the C. elegans CK1δ/ε orthologue. We demonstrate that CK1δ phosphorylates LIN-42 and define two conserved helical motifs in the CK1BD, CK1BD-A and CK1BD-B, that have distinct roles in controlling CK1δ-binding and kinase activity in vitro. KIN-20 and the LIN-42 CK1BD are required for proper molting timing in vivo, and loss of LIN-42 binding changes KIN-20 subcellular localization. The interactions mirror the central role of a stable circadian PER-CK1 complex in setting a robust ~24-hour period. Hence, our results establish LIN-42/PER - KIN-20/CK1δ/ε as a functionally conserved signaling module of two distinct chronobiological systems.
Collapse
Affiliation(s)
- Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kathrin Braun
- Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
| | - Guinevere E Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Marit van der Does
- Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Daniel Wruck
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrea Ramos Coronado
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | - Keya Jonnalagadda
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
- Center for Circadian Biology, University of California-San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California-Santa Cruz, Santa Cruz 95064, USA
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Chang CH, Yen PL, Pan MH, Liao VHC. The food-borne carcinogenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) disrupts circadian rhythms and ameliorated by pterostilbene (PSB) in Caenorhabditis elegans. Arch Toxicol 2024; 98:4131-4141. [PMID: 39254834 DOI: 10.1007/s00204-024-03857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
The food-borne 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a potential human carcinogen abundant in cooked meat. While circadian rhythms are crucial biological oscillations, the negative impact of PhIP on circadian systems and the potential of mitigation remain underexplored. We investigated the effects of PhIP on circadian rhythms and the mitigating effects of the phytochemical antioxidant pterostilbene (PSB) in Caenorhabditis elegans. We show that exposure to 10 μM PhIP disrupts the 24-h circadian rhythms of C. elegans, an effect mitigated by co-exposure to 100 μM PSB. In addition, PhIP-induced circadian disruption can be linked to defective oxidative stress resistance, which is associated with the DAF-16/FOXO pathway and is modulated by PSB. Molecular docking suggested that PhIP and PSB bind similarly to DAF-16. Moreover, 10 μM PhIP abolished the rhythmic expression of the core clock gene prdx-2, which is restored by 100 μM PSB. Findings from this study provide novel insight of how food-borne contaminant like PhIP may contribute to the disruption of circadian rhythms and suggest potential for PSB to mitigate these effects in higher organisms.
Collapse
Affiliation(s)
- Chun-Han Chang
- Institute of Food Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, 106, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 404, Taiwan.
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
5
|
Hiroki S, Yoshitane H. Ror homolog nhr-23 is essential for both developmental clock and circadian clock in C. elegans. Commun Biol 2024; 7:243. [PMID: 38418700 PMCID: PMC10902330 DOI: 10.1038/s42003-024-05894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Animals have internal clocks that generate biological rhythms. In mammals, clock genes such as Period form the circadian clock to generate approximately 24-h biological rhythms. In C. elegans, the clock gene homologs constitute the "developmental clock", which has an 8-h period during larval development to determine the timing of molting. Thus, the ancestral circadian clock has been believed to evolve into the oscillator with a shorter period in C. elegans. However, circadian rhythms have also been observed in adult C. elegans, albeit relatively weak. This prompts the question: if the clock gene homologs drive the developmental rhythm with 8-h period, which genes generate the circadian rhythms in C. elegans? In this study, we discovered that nhr-23, a homolog of the mammalian circadian clock gene Ror, is essential for circadian transcriptional rhythms in adult C. elegans. Interestingly, nhr-23 was also known to be essential for the molting clock. The bilaterian ancestral circadian clock genes might have evolved to function over multiple periods depending on developmental contexts rather than a single 8-h period in C. elegans.
Collapse
Affiliation(s)
- Shingo Hiroki
- Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan.
| | - Hikari Yoshitane
- Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan.
- Department of Biological Sciences, School of Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Migliori ML, Goya ME, Lamberti ML, Silva F, Rota R, Bénard C, Golombek DA. Caenorhabditis elegans as a Promising Model Organism in Chronobiology. J Biol Rhythms 2023; 38:131-147. [PMID: 36680418 DOI: 10.1177/07487304221143483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circadian rhythms represent an adaptive feature, ubiquitously found in nature, which grants living beings the ability to anticipate daily variations in their environment. They have been found in a multitude of organisms, ranging from bacteria to fungi, plants, and animals. Circadian rhythms are generated by endogenous clocks that can be entrained daily by environmental cycles such as light and temperature. The molecular machinery of circadian clocks includes a transcriptional-translational feedback loop that takes approximately 24 h to complete. Drosophila melanogaster has been a model organism of choice to understand the molecular basis of circadian clocks. However, alternative animal models are also being adopted, each offering their respective experimental advantages. The nematode Caenorhabditis elegans provides an excellent model for genetics and neuro-behavioral studies, which thanks to its ease of use and manipulation, as well as availability of genetic data and mutant strains, is currently used as a novel model for circadian research. Here, we aim to evaluate C. elegans as a model for chronobiological studies, focusing on its strengths and weaknesses while reviewing the available literature. Possible zeitgebers (including light and temperature) are also discussed. Determining the molecular bases and the neural circuitry involved in the central pacemaker of the C. elegans' clock will contribute to the understanding of its circadian system, becoming a novel model organism for the study of diseases due to alterations of the circadian cycle.
Collapse
Affiliation(s)
- María Laura Migliori
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - María Eugenia Goya
- European Institute for the Biology of Aging, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Francisco Silva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Rosana Rota
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Claire Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Universite du Québec à Montréal, Montreál, QC, Canada
| | - Diego Andrés Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Universidad de San Andrés, Victoria, Argentina
| |
Collapse
|
7
|
Gonzalez JC, Lee H, Vincent AM, Hill AL, Goode LK, King GD, Gamble KL, Wadiche JI, Overstreet-Wadiche L. Circadian regulation of dentate gyrus excitability mediated by G-protein signaling. Cell Rep 2023; 42:112039. [PMID: 36749664 PMCID: PMC10404305 DOI: 10.1016/j.celrep.2023.112039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/27/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
The central circadian regulator within the suprachiasmatic nucleus transmits time of day information by a diurnal spiking rhythm driven by molecular clock genes controlling membrane excitability. Most brain regions, including the hippocampus, harbor similar intrinsic circadian transcriptional machinery, but whether these molecular programs generate oscillations of membrane properties is unclear. Here, we show that intrinsic excitability of mouse dentate granule neurons exhibits a 24-h oscillation that controls spiking probability. Diurnal changes in excitability are mediated by antiphase G-protein regulation of potassium and sodium currents that reduce excitability during the Light phase. Disruption of the circadian transcriptional machinery by conditional deletion of Bmal1 enhances excitability selectively during the Light phase by removing G-protein regulation. These results reveal that circadian transcriptional machinery regulates intrinsic excitability by coordinated regulation of ion channels by G-protein signaling, highlighting a potential novel mechanism of cell-autonomous oscillations.
Collapse
Affiliation(s)
- Jose Carlos Gonzalez
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Haeun Lee
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela M Vincent
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela L Hill
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gwendalyn D King
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacques I Wadiche
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Linda Overstreet-Wadiche
- Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Li W, Wang Z, Cao J, Dong Y, Chen Y. Perfecting the Life Clock: The Journey from PTO to TTFL. Int J Mol Sci 2023; 24:ijms24032402. [PMID: 36768725 PMCID: PMC9916482 DOI: 10.3390/ijms24032402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquity of biological rhythms in life implies that it results from selection in the evolutionary process. The origin of the biological clock has two possible hypotheses: the selective pressure hypothesis of the oxidative stress cycle and the light evasion hypothesis. Moreover, the biological clock gives life higher adaptability. Two biological clock mechanisms have been discovered: the negative feedback loop of transcription-translation (TTFL) and the post-translational oscillation mechanism (PTO). The TTFL mechanism is the most classic and relatively conservative circadian clock oscillation mechanism, commonly found in eukaryotes. We have introduced the TTFL mechanism of the classical model organisms. However, the biological clock of prokaryotes is based on the PTO mechanism. The Peroxiredoxin (PRX or PRDX) protein-based PTO mechanism circadian clock widely existing in eukaryotic and prokaryotic life is considered a more conservative oscillation mechanism. The coexistence of the PTO and TTFL mechanisms in eukaryotes prompted us to explain the relationship between the two. Finally, we speculated that there might be a driving force for the evolution of the biological clock. The biological clock may have an evolutionary trend from the PTO mechanism to the TTFL mechanism, resulting from the evolution of organisms adapting to the environment.
Collapse
Affiliation(s)
- Weitian Li
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62733778
| |
Collapse
|
9
|
Yu CW, Wu YC, Liao VHC. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127091. [PMID: 34488090 DOI: 10.1016/j.jhazmat.2021.127091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Plastics pollution is an emerging environmental problem and nanoplastics (NPs) toxicity has received great concern. This study investigated whether early developmental exposure to polystyrene NPs influence the circadian rhythms and the possible underlying mechanisms in C. elegans. We show that early developmental NPs exposure disturbs circadian rhythms in C. elegans and ASH neurons and G protein-coupled receptor kinase (GRK-2) are involved in the level of chemotaxis response. A higher bioconcentration factor in entrained worms was observed, suggesting that circadian interference results in increased NPs bioaccumulation in C. elegans. In addition, we show that reactive oxygen species produced by NPs exposure and peroxiredoxin-2 (PRDX-2) are related to the disturbed circadian rhythms. We further show that the NPs-induced circadian rhythms disruption is associated with stress resistance decline and modulated by transcription DAF-16/FOXO signaling. Because circadian rhythms are found in most living organisms and the fact that DAF-16 and PRDX-2 are evolutionarily conserved, our findings suggest a possible negative impact of NPs on circadian rhythms and stress resistance in higher organisms including humans.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.
| |
Collapse
|
10
|
Carvalho Cabral P, Tekade K, Stegeman SK, Olivier M, Cermakian N. The involvement of host circadian clocks in the regulation of the immune response to parasitic infections in mammals. Parasite Immunol 2021; 44:e12903. [PMID: 34964129 DOI: 10.1111/pim.12903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022]
Abstract
Circadian rhythms are recurring variations of physiology with a period of ~24 hours, generated by circadian clocks located throughout the body. Studies have shown a circadian regulation of many aspects of immunity. Immune cells have intrinsic clock mechanisms, and innate and adaptive immune responses - such as leukocyte migration, magnitude of inflammation, cytokine production and cell differentiation - are under circadian control. This circadian regulation has consequences for infections including parasitic infections. In the context of Leishmania infection, the circadian clock within host immune cells modulates the magnitude of the infection and the inflammatory response triggered by the parasite. As for malaria, rhythms within the immune system were shown to impact the developmental cycles of Plasmodium parasites within red blood cells. Further, host circadian rhythms impact infections by multicellular parasites; for example, infection with helminth Trichuris muris shows different kinetics of worm expulsion depending on time of day of infection, a variation that depends on the dendritic cell clock. Although the research on the circadian control of immunity in the context of parasitic infections is in its infancy, the research reviewed here suggests a crucial involvement of host circadian rhythms in immunity on the development and progression of parasitic infections.
Collapse
Affiliation(s)
| | - Kimaya Tekade
- Douglas Research Centre, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Sophia K Stegeman
- Douglas Research Centre, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Martin Olivier
- Research Institute of the McGill University Health Center, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Nicolas Cermakian
- Douglas Research Centre, McGill University, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
11
|
Rawlinson KA, Reid AJ, Lu Z, Driguez P, Wawer A, Coghlan A, Sankaranarayanan G, Buddenborg SK, Soria CD, McCarthy C, Holroyd N, Sanders M, Hoffmann KF, Wilcockson D, Rinaldi G, Berriman M. Daily rhythms in gene expression of the human parasite Schistosoma mansoni. BMC Biol 2021; 19:255. [PMID: 34852797 PMCID: PMC8638415 DOI: 10.1186/s12915-021-01189-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background The consequences of the earth’s daily rotation have led to 24-h biological rhythms in most organisms. Even some parasites are known to have daily rhythms, which, when in synchrony with host rhythms, can optimise their fitness. Understanding these rhythms may enable the development of control strategies that take advantage of rhythmic vulnerabilities. Recent work on protozoan parasites has revealed 24-h rhythms in gene expression, drug sensitivity and the presence of an intrinsic circadian clock; however, similar studies on metazoan parasites are lacking. To address this, we investigated if a metazoan parasite has daily molecular oscillations, whether they reveal how these longer-lived organisms can survive host daily cycles over a lifespan of many years and if animal circadian clock genes are present and rhythmic. We addressed these questions using the human blood fluke Schistosoma mansoni that lives in the vasculature for decades and causes the tropical disease schistosomiasis. Results Using round-the-clock transcriptomics of male and female adult worms collected from experimentally infected mice, we discovered that ~ 2% of its genes followed a daily pattern of expression. Rhythmic processes included a stress response during the host’s active phase and a ‘peak in metabolic activity’ during the host’s resting phase. Transcriptional profiles in the female reproductive system were mirrored by daily patterns in egg laying (eggs are the main drivers of the host pathology). Genes cycling with the highest amplitudes include predicted drug targets and a vaccine candidate. These 24-h rhythms may be driven by host rhythms and/or generated by a circadian clock; however, orthologs of core clock genes are missing and secondary clock genes show no 24-h rhythmicity. Conclusions There are daily rhythms in the transcriptomes of adult S. mansoni, but they appear less pronounced than in other organisms. The rhythms reveal temporally compartmentalised internal processes and host interactions relevant to within-host survival and between-host transmission. Our findings suggest that if these daily rhythms are generated by an intrinsic circadian clock then the oscillatory mechanism must be distinct from that in other animals. We have shown which transcripts oscillate at this temporal scale and this will benefit the development and delivery of treatments against schistosomiasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01189-9.
Collapse
Affiliation(s)
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick Driguez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Anna Wawer
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | | | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mandy Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Karl F Hoffmann
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | |
Collapse
|
12
|
Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol 2021; 59:326-353. [PMID: 34697790 DOI: 10.1007/s12035-021-02595-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gabriela A Salvador
- INIBIBB-UNS-CONICET, Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| |
Collapse
|
13
|
Herz RS, Herzog ED, Merrow M, Noya SB. The Circadian Clock, the Brain, and COVID-19: The Cases of Olfaction and the Timing of Sleep. J Biol Rhythms 2021; 36:423-431. [PMID: 34396817 PMCID: PMC8442129 DOI: 10.1177/07487304211031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Daily rhythms of behavior and neurophysiology are integral to the
circadian clocks of all animals. Examples of circadian clock
regulation in the human brain include daily rhythms in sleep-wake,
cognitive function, olfactory sensitivity, and risk for ischemic
stroke, all of which overlap with symptoms displayed by many COVID-19
patients. Motivated by the relatively unexplored, yet pervasive,
overlap between circadian functions and COVID-19 neurological
symptoms, this perspective piece uses daily variations in the sense of
smell and the timing of sleep and wakefulness as illustrative
examples. We propose that time-stamping clinical data and testing may
expand and refine diagnosis and treatment of COVID-19.
Collapse
Affiliation(s)
- Rachel S Herz
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Psychology and Neuroscience, Boston College, Chestnut Hill, Massachusetts, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sara B Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Ch R, Rey G, Ray S, Jha PK, Driscoll PC, Dos Santos MS, Malik DM, Lach R, Weljie AM, MacRae JI, Valekunja UK, Reddy AB. Rhythmic glucose metabolism regulates the redox circadian clockwork in human red blood cells. Nat Commun 2021; 12:377. [PMID: 33452240 PMCID: PMC7810875 DOI: 10.1038/s41467-020-20479-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Circadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.
Collapse
Affiliation(s)
- Ratnasekhar Ch
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Guillaume Rey
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Unilabs Genetics Laboratory, 1003, Lausanne, Switzerland
| | - Sandipan Ray
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Pawan K Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Dania M Malik
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Radoslaw Lach
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Oncology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Utham K Valekunja
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Akhilesh B Reddy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA.
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Chronobiology and Sleep institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Henry SA, Crivello S, Nguyen TM, Cybulska M, Hoang NS, Nguyen M, Badial T, Emami N, Awada N, Woodward JF, So CH. G protein-coupled receptor kinase 2 modifies the ability of Caenorhabditis elegans to survive oxidative stress. Cell Stress Chaperones 2021; 26:187-197. [PMID: 33064264 PMCID: PMC7736396 DOI: 10.1007/s12192-020-01168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
Survival and adaptation to oxidative stress is important for many organisms, and these occur through the activation of many different signaling pathways. In this report, we showed that Caenorhabditis (C.) elegans G protein-coupled receptor kinases modified the ability of the organism to resist oxidative stress. In acute oxidative stress studies using juglone, loss-of-function grk-2 mutants were more resistant to oxidative stress compared with loss-of-function grk-1 mutants and the wild-type N2 animals. This effect was Ce-AKT-1 dependent, suggesting that Ce-GRK2 adjusted C. elegans oxidative stress resistance through the IGF/insulin-like signaling (IIS) pathway. Treating C. elegans with a GRK2 inhibitor, the selective serotonin reuptake inhibitor paroxetine, resulted in increased acute oxidative stress resistance compared with another selective serotonin reuptake inhibitor, fluoxetine. In chronic oxidative stress studies with paraquat, both grk-1 and grk-2 mutants had longer lifespan compared with the wild-type N2 animals in stress. In summary, this research showed the importance of both GRKs, especially GRK2, in modifying oxidative stress resistance.
Collapse
Affiliation(s)
- Stacy A Henry
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Selina Crivello
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Tina M Nguyen
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Magdalena Cybulska
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Ngoc S Hoang
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Mary Nguyen
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | | | - Nazgol Emami
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Nasma Awada
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Johnathen F Woodward
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA
| | - Christopher H So
- Roseman University of Health Sciences School of Pharmacy, 11 Sunset Way, Henderson, NV, 89014, USA.
| |
Collapse
|
17
|
Caldart CS, Carpaneto A, Golombek DA. Synchronization of circadian locomotor activity behavior in Caernorhabditis elegans: Interactions between light and temperature. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:112000. [PMID: 32919174 DOI: 10.1016/j.jphotobiol.2020.112000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Circadian rhythms are driven by an endogenous clock which is synchronized by daily environmental cycles (known as zeitgebers). Although the circadian responses of C. elegans to light have been recently reported, the mechanisms and pathways involved in their synchronization are still unknown. Here we present, by means of a novel behavioral approach, a complete characterization of C. elegans circadian synchronization to light and temperature cycles. Moreover, we screened mutant strains in search of defects of photic and thermal responses in order to study their putative pathways. We show that the wild-type strain is able to synchronize to combined cycles of light and temperature, with the best performance achieved under an optimal combination and phase-relationship of zeitgebers (high temperature in the dark phase and low temperature in the light phase). A lower responsiveness for the mutant strains MT21793 (lite-1/gur3 ko) and IK597 (gcy 8, 18 and 23 ko) was found in response to light and temperature, respectively. However, both mutants were still able to synchronize to a combined cycle of both stimuli. Our results shed light on the response of C. elegans to different zeitgebers as well as their possible synchronization pathways, the molecular components involved in these pathways, and their relative strength.
Collapse
Affiliation(s)
- Carlos S Caldart
- Laboratory of Chronobiology, Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Agustín Carpaneto
- Laboratory of Chronobiology, Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019. [DOI: 10.1110.1016/j.redox.2019.101171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Ferguson GD, Bridge WJ. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol 2019; 24:101171. [PMID: 30901603 PMCID: PMC6429583 DOI: 10.1016/j.redox.2019.101171] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Advances in the field of redox biology have contributed to the understanding of the complexity of the thiol-based system in mediating signal transduction. The redox environment is the overall spatiotemporal balance of oxidation-reduction systems within the integrated compartments of the cell, tissues and whole organisms. The ratio of the reduced to disulfide glutathione redox couple (GSH:GSSG) is a key indicator of the redox environment and its associated cellular health. The reaction mechanisms of glutathione-dependent and related thiol-based enzymes play a fundamental role in the function of GSH as a redox regulator. Glutathione homeostasis is maintained by the balance of GSH synthesis (de novo and salvage pathways) and its utilization through its detoxification, thiol signalling, and antioxidant defence functions via GSH-dependent enzymes and free radical scavenging. As such, GSH acts in concert with the entire redox network to maintain reducing conditions in the cell. Caenorhabditis elegans offers a simple model to facilitate further understanding at the multicellular level of the physiological functions of GSH and the GSH-dependent redox network. This review discusses the C. elegans studies that have investigated glutathione and related systems of the redox network including; orthologs to the protein-encoding genes of GSH synthesis; glutathione peroxidases; glutathione-S-transferases; and the glutaredoxin, thioredoxin and peroxiredoxin systems.
Collapse
Affiliation(s)
- Gavin Douglas Ferguson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wallace John Bridge
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
20
|
Meta-analysis suggests evidence of novel stress-related pathway components in Orsay virus - Caenorhabditis elegans viral model. Sci Rep 2019; 9:4399. [PMID: 30867481 PMCID: PMC6416287 DOI: 10.1038/s41598-019-40762-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
The genetic model organism, Caenorhabditis elegans (C. elegans), shares many genes with humans and is the best-annotated of the eukaryotic genome. Therefore, the identification of new genes and pathways is unlikely. Nevertheless, host-pathogen interaction studies from viruses, recently discovered in the environment, has created new opportunity to discover these pathways. For example, the exogenous RNAi response in C. elegans by the Orsay virus as seen in plants and other eukaryotes is not systemic and transgenerational, suggesting different RNAi pathways between these organisms. Using a bioinformatics meta-analysis approach, we show that the top 17 genes differentially-expressed during C. elegans infection by Orsay virus are functionally uncharacterized genes. Furthermore, functional annotation using similarity search and comparative modeling, was able to predict folds correctly, but could not assign easily function to the majority. However, we could identify gene expression studies that showed a similar pattern of gene expression related to toxicity, stress and immune response. Those results were strengthened using protein-protein interaction network analysis. This study shows that novel molecular pathway components, of viral innate immune response, can be identified and provides models that can be further used as a framework for experimental studies. Whether these features are reminiscent of an ancient mechanism evolutionarily conserved, or part of a novel pathway, remain to be established. These results reaffirm the tremendous value of this approach to broaden our understanding of viral immunity in C. elegans.
Collapse
|
21
|
The Doubletime Homolog KIN-20 Mainly Regulates let-7 Independently of Its Effects on the Period Homolog LIN-42 in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2018; 8:2617-2629. [PMID: 29880558 PMCID: PMC6071595 DOI: 10.1534/g3.118.200392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Caenorhabditis elegans (C. elegans) heterochronic pathway, which regulates developmental timing, is thought to be an ancestral form of the circadian clock in other organisms. An essential member of this clock is the Period protein whose homolog, lin-42, in C. elegans is an important heterochronic gene. LIN-42 functions as a transcriptional repressor of multiple genes including the conserved lin-4 and let-7 microRNAs. Like other Period proteins, levels of LIN-42 oscillate throughout development. In other organisms this cycling is controlled in part by phosphorylation. KIN-20 is the C. elegans homolog of the Drosophila Period protein kinase Doubletime. Worms containing a large deletion in kin-20 have a significantly smaller brood size and develop slower than wild type C. elegans Here we analyze the effect of kin-20 on lin-42 phenotypes and microRNA expression. We find that kin-20 RNAi enhances loss-of-function lin-42 mutant phenotypes and that kin-20 mutant worms express lower levels of LIN-42 We also show that kin-20 is important for post-transcriptional regulation of mature let-7 and lin-4 microRNA expression. In addition, the increased level of let-7 found in lin-42(n1089) mutant worms is not maintained after kin-20 RNAi treatment. Instead, let-7 is further repressed when levels of kin-20 and lin-42 are both decreased. Altogether these results suggest that though kin-20 regulates lin-42 and let-7 microRNA, it mainly affects let-7 microRNA expression independently of lin-42 These findings further our understanding of the mechanisms by which these conserved circadian rhythmic genes interact to ultimately regulate rhythmic processes, developmental timing and microRNA biogenesis in C. elegans.
Collapse
|
22
|
Abstract
Mounting evidence in recent years supports the extensive interaction between the circadian and redox systems. The existence of such a relationship is not surprising because most organisms, be they diurnal or nocturnal, display daily oscillations in energy intake, locomotor activity, and exposure to exogenous and internally generated oxidants. The transcriptional clock controls the levels of many antioxidant proteins and redox-active cofactors, and, conversely, the cellular redox poise has been shown to feed back to the transcriptional oscillator via redox-sensitive transcription factors and enzymes. However, the circadian cycles in the S-sulfinylation of the peroxiredoxin (PRDX) proteins constituted the first example of an autonomous circadian redox oscillation, which occurred independently of the transcriptional clock. Importantly, the high phylogenetic conservation of these rhythms suggests that they might predate the evolution of the transcriptional oscillator, and therefore could be a part of a primordial circadian redox/metabolic oscillator. This discovery forced the reappraisal of the dogmatic transcription-centered view of the clockwork and opened a new avenue of research. Indeed, the investigation into the links between the circadian and redox systems is still in its infancy, and many important questions remain to be addressed.
Collapse
|
23
|
Veal EA, Underwood ZE, Tomalin LE, Morgan BA, Pillay CS. Hyperoxidation of Peroxiredoxins: Gain or Loss of Function? Antioxid Redox Signal 2018; 28:574-590. [PMID: 28762774 DOI: 10.1089/ars.2017.7214] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE In 2003, structural studies revealed that eukaryotic 2-Cys peroxiredoxins (Prx) have evolved to be sensitive to inactivation of their thioredoxin peroxidase activity by hyperoxidation (sulfinylation) of their peroxide-reacting catalytic cysteine. This was accompanied by the unexpected discovery, that the sulfinylation of this cysteine was reversible in vivo and the identification of a new enzyme, sulfiredoxin, that had apparently co-evolved specifically to reduce hyperoxidized 2-Cys Prx, restoring their peroxidase activity. Together, these findings have provided the impetus for multiple studies investigating the purpose of this reversible, Prx hyperoxidation. Recent Advances: It has been suggested that inhibition of the thioredoxin peroxidase activity by hyperoxidation can both promote and inhibit peroxide signal transduction, depending on the context. Prx hyperoxidation has also been proposed to protect cells against reactive oxygen species (ROS)-induced damage, by preserving reduced thioredoxin and/or by increasing non-peroxidase chaperone or signaling activities of Prx. CRITICAL ISSUES Here, we will review the evidence in support of each of these proposed functions, in view of the in vivo contexts in which Prx hyperoxidation occurs, and the role of sulfiredoxin. Thus, we will attempt to explain the basis for seemingly contradictory roles for Prx hyperoxidation in redox signaling. FUTURE DIRECTIONS We provide a rationale, based on modeling and experimental studies, for why Prx hyperoxidation should be considered a suitable, early biomarker for damaging levels of ROS. We discuss the implications that this has for the role of Prx in aging and the detection of hyperoxidized Prx as a conserved feature of circadian rhythms. Antioxid. Redox Signal. 28, 574-590.
Collapse
Affiliation(s)
- Elizabeth A Veal
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Zoe E Underwood
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Lewis E Tomalin
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom .,2 Newcastle University Institute for Ageing, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Brian A Morgan
- 1 Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, United Kingdom
| | - Ché S Pillay
- 3 School of Life Sciences, University of KwaZulu-Natal , Pietermartizburg, South Africa
| |
Collapse
|
24
|
Sleeping Beauty? Developmental Timing, Sleep, and the Circadian Clock in Caenorhabditis elegans. ADVANCES IN GENETICS 2017; 97:43-80. [PMID: 28838356 DOI: 10.1016/bs.adgen.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genetics toolkit is pretty successful in drilling down into minutiae. The big challenge is to integrate the information from this specialty as well as those of biochemistry, physiology, behavior, and anatomy to explain how fundamental biological processes really work. Sleep, the circadian clock and development all qualify as overarching processes that encompass levels from molecule to behavior as part of their known mechanisms. They overlap each other, such that understanding the mechanisms of one can lead to insights into one of the others. In this essay, we consider how the experimental approaches and findings relating to Caenorhabditis elegans development and lethargus on one hand, and to the circadian clock and sleep in higher organisms on the other, could complement and enhance one another.
Collapse
|
25
|
Abstract
Peroxiredoxins (Prxs) constitute a major family of peroxidases, with mammalian cells expressing six Prx isoforms (PrxI to PrxVI). Cells produce hydrogen peroxide (H2O2) at various intracellular locations where it can serve as a signaling molecule. Given that Prxs are abundant and possess a structure that renders the cysteine (Cys) residue at the active site highly sensitive to oxidation by H2O2, the signaling function of this oxidant requires extensive and highly localized regulation. Recent findings on the reversible regulation of PrxI through phosphorylation at the centrosome and on the hyperoxidation of the Cys at the active site of PrxIII in mitochondria are described in this review as examples of such local regulation of H2O2 signaling. Moreover, their high affinity for and sensitivity to oxidation by H2O2 confer on Prxs the ability to serve as sensors and transducers of H2O2 signaling through transfer of their oxidation state to bound effector proteins.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea;
| | - In Sup Kil
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea;
| |
Collapse
|
26
|
Moosavi M, Hatam GR. The Sleep in Caenorhabditis elegans: What We Know Until Now. Mol Neurobiol 2017; 55:879-889. [PMID: 28078538 DOI: 10.1007/s12035-016-0362-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Sleep, as one of the most important requirements of our brain, has a mystical nature. Despite long-standing studies, the molecular mechanisms and physiological properties of sleep have not been defined well as the complexity of the mammals' brain make it difficult to investigate the mechanisms and properties of sleep. Although some features of sleep have changed during evolution, its existence in such a simple animal, Caenorhabditis elegans, not only signifies the importance of sleep in even simple animals, but also allows the scientist to assess the core mechanism and biological events in an uncomplicated organism. This article reviews the information which exists about the characteristics of sleep in C. elegans, its circadian rhythm, the neurons and neurotransmitters responsible for each state, and the signaling molecules involved. Although much still remains to be resolved about the sleep of C. elegans, the available knowledge helps the scientists to recognize the properties better of this mysterious function of the brain.
Collapse
Affiliation(s)
- Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Physiology, Medical School, Shiraz University of Medical sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
27
|
Goya ME, Romanowski A, Caldart CS, Bénard CY, Golombek DA. Circadian rhythms identified in Caenorhabditis elegans by in vivo long-term monitoring of a bioluminescent reporter. Proc Natl Acad Sci U S A 2016; 113:E7837-E7845. [PMID: 27849618 PMCID: PMC5137770 DOI: 10.1073/pnas.1605769113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems-including mice, flies, fungi, plants, and bacteria-have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock of Caenorhabditis elegans have remained largely elusive. Here we report robust molecular circadian rhythms in C elegans recorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activated let-60 Ras (sur-5) gene, we show in both population and single-nematode assays that C elegans expresses ∼24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light on C elegans circadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode.
Collapse
Affiliation(s)
- María Eugenia Goya
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
| | - Andrés Romanowski
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina
| | - Carlos S Caldart
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina
| | - Claire Y Bénard
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605;
- Department of Biological Sciences University of Quebec at Montreal, Montreal, QC, Canada H2X 1Y4
| | - Diego A Golombek
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires B1876BXD, Argentina;
| |
Collapse
|
28
|
Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, Eades LJ, Larrondo LF, Hoyle NP, O'Neill JS, van Ooijen G. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 2016; 532:375-9. [PMID: 27074515 PMCID: PMC4886825 DOI: 10.1038/nature17407] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.
Collapse
Affiliation(s)
- Kevin A. Feeney
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Louise L. Hansen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marrit Putker
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Consuelo Olivares-Yañez
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Jason Day
- Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB2 3EQ, UK
| | - Lorna J. Eades
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Luis F. Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Nathaniel P. Hoyle
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - John S. O'Neill
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
29
|
Redox and Metabolic Oscillations in the Clockwork. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-27069-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Abstract
Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys (CP) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the CP-SH to cysteine sulfenic acid (CP-SOH), which then reacts with another cysteine residue, named the "resolving" Cys (CR) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752,
Korea
| |
Collapse
|
31
|
A brief history of circadian time: The emergence of redox oscillations as a novel component of biological rhythms. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.pisc.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Rey G, Reddy AB. Interplay between cellular redox oscillations and circadian clocks. Diabetes Obes Metab 2015; 17 Suppl 1:55-64. [PMID: 26332969 DOI: 10.1111/dom.12519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
The circadian clock is a cellular timekeeping mechanism that helps organisms from bacteria to humans to organize their behaviour and physiology around the solar cycle. Current models for circadian timekeeping incorporate transcriptional/translational feedback loop mechanisms in the predominant model systems. However, recent evidence suggests that non-transcriptional oscillations such as metabolic and redox cycles may play a fundamental role in circadian timekeeping. Peroxiredoxins, an antioxidant protein family, undergo rhythmic oxidation on the circadian time scale in a variety of species, including bacteria, insects and mammals, but also in red blood cells, a naturally occurring, non-transcriptional system. The profound interconnectivity between circadian and redox pathways strongly suggests that a conserved timekeeping mechanism based on redox cycles could be integral to generating circadian rhythms.
Collapse
Affiliation(s)
- G Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - A B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, NIHR Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
A High-Throughput Method for the Analysis of Larval Developmental Phenotypes in Caenorhabditis elegans. Genetics 2015; 201:443-8. [PMID: 26294666 PMCID: PMC4596660 DOI: 10.1534/genetics.115.179242] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
Caenorhabditis elegans postembryonic development consists of four discrete larval stages separated by molts. Typically, the speed of progression through these larval stages is investigated by visual inspection of the molting process. Here, we describe an automated method to monitor the timing of these discrete phases of C. elegans maturation, from the first larval stage through adulthood, using bioluminescence. The method was validated with a lin-42 mutant strain that shows delayed development relative to wild-type animals and with a daf-2 mutant that shows an extended second larval stage. This new method is inherently high-throughput and will finally allow dissecting the molecular machinery governing the speed of the developmental clock, which has so far been hampered by the lack of a method suitable for genetic screens.
Collapse
|
34
|
Herrero A, Romanowski A, Meelkop E, Caldart CS, Schoofs L, Golombek DA. Pigment-dispersing factor signaling in the circadian system ofCaenorhabditis elegans. GENES BRAIN AND BEHAVIOR 2015; 14:493-501. [DOI: 10.1111/gbb.12231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Herrero
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - A. Romanowski
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - E. Meelkop
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - C. S. Caldart
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - L. Schoofs
- Animal Physiology and Neurobiology Section, Department of Biology; KU Leuven; Leuven Belgium
| | - D. A. Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Buenos Aires Argentina
| |
Collapse
|
35
|
Cheng S, Jiang Z, Wang Z, Cornelissen G. Non-transcriptional/translational regulations of the circadian system. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Winbush A, Gruner M, Hennig GW, van der Linden AM. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population. J Neurosci Methods 2015; 249:66-74. [PMID: 25911068 DOI: 10.1016/j.jneumeth.2015.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/04/2015] [Accepted: 04/13/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Locomotor activity is used extensively as a behavioral output to study the underpinnings of circadian rhythms. Recent studies have required a populational approach for the study of circadian rhythmicity in Caenorhabditis elegans locomotion. NEW METHOD We describe an imaging system for long-term automated recording and analysis of locomotion data of multiple free-crawling C. elegans animals on the surface of an agar plate. We devised image analysis tools for measuring specific features related to movement and shape to identify circadian patterns. RESULTS We demonstrate the utility of our system by quantifying circadian locomotor rhythms in wild-type and mutant animals induced by temperature cycles. We show that 13 °C:18 °C (12:12h) cycles are sufficient to entrain locomotor activity of wild-type animals, which persist but are rapidly damped during 13 °C free-running conditions. Animals with mutations in tax-2, a cyclic nucleotide-gated (CNG) ion channel, significantly reduce locomotor activity during entrainment and free-running. COMPARISON WITH EXISTING METHOD(S) Current methods for measuring circadian locomotor activity is generally restricted to recording individual swimming animals of C. elegans, which is a distinct form of locomotion from crawling behavior generally observed in the laboratory. Our system works well with up to 20 crawling adult animals, and allows for a detailed analysis of locomotor activity over long periods of time. CONCLUSIONS Our population-based approach provides a powerful tool for quantification of circadian rhythmicity of C. elegans locomotion, and could allow for a screening system of candidate circadian genes in this model organism.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | - Matthew Gruner
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
37
|
Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches. PLoS One 2014; 9:e112871. [PMID: 25396739 PMCID: PMC4232591 DOI: 10.1371/journal.pone.0112871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.
Collapse
|
38
|
Rethinking the clockwork: redox cycles and non-transcriptional control of circadian rhythms. Biochem Soc Trans 2014; 42:1-10. [PMID: 24450621 DOI: 10.1042/bst20130169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian rhythms are a hallmark of living organisms, observable in all walks of life from primitive bacteria to highly complex humans. They are believed to have evolved to co-ordinate the timing of biological and behavioural processes to the changing environmental needs brought on by the progression of day and night through the 24-h cycle. Most of the modern study of circadian rhythms has centred on so-called TTFLs (transcription-translation feedback loops), wherein a core group of 'clock' genes, capable of negatively regulating themselves, produce oscillations with a period of approximately 24 h. Recently, however, the prevalence of the TTFL paradigm has been challenged by a series of findings wherein circadian rhythms, in the form of redox reactions, persist in the absence of transcriptional cycles. We have found that circadian cycles of oxidation and reduction are conserved across all domains of life, strongly suggesting that non-TTFL mechanisms work in parallel with the canonical genetic processes of timekeeping to generate the cyclical cellular and behavioural phenotypes that we commonly recognize as circadian rhythms.
Collapse
|
39
|
Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc Natl Acad Sci U S A 2014; 111:12043-8. [PMID: 25092340 DOI: 10.1073/pnas.1401100111] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The catalytic cysteine of the typical 2-Cys Prx subfamily of peroxiredoxins is occasionally hyperoxidized to cysteine sulfinic acid during the peroxidase catalytic cycle. Sulfinic Prx (Prx-SO2H) is reduced back to the active form of the enzyme by sulfiredoxin. The abundance of Prx-SO2H was recently shown to oscillate with a period of ∼24 h in human red blood cells (RBCs). We have now investigated the molecular mechanism and physiological relevance of such oscillation in mouse RBCs. Poisoning of RBCs with CO abolished Prx-SO2H formation, implicating H2O2 produced from hemoglobin autoxidation in Prx hyperoxidation. RBCs express the closely related PrxI and PrxII isoforms, and analysis of RBCs deficient in either isoform identified PrxII as the hyperoxidized Prx in these cells. Unexpectedly, RBCs from sulfiredoxin-deficient mice also exhibited circadian oscillation of Prx-SO2H. Analysis of the effects of protease inhibitors together with the observation that the purified 20S proteasome degraded PrxII-SO2H selectively over nonhyperoxidized PrxII suggested that the 20S proteasome is responsible for the decay phase of PrxII-SO2H oscillation. About 1% of total PrxII undergoes daily oscillation, resulting in a gradual loss of PrxII during the life span of RBCs. PrxII-SO2H was detected in cytosolic and ghost membrane fractions of RBCs, and the amount of membrane-bound PrxII-SO2H oscillated in a phase opposite to that of total PrxII-SO2H. Our results suggest that membrane association of PrxII-SO2H is a tightly controlled process and might play a role in the tuning of RBC function to environmental changes.
Collapse
|
40
|
Yang G, Wright CJ, Hinson MD, Fernando AP, Sengupta S, Biswas C, La P, Dennery PA. Oxidative stress and inflammation modulate Rev-erbα signaling in the neonatal lung and affect circadian rhythmicity. Antioxid Redox Signal 2014; 21:17-32. [PMID: 24252172 PMCID: PMC4048579 DOI: 10.1089/ars.2013.5539] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS The response to oxidative stress and inflammation varies with diurnal rhythms. Nevertheless, it is not known whether circadian genes are regulated by these stimuli. We evaluated whether Rev-erbα, a key circadian gene, was regulated by oxidative stress and/or inflammation in vitro and in a mouse model. RESULTS A unique sequence consisting of overlapping AP-1 and nuclear factor kappa B (NFκB) consensus sequences was identified on the mouse Rev-erbα promoter. This sequence mediates Rev-erbα promoter activity and transcription in response to oxidative stress and inflammation. This region serves as an NrF2 platform both to receive oxidative stress signals and to activate Rev-erbα, as well as an NFκB-binding site to repress Rev-erbα with inflammatory stimuli. The amplitude of the rhythmicity of Rev-erbα was altered by pre-exposure to hyperoxia or disruption of NFκB in a cell culture model of circadian simulation. Oxidative stress overcame the inhibitory effect of NFκB binding on Rev-erbα transcription. This was confirmed in neonatal mice exposed to hyperoxia, where hyperoxia-induced lung Rev-erbα transcription was further increased with NFκB disruption. Interestingly, this effect was not observed in similarly exposed adult mice. INNOVATION These data provide novel mechanistic insights into how key circadian genes are regulated by oxidative stress and inflammation in the neonatal lung. CONCLUSION Rev-erbα transcription and circadian oscillation are susceptible to oxidative stress and inflammation in the neonate. Due to Rev-erbα's role in cellular metabolism, this could contribute to lung cellular function and injury from inflammation and oxidative stress.
Collapse
Affiliation(s)
- Guang Yang
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Clyde J. Wright
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Maurice D. Hinson
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amal P. Fernando
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shaon Sengupta
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chhanda Biswas
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ping La
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phyllis A. Dennery
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Spoel SH, van Ooijen G. Circadian redox signaling in plant immunity and abiotic stress. Antioxid Redox Signal 2014; 20:3024-39. [PMID: 23941583 PMCID: PMC4038994 DOI: 10.1089/ars.2013.5530] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/13/2013] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. RECENT ADVANCES Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. CRITICAL ISSUES Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. FUTURE DIRECTIONS Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive.
Collapse
Affiliation(s)
- Steven H. Spoel
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerben van Ooijen
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- SythSys, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Gage SL, Nighorn A. The role of nitric oxide in memory is modulated by diurnal time. Front Syst Neurosci 2014; 8:59. [PMID: 24847218 PMCID: PMC4017719 DOI: 10.3389/fnsys.2014.00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/28/2014] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is thought to play an important neuromodulatory role in the olfactory system. This modulation has been suggested to be particularly important for olfactory learning and memory in the antennal lobe (the primary olfactory network in invertebrates). We are using the hawkmoth, Manduca sexta, to further investigate the role of NO in olfactory memory. Recent findings suggest that NO affects short-term memory traces and that NO concentration fluctuates with the light cycle. This gives rise to the hypothesis that NO may be involved in the connection between memory and circadian rhythms. In this study, we explore the role of diurnal time and NO in memory by altering the time of day when associative-olfactory conditioning is performed. We find a strong effect of NO on short-term memory, and two surprising effects of diurnal time. We find that (1) at certain time points, NO affects longer traces of memory in addition to short-term memory; and (2) when conditioning is performed close to the light cycle switches—both from light to dark and dark to light—NO does not significantly affect memory at all. These findings suggest an intriguing functional role for NO in olfactory conditioning that is modulated as a function of diurnal time.
Collapse
Affiliation(s)
- Stephanie L Gage
- Department of Neuroscience, University of Arizona Tucson, AZ, USA
| | - Alan Nighorn
- Department of Neuroscience, University of Arizona Tucson, AZ, USA
| |
Collapse
|
43
|
Van Wynsberghe PM, Finnegan EF, Stark T, Angelus EP, Homan KE, Yeo GW, Pasquinelli AE. The Period protein homolog LIN-42 negatively regulates microRNA biogenesis in C. elegans. Dev Biol 2014; 390:126-35. [PMID: 24699545 DOI: 10.1016/j.ydbio.2014.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are small RNAs that post-transcriptionally regulate gene expression in many multicellular organisms. They are encoded in the genome and transcribed into primary (pri-) miRNAs before two processing steps that ultimately produce the mature miRNA. In order to generate the appropriate amount of a particular miRNA in the correct location at the correct time, proper regulation of miRNA biogenesis is essential. Here we identify the Period protein homolog LIN-42 as a new regulator of miRNA biogenesis in Caenorhabditis elegans. We mapped a spontaneous suppressor of the normally lethal let-7(n2853) allele to the lin-42 gene. Mutations in this allele (ap201) or a second lin-42 allele (n1089) caused increased mature let-7 miRNA levels at most time points when mature let-7 miRNA is normally expressed. Levels of pri-let-7 and a let-7 transcriptional reporter were also increased in lin-42(n1089) worms. These results indicate that LIN-42 normally represses pri-let-7 transcription and thus the accumulation of let-7 miRNA. This inhibition is not specific to let-7, as pri- and mature levels of lin-4 and miR-35 were also increased in lin-42 mutants. Furthermore, small RNA-seq analysis showed widespread increases in the levels of mature miRNAs in lin-42 mutants. Thus, we propose that the period protein homolog LIN-42 is a global regulator of miRNA biogenesis.
Collapse
Affiliation(s)
- Priscilla M Van Wynsberghe
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0349, USA; Department of Biology, Colgate University, Hamilton, NY 13323, USA.
| | - Emily F Finnegan
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0349, USA
| | - Thomas Stark
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0349, USA; Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, University of California at San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Evan P Angelus
- Department of Biology, Colgate University, Hamilton, NY 13323, USA
| | - Kathryn E Homan
- Department of Biology, Colgate University, Hamilton, NY 13323, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, University of California at San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California at San Diego, La Jolla, CA 92093-0349, USA.
| |
Collapse
|
44
|
Merrow M, Olmedo M. In situ Chemotaxis Assay in Caenorhabditis elegans (for the Study of Circadian Rhythms). Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
45
|
Abstract
Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism's clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, mounting evidence is questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism.
Collapse
Affiliation(s)
- Akhilesh B. Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Guillaume Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
46
|
Yang G, Paschos G, Curtis AM, Musiek ES, McLoughlin SC, FitzGerald GA. Knitting Up the Raveled Sleave of Care. Sci Transl Med 2013; 5:212rv3. [DOI: 10.1126/scitranslmed.3007225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Nelson MD, Raizen DM. A sleep state during C. elegans development. Curr Opin Neurobiol 2013; 23:824-30. [PMID: 23562486 PMCID: PMC3735717 DOI: 10.1016/j.conb.2013.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 11/16/2022]
Abstract
Caenorhabditis elegans is the simplest animal shown to sleep. It sleeps during lethargus, a larval transition stage. Behavior during lethargus has the sleep properties of a specific quiescent posture and elevated arousal threshold that are reversible to strong stimulation and of increased sleep drive following sleep deprivation. Genetic similarities between sleep regulation during C. elegans lethargus and sleep regulation in other animals point to a sleep state that was an evolutionarily ancestor to sleep both in C. elegans and other animals. Recent publications have shed light on key questions in sleep biology: First, How is sleep regulated? Second, How is sensory information gated during sleep? Third, How is sleep homeostasis mediated? Fourth, What is the core function of sleep?
Collapse
Affiliation(s)
- Matthew D Nelson
- Department of Neurology, University of Pennsylvania School of Medicine, 462 Stemmler Hall, 415 Curie Boulevard, Philadelphia, PA 19104, United States
| | | |
Collapse
|
48
|
Attenuation of the posttranslational oscillator via transcription-translation feedback enhances circadian-phase shifts in Synechococcus. Proc Natl Acad Sci U S A 2013; 110:14486-91. [PMID: 23940358 DOI: 10.1073/pnas.1302243110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Circadian rhythms are endogenous biological timing processes that are ubiquitous in organisms ranging from cyanobacteria to humans. In the photoautotrophic unicellular cyanobacterium Synechococcus elongatus PCC 7942, under continuous light (LL) conditions, the transcription-translation feedback loop (TTFL) of KaiC generates a rhythmic change in the accumulation of KaiC relative to KaiA clock proteins (KaiC/KaiA ratio), which peak and trough at subjective dawn and dusk, respectively. However, the role of TTFL in the cyanobacterial circadian system remains unclear because it is not an essential requirement for the basic oscillation driven by the Kai-based posttranslational oscillator (PTO) and the transcriptional output mechanisms. Here, we show that TTFL is important for the circadian photic resetting property in Synechococcus. The robustness of PTO, which is exemplified by the amplitude of the KaiC phosphorylation cycle, changed depending on the KaiC/KaiA ratio, which was cyclic under LL. After cells were transferred from LL to the dark, the clock protein levels remained constant in the dark. When cells were transferred from LL to continuous dark at subjective dawn, the KaiC phosphorylation cycle was attenuated with a lower KaiC/KaiA ratio, a higher KaiC phosphorylation level, and a lower amplitude than that in cells transferred at subjective dusk. We also found that the greater the degree to which PTO was attenuated in continuous dark, the greater the phase shifts upon the subsequent light exposure. Based on these results, we propose that TTFL enhances resetting of the Kai-based PTO in Synechococcus.
Collapse
|
49
|
Yoshimura T. Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol 2013; 34:157-66. [PMID: 23660390 DOI: 10.1016/j.yfrne.2013.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 12/15/2022]
Abstract
Organisms living outside the tropics use changes in photoperiod to adapt to seasonal changes in the environment. Several models have contributed to an understanding of this mechanism at the molecular and endocrine levels. Subtropical birds are excellent models for the study of these mechanisms because of their rapid and dramatic response to changes in photoperiod. Studies of birds have demonstrated that light is perceived by a deep brain photoreceptor and long day-induced thyrotropin (TSH) from the pars tuberalis (PT) of the pituitary gland causes local thyroid hormone activation within the mediobasal hypothalamus (MBH). The locally generated bioactive thyroid hormone, T₃, regulates seasonal gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion. In mammals, the eyes are the only photoreceptor involved in photoperiodic time perception and nocturnal melatonin secretion provides an endocrine signal of photoperiod to the PT to regulate TSH. Here, I review the current understanding of the hypothalamic mechanisms controlling seasonal reproduction in mammals and birds.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
50
|
van Ooijen G, Hindle M, Martin SF, Barrios-Llerena M, Sanchez F, Bouget FY, O’Neill JS, Le Bihan T, Millar AJ. Functional analysis of Casein Kinase 1 in a minimal circadian system. PLoS One 2013; 8:e70021. [PMID: 23936135 PMCID: PMC3723912 DOI: 10.1371/journal.pone.0070021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 12/04/2022] Open
Abstract
The Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1) is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcustauri, a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism.
Collapse
Affiliation(s)
- Gerben van Ooijen
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew Hindle
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah F. Martin
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Frédéric Sanchez
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France
- Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - François-Yves Bouget
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France
- Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - John S. O’Neill
- Medical Research Council Laboratory for Molecular Biology, Cambridge, United Kingdom
| | - Thierry Le Bihan
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. Millar
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|