1
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6193-6220. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Upadhyay A, Gradwell MA, Vajtay TJ, Conner J, Sanyal AA, Azadegan C, Patel KR, Thackray JK, Bohic M, Imai F, Ogundare SO, Yoshida Y, Abdus-Saboor I, Azim E, Abraira VE. The dorsal column nuclei scale mechanical sensitivity in naive and neuropathic pain states. Cell Rep 2025; 44:115556. [PMID: 40202848 PMCID: PMC12093272 DOI: 10.1016/j.celrep.2025.115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. The brain stem dorsal column nuclei integrate tactile inputs, yet their role in mediating tactile sensitivity and allodynia remains understudied. We found that gracile nucleus (Gr) inhibitory interneurons and thalamus-projecting neurons are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations bidirectionally shifted tactile sensitivity but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, Gr neurons exhibited increased sensory-evoked activity and asynchronous excitatory drive from primary afferents. Silencing Gr projection neurons or activating Gr inhibitory neurons in neuropathic mice reduced tactile hypersensitivity, and enhancing inhibition ameliorated paw-withdrawal signatures of neuropathic pain and induced conditioned place preference. These results suggest that Gr activity contributes to tactile sensitivity and affective, pain-associated phenotypes of mechanical allodynia.
Collapse
Affiliation(s)
- Aman Upadhyay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA
| | - Mark A Gradwell
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Thomas J Vajtay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - James Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arnab A Sanyal
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Chloe Azadegan
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Komal R Patel
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua K Thackray
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA
| | - Manon Bohic
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, NY, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Simon O Ogundare
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, NY, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria E Abraira
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Li H, Zhang Z, Zhu D, Zheng H, Zhu Z, Shen N, Guo Z, Wu X, Qi X, Li Q, Ma Q, Xiang H. A Dual-Responsive Fe₃O₄@ZIF-8 Nanoplatform Combining Magnetic Targeting and pH Sensitivity for Low Back Pain Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410874. [PMID: 39981971 DOI: 10.1002/smll.202410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/06/2025] [Indexed: 02/22/2025]
Abstract
Low back pain (LBP) resulting from sciatic nerve compression presents major challenges in pain management, as traditional therapies provide only short-term relief and pose risks of systemic toxicity. In this study, an innovative Fe3O4@ZIF-8-RVC (FZR) dual-responsive nanoplatform is introduced that integrates magnetic targeting with pH-sensitive, sustained drug release to overcome these limitations. The FZR nanoplatform encapsulates ropivacaine (RVC) within the ZIF-8-coated Fe3O4 core, enabling precise and prolonged analgesia at the injury site through magnetic guidance and acid-triggered release. In vitro and in vivo assessments indicate that FZR achieves high drug loading, sustained release in acidic environments, and excellent biocompatibility, significantly extending analgesic effects in chronic nerve injury models while minimizing systemic exposure. Behavioral tests and molecular analyses in LBP rat models confirm that FZR effectively suppresses pain-related neuronal activity and central sensitization markers. This dual-responsive nanoplatform FZR offers a safe, long-lasting, and targeted therapeutic approach, holding strong potential for advancing pain relief in LBP and related neuropathic pain conditions.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| | - Zhihao Zhang
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| | - Dingding Zhu
- Faculty of Physics, Qingdao University, Qingdao, 266021, P. R. China
| | - Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao, 266021, P. R. China
| | - Zhongze Zhu
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| | - Nana Shen
- The Department of Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| | - Zhu Guo
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| | - Xiaolin Wu
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| | - Xiaoying Qi
- The Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| | - Qiang Li
- Faculty of Physics, Qingdao University, Qingdao, 266021, P. R. China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266021, P. R. China
| | - Hongfei Xiang
- Department of Orthopedics, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, P. R. China
| |
Collapse
|
4
|
Chen Y, Xu J, Li P, Shi L, Zhang S, Guo Q, Yang Y. Advances in the use of local anesthetic extended-release systems in pain management. Drug Deliv 2024; 31:2296349. [PMID: 38130151 PMCID: PMC10763865 DOI: 10.1080/10717544.2023.2296349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Pain management remains among the most common and largely unmet clinical problems today. Local anesthetics play an indispensable role in pain management. The main limitation of traditional local anesthetics is the limited duration of a single injection. To address this problem, catheters are often placed or combined with other drugs in clinical practice to increase the time that local anesthetics act. However, this method does not meet the needs of clinical analgesics. Therefore, many researchers have worked to develop local anesthetic extended-release types that can be administered in a single dose. In recent years, drug extended-release systems have emerged dramatically due to their long duration and efficacy, providing more possibilities for the application of local anesthetics. This paper summarizes the types of local anesthetic drug delivery systems and their clinical applications, discusses them in the context of relevant studies on local anesthetics, and provides a summary and outlook on the development of local anesthetic extended-release agents.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jingmei Xu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Shi
- College of Biology, Hunan University, Changsha, China
| | - Sha Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Lai C, Dai X, Tian D, Lv S, Tang J. Chemistry and bioactivity of marine algal toxins and their geographic distribution in China. Fitoterapia 2024; 178:106193. [PMID: 39187028 DOI: 10.1016/j.fitote.2024.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Marine algal toxins are usually produced by some toxic algae during toxic algal blooms which can be accumulated in marine organisms through food chains, leading to contamination of aquatic products. Consumption of the contaminated seafood often results in poisoning in human being. Although algal toxins are harmful for human health, their unique structures and broad spectrum of biological activities have attracted widespread attention of chemists and pharmacologists. Marine algal toxins are not only a reservoir of biological active compound discovery, but also powerful tools for exploring life science. This review first provides a comprehensive overview of the chemistry and biological activities of marine algal toxins, with the aim of providing references for biological active compound discovery. Additionally, typical shellfish poisoning incidents occurred in China in the past 15 years and the geographical distribution of the marine algal toxins in China Sea are discussed, for the purpose of enhancing public awareness of the possible dangers of algal toxins.
Collapse
Affiliation(s)
- Changrong Lai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xiaojun Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Songhui Lv
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 510362, China.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
7
|
Upadhyay A, Gradwell MA, Vajtay TJ, Conner J, Sanyal AA, Azadegan C, Patel KR, Thackray JK, Bohic M, Imai F, Ogundare SO, Yoshida Y, Abdus-Saboor I, Azim E, Abraira VE. The Dorsal Column Nuclei Scale Mechanical Sensitivity in Naive and Neuropathic Pain States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581208. [PMID: 38712022 PMCID: PMC11071288 DOI: 10.1101/2024.02.20.581208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.
Collapse
Affiliation(s)
- Aman Upadhyay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Neuroscience PhD program at Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Mark A Gradwell
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Thomas J Vajtay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - James Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arnab A Sanyal
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chloe Azadegan
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Komal R Patel
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Joshua K Thackray
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Manon Bohic
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Simon O Ogundare
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria E Abraira
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Lead contact
| |
Collapse
|
8
|
Krishnan MA, Alimi OA, Pan T, Kuss M, Korade Z, Hu G, Liu B, Duan B. Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics 2024; 16:102. [PMID: 38258111 PMCID: PMC10818718 DOI: 10.3390/pharmaceutics16010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood-nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies.
Collapse
Affiliation(s)
- Mena Asha Krishnan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Olawale A. Alimi
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tianshu Pan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.A.K.); (O.A.A.); (T.P.); (M.K.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
9
|
Thomas J, Wilson S. Molecular and Therapeutic Targets for Amyloid-beta Plaques in Alzheimer's Disease: A Review Study. Basic Clin Neurosci 2024; 15:1-26. [PMID: 39291090 PMCID: PMC11403107 DOI: 10.32598/bcn.2021.3522.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 09/06/2021] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive loss of cognition and a gradual decrease in memory. Although AD is considered the most persistent form of dementia and a global concern, no complete cure or agents that can completely halt the progression of AD have been found. In the past years, significant progress has been made in understanding the cellular and molecular changes associated with AD, and numerous drug targets have been identified for the development of drugs for this disease. Amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) are the major attributes of AD. Symptomatic relief is the only possible treatment available at present and a disease-modifying drug is of utmost importance. The development of drugs that can inhibit different targets responsible for the formation of plaques is a potential area in AD research. This review is not a complete list of all possible targets for AD but serves to highlight the targets related to Aβ pathology and pathways concerned with the formation of Aβ fragments. This shall serve as a prospect in the identification of Aβ plaque inhibitors and pave the strategies for newer drug treatments. Nevertheless, substantial research is done in this area but to bridle, the clinical difficulty remains a concern.
Collapse
Affiliation(s)
- Jaya Thomas
- Department of Pharmacology, School of Pharmacy University of Amrita Vishwavidyapeetham, Guntur, India
| | - Samson Wilson
- University of Amrita Vishwavidyapeetham, Coimbatore, India
| |
Collapse
|
10
|
Wang D, Li Y, Deng X, Torre M, Zhang Z, Li X, Zhang W, Cullion K, Kohane DS, Weldon CB. An aptamer-based depot system for sustained release of small molecule therapeutics. Nat Commun 2023; 14:2444. [PMID: 37117194 PMCID: PMC10147605 DOI: 10.1038/s41467-023-37002-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/24/2023] [Indexed: 04/30/2023] Open
Abstract
Delivery of hydrophilic small molecule therapeutics by traditional drug delivery systems is challenging. Herein, we have used the specific interaction between DNA aptamers and drugs to create simple and effective drug depot systems. The specific binding of a phosphorothioate-modified aptamer to drugs formed non-covalent aptamer/drug complexes, which created a sustained release system. We demonstrated the effectiveness of this system with small hydrophilic molecules, the site 1 sodium channel blockers tetrodotoxin and saxitoxin. The aptamer-based delivery system greatly prolonged the duration of local anesthesia and reduced systemic toxicity. The beneficial effects of the aptamers were restricted to the compounds they were specific to. These studies establish aptamers as a class of highly specific, modifiable drug delivery systems, and demonstrate potential usefulness in the management of postoperative pain.
Collapse
Affiliation(s)
- Dali Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoran Deng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew Torre
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Christopher B Weldon
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Zhang J, Zhu S, Zhao M, Zhou M, Zhu X, Qing X, Yang Z, Wei P, Zhang G, He W, Yu Y, Liu X. Analgesic and potentiated photothermal therapy with ropivacaine-loaded hydrogels. Theranostics 2023; 13:2226-2240. [PMID: 37153743 PMCID: PMC10157729 DOI: 10.7150/thno.81325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Tumor ablation can cause severe pain to patients, but there is no satisfactory means of analgesia available. In addition, recurrence of residual tumors due to incomplete ablation threatens patient safety. Photothermal therapy (PTT), a promising approach for tumor ablation, also faces the aforementioned problems. Therefore, developing novel photothermal agents that can efficiently relieve PTT-associated pain and potentiate the PTT efficacy are urgently needed. Methods: The Pluronic F127 hydrogel doped with indocyanine green (ICG) was served as photothermal agent for PTT. Mouse model that inoculation of tumor near the sciatic nerve was constructed to assess the PTT-evoked pain. Subcutaneous and sciatic nerve vicinal tumor-bearing mice were used to test the efficacy of PTT. Results: PTT-evoked pain depends on an increase in tumor temperature and is accompanied by the activation of TRPV1. A simple introduction of local anesthetic (LA) ropivacaine into ICG-loaded hydrogels relieves PTT-induced pain and exerts long-lasting analgesia compared with opioid analgesia. More interestingly, ropivacaine upregulates major histocompatibility complex class I (MHC-I) in tumor cells by impairing autophagy. Therefore, a hydrogel co-doped with ropivacaine, TLR7 agonist imiquimod and ICG was rationally designed. In the hydrogel system, imiquimod primes tumor-specific CD8+ T cells through promoting DCs maturation, and ropivacaine facilitates tumor cells recognition by primed CD8+ T cells through upregulating MHC-I. Consequently, the hydrogel maximumly increases CD8+ T cells infiltration into tumor and potentiates PTT efficacy. Conclusion: This study for the first time provides an LA-dopped photothermal agents for painless PTT and innovatively proposes that a LA can be used as an immunomodulator to potentiate the PTT efficacy.
Collapse
Affiliation(s)
- Jiqian Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230032, China
- ✉ Corresponding authors: Yongqiang Yu (E-mail: ); Xuesheng Liu (E-mail: ); Weiling He (E-mail: ); Jiqian Zhang (E-mail: )
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Mingxu Zhao
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Mengni Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiaoling Zhu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhilai Yang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230032, China
| | - Weiling He
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
- ✉ Corresponding authors: Yongqiang Yu (E-mail: ); Xuesheng Liu (E-mail: ); Weiling He (E-mail: ); Jiqian Zhang (E-mail: )
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- ✉ Corresponding authors: Yongqiang Yu (E-mail: ); Xuesheng Liu (E-mail: ); Weiling He (E-mail: ); Jiqian Zhang (E-mail: )
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
- ✉ Corresponding authors: Yongqiang Yu (E-mail: ); Xuesheng Liu (E-mail: ); Weiling He (E-mail: ); Jiqian Zhang (E-mail: )
| |
Collapse
|
12
|
Berke MS, Fensholdt LKD, Hestehave S, Kalliokoski O, Abelson KSP. Effects of buprenorphine on model development in an adjuvant-induced monoarthritis rat model. PLoS One 2022; 17:e0260356. [PMID: 35025864 PMCID: PMC8757907 DOI: 10.1371/journal.pone.0260356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Complete Freund’s adjuvant (CFA)-induced arthritis in rats is a common animal model for studying chronic inflammatory pain. However, modelling of the disease is associated with unnecessary pain and impaired animal wellbeing, particularly in the immediate post-induction phase. Few attempts have been made to counteract these adverse effects with analgesics. The present study investigated the effect of buprenorphine on animal welfare, pain-related behaviour and model-specific parameters during the disease progression in a rat model of CFA-induced monoarthritis. The aim was to reduce or eliminate unnecessary pain in this model, in order to improve animal welfare and to avoid suffering, without compromising the quality of the model. Twenty-four male Sprague Dawley rats were injected with 20 μl of CFA into the left tibio-tarsal joint to induce monoarthritis. Rats were treated with either buprenorphine or carprofen for 15 days during the disease development, and were compared to a saline-treated CFA-injected group or a negative control group. Measurements of welfare, pain-related behaviour and clinical model-specific parameters were collected. The study was terminated after 3 weeks, ending with a histopathologic analysis. Regardless of treatment, CFA-injected rats displayed mechanical hyperalgesia and developed severe histopathological changes associated with arthritis. However, no severe effects on general welfare were found at any time. Buprenorphine treatment reduced facial pain expression scores, improved mobility, stance and lameness scores and it did not supress the CFA-induced ankle swelling, contrary to carprofen. Although buprenorphine failed to demonstrate a robust analgesic effect on the mechanical hyperalgesia in this study, it did not interfere with the development of the intended pathology.
Collapse
Affiliation(s)
- Mie S Berke
- Dept. of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise K D Fensholdt
- Dept. of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Hestehave
- Dept. of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Otto Kalliokoski
- Dept. of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klas S P Abelson
- Dept. of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|
14
|
Molecular Changes in the Dorsal Root Ganglion during the Late Phase of Peripheral Nerve Injury-induced Pain in Rodents: A Systematic Review. Anesthesiology 2021; 136:362-388. [PMID: 34965284 DOI: 10.1097/aln.0000000000004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
Collapse
|
15
|
Bhansali D, Teng SL, Lee CS, Schmidt BL, Bunnett NW, Leong KW. Nanotechnology for Pain Management: Current and Future Therapeutic Interventions. NANO TODAY 2021; 39:101223. [PMID: 34899962 PMCID: PMC8654201 DOI: 10.1016/j.nantod.2021.101223] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain is one of the most common medical conditions and affects more Americans than diabetes, heart disease, and cancer combined. Current pain treatments mainly rely on opioid analgesics and remain unsatisfactory. The life-threatening side effects and addictive properties of opioids demand new therapeutic approaches. Nanomedicine may be able to address these challenges as it allows for sensitive and targeted treatments without some of the burdens associated with current clinical pain therapies. This review discusses the physiology of pain, the current landscape of pain treatment, novel targets for pain treatment, and recent and ongoing efforts to effectively treat pain using nanotechnology-based approaches. We highl ight advances in nanoparticle-based drug delivery to reduce side effects, gene therapy to tackle the source of pain, and nanomaterials-based scavenging to proactively mediate pain signaling.
Collapse
Affiliation(s)
- Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Shavonne L. Teng
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Caleb S. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
- Department of Systems Biology, Columbia University, New York, NY 10027
| |
Collapse
|
16
|
Katiyar N, Raju G, Madhusudanan P, Gopalakrishnan-Prema V, Shankarappa SA. Neuronal delivery of nanoparticles via nerve fibres in the skin. Sci Rep 2021; 11:2566. [PMID: 33510229 PMCID: PMC7844288 DOI: 10.1038/s41598-021-81995-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Accessing the peripheral nervous system (PNS) by topically applied nanoparticles is a simple and novel approach with clinical applications in several PNS disorders. Skin is richly innervated by long peripheral axons that arise from cell bodies located distally within ganglia. In this study we attempt to target dorsal root ganglia (DRG) neurons, via their axons by topical application of lectin-functionalized gold nanoparticles (IB4-AuNP). In vitro, 140.2 ± 1.9 nm IB4-AuNP were found to bind both axons and cell bodies of DRG neurons, and AuNP applied at the axonal terminals were found to translocate to the cell bodies. Topical application of IB4-AuNP on rat hind-paw resulted in accumulation of three to fourfold higher AuNP in lumbar DRG than in contralateral control DRGs. Results from this study clearly suggest that topically applied nanoparticles with neurotropic targeting ligands can be utilized for delivering nanoparticles to neuronal cell bodies via axonal transport mechanisms.
Collapse
Affiliation(s)
- Neeraj Katiyar
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Gayathri Raju
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Pallavi Madhusudanan
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Vignesh Gopalakrishnan-Prema
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India
| | - Sahadev A Shankarappa
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, 682041, Kerala, India.
| |
Collapse
|
17
|
B. S S, Gopalakrishnan-Prema V, Raju G, Mathew SE, Katiyar N, Menon D, Shankarappa SA. Anisotropic microparticles for differential drug release in nerve block anesthesia. RSC Adv 2021; 11:4623-4630. [PMID: 35424395 PMCID: PMC8694510 DOI: 10.1039/d0ra08386k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Microparticle shape, as a tunable design parameter, holds much promise for controlling drug-release kinetics from polymeric microparticulate systems. In this study we hypothesized that the intensity and duration of a local nerve block can be controlled by administration of bupivacaine-loaded stretch-induced anisotropic poly(lactic-co-glycolic acid) microparticles (MPs). MPs of size 27.3 ± 8.5 μm were synthesized by single emulsion method and subjected to controlled stretching force. The aspect ratio of the anisotropic–bupivacaine MPs was quantified, and bupivacaine release was measured in vitro. The anisotropic MPs were administered as local nerve block injections in rats, and the intensity and duration of local anesthesia was measured. Bupivacaine-loaded anisotropic MPs used in this study were ellipsoid in shape and exhibited increased surface pores in comparison to spherical MPs. Anisotropic MPs exhibited a higher rate of bupivacaine release in vitro, and showed significantly (P < 0.05) stronger sensory nerve blocking as compared to spherical bupivacaine MPs, even though the duration of the nerve block remained similar. This study demonstrates the utility of stretch-induced anisotropic MPs in controlling drug release profiles from polymeric MPs, under both in vitro and in vivo conditions. We show that shape, as a tunable design parameter, could play an important role in engineering drug-delivery systems. Stretch-induced anisotropy in bupivacaine-loaded PLGA micro particles (BMPs) induced stronger nerve blocks compared to spherical particles.![]()
Collapse
Affiliation(s)
- Shivakumar B. S
- Center for Nanosciences & Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | | | - Gayathri Raju
- Center for Nanosciences & Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Sumi E. Mathew
- Center for Nanosciences & Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Neeraj Katiyar
- Center for Nanosciences & Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | - Deepthy Menon
- Center for Nanosciences & Molecular Medicine
- Amrita Vishwa Vidyapeetham
- Kochi 682041
- India
| | | |
Collapse
|
18
|
Li H, Fan L, Zhang Y, Cao Y, Liu X. SNHG16 aggravates chronic constriction injury-induced neuropathic pain in rats via binding with miR-124-3p and miR-141-3p to upregulate JAG1. Brain Res Bull 2020; 165:228-237. [DOI: 10.1016/j.brainresbull.2020.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
|
19
|
Fan X, Bian W, Liu M, Li J, Wang Y. WITHDRAWN: MiR-216b-5p attenuates chronic constriction injury-induced neuropathic pain in female rats by targeting MAL2 and inactivating Wnt/β-catenin signaling pathway. Neurochem Int 2020:104930. [PMID: 33259862 DOI: 10.1016/j.neuint.2020.104930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiaodi Fan
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Wenchao Bian
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Meichen Liu
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Jinjie Li
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Yunyun Wang
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun 130033, Jilin, China
| |
Collapse
|
20
|
Tian X, Zhu H, Du S, Zhang XQ, Lin F, Ji F, Tsou YH, Li Z, Feng Y, Ticehurst K, Hannaford S, Xu X, Tao YX. Injectable PLGA-Coated Ropivacaine Produces A Long-Lasting Analgesic Effect on Incisional Pain and Neuropathic Pain. THE JOURNAL OF PAIN 2020; 22:180-195. [PMID: 32739615 DOI: 10.1016/j.jpain.2020.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
The management of persistent postsurgical pain and neuropathic pain remains a challenge in the clinic. Local anesthetics have been widely used as simple and effective treatment for these 2 disorders, but the duration of their analgesic effect is short. We here reported a new poly lactic-co-glycolic acid (PLGA)-coated ropivacaine that was continuously released in vitro for at least 6 days. Perisciatic nerve injection of the PLGA-coated ropivacaine attenuated paw incision-induced mechanical allodynia and heat hyperalgesia during the incisional pain period, and spared nerve injury-induced mechanical and cold allodynia for at least 7 days postinjection. This effect was dose-dependent. Perisciatic nerve injection of the PLGA-coated ropivacaine did not produce detectable inflammation, tissue irritation, or damage in the sciatic nerve and surrounding muscles at the injected site, dorsal root ganglion, spinal cord, or brain cortex, although the scores for grasping reflex were mildly and transiently reduced in the higher dosage-treated groups. PERSPECTIVE: Given that PLGA is an FDA-approved medical material, and that ropivacaine is used currently in clinical practice, the injectable PLGA-coated ropivacaine represents a new and highly promising avenue in the management of postsurgical pain and neuropathic pain.
Collapse
Affiliation(s)
- Xue Tian
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - He Zhu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fuqing Lin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Fengtao Ji
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yung-Hao Tsou
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhongyu Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Kathryn Ticehurst
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Stephen Hannaford
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
21
|
Mathew SE, Madhusudanan P, Shankarappa SA. Effect of Peritumoral Bupivacaine on Primary and Distal Hyperalgesia in Cancer-Induced Bone Pain. J Pain Res 2020; 13:1305-1313. [PMID: 32581572 PMCID: PMC7276331 DOI: 10.2147/jpr.s250198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background Cancer-induced bone pain (CIBP) is a debilitating chronic pain condition caused by injury to bone nerve terminals due to primary or metastasized bone tumors. Pain manifests as enhanced sensitivity, not only over the affected bone site but also at distal areas that share common nerve innervation with the tumor. In this study, we aim to understand how tumor-induced primary and distal pain sensitivities are affected by bupivacaine-induced block of bone nerve endings in a rat model of CIBP. Methods MRMT-1 breast cancer cells were injected into the proximal segment of tibia in female Sprague–Dawley rats. Radiograms and micro-CT images were obtained to confirm tumor growth. Bupivacaine was injected peritumorally at day 7 or day 14 post-tumor induction, and withdrawal thresholds in response to pressure and punctate mechanical stimulus were recorded from the knee and hind-paw, respectively. Immunohistochemical studies for the determination of ATF3 and GFAP expression in DRG and spinal cord sections were performed. Results Rats developed primary and distal hyperalgesia after MRMT-1 administration that was sustained for 2 weeks. Peritumoral administration of bupivacaine in 7-day post-tumor-induced (PTI) rats resulted in a reversal of both primary and distal hyperalgesia for 20–30 mins. However, bupivacaine failed to reverse distal hyperalgesia in 14 day-PTI rats. ATF3 and GFAP expression were much enhanced in 14 day-PTI animals, compared to 7 day-PTI group. Conclusion Results from this study strongly suggest that distal hyperalgesia of late-stage CIBP demonstrates differential characteristics consistent with neuropathic pain as compared to early stage, which appears more inflammatory in nature.
Collapse
Affiliation(s)
- Sumi Elizabeth Mathew
- Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Pallavi Madhusudanan
- Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| | - Sahadev A Shankarappa
- Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham University, Kochi, Kerala 682041, India
| |
Collapse
|
22
|
Yang H, Wu L, Deng H, Chen Y, Zhou H, Liu M, Wang S, Zheng L, Zhu L, Lv X. Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia. J Neuroinflammation 2020; 17:154. [PMID: 32393298 PMCID: PMC7216552 DOI: 10.1186/s12974-020-1731-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuroinflammation plays a vital role in the development and maintenance of neuropathic pain. Recent evidence has proved that bone marrow mesenchymal stem cells (BMSCs) can inhibit neuropathic pain and possess potent immunomodulatory and immunosuppressive properties via secreting a variety of bioactive molecules, such as TNF-α-stimulated gene 6 protein (TSG-6). However, it is unknown whether BMSCs exert their analgesic effect against neuropathic pain by secreting TSG-6. Therefore, the present study aimed to evaluate the analgesic effects of TSG-6 released from BMSCs on neuropathic pain induced by chronic constriction injury (CCI) in rats and explored the possible underlying mechanisms in vitro and in vivo. Methods BMSCs were isolated from rat bone marrow and characterized by flow cytometry and functional differentiation. One day after CCI surgery, about 5 × 106 BMSCs were intrathecally injected into spinal cerebrospinal fluid. Behavioral tests, including mechanical allodynia, thermal hyperalgesia, and motor function, were carried out at 1, 3, 5, 7, 14 days after CCI surgery. Spinal cords were processed for immunohistochemical analysis of the microglial marker Iba-1. The mRNA and protein levels of pro-inflammatory cytokines (IL-1β, TNFα, IL-6) were detected by real-time RT-PCR and ELISA. The activation of the TLR2/MyD88/NF-κB signaling pathway was evaluated by Western blot and immunofluorescence staining. The analgesic effect of exogenous recombinant TSG-6 on CCI-induced mechanical allodynia and heat hyperalgesia was observed by behavioral tests. In the in vitro experiments, primary cultured microglia were stimulated with the TLR2 agonist Pam3CSK4, and then co-cultured with BMSCs or recombinant TSG-6. The protein expression of TLR2, MyD88, p-p65 was evaluated by Western blot. The mRNA and protein levels of IL-1β, TNFα, IL-6 were detected by real-time RT-PCR and ELISA. BMSCs were transfected with the TSG-6-specific shRNA and then intrathecally injected into spinal cerebrospinal fluid in vivo or co-cultured with Pam3CSK4-treated primary microglia in vitro to investigate whether TSG-6 participated in the therapeutic effect of BMSCs on CCI-induced neuropathic pain and neuroinflammation. Results We found that CCI-induced mechanical allodynia and heat hyperalgesia were ameliorated by intrathecal injection of BMSCs. Moreover, intrathecal administration of BMSCs inhibited CCI-induced neuroinflammation in spinal cord tissues. The analgesic effect and anti-inflammatory property of BMSCs were attenuated when TSG-6 expression was silenced. We also found that BMSCs inhibited the activation of the TLR2/MyD88/NF-κB pathway in the ipsilateral spinal cord dorsal horn by secreting TSG-6. Meanwhile, we proved that intrathecal injection of exogenous recombinant TSG-6 effectively attenuated CCI-induced neuropathic pain. Furthermore, in vitro experiments showed that BMSCs and TSG-6 downregulated the TLR2/MyD88/NF-κB signaling and reduced the production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in primary microglia treated with the specific TLR2 agonist Pam3CSK4. Conclusions The present study demonstrated a paracrine mechanism by which intrathecal injection of BMSCs targets the TLR2/MyD88/NF-κB pathway in spinal cord dorsal horn microglia to elicit neuroprotection and sustained neuropathic pain relief via TSG-6 secretion.
Collapse
Affiliation(s)
- Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Lingmin Wu
- Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Shaochen Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, 99 Huangshan Rd, Fuyang, 236000, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China. .,Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China.
| |
Collapse
|
23
|
Zhou C, Tang L, Yin Q, Yang L, Gong D, Kang Y, Cao H, Fan J, Zhang Y, Qian D, Zhang Q, Ke B, Liu J, Zhang W, Yang J. Novel compound LL-a produces long and nociceptive-selective regional anesthesia via TRPV1 channels in rodents sciatic nerve block model. Reg Anesth Pain Med 2020; 45:412-418. [PMID: 32284350 DOI: 10.1136/rapm-2019-101057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Long-acting nociceptive-selective regional anesthesia has remained an elusive clinical goal. We aspired to identify a novel compound that would produce nociceptive-selective regional anesthesia through the transient receptor potential vanilloid 1 (TRPV1) channels. METHODS We designed and synthesized a novel compound (LL-a) that penetrates the cell membrane through TRPV1 channels and binds to voltage-gated sodium channels. The regional anesthetic effect of LL-a was evaluated in a rodent sciatic nerve block model. Electrophysiological recording was applied to test the inhibition of LL-a on voltage-gated sodium channel currents. RESULTS LL-a inhibited sodium channel currents on the dorsal root ganglion neurons of mice and this action was diminished by TRPV1 channel knockout. In a sciatic nerve block model of a rat, 0.2% and 0.4% (w/v) LL-a produced selective sensory block with median (IQR) durations of 42.0 (24.0, 48.0) and 72.0 (69.0, 78.0) hours, respectively. No motor block was found for 0.2% LL-a. 0.4% LL-a produced a motor block with a median (IQR) duration of 3.0 (0.0, 6.0) hours. This selective sensory block was not observed on TRPV1 knockout mice. As a positive control, 0.5% and 0.75% levobupivacaine produced a non-selective sciatic nerve block with median (IQR) durations of 2.8 (2.6, 2.8) and 3.8 (3.8, 4.8) hours, respectively. No systemic or local irritation was observed during injection of LL-a and sensory and motor function completely recovered for all the animals. CONCLUSIONS LL-a is a potential novel local anesthetic for long-lasting nociceptive-selective analgesia.
Collapse
Affiliation(s)
- Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lei Tang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qinqin Yin
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Linghui Yang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Deying Gong
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yi Kang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hangxue Cao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing Fan
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yujun Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Duo Qian
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bowen Ke
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wensheng Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China .,Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jun Yang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, National Clinical Research Center for Geriatrics, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Kuthati Y, Navakanth Rao V, Busa P, Tummala S, Davuluri Venkata Naga G, Wong CS. Scope and Applications of Nanomedicines for the Management of Neuropathic Pain. Mol Pharm 2020; 17:1015-1027. [PMID: 32142287 DOI: 10.1021/acs.molpharmaceut.9b01027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuropathic pain, resulting from the dysfunction of the peripheral and central nervous system, occurs in a variety of pathological conditions including trauma, diabetes, cancer, HIV, surgery, multiple sclerosis, ischemic attack, alcoholism, spinal cord damage, and many others. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. The clinical failure of most effective drugs is often not due to a lack of drug efficacy but due to the dose-limiting central nervous system (CNS) toxicity of the drugs that preclude dose escalation. There is a need for cross-disciplinary collaborations to meet these challenges. In this regard, the integration of nanotechnology with neuroscience is one of the most important fields. In recent years, promising preclinical research has been reported in this field. This review highlights the current challenges associated with conventional neuropathic pain treatments, the scope for nanomaterials in delivering drugs across the blood-brain barrier, and the state and prospects of nanomaterials for the management of neuropathic pain.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 280, Taiwan
| | - Vaikar Navakanth Rao
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan
| | - Prabhakar Busa
- Department of Life Sciences, National Dong Hwa University, Hualien 97401, Taiwan
| | - Srikrishna Tummala
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan
| | | | - Chih Shung Wong
- Department of Anesthesiology, Cathy General Hospital, Taipei 280, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 280, Taiwan
| |
Collapse
|
25
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|
26
|
Marine Toxins and Nociception: Potential Therapeutic Use in the Treatment of Visceral Pain Associated with Gastrointestinal Disorders. Toxins (Basel) 2019; 11:toxins11080449. [PMID: 31370176 PMCID: PMC6723473 DOI: 10.3390/toxins11080449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Visceral pain, of which the pathogenic basis is currently largely unknown, is a hallmark symptom of both functional disorders, such as irritable bowel syndrome, and inflammatory bowel disease. Intrinsic sensory neurons in the enteric nervous system and afferent sensory neurons of the dorsal root ganglia, connecting with the central nervous system, represent the primary neuronal pathways transducing gut visceral pain. Current pharmacological therapies have several limitations, owing to their partial efficacy and the generation of severe adverse effects. Numerous cellular targets of visceral nociception have been recognized, including, among others, channels (i.e., voltage-gated sodium channels, VGSCs, voltage-gated calcium channels, VGCCs, Transient Receptor Potential, TRP, and Acid-sensing ion channels, ASICs) and neurotransmitter pathways (i.e., GABAergic pathways), which represent attractive targets for the discovery of novel drugs. Natural biologically active compounds, such as marine toxins, able to bind with high affinity and selectivity to different visceral pain molecular mediators, may represent a useful tool (1) to improve our knowledge of the physiological and pathological relevance of each nociceptive target, and (2) to discover therapeutically valuable molecules. In this review we report the most recent literature describing the effects of marine toxin on gastrointestinal visceral pain pathways and the possible clinical implications in the treatment of chronic pain associated with gut diseases.
Collapse
|
27
|
Prolonged Duration Local Anesthesia Using Liposomal Bupivacaine Combined With Liposomal Dexamethasone and Dexmedetomidine. Anesth Analg 2019; 126:1170-1175. [PMID: 29239940 DOI: 10.1213/ane.0000000000002719] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The relatively short duration of effect of local anesthetics has been addressed by encapsulation in drug delivery systems. Codelivery with a single compound that produces an adjuvant effect on nerve block but without intrinsic local anesthetic properties can further prolong the nerve block effect. Here, we investigated whether codelivery of more than 1 encapsulated adjuvant compound can further enhance nerve blockade. METHODS Liposomes loaded with bupivacaine (Bup), dexamethasone phosphate (DexP), or dexmedetomidine (DMED) were synthesized and its in vitro drug release profiles were determined. Animals (Sprague-Dawley rats) were injected with liposomal Bup (Lipo-Bup) and adjuvants at the sciatic nerve and underwent a modified hot plate test to assess the degree of nerve block. The duration of block was monitored and the tissue reaction was assessed. RESULTS Coinjection of Lipo-Bup with liposomal DexP (Lipo-DexP) and liposomal DMED (Lipo-DMED) prolonged the duration of sciatic nerve block 2.9-fold compared to Lipo-Bup alone (95% confidence interval, 1.9- to 3.9-fold). The duration of the block using this combination was significantly increased to 16.2 ± 3.5 hours compared to Lipo-Bup with a single liposomal adjuvant (8.7 ± 2.4 hours with Lipo-DMED, P = .006 and 9.9 ± 5.9 hours with Lipo-DexP, P = .008). The coinjection of Lipo-Bup with liposomal adjuvants decreased tissue inflammation (P = .014) but did not have a significant effect on myotoxicity when compared to Lipo-Bup alone. Coinjection of Lipo-Bup with unencapsulated adjuvants prolonged the duration of nerve block as well (25.0 ± 6.3 hours; P < .001) however was accompanied by systemic side effects. CONCLUSIONS Codelivery of Lipo-DexP and Lipo-DMED enhanced the efficacy of Lipo-Bup. This benefit was also seen with codelivery of both adjuvant molecules in the unencapsulated state, but with marked systemic toxicity.
Collapse
|
28
|
Ning C, Guo Y, Yan L, Thawani JP, Zhang W, Fu C, Liu T, Ding J. On-Demand Prolongation of Peripheral Nerve Blockade through Bupivacaine-Loaded Hydrogels with Suitable Residence Periods. ACS Biomater Sci Eng 2018; 5:696-709. [PMID: 33405832 DOI: 10.1021/acsbiomaterials.8b01107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cong Ning
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- Department of Spine Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, People’s Republic of China
| | - Ying Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- Department of Anesthesia, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People’s Republic of China
| | - Lesan Yan
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Jayesh P. Thawani
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Wenjing Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People’s Republic of China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, People’s Republic of China
| | - Tiecheng Liu
- Department of Anesthesia, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People’s Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People’s Republic of China
| |
Collapse
|
29
|
Langert KA, Brey EM. Strategies for Targeted Delivery to the Peripheral Nerve. Front Neurosci 2018; 12:887. [PMID: 30542262 PMCID: PMC6277764 DOI: 10.3389/fnins.2018.00887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Delivery of compounds to the peripheral nervous system has the potential to be used as a treatment for a broad range of conditions and applications, including neuropathic pain, regional anesthesia, traumatic nerve injury, and inherited and inflammatory neuropathies. However, efficient delivery of therapeutic doses can be difficult to achieve due to peripheral neuroanatomy and the restrictiveness of the blood-nerve barrier. Depending on the underlying integrity of the blood-nerve barrier in the application at hand, several strategies can be employed to navigate the peripheral nerve architecture and facilitate targeted delivery to the peripheral nerve. This review describes different applications where targeted delivery to the peripheral nervous system is desired, the challenges that the blood-nerve barrier poses in each application, and bioengineering strategies that can facilitate delivery in each application.
Collapse
Affiliation(s)
- Kelly A Langert
- Department of Veterans Affairs, Research Service, Edward Hines, Jr. VA Hospital, Hines, IL, United States.,Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Eric M Brey
- Audie L. Murphy VA Hospital, San Antonio, TX, United States.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
30
|
Takkala P, Prescott SA. Using dynamic clamp to quantify pathological changes in the excitability of primary somatosensory neurons. J Physiol 2018; 596:2209-2227. [PMID: 29601637 PMCID: PMC5983269 DOI: 10.1113/jp275580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/21/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Primary somatosensory neurons normally respond to somatic depolarization with transient spiking but can switch to repetitive spiking under pathological conditions. This switch in spiking pattern reflects a qualitative change in spike initiation dynamics and contributes to the hyperexcitability associated with chronic pain. Neurons can be converted to repetitive spiking by adding a virtual conductance using dynamic clamp. By titrating the conductance to determine how much must be added to cause repetitive spiking, we found that small cells are more susceptible to switching (i.e. required less added conductance) than medium-large cells. By measuring how much less conductance is required to cause repetitive spiking when dynamic clamp was combined with other pathomimetic manipulations (e.g. application of inflammatory mediators), we measured how much each manipulation facilitated repetitive spiking. Our results suggest that many pathological factors facilitate repetitive spiking but that the switch to repetitive spiking requires the cumulative effect of many co-occurring factors. ABSTRACT Primary somatosensory neurons become hyperexcitable in many chronic pain conditions. Hyperexcitability can include a switch from transient to repetitive spiking during sustained somatic depolarization. This switch results from diverse pathological processes that impact ion channel expression or function. Because multiple pathological processes co-occur, isolating how much each contributes to switching the spiking pattern is difficult. Our approach to this challenge involves adding a virtual sodium conductance via dynamic clamp. The magnitude of that conductance was titrated to determine the minimum required to enable rheobasic stimulation to evoke repetitive spiking. The minimum required conductance, termed g¯ Na ∗, was re-measured before and during manipulations designed to model various pathological processes in vitro. The reduction in g¯ Na ∗ caused by each pathomimetic manipulation reflects how much the modelled process contributes to switching the spiking pattern. We found that elevating extracellular potassium or applying inflammatory mediators reduced g¯ Na ∗ whereas direct hyperpolarization had no effect. Inflammatory mediators reduced g¯ Na ∗ more in medium-large (>30 μm diameter) neurons than in small (⩽30 μm diameter) neurons, but had equivalent effects in cutaneous and muscle afferents. The repetitive spiking induced by dynamic clamp was also found to differ between small and medium-large neurons, thus revealing latent differences in adaptation. Our study demonstrates a novel way to determine to what extent individual pathological factors facilitate repetitive spiking. Our results suggest that most factors facilitate but do not cause repetitive spiking on their own, and, therefore, that a switch to repetitive spiking results from the cumulative effect of many co-occurring factors.
Collapse
Affiliation(s)
- Petri Takkala
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 0A4.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 0A4.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Department of Physiology and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
31
|
Chun SW, Hinze ME, Skiba MA, Narayan ARH. Chemistry of a Unique Polyketide-like Synthase. J Am Chem Soc 2018; 140:2430-2433. [PMID: 29390180 DOI: 10.1021/jacs.7b13297] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Like many complex natural products, the intricate architecture of saxitoxin (STX) has hindered full exploration of this scaffold's utility as a tool for studying voltage-gated sodium ion channels and as a pharmaceutical agent. Established chemical strategies can provide access to the natural product; however, a chemoenzymatic route to saxitoxin that could provide expedited access to related compounds has not been devised. The first step toward realizing a chemoenzymatic approach toward this class of molecules is the elucidation of the saxitoxin biosynthetic pathway. To date, a biochemical link between STX and its putative biosynthetic enzymes has not been demonstrated. Herein, we report the first biochemical characterization of any enzyme involved in STX biosynthesis. Specifically, the chemical functions of a polyketide-like synthase, SxtA, from the cyanobacteria Cylindrospermopsis raciborskii T3 are elucidated. This unique megasynthase is comprised of four domains: methyltransferase (MT), GCN5-related N-acetyltransferase (GNAT), acyl carrier protein (ACP), and the first example of an 8-amino-7-oxononanoate synthase (AONS) associated with a multidomain synthase. We have established that this single polypeptide carries out the formation of two carbon-carbon bonds, two decarboxylation events and a stereospecific protonation to afford the linear biosynthetic precursor to STX (4). The synthetic utility of the SxtA AONS is demonstrated by the synthesis of a suite of α-amino ketones from the corresponding α-amino acid in a single step.
Collapse
Affiliation(s)
- Stephanie W Chun
- Department of Chemistry, ‡Life Sciences Institute, §Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Meagan E Hinze
- Department of Chemistry, ‡Life Sciences Institute, §Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Meredith A Skiba
- Department of Chemistry, ‡Life Sciences Institute, §Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Department of Chemistry, ‡Life Sciences Institute, §Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
King CH, Beutler SS, Kaye AD, Urman RD. Pharmacologic Properties of Novel Local Anesthetic Agents in Anesthesia Practice. Anesthesiol Clin 2017; 35:315-325. [PMID: 28526152 DOI: 10.1016/j.anclin.2017.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapeutic duration of traditional local anesthetics when used in peripheral nerve blocks is normally limited. This article describes novel approaches to extend the duration of peripheral nerve blocks currently available or in development. Three newer approaches on extending the duration of peripheral nerve blocks include site-1 sodium channel blockers, novel local anesthetics delivery systems, and novel adjuvants of local anesthetics. Compared with plain amide-based and ester-based local anesthetics, alternative approaches show significant promise in decreasing postoperative pain, rescue opioid requirement, hospital length-of-stay, and overall health care cost, without compromising the established safety profile of traditional local anesthetics.
Collapse
Affiliation(s)
- Chih H King
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Sascha S Beutler
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Alan D Kaye
- Department of Anesthesiology and Pain Medicine, Louisiana State University School of Medicine, LSU Health Science Center, 1542 Tulane Avenue, Room 659, New Orleans, LA 70112, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Zhan C, Wang W, Santamaria C, Wang B, Rwei A, Timko BP, Kohane DS. Ultrasensitive Phototriggered Local Anesthesia. NANO LETTERS 2017; 17:660-665. [PMID: 28058845 PMCID: PMC5469101 DOI: 10.1021/acs.nanolett.6b03588] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An injectable local anesthetic producing repeatable on-demand nerve block would be desirable for pain management. Here we present a phototriggerable device to achieve repeatable and adjustable on-demand local anesthesia in superficial or deep tissues, consisting of gold nanorods attached to low temperature sensitive liposomes (LTSL). The particles were loaded with tetrodotoxin and dexmedetomidine. Near-infrared light (NIR, 808 nm, continuous wave) could heat gold nanorods at low fluence (short duration and low irradiance), leading to rapid release of payload. In vivo, 1-2 min of irradiation at ≤272 mW/cm2 produced repeatable and adjustable on-demand infiltration anesthesia or sciatic nerve blockade with minimal toxicity. The nerve block intensity and duration correlated with the irradiance and duration of the applied light.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 200032, China
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Claudia Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Bruce Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Alina Rwei
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Brian P Timko
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
35
|
Santamaria CM, Woodruff A, Yang R, Kohane DS. Drug delivery systems for prolonged duration local anesthesia. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2017; 20:22-31. [PMID: 28970739 PMCID: PMC5621744 DOI: 10.1016/j.mattod.2016.11.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Numerous drug delivery systems have been applied to the problem of providing prolonged duration local anesthesia (PDLA). Here we review the rationale for PDLA, the desirable features for and important attributes of such systems, and specific examples that have been developed.
Collapse
Affiliation(s)
- Claudia M Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Alan Woodruff
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Rong Yang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Department of Anesthesiology, Boston Children's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
36
|
Abstract
Sick excitable cells (ie, Nav channel-expressing cells injured by trauma, ischemia, inflammatory, and other conditions) typically exhibit "acquired sodium channelopathies" which, we argue, reflect bleb-damaged membranes rendering their Nav channels "leaky." The situation is excitotoxic because untreated Nav leak exacerbates bleb damage. Fast Nav inactivation (a voltage-independent process) is so tightly coupled, kinetically speaking, to the inherently voltage-dependent process of fast activation that when bleb damage accelerates and thus left-shifts macroscopic fast activation, fast inactivation accelerates to the same extent. The coupled g(V) and availability(V) processes and their window conductance regions consequently left-shift by the same number of millivolts. These damage-induced hyperpolarizing shifts, whose magnitude increases with damage intensity, are called coupled left shift (CLS). Based on past work and modeling, we discuss how to test for Nav-CLS, emphasizing the virtue of sawtooth ramp clamp. We explain that it is the inherent mechanosensitivity of Nav activation that underlies Nav-CLS. Using modeling of excitability, we show the known process of Nav-CLS is sufficient to predict a wide variety of "sick excitable cell" phenomena, from hyperexcitability through to depolarizing block. When living cells are mimicked by inclusion of pumps, mild Nav-CLS produces a wide array of burst phenomena and subthreshold oscillations. Dynamical analysis of mild damage scenarios shows how these phenomena reflect changes in spike thresholds as the pumps try to counteract the leaky Nav channels. Smart Nav inhibitors designed for sick excitable cells would target bleb-damaged membrane, buying time for cell-mediated removal or repair of Nav-bearing membrane that has become bleb-damaged (ie, detached from the cytoskeleton).
Collapse
Affiliation(s)
- C E Morris
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - B Joos
- University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
37
|
Ratté S, Prescott SA. Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degeneracy. Curr Opin Neurobiol 2016; 36:31-7. [DOI: 10.1016/j.conb.2015.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
|
38
|
Zhan C, Wang W, McAlvin JB, Guo S, Timko BP, Santamaria C, Kohane DS. Phototriggered Local Anesthesia. NANO LETTERS 2016; 16:177-81. [PMID: 26654461 DOI: 10.1021/acs.nanolett.5b03440] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report a phototriggerable formulation enabling in vivo repeated and on-demand anesthesia with minimal toxicity. Gold nanorods (GNRs) that can convert near-infrared (NIR) light into heat were attached to liposomes (Lip-GNRs), enabling light-triggered phase transition of their lipid bilayers with a consequent release of payload. Lip-GNRs containing the site 1 sodium channel blocker tetrodotoxin and the α2-adrenergic agonist dexmedetomidine (Lip-GNR-TD) were injected subcutaneously in the rat footpad. Irradiation with an 808 nm continuous wave NIR laser produced on-demand and repeated infiltration anesthesia in the rat footpad in proportion to the irradiance, with minimal toxicity. The ability to achieve on-demand and repeated local anesthesia could be very beneficial in the management of pain.
Collapse
Affiliation(s)
- Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James B McAlvin
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Shutao Guo
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Brian P Timko
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Claudia Santamaria
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc Natl Acad Sci U S A 2015; 112:15719-24. [PMID: 26644576 DOI: 10.1073/pnas.1518791112] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pain management would be greatly enhanced by a formulation that would provide local anesthesia at the time desired by patients and with the desired intensity and duration. To this end, we have developed near-infrared (NIR) light-triggered liposomes to provide on-demand adjustable local anesthesia. The liposomes contained tetrodotoxin (TTX), which has ultrapotent local anesthetic properties. They were made photo-labile by encapsulation of a NIR-triggerable photosensitizer; irradiation at 730 nm led to peroxidation of liposomal lipids, allowing drug release. In vitro, 5.6% of TTX was released upon NIR irradiation, which could be repeated a second time. The formulations were not cytotoxic in cell culture. In vivo, injection of liposomes containing TTX and the photosensitizer caused an initial nerve block lasting 13.5 ± 3.1 h. Additional periods of nerve block could be induced by irradiation at 730 nm. The timing, intensity, and duration of nerve blockade could be controlled by adjusting the timing, irradiance, and duration of irradiation. Tissue reaction to this formulation and the associated irradiation was benign.
Collapse
|
40
|
Activity-triggered tetrapartite neuron-glial interactions following peripheral injury. Curr Opin Pharmacol 2015; 26:16-25. [PMID: 26431645 DOI: 10.1016/j.coph.2015.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
Recent studies continue to support the proposition that non-neuronal components of the nervous system, mainly glial cells and associated chemical mediators, contribute to the development of neuronal hyperexcitability that underlies persistent pain conditions. In the event of peripheral injury, enhanced or abnormal nerve input is likely the most efficient way to activate simultaneously central neurons and glia. Injury induces phenotypic changes in glia and triggers signaling cascades that engage reciprocal interactions between presynaptic terminals, postsynaptic neurons, microglia and astrocytes. While some responses to peripheral injury may help the nervous system to adapt positively to counter the disastrous effect of injury, the net effect often leads to long-lasting sensitization of pain transmission pathways and chronic pain.
Collapse
|
41
|
Sodium hydrosulfide relieves neuropathic pain in chronic constriction injured rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:514898. [PMID: 25506383 PMCID: PMC4260443 DOI: 10.1155/2014/514898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/07/2014] [Indexed: 12/27/2022]
Abstract
Aberrant neuronal activity in injured peripheral nerves is believed to be an important factor in the development of neuropathic pain (NPP). Channel protein pCREB of that activity has been shown to mitigate the onset of associated molecular events in the nervous system, and sodium hydrosulfide (NaHS) could inhibit the expression of pCREB. However, whether NaHS could relieve the pain, it needs further experimental research. Furthermore, the clinical potential that NaHS was used to relieve pain was limited so it would be required. To address these issues, the rats of sciatic nerve chronic constriction injury (CCI) were given intraperitoneal injection of NaHS containing hydrogen sulfide (H2S). The experimental results showed that NaHS inhibited the reduction of paw withdrawal thermal latency (PWTL), mechanical withdrawal threshold (MWT), and the level of pCREB in CCI rats in a dose-dependent manner and they were greatly decreased in NaHSM group (P < 0.05). NaHS alleviates chronic neuropathic pain by inhibiting expression of pCREB in the spinal cord of Sprague-Dawley rats.
Collapse
|
42
|
Ilfeld BM, Madison SJ, Suresh PJ, Sandhu NS, Kormylo NJ, Malhotra N, Loland VJ, Wallace MS, Mascha EJ, Xu Z, Wen CH, Morgan AC, Wallace AM. Persistent Postmastectomy Pain and Pain-Related Physical and Emotional Functioning With and Without a Continuous Paravertebral Nerve Block: A Prospective 1-Year Follow-Up Assessment of a Randomized, Triple-Masked, Placebo-Controlled Study. Ann Surg Oncol 2014; 22:2017-25. [DOI: 10.1245/s10434-014-4248-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Indexed: 11/18/2022]
|
43
|
Treatment of acute flares of chronic pancreatitis pain with ultrasound guided transversus abdominis plane block: a novel application of a pain management technique in the acute care setting. Case Rep Emerg Med 2014; 2014:759508. [PMID: 25328723 PMCID: PMC4190973 DOI: 10.1155/2014/759508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
The use of transversus abdominis plane (TAP) block to provide either analgesia or anesthesia to the anterior abdominal wall is well described. The technique yields high analgesic effectiveness and is opioid sparing and potentially of long duration with reported analgesia lasting up to 36 hours. When compared to neuraxial analgesia, TAP blocks are associated with a lower incidence of hypotension and motor blockade. TAP blocks are typically described as providing somatic analgesia only without any effect on visceral pain. There may be, however, certain conditions in which TAP blocks can provide effective analgesia in pain of visceral or mixed somatic and visceral origin. We describe two cases in which TAP blockade provided complete control of pain considered to be of visceral origin.
Collapse
|
44
|
Walder RY, Wattiez AS, White SR, Marquez de Prado B, Hamity MV, Hammond DL. Validation of four reference genes for quantitative mRNA expression studies in a rat model of inflammatory injury. Mol Pain 2014; 10:55. [PMID: 25187167 PMCID: PMC4161874 DOI: 10.1186/1744-8069-10-55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/26/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Real-time quantitative PCR (qPCR) is a technique frequently used to measure changes in mRNA expression. To ensure validity of experimental findings, it is important to normalize the qPCR data to reference genes that are stable and unaffected by the experimental treatment to correct for variability among samples. Unlike in some models of neuropathic pain, reference genes for models of inflammatory injury have not been validated. This study examined four candidate reference genes in an effort to identify and validate optimal genes for normalization of transcriptional changes occurring in the dorsal horn of the spinal cord and the rostral ventromedial medulla (RVM) following intraplantar injection of complete Freund's adjuvant (CFA). RESULTS The expression of hypoxanthine phosphoribosyltransferase 1 (Hprt1), beta-actin (Actb), mitogen-activated protein kinase 6 (Mapk6), and beta-2-microglobulin (B2m) was quantified in the dorsal horn and RVM of rats four days or two weeks after intraplantar injection of CFA or saline. The range of expression levels among these four genes differed by as much as 16-fold within the dorsal horn and the RVM. All four of these reference genes were stably expressed in both tissues and did not differ between saline and CFA-treated animals. Analyses using the statistical algorithms in geNorm and NormFinder programs determined that Mapk6 was the most stable gene and recommended the combination of Mapk6 and Actb, or Mapk6 and Hprt1, in such experimental conditions. CONCLUSIONS This study validated the four genes Hprt1, Actb, Mapk6 or B2m and showed that any one or combination of two of them are good reference genes for normalization of mRNA expression in qPCR experiments in the spinal cord and RVM in the CFA model of inflammatory injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna L Hammond
- Departments of Anesthesia, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
45
|
Stimulation-induced ectopicity and propagation windows in model damaged axons. J Comput Neurosci 2014; 37:523-31. [PMID: 25110188 PMCID: PMC4224747 DOI: 10.1007/s10827-014-0521-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/04/2022]
Abstract
Neural tissue injuries render voltage-gated Na+ channels (Nav) leaky, thereby altering excitability, disrupting propagation and causing neuropathic pain related ectopic activity. In both recombinant systems and native excitable membranes, membrane damage causes the kinetically-coupled activation and inactivation processes of Nav channels to undergo hyperpolarizing shifts. This damage-intensity dependent change, called coupled left-shift (CLS), yields a persistent or “subthreshold” Nav window conductance. Nodes of Ranvier simulations involving various degrees of mild CLS showed that, as the system’s channel/pump fluxes attempt to re-establish ion homeostasis, the CLS elicits hyperexcitability, subthreshold oscillations and neuropathic type action potential (AP) bursts. CLS-induced intermittent propagation failure was studied in simulations of stimulated axons, but pump contributions were ignored, leaving open an important question: does mild-injury (small CLS values, pumps functioning well) render propagation-competent but still quiescent axons vulnerable to further impairments as the system attempts to cope with its normal excitatory inputs? We probe this incipient diffuse axonal injury scenario using a 10-node myelinated axon model. Fully restabilized nodes with mild damage can, we show, become ectopic signal generators (“ectopic nodes”) because incoming APs stress Na+/K+ gradients, thereby altering spike thresholds. Comparable changes could contribute to acquired sodium channelopathies as diverse as epileptic phenomena and to the neuropathic amplification of normally benign sensory inputs. Input spike patterns, we found, propagate with good fidelity through an ectopically firing site only when their frequencies exceed the ectopic frequency. This “propagation window” is a robust phenomenon, occurring despite Gaussian noise, large jitter and the presence of several consecutive ectopic nodes.
Collapse
|
46
|
Crosby ND, Gilliland TM, Winkelstein BA. Early afferent activity from the facet joint after painful trauma to its capsule potentiates neuronal excitability and glutamate signaling in the spinal cord. Pain 2014; 155:1878-1887. [PMID: 24978827 DOI: 10.1016/j.pain.2014.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 11/25/2022]
Abstract
Cervical facet joint injury induces persistent pain and central sensitization. Preventing the peripheral neuronal signals that initiate sensitization attenuates neuropathic pain. Yet, there is no clear relationship among facet joint afferent activity, development of central sensitization, and pain, which may be hindering effective treatments for this pain syndrome. This study investigates how afferent activity from the injured cervical facet joint affects induction of behavioral sensitivity and central sensitization. Intra-articular bupivacaine was administered to transiently suppress afferent activity immediately or 4 days after facet injury. Mechanical hyperalgesia was monitored after injury, and spinal neuronal hyperexcitability and spinal expression of proteins that promote neuronal excitability were measured on day 7. Facet injury with saline vehicle treatment induced significant mechanical hyperalgesia (P<.027), dorsal horn neuronal hyperexcitability (P<.026), upregulation of pERK1/2, pNR1, mGluR5, GLAST, and GFAP, and downregulation of GLT1 (P<.032). However, intra-articular bupivacaine immediately after injury significantly attenuated hyperalgesia (P<.0001), neuronal hyperexcitability (P<.004), and dysregulation of excitatory signaling proteins (P<.049). In contrast, intra-articular bupivacaine at day 4 had no effect on these outcomes. Silencing afferent activity during the development of neuronal hyperexcitability (4 hours, 8 hours, 1 day) attenuated hyperalgesia and neuronal hyperexcitability (P<.045) only for the treatment given 4 hours after injury. This study suggests that early afferent activity from the injured facet induces development of spinal sensitization via spinal excitatory glutamatergic signaling. Peripheral intervention blocking afferent activity is effective only over a short period of time early after injury and before spinal modifications develop, and is independent of modulating spinal glial activation.
Collapse
Affiliation(s)
- Nathan D Crosby
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
47
|
Shankarappa SA, Kohane DS. Controlled-release systems in neuropathic pain. Pain Manag 2014; 3:91-3. [PMID: 24645991 DOI: 10.2217/pmt.12.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sahadev A Shankarappa
- Laboratory of Biomaterials & Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
48
|
Abstract
The paralytic agent (+)-saxitoxin (STX), most commonly associated with oceanic red tides and shellfish poisoning, is a potent inhibitor of electrical conduction in cells. Its nefarious effects result from inhibition of voltage-gated sodium channels (Na(V)s), the obligatory proteins responsible for the initiation and propagation of action potentials. In the annals of ion channel research, the identification and characterization of Na(V)s trace to the availability of STX and an allied guanidinium derivative, tetrodotoxin. The mystique of STX is expressed in both its function and form, as this uniquely compact dication boasts more heteroatoms than carbon centers. This Review highlights both the chemistry and chemical biology of this fascinating natural product, and offers a perspective as to how molecular design and synthesis may be used to explore Na(V) structure and function.
Collapse
Affiliation(s)
- Arun P Thottumkara
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080 (USA)
| | | | | |
Collapse
|
49
|
|
50
|
Swartjes M, van Velzen M, Niesters M, Aarts L, Brines M, Dunne A, Cerami A, Dahan A. ARA 290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain coupled with suppression of the spinal microglia response. Mol Pain 2014; 10:13. [PMID: 24529189 PMCID: PMC3928087 DOI: 10.1186/1744-8069-10-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/10/2014] [Indexed: 02/07/2023] Open
Abstract
Background Neuropathic pain is a difficult to treat disorder arising from central or peripheral nervous system lesions. The etiology of neuropathic pain consists of several overlapping pathways converging into an exaggerated pain state with symptoms such as allodynia and hyperalgesia. One of these pathways involves activation of spinal cord microglia and astrocytes, which drive and maintain the inflammatory response following the lesion. These cells are a potential target for drugs for neuropathic pain relief. In this current study, we investigated the dose-effect relationship of the tissue protective peptide ARA 290, derived from the tertiary structure of erythropoietin, on allodynia and concurrent spinal cord microglia and astrocytes. Results Following a spared nerve injury in rats, vehicle or ARA290 (administered in either one of 4 doses: 3, 10, 30 and 60 μg/kg) was administered on days 1, 3, 6, 8 and 10. ARA290 exerted a dose–response effect by significantly reducing mechanical allodynia up to 20 weeks when compared to vehicle. The reduction of cold allodynia was significant up to 20 weeks for the doses 3, 10, 30 and 60 μg/kg when compared to vehicle. The effect 10 and 30 μg/kg ARA290 and vehicle on the microglia response (iba-1-immunoreactivity, iba-1-IR) and astrocyte reaction (GFAP-immunoreactivity, GFAP-IR) was investigated in animals surviving 2 (group 1) or 20 (group 2) weeks following lesion or sham surgery. In group 1, significant microglia reactivity was observed in the L5 segment of the spinal cord of animals treated with vehicle when compared to sham operated, while animals treated with 10 or 30 μg/kg did not show a increase. In group 2, a more widespread and increased microglia reactivity was observed for animals treated with 0 and 10 μg/kg when compared to sham operated animals, indicated by involvement of more spinal cord segments and higher iba-1-IR. Animals treated with 30 μg/kg did not show increased microglia reactivity. No difference in astrocyte reaction was observed. Conclusions The erythropoietin-analogue ARA290 dose-dependently reduced allodynia coupled to suppression of the spinal microglia response, suggestive of a mechanistic link between ARA290-induced suppression of central inflammation and relief of neuropathic pain symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, P5-Q, 2300 RC Leiden, The Netherlands.
| |
Collapse
|