1
|
Aguilar-Lacasaña S, Cosin-Tomas M, Raimbault B, Gómez-Herrera L, Sánchez O, Zanini MJ, Capdevila RP, Foraster M, Gascon M, Rivas I, Llurba E, Gómez-Roig MD, Sunyer J, Bustamante M, Vrijheid M, Dadvand P. Epigenome-wide association study of pregnancy exposure to green space and placental DNA methylation. ENVIRONMENTAL RESEARCH 2025; 274:121286. [PMID: 40043929 DOI: 10.1016/j.envres.2025.121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 05/04/2025]
Abstract
Green space exposure during pregnancy has been associated with lower risk of adverse birth outcomes, but the biological mechanisms remain unclear. Epigenetic changes, such as DNA methylation (DNAm), may contribute to this association. The placenta, crucial for foetal development, has been understudied in relation to prenatal green space exposure and DNAm on a genome-wide scale. Here, we aimed to investigate the association between green space exposure during pregnancy and epigenome-wide placental DNAm in 550 mother-child pairs from the Barcelona Life Study Cohort (BiSC) in Spain. Green space exposure was assessed as (i) residential surrounding greenness (satellite-based Normalized Difference Vegetation Index (NDVI) in buffers of 100 m, 300 m and 500 m), (ii) residential distance to the nearest major green space (meters), (iii) use of green space (hours/week), and (iv) visual access to greenery through the home window (≥half of the view). Placental DNAm was measured with the EPIC array. Differentially methylated positions (DMPs) were identified using robust linear regression models adjusted for covariates, while differentially methylated regions (DMRs) were identified using the dmrff method. After Bonferroni correction, cg14852540, annotated to SLC25A10 gene, showed an inverse association with residential greenness within 500 m buffer. Additionally, 101 DMPs were suggestively significant (p-values <1 × 10-5) and annotated to genes involved in glucocorticoid-related pathways, inflammatory response, oxidative stress response, and oocyte maturation. No DMRs were identified. Overall, we identified an association between residential greenness and DNAm levels at one CpG in the SLC25A10 gene. Larger studies are needed to validate these findings and understand the biological pathways.
Collapse
Affiliation(s)
- Sofía Aguilar-Lacasaña
- ISGlobal, Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain.
| | - Marta Cosin-Tomas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Bruno Raimbault
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Laura Gómez-Herrera
- ISGlobal, Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Olga Sánchez
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0001), Spain; Department of Obstetrics and Gynaecology. Hospital de la Santa Creu i Sant Pau, Institut de Recerca (IR SANT PAU), Barcelona, 08041, Spain
| | - Maria Julia Zanini
- Department of Obstetrics and Gynaecology. Hospital de la Santa Creu i Sant Pau, Institut de Recerca (IR SANT PAU), Barcelona, 08041, Spain
| | - Rosalia Pascal Capdevila
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0003), Spain; BCNatal. Barcelona Center for Maternal Foetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Spain
| | - Maria Foraster
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain; Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Manresa, Spain
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Elisa Llurba
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0001), Spain; Department of Obstetrics and Gynaecology. Hospital de la Santa Creu i Sant Pau, Institut de Recerca (IR SANT PAU), Barcelona, 08041, Spain
| | - Maria Dolores Gómez-Roig
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0003), Spain; BCNatal. Barcelona Center for Maternal Foetal and Neonatal Medicine (Hospital Sant Joan de Déu and Hospital Clínic), University of Barcelona, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain.
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Spain
| |
Collapse
|
2
|
Gehrs S, Jakab M, Gutjahr E, Gu Z, Weichenhan D, Mallm JP, Mogler C, Schlesner M, Plass C, Schlereth K, Augustin HG. The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms. Dev Cell 2025; 60:1467-1482.e8. [PMID: 39814015 DOI: 10.1016/j.devcel.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms. Spatiotemporal transcriptomic profiling identified a gradual change in the expression of epigenetic enzymes, including the de novo DNA methyltransferase 3a (DNMT3A). Loss of Dnmt3a resulted in DNA hypomethylation and perturbation of zonated placental gene expression. The resulting global DNA hypomethylation impaired the angiogenic capacity of endothelial cells. Global or endothelium-predominant deletion of Dnmt3a resulted in impaired placental vascularization and fetal growth retardation (FGR). Human placental endothelial gene expression profiling associated preeclampsia with reduced DNMT3A expression. Collectively, our study identified DMNT3A as critical methylome-regulator of placental endothelial gene expression and function with clinical implications for placental dysfunction, as it occurs during preeclampsia or FGR.
Collapse
Affiliation(s)
- Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| | - Moritz Jakab
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ewgenija Gutjahr
- Institute of Pathology, University Clinic Heidelberg, 69120 Heidelberg, Germany
| | - Zuguang Gu
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120 Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, 86159 Augsburg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
3
|
Wang D, Cearlock A, Lane K, Xu C, Jan I, McCartney S, Glass I, McCoy R, Yang M. Chromosomal instability in human trophoblast stem cells and placentas. Nat Commun 2025; 16:3918. [PMID: 40280964 PMCID: PMC12032275 DOI: 10.1038/s41467-025-59245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The human placenta, a unique tumor-like organ, is thought to exhibit rare aneuploidy associated with adverse pregnancy outcomes. Discrepancies in reported aneuploidy prevalence in placentas stem from limitations in modeling and detection methods. Here, we use isogenic trophoblast stem cells (TSCs) derived from both naïve and primed human pluripotent stem cells (hPSCs) to reveal the spontaneous occurrence of aneuploidy, suggesting chromosomal instability (CIN) as an inherent feature of the trophoblast lineage. We identify potential pathways contributing to the occurrence and tolerance of CIN, such as autophagy, which may support the survival of aneuploid cells. Despite extensive chromosomal abnormalities, TSCs maintain their proliferative and differentiation capacities. These findings are further validated in placentas, where we observe a high prevalence of heterogeneous aneuploidy across trophoblasts, particularly in invasive extravillous trophoblasts. Our study challenges the traditional view of aneuploidy in the placenta and provides insights into the implications of CIN in placental function.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Andrew Cearlock
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Katherine Lane
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Chongchong Xu
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ian Jan
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Stephen McCartney
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Ian Glass
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Rajiv McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Min Yang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Zhou J, Wu Y, Liu H, Tian W, Castanon RG, Bartlett A, Zhang Z, Yao G, Shi D, Clock B, Marcotte S, Nery JR, Liem M, Claffey N, Boggeman L, Barragan C, Drigo RAE, Weimer AK, Shi M, Cooper-Knock J, Zhang S, Snyder MP, Preissl S, Ren B, O’Connor C, Chen S, Luo C, Dixon JR, Ecker JR. Human Body Single-Cell Atlas of 3D Genome Organization and DNA Methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644697. [PMID: 40196612 PMCID: PMC11974725 DOI: 10.1101/2025.03.23.644697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Higher-order chromatin structure and DNA methylation are critical for gene regulation, but how these vary across the human body remains unclear. We performed multi-omic profiling of 3D genome structure and DNA methylation for 86,689 single nuclei across 16 human tissues, identifying 35 major and 206 cell subtypes. We revealed extensive changes in CG and non-CG methylation across almost all cell types and characterized 3D chromatin structure at an unprecedented cellular resolution. Intriguingly, extensive discrepancies exist between cell types delineated by DNA methylation and genome structure, indicating that the role of distinct epigenomic features in maintaining cell identity may vary by lineage. This study expands our understanding of the diversity of DNA methylation and chromatin structure and offers an extensive reference for exploring gene regulation in human health and disease.
Collapse
Affiliation(s)
- Jingtian Zhou
- Arc Institute, Palo Alto, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Yue Wu
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zuolong Zhang
- School of Software, Henan University, Kaifeng, Henan, China
| | - Guocong Yao
- School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Dengxiaoyu Shi
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ben Clock
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samantha Marcotte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michelle Liem
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naomi Claffey
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rafael Arrojo e Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Center for Computational Systems Biology, Vanderbilt University, Nashville, TN
- Diabetes Research and Training Center (DRTC), Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Annika K. Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyi Shi
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Departments of Biostatistics & Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Bing Ren
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Carolyn O’Connor
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shengbo Chen
- School of Software, Nanchang University, Nanchang, Jiangxi, China
| | - Chongyuan Luo
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesse R. Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
5
|
Inkster AM, Matthews AM, Phung TN, Plaisier SB, Wilson MA, Brown CJ, Robinson WP. Breaking rules: the complex relationship between DNA methylation and X-chromosome inactivation in the human placenta. Biol Sex Differ 2025; 16:18. [PMID: 40038810 PMCID: PMC11877730 DOI: 10.1186/s13293-025-00696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The human placenta is distinct from most organs due to its uniquely low-methylated genome. DNA methylation (DNAme) is particularly depleted in the placenta at partially methylated domains and on the inactive X chromosome (Xi) in XX samples. While Xi DNAme is known to be critical for X-chromosome inactivation (XCI) in other tissues, its role in the placenta remains unclear. Understanding X-linked DNAme variation in the placenta may provide insights into XCI and have implications for prenatal development and phenotypic sex differences. METHODS DNAme data were analyzed from over 350 human placental (chorionic villus) samples, along with samples from cord blood, amnion and chorion placental membranes, and fetal somatic tissues. We characterized X chromosome DNAme variation in the placenta relative to sample variables including cell composition, ancestry, maternal age, placental weight, and fetal birth weight, and compared these patterns to other tissues. We also evaluated the relationship between X-linked DNAme and previously reported XCI gene expression status in placenta. RESULTS Our findings confirm that the placenta exhibits significant depletion of DNAme on the Xi compared to other tissues. Additionally, we observe that X chromosome DNAme profiles in the placenta are influenced by cell composition, particularly trophoblast proportion, with minimal DNAme variation across gestation. Notably, low promoter DNAme is observed at most genes on the Xi regardless of XCI status, challenging known associations in somatic tissues between low promoter DNAme and escape from XCI. CONCLUSIONS This study provides evidence that the human placenta has a distinct Xi DNAme landscape, which may inform our understanding of sex differences during prenatal development. Future research should explore the mechanisms underlying the placenta's unique X-linked DNAme profile, and the factors involved in placental XCI maintenance.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada.
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 221 Wesbrook Mall, Vancouver, BC, V6T 1Z7, Canada
| | - Tanya N Phung
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Seema B Plaisier
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| |
Collapse
|
6
|
Lea G, Doria-Borrell P, Ferrero-Micó A, Varma A, Simon C, Anderson H, Biggins L, De Clercq K, Andrews S, Niakan KK, Gahurova L, McGovern N, Pérez-García V, Hanna CW. Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome. Cell Stem Cell 2025; 32:276-292.e9. [PMID: 39788122 DOI: 10.1016/j.stem.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear. We find that hTSCs exhibit an atypical methylome compared with trophectoderm and 1st trimester cytotrophoblast. Regardless of cell origin, oxygen levels, or culture conditions, hTSCs show localized DNA methylation within transcribed gene bodies and a complete loss of PMDs. Unlike early human trophoblasts, hTSCs display a notable absence of DNMT3L expression, which is necessary for PMD establishment in mouse trophoblasts. Remarkably, we demonstrate that ectopic expression of DNMT3L in hTSCs restores placental PMDs, supporting a conserved role for DNMT3L in de novo methylation in trophoblast development in human embryogenesis.
Collapse
Affiliation(s)
- Georgia Lea
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Anakha Varma
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Claire Simon
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Holly Anderson
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Laura Biggins
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | | | - Simon Andrews
- Babraham Bioinformatics, Babraham Institute, Cambridge, UK
| | - Kathy K Niakan
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lenka Gahurova
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Naomi McGovern
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| | - Courtney W Hanna
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Li S, Lin Y, Su F, Hu X, Li L, Yan W, Zhang Y, Zhuo M, Gao Y, Jin X, Zhang H. Comprehensive evaluation of the impact of whole-genome bisulfite sequencing (WGBS) on the fragmentomic characteristics of plasma cell-free DNA. Clin Chim Acta 2025; 566:120033. [PMID: 39528065 DOI: 10.1016/j.cca.2024.120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is non-randomly fragmented in human body fluids. Analyzing such fragmentation patterns of cfDNA holds great promise for liquid biopsy. Whole-genome bisulfite sequencing (WGBS) is widely used for cfDNA methylation profiling. However, its applicability for studying fragmentomic characteristics remains largely unexplored. METHODS We performed paired WGBS and whole-genome sequencing (WGS) on 66 peripheral plasma samples from 58 pregnant women. Then, we systematically compared the fragmentation patterns of cell-free nuclear DNA and mitochondrial DNA (mtDNA) sequenced from these two approaches. Additionally, we evaluated the extent of the size shortening in fetal-derived cfDNA and estimated the fetal DNA fraction in maternal plasma using both sequencing methods. RESULTS Compared to WGS samples, WGBS samples demonstrated a significantly lower genome coverage and higher GC content in cfDNA. They also showed a significant decrease in the size of cell-free nuclear DNA, along with alterations in the end motif pattern that were specifically associated with CpG and "CC" sites. While there was a slight shift in the inferred nucleosome footprint from cfDNA coverages in WGBS samples, the cfDNA coverage patterns in CTCF and TSS regions remained highly consistent between these two sequencing methods. Both methods accurately reflected gene expression levels through their TSS coverages. Additionally, WGBS samples exhibited an increased abundance and longer length of mtDNA in plasma. Furthermore, we observed the size shortening of fetal cfDNA in plasma consistently, with a highly correlated fetal DNA fraction inferred by cfDNA coverage between WGBS and WGS samples (r = 0.996). However, the estimated fetal cfDNA fraction in WGBS samples was approximately 7 % lower than in WGS samples. CONCLUSIONS We confirmed that WGBS can introduce artificial breakages to cfDNA, leading to altered fragmentomic patterns in both nuclear and mitochondrial DNA. However, WGBS cfDNA remains suitable for analyzing certain cfDNA fragmentomic characteristics, such as coverage in genome regulation regions and the essential characteristics of fetal DNA in maternal plasma.
Collapse
Affiliation(s)
- Shaogang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; BGI Research, Shenzhen 518083, China
| | - Yu Lin
- BGI Research, Shenzhen 518083, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | | | - Xintao Hu
- BGI Research, Shenzhen 518083, China
| | | | - Wei Yan
- BGI Research, Shenzhen 518083, China; College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ya Gao
- BGI Research, Shenzhen 518083, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | | |
Collapse
|
8
|
Nicheperovich A, Schuster-Böckler B, Ní Leathlobhair M. Gestational trophoblastic disease: understanding the molecular mechanisms of placental tumours. Dis Model Mech 2025; 18:DMM052010. [PMID: 39873178 PMCID: PMC11810044 DOI: 10.1242/dmm.052010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Gestational trophoblastic disease (GTD) describes a group of rare benign and cancerous lesions originating from the trophoblast cells of the placenta. These neoplasms are unconventional entities, being one of the few instances in which cancer develops from the cells of another organism, the foetus. Although this condition was first described over 100 years ago, the specific genetic and non-genetic drivers of this disease remain unknown to this day. However, recent findings have provided valuable insights into the potential mechanisms underlying this rare condition. Unlike previous reviews focused primarily on the clinical and diagnostic aspects of disease development, this Review consolidates the latest research concerning the role of genetics, epigenetics and microRNAs in the initiation and progression of GTD. By examining GTD from a molecular perspective, this Review provides a unique framework for understanding the pathogenesis and progression of this rare disease.
Collapse
Affiliation(s)
- Alina Nicheperovich
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
9
|
Castro-Quintas A, Palma-Gudiel H, Eixarch E, San Martín González N, Röh S, Sauer S, Rex-Haffner M, Monteserin-Garcia JL, de la Fuente-Tomás L, Crispi F, Garcia Portilla MP, Binder EB, Fañanas L. Placental epigenetic signatures of maternal distress in glucocorticoid-related genes and newborn outcomes: A study of Spanish primiparous women. Eur Neuropsychopharmacol 2025; 90:36-47. [PMID: 39504602 DOI: 10.1016/j.euroneuro.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Maternal stress during pregnancy can impact offspring health, increasing the risk of neuropsychiatric disorders. The human placenta plays a crucial role in understanding this effect, influencing fetal programming as it connects maternal and fetal circulation. Our hypothesis centers on maternal stress influencing children's outcomes through placental DNA methylation, targeting three cortisol-regulating genes: NR3C1, FKBP5, and HSD11B2. In this pilot study, chorionic villi and maternal decidua placental layers from 45 mother-infant dyads (divided into two groups based on high/low maternal stress exposure) were analyzed for DNA methylation at the genes of interest via targeted bisulfite sequencing. Pregnant women provided four saliva samples throughout a day for cortisol determinations and were assessed for the presence of depressive symptoms at each of the three trimesters of pregnancy. Newborns underwent neurodevelopmental assessments and salivary cortisol evaluations at 7 weeks. Increased maternal diurnal cortisol levels in the first trimester of pregnancy was significantly associated with elevated DNA methylation at exon 1D of the NR3C1 gene and lower DNA methylation at intron 7 of the FKBP5 gene, both in chorionic villi samples. Elevated DNA methylation at introns 1 and 7 of FKBP5 in the maternal decidua were strongly linked to an anticipated delivery. DNA methylation at the HSD11B2 promoter region was uniformly low across all placental samples. No associations with newborn neurodevelopment were found. These results emphasize the importance of exploring layer-specific methylation differences at distinct pregnancy stages, highlighting the complex interplay between maternal stress, placental epigenetic modifications, and fetal development throughout the prenatal period.
Collapse
Affiliation(s)
- Agueda Castro-Quintas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Helena Palma-Gudiel
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Elisenda Eixarch
- Department of Surgery and Surgical specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research on Rare Diseases (CIBER of Rare Diseases, CIBERER), Madrid, Spain
| | - Nerea San Martín González
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Simone Röh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jose Luis Monteserin-Garcia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain
| | - Lorena de la Fuente-Tomás
- Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain; Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Fatima Crispi
- Department of Surgery and Surgical specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research on Rare Diseases (CIBER of Rare Diseases, CIBERER), Madrid, Spain
| | - Maria Paz Garcia Portilla
- Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain; Department of Psychiatry, University of Oviedo, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lourdes Fañanas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Biomedicine Institute of the University of Barcelona (IBUB), Barcelona, Spain; Health Institut Carlos III, Network Centre for Biomedical Research in Mental Health (CIBER of Mental Health, CIBERSAM), Madrid, Spain.
| |
Collapse
|
10
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
11
|
Baetens M, Van Gaever B, Deblaere S, De Koker A, Meuris L, Callewaert N, Janssens S, Roelens K, Roets E, Van Dorpe J, Dehaene I, Menten B. Advancing diagnosis and early risk assessment of preeclampsia through noninvasive cell-free DNA methylation profiling. Clin Epigenetics 2024; 16:182. [PMID: 39695764 DOI: 10.1186/s13148-024-01798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Aberrant embryo implantation and suboptimal placentation can lead to (severe) complications such as preeclampsia and fetal growth restriction later in pregnancy. Current identification of high-risk pregnancies relies on a combination of risk factors, biomarkers, and ultrasound examinations, a relatively inaccurate approach. Previously, aberrant DNA methylation due to placental hypoxia has been identified as a potential marker of placental insufficiency and, hence, potential (future) pregnancy complications. The goal of the Early Prediction of prEgnancy Complications Testing, or the ExPECT study, is to validate a genome-wide, cell-free DNA (cfDNA) methylation strategy to diagnose preeclampsia accurately. More importantly, the predictive potential of this strategy is also explored to reliably identify high-risk pregnancies early in gestation. Furthermore, a longitudinal study was conducted, including sequential blood samples from pregnant individuals experiencing both uneventful and complicated gestations, to assess the methylation dynamics of cfDNA throughout these pregnancies. A significant strength of this study is its enzymatic digest, which enriches CpG-rich regions across the genome without the need for proprietary reagents or prior selection of regions of interest. This makes it useful for the cost-effective discovery of novel markers. RESULTS Investigation of methylation patterns throughout pregnancy showed different methylation trends between unaffected and affected pregnancies. We detected differentially methylated regions (DMRs) in pregnancies complicated with preeclampsia as early as 12 weeks of gestation, with distinct differences in the methylation profile between early and late pregnancy. Two classification models were developed to diagnose and predict preeclampsia, demonstrating promising results on a small set of validation samples. CONCLUSIONS This study offers valuable insights into methylation changes at specific genomic regions throughout pregnancy, revealing critical differences between normal and complicated pregnancies. The power of noninvasive cfDNA methylation profiling was successfully proven, suggesting the potential to integrate this noninvasive approach into routine prenatal care.
Collapse
Affiliation(s)
- Machteld Baetens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Bram Van Gaever
- Department of Pathology, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Stephanie Deblaere
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Leander Meuris
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kristien Roelens
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Ellen Roets
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Isabelle Dehaene
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Toh H, Okae H, Shirane K, Sato T, Hamada H, Kikutake C, Saito D, Arima T, Sasaki H, Suyama M. Epigenetic dynamics of partially methylated domains in human placenta and trophoblast stem cells. BMC Genomics 2024; 25:1050. [PMID: 39506688 PMCID: PMC11542204 DOI: 10.1186/s12864-024-10986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The placenta is essential for nutrient exchange and hormone production between the mother and the developing fetus and serves as an invaluable model for epigenetic research. Most epigenetic studies of the human placenta have used whole placentas from term pregnancies and have identified the presence of partially methylated domains (PMDs). However, the origin of these domains, which are typically absent in most somatic cells, remains unclear in the placental context. RESULTS Using whole-genome bisulfite sequencing and analysis of histone H3 modifications, we generated epigenetic profiles of human cytotrophoblasts during the first trimester and at term, as well as human trophoblast stem cells. Our study focused specifically on PMDs. We found that genomic regions likely to form PMDs are resistant to global DNA demethylation during trophectoderm reprogramming, and that PMDs arise through a slow methylation process within condensed chromatin near the nuclear lamina. In addition, we found significant differences in histone H3 modifications between PMDs in cytotrophoblasts and trophoblast stem cells. CONCLUSIONS Our findings suggest that spatiotemporal genomic features shape megabase-scale DNA methylation patterns, including PMDs, in the human placenta and highlight distinct differences in PMDs between human cytotrophoblasts and trophoblast stem cells. These findings advance our understanding of placental biology and provide a basis for further research into human development and related diseases.
Collapse
Affiliation(s)
- Hidehiro Toh
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan.
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuya Sato
- Biomedical Research Center, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Hirotaka Hamada
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Daisuke Saito
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812- 8582, Japan.
| |
Collapse
|
13
|
Slamecka J, Ryu S, Tristan CA, Chu PH, Weber C, Deng T, Gedik Y, Ormanoglu P, Voss TC, Simeonov A, Singeç I. Highly efficient generation of self-renewing trophoblast from human pluripotent stem cells. iScience 2024; 27:110874. [PMID: 39386760 PMCID: PMC11462042 DOI: 10.1016/j.isci.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a powerful model system to study early developmental processes. However, lineage specification into trophectoderm (TE) and trophoblast (TB) differentiation remains poorly understood, and access to well-characterized placental cells for biomedical research is limited, largely depending on fetal tissues or cancer cell lines. Here, we developed novel strategies enabling highly efficient TE specification that generates cytotrophoblast (CTB) and multinucleated syncytiotrophoblast (STB), followed by the establishment of trophoblast stem cells (TSCs) capable of differentiating into extravillous trophoblast (EVT) and STB after long-term expansion. We confirmed stepwise and controlled induction of lineage- and cell-type-specific genes consistent with developmental biology principles and benchmarked typical features of placental cells using morphological, biochemical, genomics, epigenomics, and single-cell analyses. Charting a well-defined roadmap from hPSCs to distinct placental phenotypes provides invaluable opportunities for studying early human development, infertility, and pregnancy-associated diseases.
Collapse
Affiliation(s)
- Jaroslav Slamecka
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Carlos A. Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tao Deng
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Yeliz Gedik
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ty C. Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| |
Collapse
|
14
|
Diez-Ahijado L, Cilleros-Portet A, Fernández-Jimenez N, Fernández MF, Guxens M, Julvez J, Llop S, Lopez-Espinosa MJ, Subiza-Pérez M, Lozano M, Ibarluzea J, Sunyer J, Bustamante M, Cosin-Tomas M. Evaluating the association between placenta DNA methylation and cognitive functions in the offspring. Transl Psychiatry 2024; 14:383. [PMID: 39304652 DOI: 10.1038/s41398-024-03094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The placenta plays a crucial role in protecting the fetus from environmental harm and supports the development of its brain. In fact, compromised placental function could predispose an individual to neurodevelopmental disorders. Placental epigenetic modifications, including DNA methylation, could be considered a proxy of placental function and thus plausible mediators of the association between intrauterine environmental exposures and genetics, and childhood and adult mental health. Although neurodevelopmental disorders such as autism spectrum disorder have been investigated in relation to placenta DNA methylation, no studies have addressed the association between placenta DNA methylation and child's cognitive functions. Thus, our goal here was to investigate whether the placental DNA methylation profile measured using the Illumina EPIC array is associated with three different cognitive domains (namely verbal score, perceptive performance score, and general cognitive score) assessed by the McCarthy Scales of Children's functions in childhood at age 4. To this end, we conducted epigenome-wide association analyses, including data from 255 mother-child pairs within the INMA project, and performed a follow-up functional analysis to help the interpretation of the findings. After multiple-testing correction, we found that methylation at 4 CpGs (cg1548200, cg02986379, cg00866476, and cg14113931) was significantly associated with the general cognitive score, and 2 distinct differentially methylated regions (DMRs) (including 27 CpGs) were significantly associated with each cognitive dimension. Interestingly, the genes annotated to these CpGs, such as DAB2, CEP76, PSMG2, or MECOM, are involved in placenta, fetal, and brain development. Moreover, functional enrichment analyses of suggestive CpGs (p < 1 × 10-4) revealed gene sets involved in placenta development, fetus formation, and brain growth. These findings suggest that placental DNA methylation could be a mechanism contributing to the alteration of important pathways in the placenta that have a consequence on the offspring's brain development and cognitive function.
Collapse
Affiliation(s)
- Laia Diez-Ahijado
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- University of Granada, Biomedical Research Centre, Instituto de Investigación Biosanitaria (ibs.GRANADA), Granada, Spain
| | - Monica Guxens
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jordi Julvez
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Clinical and Epidemiological Neuroscience, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sabrina Llop
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Mikel Subiza-Pérez
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018, Donostia-San Sebastián, Spain
- Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, UK
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jesus Ibarluzea
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
15
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
16
|
Ackerman WE, Rigo MM, DaSilva-Arnold SC, Do C, Tariq M, Salas M, Castano A, Zamudio S, Tycko B, Illsley NP. Epigenetic changes regulating the epithelial-mesenchymal transition in human trophoblast differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601748. [PMID: 39005325 PMCID: PMC11244995 DOI: 10.1101/2024.07.02.601748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The phenotype of human placental extravillous trophoblast (EVT) at the end of pregnancy reflects both first trimester differentiation from villous cytotrophoblast (CTB) and later gestational changes, including loss of proliferative and invasive capacity. Invasion abnormalities are central to two major placental pathologies, preeclampsia and placenta accreta spectrum, so characterization of the corresponding normal processes is crucial. In this report, our gene expression analysis, using purified human CTB and EVT cells, highlights an epithelial-mesenchymal transition (EMT) mechanism underlying CTB-EVT differentiation and provides a trophoblast-specific EMT signature. In parallel, DNA methylation profiling shows that CTB cells, already hypomethylated relative to non-trophoblast cell lineages, show further genome-wide hypomethylation in the transition to EVT. However, a small subgroup of genes undergoes gains of methylation (GOM) in their regulatory regions or gene bodies, associated with differential mRNA expression (DE). Prominent in this GOM-DE group are genes involved in the EMT, including multiple canonical EMT markers and the EMT-linked transcription factor RUNX1, for which we demonstrate a functional role in modulating the migratory and invasive capacities of JEG3 trophoblast cells. This analysis of DE associated with locus-specific GOM, together with functional studies of an important GOM-DE gene, highlights epigenetically regulated genes and pathways acting in human EVT differentiation and invasion, with implications for obstetric disorders in which these processes are dysregulated.
Collapse
Affiliation(s)
- William E. Ackerman
- Department of Obstetrics and Gynecology and AI.Health4All Center for Health Equity Using Machine Learning and Artificial Intelligence, University of Illinois College of Medicine, Chicago, USA
| | - Mauricio M. Rigo
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Sonia C. DaSilva-Arnold
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| | - Catherine Do
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Mariam Tariq
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Martha Salas
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Angelica Castano
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| | - Benjamin Tycko
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Nicholas P. Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| |
Collapse
|
17
|
Yasumizu Y, Hagiwara M, Umezu Y, Fuji H, Iwaisako K, Asagiri M, Uemoto S, Nakamura Y, Thul S, Ueyama A, Yokoi K, Tanemura A, Nose Y, Saito T, Wada H, Kakuda M, Kohara M, Nojima S, Morii E, Doki Y, Sakaguchi S, Ohkura N. Neural-net-based cell deconvolution from DNA methylation reveals tumor microenvironment associated with cancer prognosis. NAR Cancer 2024; 6:zcae022. [PMID: 38751935 PMCID: PMC11094754 DOI: 10.1093/narcan/zcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
DNA methylation is a pivotal epigenetic modification that defines cellular identity. While cell deconvolution utilizing this information is considered useful for clinical practice, current methods for deconvolution are limited in their accuracy and resolution. In this study, we collected DNA methylation data from 945 human samples derived from various tissues and tumor-infiltrating immune cells and trained a neural network model with them. The model, termed MEnet, predicted abundance of cell population together with the detailed immune cell status from bulk DNA methylation data, and showed consistency to those of flow cytometry and histochemistry. MEnet was superior to the existing methods in the accuracy, speed, and detectable cell diversity, and could be applicable for peripheral blood, tumors, cell-free DNA, and formalin-fixed paraffin-embedded sections. Furthermore, by applying MEnet to 72 intrahepatic cholangiocarcinoma samples, we identified immune cell profiles associated with cancer prognosis. We believe that cell deconvolution by MEnet has the potential for use in clinical settings.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Masaki Hagiwara
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Yuto Umezu
- Faculty of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroaki Fuji
- Department of Hepato-Biliary-Pancreatic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Keiko Iwaisako
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinji Uemoto
- Shiga University Medical Science, Otsu, Shiga, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Sophia Thul
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Azumi Ueyama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazunori Yokoi
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yohei Nose
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mamoru Kakuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaharu Kohara
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
18
|
Shorey-Kendrick LE, Davis B, Gao L, Park B, Vu A, Morris CD, Breton CV, Fry R, Garcia E, Schmidt RJ, O’Shea TM, Tepper RS, McEvoy CT, Spindel ER, on behalf of program collaborators for Environmental influences on Child Health Outcomes. Development and Validation of a Novel Placental DNA Methylation Biomarker of Maternal Smoking during Pregnancy in the ECHO Program. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67005. [PMID: 38885141 PMCID: PMC11218700 DOI: 10.1289/ehp13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Maternal cigarette smoking during pregnancy (MSDP) is associated with numerous adverse health outcomes in infants and children with potential lifelong consequences. Negative effects of MSDP on placental DNA methylation (DNAm), placental structure, and function are well established. OBJECTIVE Our aim was to develop biomarkers of MSDP using DNAm measured in placentas (N = 96 ), collected as part of the Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function double-blind, placebo-controlled randomized clinical trial conducted between 2012 and 2016. We also aimed to develop a digital polymerase chain reaction (PCR) assay for the top ranking cytosine-guanine dinucleotide (CpG) so that large numbers of samples can be screened for exposure at low cost. METHODS We compared the ability of four machine learning methods [logistic least absolute shrinkage and selection operator (LASSO) regression, logistic elastic net regression, random forest, and gradient boosting machine] to classify MSDP based on placental DNAm signatures. We developed separate models using the complete EPIC array dataset and on the subset of probes also found on the 450K array so that models exist for both platforms. For comparison, we developed a model using CpGs previously associated with MSDP in placenta. For each final model, we used model coefficients and normalized beta values to calculate placental smoking index (PSI) scores for each sample. Final models were validated in two external datasets: the Extremely Low Gestational Age Newborn observational study, N = 426 ; and the Rhode Island Children's Health Study, N = 237 . RESULTS Logistic LASSO regression demonstrated the highest performance in cross-validation testing with the lowest number of input CpGs. Accuracy was greatest in external datasets when using models developed for the same platform. PSI scores in smokers only (n = 72 ) were moderately correlated with maternal plasma cotinine levels. One CpG (cg27402634), with the largest coefficient in two models, was measured accurately by digital PCR compared with measurement by EPIC array (R 2 = 0.98 ). DISCUSSION To our knowledge, we have developed the first placental DNAm-based biomarkers of MSDP with broad utility to studies of prenatal disease origins. https://doi.org/10.1289/EHP13838.
Collapse
Affiliation(s)
- Lyndsey E. Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Brett Davis
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Health & Science University–Portland State University School of Public Health, Portland, Oregon, USA
| | - Annette Vu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cynthia D. Morris
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
- MIND Institute, School of Medicine, University of California Davis, Davis, California, USA
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Robert S. Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cindy T. McEvoy
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Eliot R. Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
19
|
Sah N, Soncin F. Conserved and divergent features of trophoblast stem cells. J Mol Endocrinol 2024; 72:e230131. [PMID: 38276878 PMCID: PMC11008758 DOI: 10.1530/jme-23-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
Trophoblast stem cells (TSCs) are a proliferative multipotent population derived from the trophectoderm of the blastocyst, which will give rise to all the functional cell types of the trophoblast compartment of the placenta. The isolation and culture of TSCs in vitro represent a robust model to study mechanisms of trophoblast differentiation into mature cells both in successful and diseased pregnancy. Despite the highly conserved functions of the placenta, there is extreme variability in placental morphology, fetal-maternal interface, and development among eutherian mammals. This review aims to summarize the establishment and maintenance of TSCs in mammals such as primates, including human, rodents, and nontraditional animal models with a primary emphasis on epigenetic regulation of their origin while defining gaps in the current literature and areas of further development. FGF signaling is critical for mouse TSCs but dispensable for derivation of TSCs in other species. Human, simian, and bovine TSCs have much more complicated requirements of signaling pathways including activation of WNT and inhibition of TGFβ cascades. Epigenetic features such as DNA and histone methylation as well as histone acetylation are dynamic during development and are expressed in cell- and gestational age-specific pattern in placental trophoblasts. While TSCs from different species seem to recapitulate some select epigenomic features, there is a limitation in the comprehensive understanding of TSCs and how well TSCs retain placental epigenetic marks. Therefore, future studies should be directed at investigating epigenomic features of global and placental-specific gene expression in primary trophoblasts and TSCs.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Lariviere D, Craig SJC, Paul IM, Hohman EE, Savage JS, Wright RO, Chiaromonte F, Makova KD, Reimherr ML. Methylation profiles at birth linked to early childhood obesity. J Dev Orig Health Dis 2024; 15:e7. [PMID: 38660759 PMCID: PMC11268442 DOI: 10.1017/s2040174424000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Childhood obesity represents a significant global health concern and identifying its risk factors is crucial for developing intervention programs. Many "omics" factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
Collapse
Affiliation(s)
- Delphine Lariviere
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Sarah J C Craig
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Ian M Paul
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Emily E Hohman
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
| | - Jennifer S Savage
- Center for Childhood Obesity Research, Penn State University, University Park, PA, USA
- Nutrition Department, Penn State University, University Park, PA, USA
| | | | - Francesca Chiaromonte
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
- L'EMbeDS, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà, Pisa, Italy
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA
- Center for Medical Genomics, Penn State University, University Park, PA, USA
| | - Matthew L Reimherr
- Center for Medical Genomics, Penn State University, University Park, PA, USA
- Department of Statistics, Penn State University, University Park, PA, USA
| |
Collapse
|
21
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
22
|
Toh H, Sasaki H. Spatiotemporal DNA methylation dynamics shape megabase-scale methylome landscapes. Life Sci Alliance 2024; 7:e202302403. [PMID: 38233073 PMCID: PMC10794778 DOI: 10.26508/lsa.202302403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
DNA methylation is an essential epigenetic mechanism that regulates cellular reprogramming and development. Studies using whole-genome bisulfite sequencing have revealed distinct DNA methylome landscapes in human and mouse cells and tissues. However, the factors responsible for the differences in megabase-scale methylome patterns between cell types remain poorly understood. By analyzing publicly available 258 human and 301 mouse whole-genome bisulfite sequencing datasets, we reveal that genomic regions rich in guanine and cytosine, when located near the nuclear center, are highly susceptible to both global DNA demethylation and methylation events during embryonic and germline reprogramming. Furthermore, we found that regions that generate partially methylated domains during global DNA methylation are more likely to resist global DNA demethylation, contain high levels of adenine and thymine, and are adjacent to the nuclear lamina. The spatial properties of genomic regions, influenced by their guanine-cytosine content, are likely to affect the accessibility of molecules involved in DNA (de)methylation. These properties shape megabase-scale DNA methylation patterns and change as cells differentiate, leading to the emergence of different megabase-scale methylome patterns across cell types.
Collapse
Affiliation(s)
- Hidehiro Toh
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Zakeri S, Rahimi Z, Rezvani N, Vaisi-Raygani A, Alibakhshi R, Zakeri S, Yari K. The influence of Nrf2 gene promoter methylation on gene expression and oxidative stress parameters in preeclampsia. BMC Med Genomics 2024; 17:64. [PMID: 38419047 PMCID: PMC10903067 DOI: 10.1186/s12920-023-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND AND AIMS Preeclampsia (PE) is a serious medical condition that usually causes high blood pressure and affects multiple organs. Considering the adverse effect of oxidative stress on the process of PE in pregnant women and regarding the role of the Nrf2 gene in placental oxidative pathways, this study was conducted to investigate the DNA methylation status of Nrf2 in PE and healthy pregnant women. MATERIALS AND METHODS The present case-control study consisted of 70 PE and 70 healthy pregnant women. Blood and placenta samples were taken from all subjects, and the percentage of the Nrf2 gene methylation in the samples was assessed by the Methyl Light PCR method. Also, the Nrf2 gene expression was evaluated by real-time PCR. The total antioxidant capacity (TAC) and total oxidative status (TOS) were measured by the colorimetric method. RESULTS In PE women, there was a significant increase in blood pressure, term of pregnancy, and BMI. In addition, there were enhanced Nrf2 DNA methylation percentage in placenta tissue and increased TOS levels in placenta tissue and blood compared to healthy pregnant women (P < 0.05). Also, in the PE group, there was a significant decrease in Nrf2 gene expression and TAC level in placenta tissue compared to the control group (P < 0.05). CONCLUSION The Nrf2 gene undergoes epigenetic modifications of DNA hypermethylation in the PE placenta. Decreased expression of this gene and the changes in the level of oxidative parameters (TAC, TOS) confirm it.
Collapse
Affiliation(s)
- Saba Zakeri
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Daneshgah Avenue, Kermanshah, P.O.Box: 67148-69914, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Daneshgah Avenue, Kermanshah, P.O.Box: 67148-69914, Iran.
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nayebali Rezvani
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Daneshgah Avenue, Kermanshah, P.O.Box: 67148-69914, Iran
| | - Asad Vaisi-Raygani
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Daneshgah Avenue, Kermanshah, P.O.Box: 67148-69914, Iran
| | - Reza Alibakhshi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Daneshgah Avenue, Kermanshah, P.O.Box: 67148-69914, Iran
| | - Sahel Zakeri
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Sanandaj, Iran
| | - Kheirolah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Gajić M, Schröder-Heurich B, Mayer-Pickel K. Deciphering the immunological interactions: targeting preeclampsia with Hydroxychloroquine's biological mechanisms. Front Pharmacol 2024; 15:1298928. [PMID: 38375029 PMCID: PMC10875033 DOI: 10.3389/fphar.2024.1298928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Preeclampsia (PE) is a complex pregnancy-related disorder characterized by hypertension, followed by organ dysfunction and uteroplacental abnormalities. It remains a major cause of maternal and neonatal morbidity and mortality worldwide. Although the pathophysiology of PE has not been fully elucidated, a two-stage model has been proposed. In this model, a poorly perfused placenta releases various factors into the maternal circulation during the first stage, including pro-inflammatory cytokines, anti-angiogenic factors, and damage-associated molecular patterns into the maternal circulation. In the second stage, these factors lead to a systemic vascular dysfunction with consecutive clinical maternal and/or fetal manifestations. Despite advances in feto-maternal management, effective prophylactic and therapeutic options for PE are still lacking. Since termination of pregnancy is the only curative therapy, regardless of gestational age, new treatment/prophylactic options are urgently needed. Hydroxychloroquine (HCQ) is mainly used to treat malaria as well as certain autoimmune conditions such as systemic lupus and rheumatoid arthritis. The exact mechanism of action of HCQ is not fully understood, but several mechanisms of action have been proposed based on its pharmacological properties. Interestingly, many of them might counteract the proposed processes involved in the development of PE. Therefore, based on a literature review, we aimed to investigate the interrelated biological processes of HCQ and PE and to identify potential molecular targets in these processes.
Collapse
Affiliation(s)
- Maja Gajić
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
25
|
Lea G, Hanna CW. Loss of DNA methylation disrupts syncytiotrophoblast development: Proposed consequences of aberrant germline gene activation. Bioessays 2024; 46:e2300140. [PMID: 37994176 DOI: 10.1002/bies.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development and its disruption is widely implicated in disease. Yet, remarkably, ablation of DNA methylation in transgenic mouse models has limited impact on transcriptional states. Across multiple tissues and developmental contexts, the predominant transcriptional signature upon loss of DNA methylation is the de-repression of a subset of germline genes, normally expressed in gametogenesis. We recently reported loss of de novo DNA methyltransferase DNMT3B resulted in up-regulation of germline genes and impaired syncytiotrophoblast formation in the murine placenta. This defect led to embryonic lethality. We hypothesize that de-repression of germline genes in the Dnmt3b knockout underpins aspects of the placental phenotype by interfering with normal developmental processes. Specifically, we discuss molecular mechanisms by which aberrant expression of the piRNA pathway, meiotic proteins or germline transcriptional regulators may disrupt syncytiotrophoblast development.
Collapse
Affiliation(s)
- Georgia Lea
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Courtney W Hanna
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Sacco JC, Starr E, Weaver A, Dietz R, Spocter MA. Resequencing of the TMF-1 (TATA Element Modulatory Factor) regulated protein (TRNP1) gene in domestic and wild canids. Canine Med Genet 2023; 10:10. [PMID: 37968761 PMCID: PMC10647097 DOI: 10.1186/s40575-023-00133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Cortical folding is related to the functional organization of the brain. The TMF-1 regulated protein (TRNP1) regulates the expansion and folding of the mammalian cerebral cortex, a process that may have been accelerated by the domestication of dogs. The objectives of this study were to sequence the TRNP1 gene in dogs and related canid species, provide evidence of its expression in dog brain and compare the genetic variation within dogs and across the Canidae. The gene was located in silico to dog chromosome 2. The sequence was experimentally confirmed by amplifying and sequencing the TRNP1 exonic and promoter regions in 72 canids (36 purebred dogs, 20 Gy wolves and wolf-dog hybrids, 10 coyotes, 5 red foxes and 1 Gy fox). RESULTS A partial TRNP1 transcript was isolated from several regions in the dog brain. Thirty genetic polymorphisms were found in the Canis sp. with 17 common to both dogs and wolves, and only one unique to dogs. Seven polymorphisms were observed only in coyotes. An additional 9 variants were seen in red foxes. Dogs were the least genetically diverse. Several polymorphisms in the promoter and 3'untranslated region were predicted to alter TRNP1 function by interfering with the binding of transcriptional repressors and miRNAs expressed in neural precursors. A c.259_264 deletion variant that encodes a polyalanine expansion was polymorphic in all species studied except for dogs. A stretch of 15 nucleotides that is found in other mammalian sequences (corresponding to 5 amino acids located between Pro58 and Ala59 in the putative dog protein) was absent from the TRNP1 sequences of all 5 canid species sequenced. Both of these aforementioned coding sequence variations were predicted to affect the formation of alpha helices in the disordered region of the TRNP1 protein. CONCLUSIONS Potentially functionally important polymorphisms in the TRNP1 gene are found within and across various Canis species as well as the red fox, and unique differences in protein structure have evolved and been conserved in the Canidae compared to all other mammalian species.
Collapse
Affiliation(s)
- James C Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA.
| | - Emma Starr
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA
| | - Alyssa Weaver
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA
| | - Rachel Dietz
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, 50311, Des Moines, IA, USA
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, 50266, Des Moines, IA, USA
| |
Collapse
|
27
|
Sainty R, Silver MJ, Prentice AM, Monk D. The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta. Front Cell Dev Biol 2023; 11:1212199. [PMID: 37484911 PMCID: PMC10358779 DOI: 10.3389/fcell.2023.1212199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
DNA methylation is the most commonly studied epigenetic mark in humans, as it is well recognised as a stable, heritable mark that can affect genome function and influence gene expression. Somatic DNA methylation patterns that can persist throughout life are established shortly after fertilisation when the majority of epigenetic marks, including DNA methylation, are erased from the pre-implantation embryo. Therefore, the period around conception is potentially critical for influencing DNA methylation, including methylation at imprinted alleles and metastable epialleles (MEs), loci where methylation varies between individuals but is correlated across tissues. Exposures before and during conception can affect pregnancy outcomes and health throughout life. Retrospective studies of the survivors of famines, such as those exposed to the Dutch Hunger Winter of 1944-45, have linked exposures around conception to later disease outcomes, some of which correlate with DNA methylation changes at certain genes. Animal models have shown more directly that DNA methylation can be affected by dietary supplements that act as cofactors in one-carbon metabolism, and in humans, methylation at birth has been associated with peri-conceptional micronutrient supplementation. However, directly showing a role of micronutrients in shaping the epigenome has proven difficult. Recently, the placenta, a tissue with a unique hypomethylated methylome, has been shown to possess great inter-individual variability, which we highlight as a promising target tissue for studying MEs and mixed environmental exposures. The placenta has a critical role shaping the health of the fetus. Placenta-associated pregnancy complications, such as preeclampsia and intrauterine growth restriction, are all associated with aberrant patterns of DNA methylation and expression which are only now being linked to disease risk later in life.
Collapse
Affiliation(s)
- Rebecca Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
28
|
Shorey-Kendrick LE, Roberts VHJ, D'Mello RJ, Sullivan EL, Murphy SK, Mccarty OJT, Schust DJ, Hedges JC, Mitchell AJ, Terrobias JJD, Easley CA, Spindel ER, Lo JO. Prenatal delta-9-tetrahydrocannabinol exposure is associated with changes in rhesus macaque DNA methylation enriched for autism genes. Clin Epigenetics 2023; 15:104. [PMID: 37415206 PMCID: PMC10324248 DOI: 10.1186/s13148-023-01519-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND With the growing availability of cannabis and the popularization of additional routes of cannabis use beyond smoking, including edibles, the prevalence of cannabis use in pregnancy is rapidly increasing. However, the potential effects of prenatal cannabis use on fetal developmental programming remain unknown. RESULTS We designed this study to determine whether the use of edible cannabis during pregnancy is deleterious to the fetal and placental epigenome. Pregnant rhesus macaques consumed a daily edible containing either delta-9-tetrahydrocannabinol (THC) (2.5 mg/7 kg/day) or placebo. DNA methylation was measured in 5 tissues collected at cesarean delivery (placenta, lung, cerebellum, prefrontal cortex, and right ventricle of the heart) using the Illumina MethylationEPIC platform and filtering for probes previously validated in rhesus macaque. In utero exposure to THC was associated with differential methylation at 581 CpGs, with 573 (98%) identified in placenta. Loci differentially methylated with THC were enriched for candidate autism spectrum disorder (ASD) genes from the Simons Foundation Autism Research Initiative (SFARI) database in all tissues. The placenta demonstrated greatest SFARI gene enrichment, including genes differentially methylated in placentas from a prospective ASD study. CONCLUSIONS Overall, our findings reveal that prenatal THC exposure alters placental and fetal DNA methylation at genes involved in neurobehavioral development that may influence longer-term offspring outcomes. The data from this study add to the limited existing literature to help guide patient counseling and public health polices focused on prenatal cannabis use in the future.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Rahul J D'Mello
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Elinor L Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Owen J T Mccarty
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Danny J Schust
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27701, USA
| | - Jason C Hedges
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Urology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - A J Mitchell
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jose Juanito D Terrobias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Charles A Easley
- Department of Environmental Health Science, University of Georgia College of Public Health, Athens, GA, 30602, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jamie O Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
29
|
Lynch-Sutherland CF, McDougall LI, Stockwell PA, Almomani SN, Weeks RJ, Ludgate JL, Gamage TKJB, Chatterjee A, James JL, Eccles MR, Macaulay EC. The transposable element-derived transcript of LIN28B has a placental origin and is not specific to tumours. Mol Genet Genomics 2023:10.1007/s00438-023-02033-1. [PMID: 37269361 PMCID: PMC10363060 DOI: 10.1007/s00438-023-02033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
Transposable elements (TEs) are genetic elements that have evolved as crucial regulators of human development and cancer, functioning as both genes and regulatory elements. When TEs become dysregulated in cancer cells, they can serve as alternate promoters to activate oncogenes, a process known as onco-exaptation. This study aimed to explore the expression and epigenetic regulation of onco-exaptation events in early human developmental tissues. We discovered co-expression of some TEs and oncogenes in human embryonic stem cells and first trimester and term placental tissues. Previous studies identified onco-exaptation events in various cancer types, including an AluJb SINE element-LIN28B interaction in lung cancer cells, and showed that the TE-derived LIN28B transcript is associated with poor patient prognosis in hepatocellular carcinoma. This study further characterized the AluJb-LIN28B transcript and confirmed that its expression is restricted to the placenta. Targeted DNA methylation analysis revealed differential methylation of the two LIN28B promoters between placenta and healthy somatic tissues, indicating that some TE-oncogene interactions are not cancer-specific but arise from the epigenetic reactivation of developmental TE-derived regulatory events. In conclusion, our findings provide evidence that some TE-oncogene interactions are not limited to cancer and may originate from the epigenetic reactivation of TE-derived regulatory events that are involved in early development. These insights broaden our understanding of the role of TEs in gene regulation and suggest the potential importance of targeting TEs in cancer therapy beyond their conventional use as cancer-specific markers.
Collapse
Affiliation(s)
- Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| | - Lorissa I McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Jackie L Ludgate
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Teena K J B Gamage
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
30
|
Li Q, Lu J, Yin X, Chang Y, Wang C, Yan M, Feng L, Cheng Y, Gao Y, Xu B, Zhang Y, Wang Y, Cui G, Xu L, Sun Y, Zeng R, Li Y, Jing N, Xu GL, Wu L, Tang F, Li J. Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation. Nat Commun 2023; 14:2922. [PMID: 37217538 PMCID: PMC10203112 DOI: 10.1038/s41467-023-38528-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
During embryo development, DNA methylation is established by DNMT3A/3B and subsequently maintained by DNMT1. While much research has been done in this field, the functional significance of DNA methylation in embryogenesis remains unknown. Here, we establish a system of simultaneous inactivation of multiple endogenous genes in zygotes through screening for base editors that can efficiently introduce a stop codon. Embryos with mutations in Dnmts and/or Tets can be generated in one step with IMGZ. Dnmt-null embryos display gastrulation failure at E7.5. Interestingly, although DNA methylation is absent, gastrulation-related pathways are down-regulated in Dnmt-null embryos. Moreover, DNMT1, DNMT3A, and DNMT3B are critical for gastrulation, and their functions are independent of TET proteins. Hypermethylation can be sustained by either DNMT1 or DNMT3A/3B at some promoters, which are related to the suppression of miRNAs. The introduction of a single mutant allele of six miRNAs and paternal IG-DMR partially restores primitive streak elongation in Dnmt-null embryos. Thus, our results unveil an epigenetic correlation between promoter methylation and suppression of miRNA expression for gastrulation and demonstrate that IMGZ can accelerate deciphering the functions of multiple genes in vivo.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chao Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meng Yan
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Cheng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yun Gao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingyi Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
31
|
Zheng X, Lian Y, Zhou J, Zhou Q, Zhu Y, Tang C, Zhang P, Zhao X. Placental ischemia disrupts DNA methylation patterns in distal regulatory regions in rats. Life Sci 2023; 321:121623. [PMID: 37001402 DOI: 10.1016/j.lfs.2023.121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal morbidity and mortality worldwide. However, the impact of PE on the organization of the functional architecture of the placental methylome remains largely unknown. We performed whole-genome bisulfite sequencing of placental DNA and applied a Hidden Markov Model to investigate epigenome-wide alterations in functional structures, including partially methylated domains (PMDs), low-methylated regions (LMRs), and unmethylated regions (UMRs), in a reduced uterine perfusion pressure (RUPP) rat model of PE. The remarkable similarity we observed between the rat and human placental DNA methylomes suggests that the RUPP rat model is appropriate to elucidate the epigenetic mechanisms underlying human PE. The notable changes in PMDs indicate RUPP-induced perturbation of the stressed placental methylome. This was probably regulated via modulation of the epigenetic modifier expression, including significant downregulation of Dnmt1 and Dnmt3a and upregulation of Tet2. More importantly, changes in RUPP-induced DNA methylation occurred predominately in LMRs (80 %), which represent active enhancers, rather than in canonical UMRs (3 %), which represent promoters, suggesting that placental ischemia disrupts enhancer DNA methylation. Our findings emphasize the role of enhancer methylation in response to PE, corroborating discoveries in human PE studies. We suggest paying more attention to enhancer regions in future studies on PE.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Yahan Lian
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Jing Zhou
- Department of Laboratory Animal Science, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Qian Zhou
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yu Zhu
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Chunhua Tang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Ping Zhang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| | - Xinzhi Zhao
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.
| |
Collapse
|
32
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Orellana-Guerrero D, Uribe-Salazar JM, El-Sheikh Ali H, Scoggin KE, Ball B, Daels P, Finno CJ, Dini P. Dynamics of the Equine Placental DNA Methylome and Transcriptome from Mid- to Late Gestation. Int J Mol Sci 2023; 24:ijms24087084. [PMID: 37108254 PMCID: PMC10139181 DOI: 10.3390/ijms24087084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The placenta is a temporary organ that is essential for the survival of the fetus, with a lifelong effect on the health of both the offspring and the dam. The functions of the placenta are controlled by its dynamic gene expression during gestation. In this study, we aimed to investigate the equine placental DNA methylome as one of the fundamental mechanisms that controls the gene expression dynamic. Chorioallantois samples from four (4M), six (6M), and ten (10M) months of gestation were used to map the methylation pattern of the placenta. Globally, methylation levels increased toward the end of gestation. We identified 921 differentially methylated regions (DMRs) between 4M and 6M, 1225 DMRs between 4M and 10M, and 1026 DMRs between 6M and 10M. A total of 817 genes carried DMRs comparing 4M and 6M, 978 comparing 4M and 10M, and 804 comparing 6M and 10M. We compared the transcriptomes between the samples and found 1381 differentially expressed genes (DEGs) when comparing 4M and 6M, 1428 DEGs between 4M and 10M, and 741 DEGs between 6M and 10M. Finally, we overlapped the DEGs and genes carrying DMRs (DMRs-DEGs). Genes exhibiting (a) higher expression, low methylation and (b) low expression, high methylation at different time points were identified. The majority of these DMRs-DEGs were located in introns (48.4%), promoters (25.8%), and exons (17.7%) and were involved in changes in the extracellular matrix; regulation of epithelial cell migration; vascularization; and regulation of minerals, glucose, and metabolites, among other factors. Overall, this is the first report highlighting the dynamics in the equine placenta methylome during normal pregnancy. The findings presented serve as a foundation for future studies on the impact of abnormal methylation on the outcomes of equine pregnancies.
Collapse
Affiliation(s)
- Daniela Orellana-Guerrero
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
- College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Peter Daels
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
34
|
Mouat JS, Li X, Neier K, Zhu Y, Mordaunt CE, La Merrill MA, Lehmler HJ, Jones MP, Lein PJ, Schmidt RJ, LaSalle JM. Networks of placental DNA methylation correlate with maternal serum PCB concentrations and child neurodevelopment. ENVIRONMENTAL RESEARCH 2023; 220:115227. [PMID: 36608759 PMCID: PMC10518186 DOI: 10.1016/j.envres.2023.115227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gestational exposure to polychlorinated biphenyls (PCBs) has been associated with elevated risk for neurodevelopmental disorders. Placental epigenetics may serve as a potential mechanism of risk or marker of altered placental function. Prior studies have associated differential placental DNA methylation with maternal PCB exposure or with increased risk of autism spectrum disorder (ASD). However, sequencing-based placental methylomes have not previously been tested for simultaneous associations with maternal PCB levels and child neurodevelopmental outcomes. OBJECTIVES We aimed to identify placental DNA methylation patterns associated with maternal PCB levels and child neurodevelopmental outcomes in the high-risk ASD MARBLES cohort. METHODS We measured 209 PCB congeners in 104 maternal serum samples collected at delivery. We identified networks of DNA methylation from 147 placenta samples using the Comethyl R package, which performs weighted gene correlation network analysis for whole genome bisulfite sequencing data. We tested placental DNA methylation modules for association with maternal serum PCB levels, child neurodevelopment, and other participant traits. RESULTS PCBs 153 + 168, 170, 180 + 193, and 187 were detected in over 50% of maternal serum samples and were highly correlated with one another. Consistent with previous findings, maternal age was the strongest predictor of serum PCB levels, alongside year of sample collection, pre-pregnancy BMI, and polyunsaturated fatty acid levels. Twenty seven modules of placental DNA methylation were identified, including five which significantly correlated with one or more PCBs, and four which correlated with child neurodevelopment. Two modules associated with maternal PCB levels as well as child neurodevelopment, and mapped to CSMD1 and AUTS2, genes previously implicated in ASD and identified as differentially methylated regions in mouse brain and placenta following gestational PCB exposure. CONCLUSIONS Placental DNA co-methylation modules were associated with maternal PCBs and child neurodevelopment. Methylation of CSMD1 and AUTS2 could be markers of altered placental function and/or ASD risk following maternal PCB exposure.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | - Michele A La Merrill
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Pamela J Lein
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA; Perinatal Origins of Disparities Center, University of California, Davis, CA, USA; Genome Center, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
35
|
Demeneva VV, Tolmacheva EN, Nikitina TV, Sazhenova EA, Yuriev SY, Makhmutkhodzhaev AS, Zuev AS, Filatova SA, Dmitriev AE, Darkova YA, Nazarenko LP, Lebedev IN, Vasilyev SA. Expression of the NUP153 and YWHAB genes from their canonical promoters and alternative promoters of the LINE-1 retrotransposon in the placenta of the first trimester of pregnancy. Vavilovskii Zhurnal Genet Selektsii 2023; 27:63-71. [PMID: 36923475 PMCID: PMC10009475 DOI: 10.18699/vjgb-23-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 03/11/2023] Open
Abstract
The placenta has a unique hypomethylated genome. Due to this feature of the placenta, there is a potential possibility of using regulatory elements derived from retroviruses and retrotransposons, which are suppressed by DNA methylation in the adult body. In addition, there is an abnormal increase in the level of methylation of the LINE-1 retrotransposon in the chorionic trophoblast in spontaneous abortions with both normal karyotype and aneuploidy on different chromosomes, which may be associated with impaired gene transcription using LINE-1 regulatory elements. To date, 988 genes that can be expressed from alternative LINE-1 promoters have been identified. Using the STRING tool, genes (NUP153 and YWHAB) were selected, the products of which have significant functional relationships with proteins highly expressed in the placenta and involved in trophoblast differentiation. This study aimed to analyze the expression of the NUP153 and YWHAB genes, highly active in the placenta, from canonical and alternative LINE-1 promoters in the germinal part of the placenta of spontaneous and induced abortions. Gene expression analysis was performed using real-time PCR in chorionic villi and extraembryonic mesoderm of induced abortions (n = 10), adult lymphocytes (n = 10), spontaneous abortions with normal karyotype (n = 10), and with the most frequent aneuploidies in the first trimester of pregnancy (trisomy 16 (n = 8) and monosomy X (n = 6)). The LINE-1 methylation index was assessed in the chorionic villi of spontaneous abortions using targeted bisulfite massive parallel sequencing. The level of expression of both genes from canonical promoters was higher in blood lymphocytes than in placental tissues (p < 0.05). However, the expression level of the NUP153 gene from the alternative LINE-1 promoter was 17 times higher in chorionic villi and 23 times higher in extraembryonic mesoderm than in lymphocytes (p < 0.05). The expression level of NUP153 and YWHAB from canonical promoters was higher in the group of spontaneous abortions with monosomy X compared to all other groups (p <0.05). The LINE-1 methylation index negatively correlated with the level of gene expression from both canonical (NUP153 - R = -0.59, YWHAB - R = -0.52, p < 0.05) and alternative LINE-1 promoters (NUP153 - R = -0.46, YWHAB - R = -0.66, p < 0.05). Thus, the observed increase in the LINE-1 methylation index in the placenta of spontaneous abortions is associated with the level of expression of the NUP153 and YWHAB genes not only from alternative but also from canonical promoters, which can subsequently lead to negative consequences for normal embryogenesis.
Collapse
Affiliation(s)
- V V Demeneva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S Yu Yuriev
- Siberian State Medical University, Tomsk, Russia
| | | | - A S Zuev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S A Filatova
- National Research Tomsk State University, Tomsk, Russia
| | - A E Dmitriev
- National Research Tomsk State University, Tomsk, Russia
| | - Ya A Darkova
- National Research Tomsk State University, Tomsk, Russia
| | - L P Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University, Tomsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
36
|
Eaves LA, Enggasser AE, Camerota M, Gogcu S, Gower WA, Hartwell H, Jackson WM, Jensen E, Joseph RM, Marsit CJ, Roell K, Santos HP, Shenberger JS, Smeester L, Yanni D, Kuban KCK, O'Shea TM, Fry RC. CpG methylation patterns in placenta and neonatal blood are differentially associated with neonatal inflammation. Pediatr Res 2023; 93:1072-1084. [PMID: 35764815 PMCID: PMC10289042 DOI: 10.1038/s41390-022-02150-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Infants born extremely premature are at increased risk for health complications later in life for which neonatal inflammation may be a contributing biological driver. Placental CpG methylation provides mechanistic information regarding the relationship between prenatal epigenetic programming, prematurity, neonatal inflammation, and later-in-life health. METHODS We contrasted CpG methylation in the placenta and neonatal blood spots in relation to neonatal inflammation in the Extremely Low Gestational Age Newborn (ELGAN) cohort. Neonatal inflammation status was based on the expression of six inflammation-related proteins, assessed as (1) day-one inflammation (DOI) or (2) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 postnatal weeks). Epigenome-wide CpG methylation was assessed in 354 placental samples and 318 neonatal blood samples. RESULTS Placental CpG methylation displayed the strongest association with ISSI (48 CpG sites) but was not associated with DOI. This was in contrast to CpG methylation in blood spots, which was associated with DOI (111 CpG sites) and not with ISSI (one CpG site). CONCLUSIONS Placental CpG methylation was strongly associated with ISSI, a measure of inflammation previously linked to later-in-life cognitive impairment, while day-one neonatal blood methylation was associated with DOI. IMPACT Neonatal inflammation increases the risk of adverse later-life outcomes, especially in infants born extremely preterm. CpG methylation in the placenta and neonatal blood spots were evaluated in relation to neonatal inflammation assessed via circulating proteins as either (i) day-one inflammation (DOI) or (ii) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 weeks). Tissue specificity was observed in epigenetic-inflammatory relationships: placental CpG methylation was associated with ISSI, neonatal blood CpG methylation was associated with DOI. Supporting the placental origins of disease framework, placental epigenetic patterns are associated with a propensity for ISSI in neonates.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam E Enggasser
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Semsa Gogcu
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - William A Gower
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wesley M Jackson
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth Jensen
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Nursing & Health Studies, University of Miami, Miami, FL, USA
| | - Jeffrey S Shenberger
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diana Yanni
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Karl C K Kuban
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Boston University Medical Center, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Hanson B, Paternoster B, Povarnitsyn N, Scotchman E, Chitty L, Chandler N. Non-invasive prenatal diagnosis (NIPD): current and emerging technologies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:3-26. [PMID: 39698301 PMCID: PMC11648410 DOI: 10.20517/evcna.2022.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 12/20/2024]
Abstract
Prenatal testing is important for the early detection and diagnosis of rare genetic conditions with life-changing implications for the patient and their family. Gaining access to the fetal genotype can be achieved using gold-standard invasive sampling methods, such as amniocentesis and chorionic villus sampling, but these carry a small risk of miscarriage. Non-invasive prenatal diagnosis (NIPD) for select rare monogenic conditions has been in clinical service in England since 2012 and has revolutionised the field of prenatal diagnostics by reducing the number of women undergoing invasive sampling procedures. Fetal-derived genomic material is present in a highly fragmented form amongst the maternal cell-free DNA (cfDNA) in circulation, with sequence coverage across the entire fetal genome. Cell-free fetal DNA (cffDNA) is the foundation for NIPD, and several technologies have been clinically implemented for the detection of paternally inherited and de novo pathogenic variants. Conversely, a low abundance of cffDNA within a high background of maternal cfDNA makes assigning maternally inherited variants to the fetal fraction a significantly more challenging task. Research is ongoing to expand available tests for maternal inheritance to include a broader range of monogenic conditions, as well as to uncover novel diagnostic avenues. This review covers the scope of technologies currently clinically available for NIPD of monogenic conditions and those still in the research pipeline towards implementation in the future.
Collapse
Affiliation(s)
- Britt Hanson
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Nikita Povarnitsyn
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| | - Lyn Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
- Genetic and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London WC1N 3BH, UK
| |
Collapse
|
38
|
Wang J, Zhu X, Dai L, Wang Z, Guan X, Tan X, Li J, Zhang M, Bai Y, Guo H. Supt16 haploinsufficiency causes neurodevelopment disorder by disrupting MAPK pathway in neural stem cells. Hum Mol Genet 2023; 32:860-872. [PMID: 36226587 DOI: 10.1093/hmg/ddac240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Chromatin regulators constitute a fundamental means of transcription regulation, which have been implicated in neurodevelopment and neurodevelopment disorders (NDDs). Supt16, one of candidate genes for NDDs, encodes the large subunit of facilitates chromatin transcription. However, the underlying mechanisms remain poorly understood. Here, Supt16+/- mice was generated, modeling the neurodevelopment disorder. Abnormal cognitive and social behavior was observed in the Supt16 +/- mice. Simultaneously, the number of neurocytes in the cerebral cortex and hippocampus is decreased, which might be resulted from the impairment of mouse neural stem cells (mNSCs) in the SVZ. Supt16 haploinsufficiency affects the proliferation and apoptosis of mNSCs. As the RNA-seq and chromatic immunoprecipitation sequencing assays showed, Supt16 haploinsufficiency disrupts the stemness of mNSCs by inhibiting MAPK signal pathway. Thus, this study demonstrates a critical role of Supt16 gene in the proliferation and apoptosis of mNSCs and provides a novel insight in the pathogenesis of NDDs.
Collapse
Affiliation(s)
- Junwen Wang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xintong Zhu
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Ziyi Wang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xiaoyin Tan
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Jia Li
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Mao Zhang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| |
Collapse
|
39
|
Du C, Jiang J, Li Y, Yu M, Jin J, Chen S, Fan H, Macfarlan TS, Cao B, Sun MA. Regulation of endogenous retrovirus-derived regulatory elements by GATA2/3 and MSX2 in human trophoblast stem cells. Genome Res 2023; 33:197-207. [PMID: 36806146 PMCID: PMC10069462 DOI: 10.1101/gr.277150.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The placenta is an organ with extraordinary phenotypic diversity in eutherian mammals. Recent evidence suggests that numerous human placental enhancers are evolved from lineage-specific insertions of endogenous retroviruses (ERVs), yet the transcription factors (TFs) underlying their regulation remain largely elusive. Here, by first focusing on MER41, a primate-specific ERV family previously linked to placenta and innate immunity, we uncover the binding motifs of multiple crucial trophoblast TFs (GATA2/3, MSX2, GRHL2) in addition to innate immunity TFs STAT1 and IRF1. Integration of ChIP-seq data confirms the binding of GATA2/3, MSX2, and their related factors on the majority of MER41-derived enhancers in human trophoblast stem cells (TSCs). MER41-derived enhancers that are constitutively active in human TSCs are distinct from those activated upon interferon stimulation, which is determined by the binding of relevant TFs and their subfamily compositions. We further demonstrate that GATA2/3 and MSX2 have prevalent binding to numerous other ERV families - indicating their broad impact on ERV-derived enhancers. Functionally, the derepression of many syncytiotrophoblast genes after MSX2 knockdown is likely to be mediated by regulatory elements derived from ERVs - suggesting ERVs are also important for mediating transcriptional repression. Overall, this study characterizes the regulation of ERV-derived regulatory elements by GATA2/3, MSX2, and their cofactors in human TSCs, and provides mechanistic insights into the importance of ERVs in human trophoblast regulatory network.
Collapse
Affiliation(s)
- Cui Du
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jing Jiang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuzhuo Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Miao Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuai Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hairui Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China;
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; .,Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
40
|
Andrews S, Krueger C, Mellado-Lopez M, Hemberger M, Dean W, Perez-Garcia V, Hanna CW. Mechanisms and function of de novo DNA methylation in placental development reveals an essential role for DNMT3B. Nat Commun 2023; 14:371. [PMID: 36690623 PMCID: PMC9870994 DOI: 10.1038/s41467-023-36019-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
DNA methylation is a repressive epigenetic modification that is essential for development, exemplified by the embryonic and perinatal lethality observed in mice lacking de novo DNA methyltransferases (DNMTs). Here we characterise the role for DNMT3A, 3B and 3L in gene regulation and development of the mouse placenta. We find that each DNMT establishes unique aspects of the placental methylome through targeting to distinct chromatin features. Loss of Dnmt3b results in de-repression of germline genes in trophoblast lineages and impaired formation of the maternal-foetal interface in the placental labyrinth. Using Sox2-Cre to delete Dnmt3b in the embryo, leaving expression intact in placental cells, the placental phenotype was rescued and, consequently, the embryonic lethality, as Dnmt3b null embryos could now survive to birth. We conclude that de novo DNA methylation by DNMT3B during embryogenesis is principally required to regulate placental development and function, which in turn is critical for embryo survival.
Collapse
Affiliation(s)
- Simon Andrews
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
| | - Christel Krueger
- Bioinformatics Programme, Babraham Institute, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Bioinformatics Innovation Hub, Altos Labs Cambridge Institute, Cambridge, UK
| | | | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Wendy Dean
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | | | - Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
41
|
An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X, Zhang S, Hong X, Jin X, Sun K. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun 2023; 14:287. [PMID: 36653380 PMCID: PMC9849216 DOI: 10.1038/s41467-023-35959-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) are small molecules generated through a non-random fragmentation procedure. Despite commendable translational values in cancer liquid biopsy, however, the biology of cfDNA, especially the principles of cfDNA fragmentation, remains largely elusive. Through orientation-aware analyses of cfDNA fragmentation patterns against the nucleosome structure and integration with multidimensional functional genomics data, here we report a DNA methylation - nuclease preference - cutting end - size distribution axis, demonstrating the role of DNA methylation as a functional molecular regulator of cfDNA fragmentation. Hence, low-level DNA methylation could increase nucleosome accessibility and alter the cutting activities of nucleases during DNA fragmentation, which further leads to variation in cutting sites and size distribution of cfDNA. We further develop a cfDNA ending preference-based metric for cancer diagnosis, whose performance has been validated by multiple pan-cancer datasets. Our work sheds light on the molecular basis of cfDNA fragmentation towards broader applications in cancer liquid biopsy.
Collapse
Affiliation(s)
- Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Li Ma
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 518107, Shenzhen, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Shuowen Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China.
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
42
|
Ravaei A, Emanuele M, Nazzaro G, Fadiga L, Rubini M. Placental DNA methylation profile as predicting marker for autism spectrum disorder (ASD). Mol Med 2023; 29:8. [PMID: 36647002 PMCID: PMC9843962 DOI: 10.1186/s10020-022-00593-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impairs normal brain development and socio-cognitive abilities. The pathogenesis of this condition points out the involvement of genetic and environmental factors during in-utero life. Placenta, as an interface tissue between mother and fetus, provides developing fetus requirements and exposes it to maternal environment as well. Therefore, the alteration of DNA methylation as epigenetic consequence of gene-environmental interaction in the placenta could shed light on ASD pathogenesis. In this study, we reviewed the current findings on placental methylation status and its association with ASD. Differentially methylated regions (DMRs) in ASD-developing placenta were found to be mainly enriched in ASD gene loci affecting synaptogenesis, microtubule dynamics, neurogenesis and neuritogenesis. In addition, non-genic DMRs in ASD-placenta proposes an alternative contributing mechanism for ASD development. Our study highlights the importance of placental DNA methylation signature as a biomarker for ASD prediction.
Collapse
Affiliation(s)
- Amin Ravaei
- grid.8484.00000 0004 1757 2064Medical Genetics Laboratory, Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Marco Emanuele
- grid.8484.00000 0004 1757 2064Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy ,grid.25786.3e0000 0004 1764 2907IIT@UniFe Center for Translational Neurophysiology of Speech and Communication (CTNSC), Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Giovanni Nazzaro
- grid.8484.00000 0004 1757 2064Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy ,grid.25786.3e0000 0004 1764 2907IIT@UniFe Center for Translational Neurophysiology of Speech and Communication (CTNSC), Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- grid.8484.00000 0004 1757 2064Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy ,grid.25786.3e0000 0004 1764 2907IIT@UniFe Center for Translational Neurophysiology of Speech and Communication (CTNSC), Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Michele Rubini
- grid.8484.00000 0004 1757 2064Medical Genetics Laboratory, Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
43
|
Fernandez-Jimenez N, Fore R, Cilleros-Portet A, Lepeule J, Perron P, Kvist T, Tian FY, Lesseur C, Binder AM, Lozano M, Martorell-Marugán J, Loke YJ, Bakulski KM, Zhu Y, Forhan A, Sammallahti S, Everson TM, Chen J, Michels KB, Belmonte T, Carmona-Sáez P, Halliday J, Daniele Fallin M, LaSalle JM, Tost J, Czamara D, Fernández MF, Gómez-Martín A, Craig JM, Gonzalez-Alzaga B, Schmidt RJ, Dou JF, Muggli E, Lacasaña M, Vrijheid M, Marsit CJ, Karagas MR, Räikkönen K, Bouchard L, Heude B, Santa-Marina L, Bustamante M, Hivert MF, Bilbao JR. A meta-analysis of pre-pregnancy maternal body mass index and placental DNA methylation identifies 27 CpG sites with implications for mother-child health. Commun Biol 2022; 5:1313. [PMID: 36446949 PMCID: PMC9709064 DOI: 10.1038/s42003-022-04267-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Higher maternal pre-pregnancy body mass index (ppBMI) is associated with increased neonatal morbidity, as well as with pregnancy complications and metabolic outcomes in offspring later in life. The placenta is a key organ in fetal development and has been proposed to act as a mediator between the mother and different health outcomes in children. The overall aim of the present work is to investigate the association of ppBMI with epigenome-wide placental DNA methylation (DNAm) in 10 studies from the PACE consortium, amounting to 2631 mother-child pairs. We identify 27 CpG sites at which we observe placental DNAm variations of up to 2.0% per 10 ppBMI-unit. The CpGs that are differentially methylated in placenta do not overlap with CpGs identified in previous studies in cord blood DNAm related to ppBMI. Many of the identified CpGs are located in open sea regions, are often close to obesity-related genes such as GPX1 and LGR4 and altogether, are enriched in cancer and oxidative stress pathways. Our findings suggest that placental DNAm could be one of the mechanisms by which maternal obesity is associated with metabolic health outcomes in newborns and children, although further studies will be needed in order to corroborate these findings.
Collapse
Affiliation(s)
- Nora Fernandez-Jimenez
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country Spain
| | - Ruby Fore
- grid.38142.3c000000041936754XDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Ariadna Cilleros-Portet
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country Spain
| | - Johanna Lepeule
- grid.418110.d0000 0004 0642 0153University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Patrice Perron
- grid.411172.00000 0001 0081 2808Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC Canada
| | - Tuomas Kvist
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Fu-Ying Tian
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA USA
| | - Corina Lesseur
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Alexandra M. Binder
- grid.410445.00000 0001 2188 0957Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA ,grid.19006.3e0000 0000 9632 6718Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA USA
| | - Manuel Lozano
- grid.5338.d0000 0001 2173 938XEpidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain ,grid.5338.d0000 0001 2173 938XPreventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Jordi Martorell-Marugán
- grid.4489.10000000121678994Department of Statistics and Operations Research, University of Granada, Granada, Spain ,grid.4489.10000000121678994Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Yuk J. Loke
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Kelly M. Bakulski
- grid.214458.e0000000086837370Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Yihui Zhu
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA USA
| | - Anne Forhan
- grid.508487.60000 0004 7885 7602Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Sara Sammallahti
- grid.5645.2000000040459992XDepartment of Child and Adolescent Psychiatry and Psychology, Erasmus MC Rotterdam, The Netherlands
| | - Todd M. Everson
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA USA
| | - Jia Chen
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Karin B. Michels
- grid.19006.3e0000 0000 9632 6718Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA USA ,grid.5963.9Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Thalia Belmonte
- grid.411342.10000 0004 1771 1175Health Research Institute of Asturias, ISPA and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cadiz, Spain
| | - Pedro Carmona-Sáez
- grid.4489.10000000121678994Department of Statistics and Operations Research, University of Granada, Granada, Spain ,grid.4489.10000000121678994Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Jane Halliday
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - M. Daniele Fallin
- grid.21107.350000 0001 2171 9311Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Janine M. LaSalle
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA USA
| | - Jorg Tost
- grid.418135.a0000 0004 0641 3404Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Darina Czamara
- grid.419548.50000 0000 9497 5095Max-Planck-Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Mariana F. Fernández
- grid.4489.10000000121678994University of Granada, Center for Biomedical Research (CIBM), Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Antonio Gómez-Martín
- grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.413740.50000 0001 2186 2871Andalusian School of Public Health (EASP), Granada, Spain
| | - Jeffrey M. Craig
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1021.20000 0001 0526 7079Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Beatriz Gonzalez-Alzaga
- grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.413740.50000 0001 2186 2871Andalusian School of Public Health (EASP), Granada, Spain
| | - Rebecca J. Schmidt
- grid.27860.3b0000 0004 1936 9684Department of Public Health Sciences and the MIND Institute, University of California Davis School of Medicine, Davis, CA USA
| | - John F. Dou
- grid.214458.e0000000086837370Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Evelyne Muggli
- grid.1058.c0000 0000 9442 535XMurdoch Children’s Research Institute, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Marina Lacasaña
- grid.507088.2Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain ,grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.413740.50000 0001 2186 2871Andalusian School of Public Health (EASP), Granada, Spain
| | - Martine Vrijheid
- grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.434607.20000 0004 1763 3517ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen J. Marsit
- grid.189967.80000 0001 0941 6502Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA USA
| | - Margaret R. Karagas
- grid.86715.3d0000 0000 9064 6198Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC Canada
| | - Katri Räikkönen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Luigi Bouchard
- grid.86715.3d0000 0000 9064 6198Department of Biochemistry and Functional Genomics, Universite de Sherbrooke, Sherbrooke, QC Canada ,grid.459278.50000 0004 4910 4652Department of Laboratory Medicine, CIUSSS du Saguenay–Lac-St-Jean – Hôpital Universitaire de Chicoutimi, Chicoutimi, QC Canada
| | - Barbara Heude
- grid.508487.60000 0004 7885 7602Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Loreto Santa-Marina
- grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.432380.eBiodonostia, Epidemiology and Public Health Area, Environmental Epidemiology and Child Development Group, 20014 San Sebastian, Basque Country Spain ,Health Department of Basque Government, Sub-directorate of Public Health of Gipuzkoa, San Sebastian, Basque Country Spain
| | - Mariona Bustamante
- grid.466571.70000 0004 1756 6246CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain ,grid.434607.20000 0004 1763 3517ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marie-France Hivert
- grid.38142.3c000000041936754XDepartment of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA ,grid.411172.00000 0001 0081 2808Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC Canada ,grid.32224.350000 0004 0386 9924Diabetes Unit, Massachusetts General Hospital, Boston, MA USA
| | - Jose Ramon Bilbao
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country Spain ,grid.512890.7CIBER of diabetes and associated metabolic disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
44
|
Karvas RM, David L, Theunissen TW. Accessing the human trophoblast stem cell state from pluripotent and somatic cells. Cell Mol Life Sci 2022; 79:604. [PMID: 36434136 PMCID: PMC9702929 DOI: 10.1007/s00018-022-04549-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
Trophoblasts are specialized epithelial cells that perform critical functions during blastocyst implantation and mediate maternal-fetal communication during pregnancy. However, our understanding of human trophoblast biology remains limited since access to first-trimester placental tissue is scarce, especially between the first and fourth weeks of development. Moreover, animal models inadequately recapitulate unique aspects of human placental physiology. In the mouse system, the isolation of self-renewing trophoblast stem cells has provided a valuable in vitro model system of placental development, but the derivation of analogous human trophoblast stem cells (hTSCs) has remained elusive until recently. Building on a landmark study reporting the isolation of bona fide hTSCs from blastocysts and first-trimester placental tissues in 2018, several groups have developed methods to derive hTSCs from pluripotent and somatic cell sources. Here we review the biological and molecular properties that define authentic hTSCs, the trophoblast potential of distinct pluripotent states, and methods for inducing hTSCs in somatic cells by direct reprogramming. The generation of hTSCs from pluripotent and somatic cells presents exciting opportunities to elucidate the molecular mechanisms of human placental development and the etiology of pregnancy-related diseases.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laurent David
- Nantes Université, CHU Nantes, INSERM, CR2TI, UMR 1064, 44000, Nantes, France.
- Nantes Université, CHU Nantes, INSERM, CNRS, Biocore, US 016, UAR 3556, 44000, Nantes, France.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
45
|
Andrawus M, Sharvit L, Atzmon G. Epigenetics and Pregnancy: Conditional Snapshot or Rolling Event. Int J Mol Sci 2022; 23:12698. [PMID: 36293556 PMCID: PMC9603966 DOI: 10.3390/ijms232012698] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetics modification such as DNA methylation can affect maternal health during the gestation period. Furthermore, pregnancy can drive a range of physiological and molecular changes that have the potential to contribute to pathological conditions. Pregnancy-related risk factors include multiple environmental, behavioral, and hereditary factors that can impact maternal DNA methylation with long-lasting consequences. Identification of the epigenetic patterns linked to poor pregnancy outcomes is crucial since changes in DNA methylation patterns can have long-term effects. In this review, we provide an overview of the epigenetic changes that influence pregnancy-related molecular programming such as gestational diabetes, immune response, and pre-eclampsia, in an effort to close the gap in current understanding regarding interactions between the environment, the genetics of the fetus, and the pregnant woman.
Collapse
Affiliation(s)
| | | | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
46
|
Zhang J, Huang Y, Wang Y, Xu J, Huang T, Luo X. Construction of biomimetic cell-sheet-engineered periosteum with a double cell sheet to repair calvarial defects of rats. J Orthop Translat 2022; 38:1-11. [PMID: 36313975 PMCID: PMC9582589 DOI: 10.1016/j.jot.2022.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Background The periosteum plays a crucial role in the development and injury healing process of bone. The purpose of this study was to construct a biomimetic periosteum with a double cell sheet for bone tissue regeneration. Methods In vitro, the human amniotic mesenchymal stem cells (hAMSCs) sheet was first fabricated by adding 50 μg/ml ascorbic acid to the cell sheet induction medium. Characterization of the hAMSCs sheet was tested by general observation, microscopic observation, live/dead staining, scanning electron microscopy (SEM) and hematoxylin and eosin (HE) staining. Afterwards, the osteogenic cell sheet and vascular cell sheet were constructed and evaluated by general observation, alkaline phosphatase (ALP) staining, Alizarin Red S staining, SEM, live/dead staining and CD31 immunofluorescent staining for characterization. Then, we prepared the double cell sheet. In vivo, rat calvarial defect model was introduced to verify the regeneration of bone defects treated by different methods. Calvarial defects (diameter: 4 mm) were created of Sprague–Dawley rats. The rats were randomly divided into 4 groups: the control group, the osteogenic cell sheet group, the vascular cell sheet group and the double cell sheet group. Macroscopic, micro-CT and histological evaluations of the regenerated bone were performed to assess the treatment results at 8 weeks and 12 weeks after surgery. Results In vitro, hAMSCs sheet was successfully prepared. The hAMSCs sheet consisted of a large number of live hAMSCs and abundant extracellular matrix (ECM) that secreted by hAMSCs, as evidenced by macroscopic/microscopic observation, live/dead staining, SEM and HE staining. Besides, the osteogenic cell sheet and the vascular cell sheet were successfully prepared, which were verified by general observation, ALP staining, Alizarin Red S staining, SEM and CD31 immunofluorescent staining. In vivo, the macroscopic observation and micro-CT results both demonstrated that the double cell sheet group had better effect on bone regeneration than other groups. In addition, histological assessments indicated that large amounts of new bone had formed in the calvarial defects and more mature collagen in the double cell sheet group. Conclusion The double cell sheet could promote to repair calvarial defects of rats and accelerate bone regeneration. The translational potential of this article We successfully constructed a biomimetic cell-sheet-engineered periosteum with a double cell sheet by a simple, low-cost and effective method. This biomimetic periosteum may be a promising therapeutic strategy for the treatment of bone defects, which may be used in clinic in the future.
Collapse
Key Words
- Biomimetic periosteum
- Bone regeneration
- Double cell sheet
- Osteogenic cell sheet
- Trabecular number, Tb.N
- Trabecular thickness, Tb.Th
- Vascular cell sheet
- adiposetissue derivedstromalcells, ADSCs
- alkaline phosphatase, ALP
- bone mineral density, BMD
- bonemarrowmesenchymlstemcells, BMSCs
- bonevolume fraction, BV/TV
- cell sheet technology, CST
- cytokeratin 19, CK-19
- extracellular matrix, ECM
- hAMSCs sheet
- hematoxylin and eosin, HE
- human amniotic mesenchymal stem cells, hAMSCs
- human ethmoid sinus mucosa derived mesenchymal stem cells, hESMSCs
- periodontal ligament-derived cells, PDLCs
- polylactic-co-glycolic acid, PLGA
- scanning electron microscopy, SEM
Collapse
|
47
|
Laufer BI, Hasegawa Y, Zhang Z, Hogrefe CE, Del Rosso LA, Haapanen L, Hwang H, Bauman MD, Van de Water J, Taha AY, Slupsky CM, Golub MS, Capitanio JP, VandeVoort CA, Walker CK, LaSalle JM. Multi-omic brain and behavioral correlates of cell-free fetal DNA methylation in macaque maternal obesity models. Nat Commun 2022; 13:5538. [PMID: 36130949 PMCID: PMC9492781 DOI: 10.1038/s41467-022-33162-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Casey E Hogrefe
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Laura A Del Rosso
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - Lori Haapanen
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Melissa D Bauman
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
| | - Judy Van de Water
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Mari S Golub
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
| | - John P Capitanio
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Psychology, University of California Davis, Davis, CA, 95616, USA
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Cheryl K Walker
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
- California National Primate Research Center, University of California Davis, Davis, CA, 95616, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA
- Department of Obstetrics and Gynecology, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
- UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
- MIND Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
48
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
49
|
Dou JF, Middleton LYM, Zhu Y, Benke KS, Feinberg JI, Croen LA, Hertz-Picciotto I, Newschaffer CJ, LaSalle JM, Fallin D, Schmidt RJ, Bakulski KM. Prenatal vitamin intake in first month of pregnancy and DNA methylation in cord blood and placenta in two prospective cohorts. Epigenetics Chromatin 2022; 15:28. [PMID: 35918756 PMCID: PMC9344645 DOI: 10.1186/s13072-022-00460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prenatal vitamin use is recommended before and during pregnancies for normal fetal development. Prenatal vitamins do not have a standard formulation, but many contain calcium, folic acid, iodine, iron, omega-3 fatty acids, zinc, and vitamins A, B6, B12, and D, and usually they contain higher concentrations of folic acid and iron than regular multivitamins in the US Nutrient levels can impact epigenetic factors such as DNA methylation, but relationships between maternal prenatal vitamin use and DNA methylation have been relatively understudied. We examined use of prenatal vitamins in the first month of pregnancy in relation to cord blood and placenta DNA methylation in two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI) and Markers of Autism Risk Learning Early Signs (MARBLES) studies. RESULTS In placenta, prenatal vitamin intake was marginally associated with -0.52% (95% CI -1.04, 0.01) lower mean array-wide DNA methylation in EARLI, and associated with -0.60% (-1.08, -0.13) lower mean array-wide DNA methylation in MARBLES. There was little consistency in the associations between prenatal vitamin intake and single DNA methylation site effect estimates across cohorts and tissues, with only a few overlapping sites with correlated effect estimates. However, the single DNA methylation sites with p-value < 0.01 (EARLI cord nCpGs = 4068, EARLI placenta nCpGs = 3647, MARBLES cord nCpGs = 4068, MARBLES placenta nCpGs = 9563) were consistently enriched in neuronal developmental pathways. CONCLUSIONS Together, our findings suggest that prenatal vitamin intake in the first month of pregnancy may be related to lower placental global DNA methylation and related to DNA methylation in brain-related pathways in both placenta and cord blood.
Collapse
Affiliation(s)
- John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Lauren Y M Middleton
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA
| | - Yihui Zhu
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Craig J Newschaffer
- College of Health and Human Development, Penn State University, State College, PA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences and the M.I.N.D. Institute, School of Medicine, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Nagano M, Hu B, Yokobayashi S, Yamamura A, Umemura F, Coradin M, Ohta H, Yabuta Y, Ishikura Y, Okamoto I, Ikeda H, Kawahira N, Nosaka Y, Shimizu S, Kojima Y, Mizuta K, Kasahara T, Imoto Y, Meehan K, Stocsits R, Wutz G, Hiraoka Y, Murakawa Y, Yamamoto T, Tachibana K, Peters J, Mirny LA, Garcia BA, Majewski J, Saitou M. Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO J 2022; 41:e110600. [PMID: 35703121 PMCID: PMC9251848 DOI: 10.15252/embj.2022110600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/09/2022] Open
Abstract
Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.
Collapse
|