1
|
Russo ML, Sousa AMM, Bhattacharyya A. Consequences of trisomy 21 for brain development in Down syndrome. Nat Rev Neurosci 2024; 25:740-755. [PMID: 39379691 PMCID: PMC11834940 DOI: 10.1038/s41583-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The appearance of cognitive deficits and altered brain morphology in newborns with Down syndrome (DS) suggests that these features are driven by disruptions at the earliest stages of brain development. Despite its high prevalence and extensively characterized cognitive phenotypes, relatively little is known about the cellular and molecular mechanisms that drive the changes seen in DS. Recent technical advances, such as single-cell omics and the development of induced pluripotent stem cell (iPSC) models of DS, now enable in-depth analyses of the biochemical and molecular drivers of altered brain development in DS. Here, we review the current state of knowledge on brain development in DS, focusing primarily on data from human post-mortem brain tissue. We explore the biological mechanisms that have been proposed to lead to intellectual disability in DS, assess the extent to which data from studies using iPSC models supports these hypotheses, and identify current gaps in the field.
Collapse
Affiliation(s)
- Matthew L Russo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Takasaki K, Wafula EK, Kumar SS, Smith D, Sit YT, Gagne AL, French DL, Thom CS, Chou ST. Single-cell transcriptomics reveal individual and synergistic effects of Trisomy 21 and GATA1s on hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595827. [PMID: 38826323 PMCID: PMC11142253 DOI: 10.1101/2024.05.24.595827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Trisomy 21 (T21), or Down syndrome (DS), is associated with baseline macrocytic erythrocytosis, thrombocytopenia, and neutrophilia, as well as transient abnormal myelopoiesis (TAM) and myeloid leukemia of DS (ML-DS). TAM and ML-DS blasts both arise from an aberrant megakaryocyte-erythroid progenitor and exclusively express GATA1s, the truncated isoform of GATA1 , while germline GATA1s mutations in a non-T21 context lead to congenital cytopenia(s) without a leukemic predisposition. This suggests that T21 and GATA1s both perturb hematopoiesis in multipotent progenitors, but studying their individual effects is challenging due to limited access to relevant human progenitor populations. To dissect individual developmental impacts, we used single-cell RNA-sequencing to interrogate hematopoietic progenitor cells (HPCs) from isogenic human induced pluripotent stem cells differing only by chromosome 21 and/or GATA1 status. The transcriptomes of these HPCs revealed significant heterogeneity and lineage skew dictated by T21 and/or GATA1s. T21 and GATA1s each disrupted temporal regulation of lineage-specific transcriptional programs and specifically perturbed cell cycle genes. Trajectory inference revealed that GATA1s nearly eliminated erythropoiesis, slowed MK maturation, and promoted myelopoiesis in the euploid context, while in T21 cells, GATA1s competed with the enhanced erythropoiesis and impaired megakaryopoiesis driven by T21 to promote production of immature erythrocytes, MKs, and myeloid cells. The use of isogenic cells revealed distinct transcriptional programs that can be attributed specifically to T21 and GATA1s, and how they independently and synergistically result in HPC proliferation at the expense of maturation, consistent with a pro-leukemic phenotype.
Collapse
|
3
|
Wang W, Zhang X, Li Y, Shen J, Li Y, Xing W, Bai J, Shi J, Zhou Y. Generation and Characterization of Induced Pluripotent Stem Cells Carrying An ASXL1 Mutation. Stem Cell Rev Rep 2024; 20:1889-1901. [PMID: 38884929 DOI: 10.1007/s12015-024-10737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Additional sex combs-like 1 (ASXL1) is an epigenetic modulator frequently mutated in myeloid malignancies, generally associated with poor prognosis. Current models for ASXL1-mutated diseases are mainly based on the complete deletion of Asxl1 or overexpression of C-terminal truncations in mice models. However, these models cannot fully recapitulate the pathogenesis of myeloid malignancies. Patient-derived induced pluripotent stem cells (iPSCs) provide valuable disease models that allow us to understand disease-related molecular pathways and develop novel targeted therapies. Here, we generated iPSCs from a patient with myeloproliferative neoplasm carrying a heterozygous ASXL1 mutation. The iPSCs we generated exhibited the morphology of pluripotent cells, highly expressed pluripotent markers, excellent differentiation potency in vivo, and normal karyotype. Subsequently, iPSCs with or without ASXL1 mutation were induced to differentiate into hematopoietic stem/progenitor cells, and we found that ASXL1 mutation led to myeloid-biased output and impaired erythroid differentiation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that terms related to embryonic development, myeloid differentiation, and immune- and neural-related processes were most enriched in the differentially expressed genes. Western blot demonstrated that the global level of H2AK119ub was significantly decreased when mutant ASXL1 was present. Chromatin Immunoprecipitation Sequencing showed that most genes associated with stem cell maintenance were upregulated, whereas occupancies of H2AK119ub around these genes were significantly decreased. Thus, the iPSC model carrying ASXL1 mutation could serve as a potential tool to study the pathogenesis of myeloid malignancies and to screen targeted therapy for patients.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yihan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jie Bai
- Department of Hematology, The Second Affiliated Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology &Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Bansal P, Banda EC, Glatt-Deeley HR, Stoddard CE, Linsley JW, Arora N, Deleschaux C, Ahern DT, Kondaveeti Y, Massey RE, Nicouleau M, Wang S, Sabariego-Navarro M, Dierssen M, Finkbeiner S, Pinter SF. A dynamic in vitro model of Down syndrome neurogenesis with trisomy 21 gene dosage correction. SCIENCE ADVANCES 2024; 10:eadj0385. [PMID: 38848354 PMCID: PMC11160455 DOI: 10.1126/sciadv.adj0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Excess gene dosage from chromosome 21 (chr21) causes Down syndrome (DS), spanning developmental and acute phenotypes in terminal cell types. Which phenotypes remain amenable to intervention after development is unknown. To address this question in a model of DS neurogenesis, we derived trisomy 21 (T21) human induced pluripotent stem cells (iPSCs) alongside, otherwise, isogenic euploid controls from mosaic DS fibroblasts and equipped one chr21 copy with an inducible XIST transgene. Monoallelic chr21 silencing by XIST is near-complete and irreversible in iPSCs. Differential expression reveals that T21 neural lineages and iPSCs share suppressed translation and mitochondrial pathways and activate cellular stress responses. When XIST is induced before the neural progenitor stage, T21 dosage correction suppresses a pronounced skew toward astrogenesis in neural differentiation. Because our transgene remains inducible in postmitotic T21 neurons and astrocytes, we demonstrate that XIST efficiently represses genes even after terminal differentiation, which will empower exploration of cell type-specific T21 phenotypes that remain responsive to chr21 dosage.
Collapse
Affiliation(s)
- Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Christopher E. Stoddard
- Cell and Genome Engineering Core, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Jeremy W. Linsley
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Neha Arora
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Cécile Deleschaux
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E. Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Michael Nicouleau
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Shijie Wang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Miguel Sabariego-Navarro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, USA
- Neuroscience and Biomedical Sciences Graduate Programs, University of California San Francisco, San Francisco, CA, USA
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
5
|
La Grua A, Rao I, Susani L, Lucchini F, Raimondi E, Vezzoni P, Paulis M. Chromosome Transplantation: Opportunities and Limitations. Cells 2024; 13:666. [PMID: 38667281 PMCID: PMC11048979 DOI: 10.3390/cells13080666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
There are thousands of rare genetic diseases that could be treated with classical gene therapy strategies such as the addition of the defective gene via viral or non-viral delivery or by direct gene editing. However, several genetic defects are too complex for these approaches. These "genomic mutations" include aneuploidies, intra and inter chromosomal rearrangements, large deletions, or inversion and copy number variations. Chromosome transplantation (CT) refers to the precise substitution of an endogenous chromosome with an exogenous one. By the addition of an exogenous chromosome and the concomitant elimination of the endogenous one, every genetic defect, irrespective of its nature, could be resolved. In the current review, we analyze the state of the art of this technique and discuss its possible application to human pathology. CT might not be limited to the treatment of human diseases. By working on sex chromosomes, we showed that female cells can be obtained from male cells, since chromosome-transplanted cells can lose either sex chromosome, giving rise to 46,XY or 46,XX diploid cells, a modification that could be exploited to obtain female gametes from male cells. Moreover, CT could be used in veterinary biology, since entire chromosomes containing an advantageous locus could be transferred to animals of zootechnical interest without altering their specific genetic background and the need for long and complex interbreeding. CT could also be useful to rescue extinct species if only male cells were available. Finally, the generation of "synthetic" cells could be achieved by repeated CT into a recipient cell. CT is an additional tool for genetic modification of mammalian cells.
Collapse
Affiliation(s)
- Angela La Grua
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20129 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Ilaria Rao
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Lucia Susani
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Franco Lucchini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Paolo Vezzoni
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| |
Collapse
|
6
|
Martín Á, Mercader A, Beltrán D, Mifsud A, Nohales M, Pardiñas ML, Ortega-Jaén D, de Los Santos MJ. Trophectoderm cells of human mosaic embryos display increased apoptotic levels and impaired differentiation capacity: a molecular clue regarding their reproductive fate? Hum Reprod 2024; 39:709-723. [PMID: 38308811 DOI: 10.1093/humrep/deae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Indexed: 02/05/2024] Open
Abstract
STUDY QUESTION Are there cell lineage-related differences in the apoptotic rates and differentiation capacity of human blastocysts diagnosed as euploid, mosaic, and aneuploid after preimplantation genetic testing for aneuploidy (PGT-A) based on concurrent copy number and genotyping analysis? SUMMARY ANSWER Trophectoderm (TE) cells of mosaic and aneuploid blastocysts exhibit significantly higher levels of apoptosis and significantly reduced differentiation capacity compared to those of euploid blastocysts. WHAT IS KNOWN ALREADY Embryos diagnosed as mosaic after PGT-A can develop into healthy infants, yet understanding the reasons behind their reproductive potential requires further research. One hypothesis suggests that mosaicism can be normalized through selective apoptosis and reduced proliferation of aneuploid cells, but direct evidence of these mechanisms in human embryos is lacking. Additionally, data interpretation from studies involving mosaic embryos has been hampered by retrospective analysis methods and the high incidence of false-positive mosaic diagnoses stemming from the use of poorly specific PGT-A platforms. STUDY DESIGN, SIZE, DURATION Prospective cohort study performing colocalization of cell-lineage and apoptotic markers by immunofluorescence (IF). We included a total of 64 human blastocysts donated to research on Day 5 or 6 post-fertilization (dpf) by 43 couples who underwent in vitro fertilization treatment with PGT-A at IVI-RMA Valencia between September 2019 and October 2022. A total of 27 mosaic blastocysts were analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS The study consisted of two phases: Phase I (caspase-3, n = 53 blastocysts): n = 13 euploid, n = 22 mosaic, n = 18 aneuploid. Phase II (terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), n = 11 blastocysts): n = 2 euploid, n = 5 mosaic, n = 4 aneuploid. Following donation for research, vitrified blastocysts were warmed, cultured until re-expansion, fixed, processed for IF, and imaged using confocal microscopy. For each blastocyst, the following cell counts were conducted: total cells (DAPI+), TE cells (GATA3+), inner cell mass (ICM) cells (GATA3-/NANOG+), and apoptotic cells (caspase-3+ or TUNEL+). The incidence of apoptosis was calculated for each blastocyst by dividing the number of caspase-3+ cells (Phase I) or TUNEL+ cells (Phase II) by the number of TE or ICM cells. Statistical analysis was performed according to data type and distribution (P < 0.05 was considered statistically significant). MAIN RESULTS AND THE ROLE OF CHANCE Phase I: Mosaic blastocysts displayed a similar number of total cells (49.6 ± 15 cells at 5 dpf; 58.8 ± 16.9 cells at 6 dpf), TE cells (38.8 ± 13.7 cells at 5 dpf; 49.2 ± 16.2 cells at 6 dpf), and ICM cells (10.9 ± 4.2 cells at 5 dpf; 9.7 ± 7.1 cells at 6 dpf) compared to euploid and aneuploid blastocysts (P > 0.05). The proportion of TE cells retaining NANOG expression increased gradually from euploid blastocysts (9.7% = 63/651 cells at 5 dpf; 0% = 0/157 cells at 6 dpf) to mosaic blastocysts (13.1% = 104/794 cells at 5 dpf; 3.4% = 12/353 cells at 6 dpf) and aneuploid blastocysts (27.9% = 149/534 cells at 5 dpf; 4.6% = 19/417 cells at 6 dpf) (P < 0.05). At the TE level, caspase-3+ cells were frequently observed (39% = 901/2310 cells). The proportion of caspase-3+ TE cells was significantly higher in mosaic blastocysts (44.1% ± 19.6 at 5 dpf; 43% ± 16.8 at 6 dpf) and aneuploid blastocysts (45.9% ± 16.1 at 5 dpf; 49% ± 15.1 at 6 dpf) compared to euploid blastocysts (26.6% ± 16.6 at 5 dpf; 17.5% ± 14.8 at 6 dpf) (P < 0.05). In contrast, at the ICM level, caspase-3+ cells were rarely observed (1.9% = 11/596 cells), and only detected in mosaic blastocysts (2.6% = 6/232 cells) and aneuploid blastocysts (2.5% = 5/197 cells) (P > 0.05). Phase II: Consistently, TUNEL+ cells were only observed in TE cells (32.4% = 124/383 cells). An increasing trend was identified toward a higher proportion of TUNEL+ cells in the TE of mosaic blastocysts (37.2% ± 21.9) and aneuploid blastocysts (39% ± 41.7), compared to euploid blastocysts (23% ± 32.5), although these differences did not reach statistical significance (P > 0.05). LIMITATIONS, REASONS FOR CAUTION The observed effects on apoptosis and differentiation may not be exclusive to aneuploid cells. Additionally, variations in aneuploidies and unexplored factors related to blastocyst development and karyotype concordance may introduce potential biases and uncertainties in the results. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate a cell lineage-specific effect of aneuploidy on the apoptotic levels and differentiation capacity of human blastocysts. This contributes to unravelling the biological characteristics of mosaic blastocysts and supports the concept of clonal depletion of aneuploid cells in explaining their reproductive potential. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by grants from Centro para el Desarrollo Tecnológico Industrial (CDTI) (20190022) and Generalitat Valenciana (APOTIP/2019/009). None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ángel Martín
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Amparo Mercader
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Diana Beltrán
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Amparo Mifsud
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - Mar Nohales
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| | - María Luisa Pardiñas
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - David Ortega-Jaén
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - María José de Los Santos
- Department of Innovation, IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- Department of Research, IVF Laboratory, IVIRMA Global, Valencia, Spain
| |
Collapse
|
7
|
Liu J, Chen S, Huang G, Wen P, Zhou X, Wu Y. Trisomy 21-driven metabolite alterations are linked to cellular injuries in Down syndrome. Cell Mol Life Sci 2024; 81:112. [PMID: 38433139 PMCID: PMC10909777 DOI: 10.1007/s00018-024-05127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Accepted: 01/14/2024] [Indexed: 03/05/2024]
Abstract
Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted cardiogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21's metabolic implications within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.
Collapse
Affiliation(s)
- Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Guiping Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Pengju Wen
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Yueheng Wu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
8
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
9
|
Chen CC, Silberman RE, Ma D, Perry JA, Khalid D, Pikman Y, Amon A, Hemann MT, Rowe RG. Inherent genome instability underlies trisomy 21-associated myeloid malignancies. Leukemia 2024; 38:521-529. [PMID: 38245602 DOI: 10.1038/s41375-024-02151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Constitutional trisomy 21 (T21) is a state of aneuploidy associated with high incidence of childhood acute myeloid leukemia (AML). T21-associated AML is preceded by transient abnormal myelopoiesis (TAM), which is triggered by truncating mutations in GATA1 generating a short GATA1 isoform (GATA1s). T21-associated AML emerges due to secondary mutations in hematopoietic clones bearing GATA1s. Since aneuploidy generally impairs cellular fitness, the paradoxically elevated risk of myeloid malignancy in T21 is not fully understood. We hypothesized that individuals with T21 bear inherent genome instability in hematopoietic lineages that promotes leukemogenic mutations driving the genesis of TAM and AML. We found that individuals with T21 show increased chromosomal copy number variations (CNVs) compared to euploid individuals, suggesting that genome instability could be underlying predisposition to TAM and AML. Acquisition of GATA1s enforces myeloid skewing and maintenance of the hematopoietic progenitor state independently of T21; however, GATA1s in T21 hematopoietic progenitor cells (HPCs) further augments genome instability. Increased dosage of the chromosome 21 (chr21) gene DYRK1A impairs homology-directed DNA repair as a mechanism of elevated mutagenesis. These results posit a model wherein inherent genome instability in T21 drives myeloid malignancy in concert with GATA1s mutations.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- RA Capital, Boston, MA, USA
| | - Duanduan Ma
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - R Grant Rowe
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Baruchel A, Bourquin JP, Crispino J, Cuartero S, Hasle H, Hitzler J, Klusmann JH, Izraeli S, Lane AA, Malinge S, Rabin KR, Roberts I, Ryeom S, Tasian SK, Wagenblast E. Down syndrome and leukemia: from basic mechanisms to clinical advances. Haematologica 2023; 108:2570-2581. [PMID: 37439336 PMCID: PMC10542835 DOI: 10.3324/haematol.2023.283225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Children with Down syndrome (DS, trisomy 21) are at a significantly higher risk of developing acute leukemia compared to the overall population. Many studies investigating the link between trisomy 21 and leukemia initiation and progression have been conducted over the last two decades. Despite improved treatment regimens and significant progress in iden - tifying genes on chromosome 21 and the mechanisms by which they drive leukemogenesis, there is still much that is unknown. A focused group of scientists and clinicians with expertise in leukemia and DS met in October 2022 at the Jérôme Lejeune Foundation in Paris, France for the 1st International Symposium on Down Syndrome and Leukemia. This meeting was held to discuss the most recent advances in treatment regimens and the biology underlying the initiation, progression, and relapse of acute lymphoblastic leukemia and acute myeloid leukemia in children with DS. This review provides a summary of what is known in the field, challenges in the management of DS patients with leukemia, and key questions in the field.
Collapse
Affiliation(s)
- André Baruchel
- Hôpital Universitaire Robert Debré (APHP and Université Paris Cité), Paris, France
| | | | - John Crispino
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sergi Cuartero
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Shai Izraeli
- Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Aviv University, Aviv, Israel
| | | | - Sébastien Malinge
- Telethon Kids Institute - Cancer Centre, Perth, Western Australia, Australia
| | - Karen R. Rabin
- Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | | | - Sandra Ryeom
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah K. Tasian
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Watson LA, Meharena HS. From neurodevelopment to neurodegeneration: utilizing human stem cell models to gain insight into Down syndrome. Front Genet 2023; 14:1198129. [PMID: 37323671 PMCID: PMC10267712 DOI: 10.3389/fgene.2023.1198129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Down syndrome (DS), caused by triplication of chromosome 21, is the most frequent aneuploidy observed in the human population and represents the most common genetic form of intellectual disability and early-onset Alzheimer's disease (AD). Individuals with DS exhibit a wide spectrum of clinical presentation, with a number of organs implicated including the neurological, immune, musculoskeletal, cardiac, and gastrointestinal systems. Decades of DS research have illuminated our understanding of the disorder, however many of the features that limit quality of life and independence of individuals with DS, including intellectual disability and early-onset dementia, remain poorly understood. This lack of knowledge of the cellular and molecular mechanisms leading to neurological features of DS has caused significant roadblocks in developing effective therapeutic strategies to improve quality of life for individuals with DS. Recent technological advances in human stem cell culture methods, genome editing approaches, and single-cell transcriptomics have provided paradigm-shifting insights into complex neurological diseases such as DS. Here, we review novel neurological disease modeling approaches, how they have been used to study DS, and what questions might be addressed in the future using these innovative tools.
Collapse
Affiliation(s)
- L. Ashley Watson
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Hiruy S. Meharena
- Developmental and Cognitive Genomics Research Laboratory, Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Shivamallappa MD, Mullins A, Browning Carmo K. Bullous eruptions in transient abnormal myelopoiesis with normal phenotype. BMJ Case Rep 2023; 16:e251523. [PMID: 37028822 PMCID: PMC10083739 DOI: 10.1136/bcr-2022-251523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/09/2023] Open
Abstract
Cutaneous lesions are common manifestation of congenital leukaemia especially myeloid type with incidence of 25%-50% in reported cases. It is relatively rare in transient abnormal myelopoiesis (TAM) seen in trisomy 21 (~10%). The rashes seen in leukaemia and TAM are different. We report a case with a rare presentation of confluent bullous eruption in a phenotypically normal neonate with trisomy 21 restricted to haematopoietic blast cells. This rash resolved rapidly after low-dose cytarabine therapy with normalisation of total white cell counts. The risk of Down syndrome-associated myeloid leukaemia in such cases is still high (19%-23%) in first 5 years and rare thereafter.
Collapse
Affiliation(s)
| | - Anna Mullins
- Oncology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Oncology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Kathryn Browning Carmo
- Neonatal and Paediatric Emergency Transport Service, The Sydney Children's Hospitals Network Randwick and Westmead, Bankstown Aerodrome, New South Wales, Australia
| |
Collapse
|
14
|
Gialesaki S, Bräuer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, Verboon L, Schmell AL, Laszig S, Regényi E, Schuschel K, Labuhn M, Ng M, Winkler R, Ihling C, Sinz A, Glaß M, Hüttelmaier S, Matzk S, Schmid L, Strüwe FJ, Kadel SK, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia. Blood 2023; 141:1105-1118. [PMID: 36493345 PMCID: PMC10023736 DOI: 10.1182/blood.2022017619] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Gain of chromosome 21 (Hsa21) is among the most frequent aneuploidies in leukemia. However, it remains unclear how partial or complete amplifications of Hsa21 promote leukemogenesis and why children with Down syndrome (DS) (ie, trisomy 21) are particularly at risk of leukemia development. Here, we propose that RUNX1 isoform disequilibrium with RUNX1A bias is key to DS-associated myeloid leukemia (ML-DS). Starting with Hsa21-focused CRISPR-CRISPR-associated protein 9 screens, we uncovered a strong and specific RUNX1 dependency in ML-DS cells. Expression of the RUNX1A isoform is elevated in patients with ML-DS, and mechanistic studies using murine ML-DS models and patient-derived xenografts revealed that excess RUNX1A synergizes with the pathognomonic Gata1s mutation during leukemogenesis by displacing RUNX1C from its endogenous binding sites and inducing oncogenic programs in complex with the MYC cofactor MAX. These effects were reversed by restoring the RUNX1A:RUNX1C equilibrium in patient-derived xenografts in vitro and in vivo. Moreover, pharmacological interference with MYC:MAX dimerization using MYCi361 exerted strong antileukemic effects. Thus, our study highlights the importance of alternative splicing in leukemogenesis, even on a background of aneuploidy, and paves the way for the development of specific and targeted therapies for ML-DS, as well as for other leukemias with Hsa21 aneuploidy or RUNX1 isoform disequilibrium.
Collapse
Affiliation(s)
- Sofia Gialesaki
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Daniela Bräuer-Hartmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna-Lena Schmell
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephanie Laszig
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Enikő Regényi
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maurice Labuhn
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lena Schmid
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Sofie-Katrin Kadel
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Dirk Heckl, Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany;
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Correspondence: Jan-Henning Klusmann, Department of Pediatrics, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany;
| |
Collapse
|
15
|
Zhao HH, Haddad GG. Alzheimer's disease like neuropathology in Down syndrome cortical organoids. Front Cell Neurosci 2022; 16:1050432. [PMID: 36568886 PMCID: PMC9773144 DOI: 10.3389/fncel.2022.1050432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Down syndrome (DS) is a genetic disorder with an extra copy of chromosome 21 and DS remains one of the most common causes of intellectual disabilities in humans. All DS patients have Alzheimer's disease (AD)-like neuropathological changes including accumulation of plaques and tangles by their 40s, much earlier than the onset of such neuropathological changes in AD patients. Due to the lack of human samples and appropriate techniques, our understanding of DS neuropathology during brain development or before the clinical onset of the disease remains largely unexplored at the cellular and molecular levels. Methods: We used induced pluripotent stem cell (iPSC) and iPSC-derived 3D cortical organoids to model Alzheimer's disease in Down syndrome and explore the earliest cellular and molecular changes during DS fetal brain development. Results: We report that DS iPSCs have a decreased growth rate than control iPSCs due to a decreased cell proliferation. DS iPSC-derived cortical organoids have a much higher immunoreactivity of amyloid beta (Aß) antibodies and a significantly higher amount of amyloid plaques than control organoids. Although Elisa results did not detect a difference of Aß40 and Aß42 level between the two groups, the ratio of Aß42/Aß40 in the detergent-insoluble fraction of DS organoids was significantly higher than control organoids. Furthermore, an increased Tau phosphorylation (pTau S396) in DS organoids was confirmed by immunostaining and Western blot. Elisa data demonstrated that the ratio of insoluble Tau/total Tau in DS organoids was significantly higher than control organoids. Conclusion: DS iPSC-derived cortical organoids mimic AD-like pathophysiologyical phenotype in vitro, including abnormal Aß and insoluble Tau accumulation. The molecular neuropathologic signature of AD is present in DS much earlier than predicted, even in early fetal brain development, illustrating the notion that brain organoids maybe a good model to study early neurodegenerative conditions.
Collapse
Affiliation(s)
- Helen H. Zhao
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California San Diego, La Jolla, CA, United States,Department of Neurosciences, University of California San Diego, La Jolla, CA, United States,The Rady Children’s Hospital, San Diego, CA, United States,*Correspondence: Gabriel G. Haddad
| |
Collapse
|
16
|
Bigas A, Galán Palma L, Kartha GM, Giorgetti A. Using Pluripotent Stem Cells to Understand Normal and Leukemic Hematopoietic Development. Stem Cells Transl Med 2022; 11:1123-1134. [PMID: 36398586 PMCID: PMC9672852 DOI: 10.1093/stcltm/szac071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2023] Open
Abstract
Several decades have passed since the generation of the first embryonic stem cell (ESC) lines both in mice and in humans. Since then, stem cell biologists have tried to understand their potential biological and clinical uses for their implementation in regenerative medicine. The hematopoietic field was a pioneer in establishing the potential use for the development of blood cell products and clinical applications; however, early expectations have been truncated by the difficulty in generating bonafide hematopoietic stem cells (HSCs). Despite some progress in understanding the origin of HSCs during embryonic development, the reproduction of this process in vitro is still not possible, but the knowledge acquired in the embryo is slowly being implemented for mouse and human pluripotent stem cells (PSCs). In contrast, ESC-derived hematopoietic cells may recapitulate some leukemic transformation processes when exposed to oncogenic drivers. This would be especially useful to model prenatal leukemia development or other leukemia-predisposing syndromes, which are difficult to study. In this review, we will review the state of the art of the use of PSCs as a model for hematopoietic and leukemia development.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Luis Galán Palma
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Gayathri M Kartha
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Alessandra Giorgetti
- Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| |
Collapse
|
17
|
Sharma V, Nehra S, Do LH, Ghosh A, Deshpande AJ, Singhal N. Biphasic cell cycle defect causes impaired neurogenesis in down syndrome. Front Genet 2022; 13:1007519. [PMID: 36313423 PMCID: PMC9596798 DOI: 10.3389/fgene.2022.1007519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Impaired neurogenesis in Down syndrome (DS) is characterized by reduced neurons, increased glial cells, and delayed cortical lamination. However, the underlying cause for impaired neurogenesis in DS is not clear. Using both human and mouse iPSCs, we demonstrate that DS impaired neurogenesis is due to biphasic cell cycle dysregulation during the generation of neural progenitors from iPSCs named the “neurogenic stage” of neurogenesis. Upon neural induction, DS cells showed reduced proliferation during the early phase followed by increased proliferation in the late phase of the neurogenic stage compared to control cells. While reduced proliferation in the early phase causes reduced neural progenitor pool, increased proliferation in the late phase leads to delayed post mitotic neuron generation in DS. RNAseq analysis of late-phase DS progenitor cells revealed upregulation of S phase-promoting regulators, Notch, Wnt, Interferon pathways, and REST, and downregulation of several genes of the BAF chromatin remodeling complex. NFIB and POU3F4, neurogenic genes activated by the interaction of PAX6 and the BAF complex, were downregulated in DS cells. ChIPseq analysis of late-phase neural progenitors revealed aberrant PAX6 binding with reduced promoter occupancy in DS cells. Together, these data indicate that impaired neurogenesis in DS is due to biphasic cell cycle dysregulation during the neurogenic stage of neurogenesis.
Collapse
Affiliation(s)
| | | | - Long H. Do
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
| | - Anwesha Ghosh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Nishant Singhal
- National Centre for Cell Science, Pune, India
- *Correspondence: Nishant Singhal,
| |
Collapse
|
18
|
Sharma V, Nehra S, Singhal N. Generation of AAVS1-EGFP Reporter cell lines from an Isogenic pair of Trisomy 21 and Euploid human iPSCs. Stem Cell Res 2022; 64:102890. [DOI: 10.1016/j.scr.2022.102890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
|
19
|
Arkoun B, Robert E, Boudia F, Mazzi S, Dufour V, Siret A, Mammasse Y, Aid Z, Vieira M, Imanci A, Aglave M, Cambot M, Petermann R, Souquere S, Rameau P, Catelain C, Diot R, Tachdjian G, Hermine O, Droin N, Debili N, Plo I, Malinge S, Soler E, Raslova H, Mercher T, Vainchenker W. Stepwise GATA1 and SMC3 mutations alter megakaryocyte differentiation in a Down syndrome leukemia model. J Clin Invest 2022; 132:156290. [PMID: 35587378 PMCID: PMC9282925 DOI: 10.1172/jci156290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Acute megakaryoblastic leukemia of Down syndrome (DS-AMKL) is a model of clonal evolution from a preleukemic transient myeloproliferative disorder requiring both a trisomy 21 (T21) and a GATA1s mutation to a leukemia driven by additional driver mutations. We modeled the megakaryocyte differentiation defect through stepwise gene editing of GATA1s, SMC3+/–, and MPLW515K, providing 20 different T21 or disomy 21 (D21) induced pluripotent stem cell (iPSC) clones. GATA1s profoundly reshaped iPSC-derived hematopoietic architecture with gradual myeloid-to-megakaryocyte shift and megakaryocyte differentiation alteration upon addition of SMC3 and MPL mutations. Transcriptional, chromatin accessibility, and GATA1-binding data showed alteration of essential megakaryocyte differentiation genes, including NFE2 downregulation that was associated with loss of GATA1s binding and functionally involved in megakaryocyte differentiation blockage. T21 enhanced the proliferative phenotype, reproducing the cellular and molecular abnormalities of DS-AMKL. Our study provides an array of human cell–based models revealing individual contributions of different mutations to DS-AMKL differentiation blockage, a major determinant of leukemic progression.
Collapse
Affiliation(s)
- Brahim Arkoun
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Elie Robert
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Fabien Boudia
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Stefania Mazzi
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Virginie Dufour
- INSERM, UMR1287, Institut National de la Transfusion Sanguine, Villejuif, France
| | - Aurelie Siret
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Yasmine Mammasse
- Département d'Immunologie Plaquettaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Zakia Aid
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Mathieu Vieira
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Aygun Imanci
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Marine Aglave
- Plateforme de Bioinformatique, Institut Gustave Roussy, Villejuif, France
| | - Marie Cambot
- Département d'Immunologie Plaquettaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Rachel Petermann
- Département d'Immunologie Plaquettaire, Institut National de Transfusion Sanguine, Paris, France
| | - Sylvie Souquere
- Centre National de la Recherche Scientifique, UMR8122, Institut Gustave Roussy, Villejuif, France
| | - Philippe Rameau
- UMS AMMICA, INSERM US23, Institut Gustave Roussy, Villejuif, France
| | - Cyril Catelain
- UMS AMMICA, INSERM US23, Institut Gustave Roussy, Villejuif, France
| | - Romain Diot
- Service d'Histologie, Embryologie et Cytogénétique, Hôpital Antoine Béclère, Clamart, France
| | - Gerard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, Hôpital Antoine Béclère, Clamart, France
| | | | - Nathalie Droin
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | - Najet Debili
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Sebastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Eric Soler
- IGMM, University of Montpellier, Montpellier, France
| | - Hana Raslova
- INSERM, UMR1287, Institut Gustave Roussy, Villejuif, France
| | - Thomas Mercher
- INSERM, UMR1170, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
20
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
21
|
Triarico S, Trombatore G, Capozza MA, Romano A, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Hematological disorders in children with Down syndrome. Expert Rev Hematol 2022; 15:127-135. [PMID: 35184659 DOI: 10.1080/17474086.2022.2044780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/17/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hematological abnormalities are common in children with down syndrome (DS), mainly during childhood. AREAS COVERED DS newborns can develop hematological benign conditions that resolve spontaneously within 1 -2 months. However, about 10% of them can present transient abnormal myelopoiesis (TAM), characterized by the presence of circulating blasts. About 80% of DS neonates with TAM undergo spontaneous resolution of both clinical and laboratory abnormalities within 3-6 months after birth. However, some newborns with TAM may develop acute myeloid leukemia associated with DS (ML-DS), usually after an interval without signs of leukemia. GATA1 mutations are stable molecular markers that may monitor the presence of minimal residual disease (MRD) after TAM resolution. Moreover, DS children have a 10-20-fold increased risk of developing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The predisposition to develop leukemia occurs both in children with complete trisomy 21 and in those with mosaic trisomy, suggesting an important role of chromosome 21 in leukemogenesis. EXPERT OPINION In contrast to the excellent prognosis of ML-DS obtained likewise with low doses of chemotherapy, DS-ALL patients show worse outcomes than non-DS children, therefore advances and risk-stratified treatment adjustments are mandatory for this particular set of patients.
Collapse
Affiliation(s)
- Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | | | | | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
22
|
Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, Watson LA, Ko T, Guerin LN, Abdurob F, Rengarajan S, Papanastasiou M, Jaffe JD, Tsai LH. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 2022; 29:116-130.e7. [PMID: 34995493 PMCID: PMC8805993 DOI: 10.1016/j.stem.2021.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/30/2021] [Accepted: 12/09/2021] [Indexed: 01/09/2023]
Abstract
Down syndrome (DS) is a genetic disorder driven by the triplication of chromosome 21 (T21) and characterized by a wide range of neurodevelopmental and physical disabilities. Transcriptomic analysis of tissue samples from individuals with DS has revealed that T21 induces a genome-wide transcriptional disruption. However, the consequences of T21 on the nuclear architecture and its interplay with the transcriptome remain unknown. In this study, we find that unlike human induced pluripotent stem cells (iPSCs), iPSC-derived neural progenitor cells (NPCs) exhibit genome-wide "chromosomal introversion," disruption of lamina-associated domains, and global chromatin accessibility changes in response to T21, consistent with the transcriptional and nuclear architecture changes characteristic of senescent cells. Treatment of T21-harboring NPCs with senolytic drugs alleviates the transcriptional, molecular, and cellular dysfunctions associated with DS. Our findings provide a mechanistic link between T21 and global transcriptional disruption and indicate that senescence-associated phenotypes may play a key role in the neurodevelopmental pathogenesis of DS.
Collapse
Affiliation(s)
- Hiruy S. Meharena
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| | - Asaf Marco
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elana R. Lockshin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace Y. Akatsu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James Mullahoo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - L. Ashley Watson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tak Ko
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lindsey N. Guerin
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fatema Abdurob
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruthi Rengarajan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Jacob D. Jaffe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Correspondence: Hiruy Meharena (), Li-Huei Tsai () – Lead Contact
| |
Collapse
|
23
|
Boucher AC, Caldwell KJ, Crispino JD, Flerlage JE. Clinical and biological aspects of myeloid leukemia in Down syndrome. Leukemia 2021; 35:3352-3360. [PMID: 34518645 PMCID: PMC8639661 DOI: 10.1038/s41375-021-01414-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Children with Down syndrome are at an elevated risk of leukemia, especially myeloid leukemia (ML-DS). This malignancy is frequently preceded by transient abnormal myelopoiesis (TAM), which is self-limited expansion of fetal liver-derived megakaryocyte progenitors. An array of international studies has led to consensus in treating ML-DS with reduced-intensity chemotherapy, leading to excellent outcomes. In addition, studies performed in the past 20 years have revealed many of the genetic and epigenetic features of the tumors, including GATA1 mutations that are arguably associated with all cases of both TAM and ML-DS. Despite these advances in understanding the clinical and biological aspects of ML-DS, little is known about the mechanisms of relapse. Upon relapse, patients face a poor outcome, and there is no consensus on treatment. Future studies need to be focused on this challenging aspect of leukemia in children with DS.
Collapse
Affiliation(s)
- Austin C Boucher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kenneth J Caldwell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Jamie E Flerlage
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
24
|
Schatzman A, Vandenheuvel J, Villalobos T, Rooney K. Transient leukopenia, thrombocytopenia, and severe neutropenia associated with acute SARS-CoV-2 infection. Pediatr Blood Cancer 2021; 68:e29105. [PMID: 34151520 PMCID: PMC8441876 DOI: 10.1002/pbc.29105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022]
Affiliation(s)
- Austin Schatzman
- Department of PediatricsLehigh Valley Reilly Children's HospitalAllentownPennsylvaniaUSA
| | - Julia Vandenheuvel
- Department of PediatricsLehigh Valley Reilly Children's HospitalAllentownPennsylvaniaUSA
| | - Tibisay Villalobos
- Department of PediatricsLehigh Valley Reilly Children's HospitalAllentownPennsylvaniaUSA
| | - Kris Rooney
- Department of PediatricsLehigh Valley Reilly Children's HospitalAllentownPennsylvaniaUSA
| |
Collapse
|
25
|
Sidhu I, Barwe SP, Kiick KL, Kolb EA, Gopalakrishnapillai A. A 3-D hydrogel based system for hematopoietic differentiation and its use in modeling down syndrome associated transient myeloproliferative disorder. Biomater Sci 2021; 9:6266-6281. [PMID: 34369483 PMCID: PMC8570143 DOI: 10.1039/d1bm00442e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Induced pluripotent stem cells (iPSCs) provide an extraordinary tool for disease modeling owing to their potential to differentiate into the desired cell type. The differentiation of iPSCs is typically performed on 2-dimensional monolayers of stromal cell or animal tissue derived extracellular matrices. Recent advancements in disease modeling have utilized iPSCs in 3-dimensional (3D) cultures to study diseases such as muscular dystrophy, cardiomyopathy, and pulmonary fibrosis. However, these approaches are yet to be explored in modeling the hematological malignancies. Transient myeloproliferative disorder (TMD) is a preleukemic stage, which is induced in 10-20% of children with trisomy 21 possessing the pathognomonic mutation in the transcription factor GATA1. In this study, we established a synthetic 3D iPSC culture system for modeling TMD via hematopoietic differentiation of customized iPSCs. A chemically cross-linkable PEG hydrogel decorated with integrin binding peptide was found to be permissive of hematopoietic differentiation of iPSCs. It provided a cost-effective system for the generation of hematopoietic stem and progenitor cells (HSPCs) with higher yield of early HSPCs compared to traditional 2D culture on Matrigel coated dishes. Characterization of the HSPCs produced from the iPSC lines cultured in 3D showed that the erythroid population was reduced whereas the megakaryoid and myeloid populations were significantly increased in GATA1 mutant trisomic line compared to disomic or trisomic lines with wild-type GATA1, consistent with TMD characteristics. In conclusion, we have identified a cost-effective tunable 3D hydrogel system to model TMD.
Collapse
Affiliation(s)
- Ishnoor Sidhu
- Nemours Centers for Childhood Cancer Research and Cancer & Blood Disorders, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.
- University of Delaware, Newark, DE 19711, USA
| | - Sonali P Barwe
- Nemours Centers for Childhood Cancer Research and Cancer & Blood Disorders, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.
- University of Delaware, Newark, DE 19711, USA
| | | | - E Anders Kolb
- Nemours Centers for Childhood Cancer Research and Cancer & Blood Disorders, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.
| | - Anilkumar Gopalakrishnapillai
- Nemours Centers for Childhood Cancer Research and Cancer & Blood Disorders, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.
- University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
26
|
Nations CC, Pavani G, French DL, Gadue P. Modeling genetic platelet disorders with human pluripotent stem cells: mega-progress but wanting more on our plate(let). Curr Opin Hematol 2021; 28:308-314. [PMID: 34397590 PMCID: PMC8371829 DOI: 10.1097/moh.0000000000000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Megakaryocytes are rare hematopoietic cells that play an instrumental role in hemostasis, and other important biological processes such as immunity and wound healing. With the advent of cell reprogramming technologies and advances in differentiation protocols, it is now possible to obtain megakaryocytes from any pluripotent stem cell (PSC) via hematopoietic induction. Here, we review recent advances in PSC-derived megakaryocyte (iMK) technology, focusing on platform validation, disease modeling and current limitations. RECENT FINDINGS A comprehensive study confirmed that iMK can recapitulate many transcriptional and functional aspects of megakaryocyte and platelet biology, including variables associated with complex genetic traits such as sex and race. These findings were corroborated by several pathological models in which iMKs revealed molecular mechanisms behind inherited platelet disorders and assessed the efficacy of novel pharmacological interventions. However, current differentiation protocols generate primarily embryonic iMK, limiting the clinical and translational potential of this system. SUMMARY iMK are strong candidates to model pathologic mutations involved in platelet defects and develop innovative therapeutic strategies. Future efforts on generating definitive hematopoietic progenitors would improve current platelet generation protocols and expand our capacity to model neonatal and adult megakaryocyte disorders.
Collapse
Affiliation(s)
- Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
de Castro CPM, Cadefau M, Cuartero S. The Mutational Landscape of Myeloid Leukaemia in Down Syndrome. Cancers (Basel) 2021; 13:4144. [PMID: 34439298 PMCID: PMC8394284 DOI: 10.3390/cancers13164144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators-such as cohesin, CTCF or EZH2-and in signalling mediators of the JAK/STAT and RAS pathways. Most of them are also found in non-DS myeloid malignancies, albeit at extremely different frequencies. Intriguingly, mutations in proteins involved in the three-dimensional organization of the genome are found in nearly 50% of cases. How the resulting mutant proteins cooperate with trisomy 21 and mutant GATA1 to promote ML-DS is not fully understood. In this review, we summarize and discuss current knowledge about the sequential acquisition of genomic alterations in ML-DS.
Collapse
Affiliation(s)
| | - Maria Cadefau
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
28
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
29
|
Shimada A. Profile of down syndrome–associated malignancies: Epidemiology, clinical features and therapeutic aspects. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Modeling leukemia with pediatric acute leukemia patient-derived iPSCs. Stem Cell Res 2021; 54:102404. [PMID: 34111697 DOI: 10.1016/j.scr.2021.102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE ediatric acute leukemia (AL) is the most common hematological malignancy in childhood. However, the limitation of clinical specimens hindered the progress of research. Therefore, new research platforms are urgently needed to establish and clarify the pathogenesis of pediatric AL, and it is necessary to try to find novel targeted therapies for the clinical use. Here, the induced pluripotent stem cells (iPSCs) derived from AL provide a reliable model for basic research. METHODS eukemia cells were sorted by flow cytometry and then reprogrammed into iPSCs by Sendai virus. Cell cycle assay was used to analyze cell proliferation. RESULTS iPS cell lines from T cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) cells were successfully established. The reprogramming efficiency of AML cells was much higher than that of ALL cells. Disease iPS cells switched off the expression of the disease marker genes at iPS and HPC stage. When different subtypes of AML-iPSCs were differentiated into hematopoietic progenitor cells, iPS derived from acute megakaryocytic leukemia was more readily differentiated into megakaryocyte-erythroid progenitors. Whereas, the differentiation of multipotent lymphoid progenitor (MLP) and granulocyte macrophage progenitor (GMP) were blocked. The iPS derived from acute monocyte leukemia (AMCL) also showed the differentiation of common myeloid progenitors (CMP), GMP and monocytes significantly increased but MLP differentiation was inhibited. The AML-iPSC could form teratomas and we could obverse three germ layers in vivo, indicating that the AML-iPSCs have full pluripotency. However, there were not enough blood cells in teratoma to identify the leukemia. CONCLUSIONS Our results provide a novel platform for AL research and critical insight into the difference of hematopoietic differentiation between ALL and AML.
Collapse
|
31
|
Grimm J, Heckl D, Klusmann JH. Molecular Mechanisms of the Genetic Predisposition to Acute Megakaryoblastic Leukemia in Infants With Down Syndrome. Front Oncol 2021; 11:636633. [PMID: 33777792 PMCID: PMC7992977 DOI: 10.3389/fonc.2021.636633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023] Open
Abstract
Individuals with Down syndrome are genetically predisposed to developing acute megakaryoblastic leukemia. This myeloid leukemia associated with Down syndrome (ML–DS) demonstrates a model of step-wise leukemogenesis with perturbed hematopoiesis already presenting in utero, facilitating the acquisition of additional driver mutations such as truncating GATA1 variants, which are pathognomonic to the disease. Consequently, the affected individuals suffer from a transient abnormal myelopoiesis (TAM)—a pre-leukemic state preceding the progression to ML–DS. In our review, we focus on the molecular mechanisms of the different steps of clonal evolution in Down syndrome leukemogenesis, and aim to provide a comprehensive view on the complex interplay between gene dosage imbalances, GATA1 mutations and somatic mutations affecting JAK-STAT signaling, the cohesin complex and epigenetic regulators.
Collapse
Affiliation(s)
- Juliane Grimm
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
32
|
Saito MK. Elucidation of the Pathogenesis of Autoinflammatory Diseases Using iPS Cells. CHILDREN-BASEL 2021; 8:children8020094. [PMID: 33535645 PMCID: PMC7912798 DOI: 10.3390/children8020094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
Autoinflammatory diseases are a disease entity caused by the dysregulation of innate immune cells. Typical autoinflammatory diseases are monogenic disorders and often very rare. As a result, there is a relative lack of understanding of the pathogenesis, poor diagnosis and little available treatment. Induced pluripotent stem (iPS) cells are a new technology being applied to in vitro disease modeling. These models are especially useful for the analysis of rare and intractable diseases including autoinflammatory diseases. In this review, I will provide a general overview of iPS cell models for autoinflammatory diseases and a brief description of the results obtained from individual reports.
Collapse
Affiliation(s)
- Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
33
|
Donada A, Basso-Valentina F, Arkoun B, Monte-Mor B, Plo I, Raslova H. Induced pluripotent stem cells and hematological malignancies: A powerful tool for disease modeling and drug development. Stem Cell Res 2020; 49:102060. [PMID: 33142254 DOI: 10.1016/j.scr.2020.102060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/12/2023] Open
Abstract
The derivation of human pluripotent stem cell (iPSC) lines by in vitro reprogramming of somatic cells revolutionized research: iPSCs have been used for disease modeling, drug screening and regenerative medicine for many disorders, especially when combined with cutting-edge genome editing technologies. In hematology, malignant transformation is often a multi-step process, that starts with either germline or acquired genetic alteration, followed by progressive acquisition of mutations combined with the selection of one or more pre-existing clones. iPSCs are an excellent model to study the cooperation between different genetic alterations and to test relevant therapeutic drugs. In this review, we will describe the use of iPSCs for pathophysiological studies and drug testing in inherited and acquired hematological malignancies.
Collapse
Affiliation(s)
- A Donada
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - F Basso-Valentina
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - B Arkoun
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - B Monte-Mor
- Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - I Plo
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - H Raslova
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.
| |
Collapse
|
34
|
Barwe SP, Sidhu I, Kolb EA, Gopalakrishnapillai A. Modeling Transient Abnormal Myelopoiesis Using Induced Pluripotent Stem Cells and CRISPR/Cas9 Technology. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:201-209. [PMID: 33102613 PMCID: PMC7558799 DOI: 10.1016/j.omtm.2020.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023]
Abstract
Approximately 1%–2% of children with Down syndrome (DS) develop acute myeloid leukemia (AML) prior to age 5 years. AML in DS children (ML-DS) is characterized by the pathognomonic mutation in the gene encoding the essential hematopoietic transcription factor GATA1, resulting in N-terminally truncated short form of GATA1 (GATA1s). Trisomy 21 and GATA1s together are sufficient to induce transient abnormal myelopoiesis (TAM) exhibiting pre-leukemic characteristics. Approximately 30% of these cases progress into ML-DS by acquisition of additional somatic mutations. We employed disease modeling in vitro by the use of customizable induced pluripotent stem cells (iPSCs) to generate a TAM model. Isogenic iPSC lines derived from the fibroblasts of DS individuals with trisomy 21 and with disomy 21 were used. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system was used to introduce GATA1 mutation in disomic and trisomic iPSC lines. The hematopoietic stem and progenitor cells (HSPCs) derived from GATA1 mutant iPSC lines expressed GATA1s. The expression of GATA1s concomitant with loss of full-length GATA1 reduced the erythroid population, whereas it augmented megakaryoid and myeloid populations, characteristic of TAM. In conclusion, we have developed a model system representing TAM, which can be used for modeling ML-DS by stepwise introduction of additional mutations.
Collapse
Affiliation(s)
- Sonali P Barwe
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| | - Ishnoor Sidhu
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| | - E Anders Kolb
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Nemours Center for Childhood Cancer Research, A.I. DuPont Hospital for Children, Wilmington, DE 19803, USA.,University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
35
|
de Gonzalo-Calvo D, Barroeta I, Nan MN, Rives J, Garzón D, Carmona-Iragui M, Benejam B, Videla L, Fernández S, Altuna M, Valldeneu S, Blesa R, Lleó A, Blanco-Vaca F, Fortea J, Tondo M. Evaluation of biochemical and hematological parameters in adults with Down syndrome. Sci Rep 2020; 10:13755. [PMID: 32792619 PMCID: PMC7426851 DOI: 10.1038/s41598-020-70719-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/30/2020] [Indexed: 11/30/2022] Open
Abstract
Down syndrome (DS) is the most common worldwide cause of intellectual disability of genetic origin and the most common chromosomal disorder affecting live-born infants. In addition to intellectual disability, individuals with DS have other comorbidities and complex medical conditions. The increase in the life expectancy of patients with DS requires expanding the knowledge about their clinical characteristics and related laboratory parameters. Several studies exploring laboratory tests in DS patients exist, but their focus is limited to specific areas of metabolism. Therefore, our main goal was to describe the biochemical and hematological findings in a DS cohort and to compare the values to those of a control population. A total of 248 DS individuals and 84 control subjects were enrolled. DS individuals had a higher frequency of several clinical conditions compared to control individuals and presented with significant differences with respect to the controls in both biochemical and hematological parameters. We found age- and sex-related differences in several of the parameters. A good understanding of the differences in our cohort might be of aid in the clinical follow-up of adults with DS, especially considering that the lifespan of DS individuals may reach 60 years of age in developed countries.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain.,Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Madalina Nicoleta Nan
- Department of Biochemistry, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, C/Sant Quintí 89, 08041, Barcelona, Spain
| | - José Rives
- Department of Biochemistry, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, C/Sant Quintí 89, 08041, Barcelona, Spain
| | - Diana Garzón
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Susana Fernández
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sílvia Valldeneu
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Francisco Blanco-Vaca
- Department of Biochemistry, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, C/Sant Quintí 89, 08041, Barcelona, Spain.,Center of Biomedical Investigation Network for Diabetes and Metabolic Diseases (CIBERDEM), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Mireia Tondo
- Department of Biochemistry, Hospital de La Santa Creu i Sant Pau, Biomedical Research Institute (IIB) Sant Pau, C/Sant Quintí 89, 08041, Barcelona, Spain.
| |
Collapse
|
36
|
Galat Y, Perepitchka M, Elcheva I, Iannaccone S, Iannaccone PM, Galat V. iPSC-derived progenitor stromal cells provide new insights into aberrant musculoskeletal development and resistance to cancer in down syndrome. Sci Rep 2020; 10:13252. [PMID: 32764607 PMCID: PMC7414019 DOI: 10.1038/s41598-020-69418-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a congenital disorder caused by trisomy 21 (T21). It is associated with cognitive impairment, muscle hypotonia, heart defects, and other clinical anomalies. At the same time, individuals with Down syndrome have lower prevalence of solid tumor formation. To gain new insights into aberrant DS development during early stages of mesoderm formation and its possible connection to lower solid tumor prevalence, we developed the first model of two types of DS iPSC-derived stromal cells. Utilizing bioinformatic and functional analyses, we identified over 100 genes with coordinated expression among mesodermal and endothelial cell types. The most significantly down-regulated processes in DS mesodermal progenitors were associated with decreased stromal progenitor performance related to connective tissue organization as well as muscle development and functionality. The differentially expressed genes included cytoskeleton-related genes (actin and myosin), ECM genes (Collagens, Galectin-1, Fibronectin, Heparan Sulfate, LOX, FAK1), cell cycle genes (USP16, S1P complexes), and DNA damage repair genes. For DS endothelial cells, our analysis revealed most down-regulated genes associated with cellular response to external stimuli, cell migration, and immune response (inflammation-based). Together with functional assays, these results suggest an impairment in mesodermal development capacity during early stages, which likely translates into connective tissue impairment in DS patients. We further determined that, despite differences in functional processes and characteristics, a significant number of differentially regulated genes involved in tumorigenesis were expressed in a highly coordinated manner across endothelial and mesodermal cells. These findings strongly suggest that microRNAs (miR-24-4, miR-21), cytoskeleton remodeling, response to stimuli, and inflammation can impact resistance to tumorigenesis in DS patients. Furthermore, we also show that endothelial cell functionality is impaired, and when combined with angiogenic inhibition, it can provide another mechanism for decreased solid tumor development. We propose that the same processes, which specify the basis of connective tissue impairment observed in DS patients, potentially impart a resistance to cancer by hindering tumor progression and metastasis. We further establish that cancer-related genes on Chromosome 21 are up-regulated, while genome-wide cancer-related genes are down-regulated. These results suggest that trisomy 21 induces a modified regulation and compensation of many biochemical pathways across the genome. Such downstream interactions may contribute toward promoting tumor resistant mechanisms.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Mariana Perepitchka
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Irina Elcheva
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Division of Hematology and Oncology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Philip M Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vasiliy Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
- Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- ARTEC Biotech Inc, Chicago, IL, USA.
| |
Collapse
|
37
|
Laurent AP, Kotecha RS, Malinge S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with Down syndrome. Leukemia 2020; 34:1984-1999. [PMID: 32433508 PMCID: PMC7387246 DOI: 10.1038/s41375-020-0854-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Structural and numerical alterations of chromosome 21 are extremely common in hematological malignancies. While the functional impact of chimeric transcripts from fused chromosome 21 genes such as TEL-AML1, AML1-ETO, or FUS-ERG have been extensively studied, the role of gain of chromosome 21 remains largely unknown. Gain of chromosome 21 is a frequently occurring aberration in several types of acute leukemia and can be found in up to 35% of cases. Children with Down syndrome (DS), who harbor constitutive trisomy 21, highlight the link between gain of chromosome 21 and leukemogenesis, with an increased risk of developing acute leukemia compared with other children. Clinical outcomes for DS-associated leukemia have improved over the years through the development of uniform treatment protocols facilitated by international cooperative groups. The genetic landscape has also recently been characterized, providing an insight into the molecular pathogenesis underlying DS-associated leukemia. These studies emphasize the key role of trisomy 21 in priming a developmental stage and cellular context susceptible to transformation, and have unveiled its cooperative function with additional genetic events that occur during leukemia progression. Here, using DS-leukemia as a paradigm, we aim to integrate our current understanding of the role of trisomy 21, of critical dosage-sensitive chromosome 21 genes, and of associated mechanisms underlying the development of hematological malignancies. This review will pave the way for future investigations on the broad impact of gain of chromosome 21 in hematological cancer, with a view to discovering new vulnerabilities and develop novel targeted therapies to improve long term outcomes for DS and non-DS patients.
Collapse
Affiliation(s)
- Anouchka P Laurent
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France
- Université Paris Diderot, Paris, France
| | - Rishi S Kotecha
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology and Bone Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Sébastien Malinge
- INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France.
- Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
38
|
Human-Induced Pluripotent Stem Cells and Herbal Small-Molecule Drugs for Treatment of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041327. [PMID: 32079110 PMCID: PMC7072986 DOI: 10.3390/ijms21041327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by extracellular amyloid plaques composed of the β-amyloid peptides and intracellular neurofibrillary tangles and associates with progressive declines in memory and cognition. Several genes play important roles and regulate enzymes that produce a pathological accumulation of β-amyloid in the brain, such as gamma secretase (γ-secretase). Induced pluripotent stem cells from patients with Alzheimer’s disease with different underlying genetic mechanisms may help model different phenotypes of Alzheimer’s disease and facilitate personalized drug screening platforms for the identification of small molecules. We also discuss recent developments by γ-secretase inhibitors and modulators in the treatment of AD. In addition, small-molecule drugs isolated from Chinese herbal medicines have been shown effective in treating Alzheimer’s disease. We propose a mechanism of small-molecule drugs in treating Alzheimer’s disease. Combining therapy with different small-molecule drugs may increase the chance of symptomatic treatment. A customized strategy tailored to individuals and in combination with therapy may be a more suitable treatment option for Alzheimer’s disease in the future.
Collapse
|
39
|
Paulis M, Susani L, Castelli A, Suzuki T, Hara T, Straniero L, Duga S, Strina D, Mantero S, Caldana E, Sergi LS, Villa A, Vezzoni P. Chromosome Transplantation: A Possible Approach to Treat Human X-linked Disorders. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:369-377. [PMID: 32099849 PMCID: PMC7029378 DOI: 10.1016/j.omtm.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023]
Abstract
Many human genetic diseases are associated with gross mutations such as aneuploidies, deletions, duplications, or inversions. For these “structural” disorders, conventional gene therapy, based on viral vectors and/or on programmable nuclease-mediated homologous recombination, is still unsatisfactory. To correct such disorders, chromosome transplantation (CT), defined as the perfect substitution of an endogenous defective chromosome with an exogenous normal one, could be applied. CT re-establishes a normal diploid cell, leaving no marker of the procedure, as we have recently shown in mouse pluripotent stem cells. To prove the feasibility of the CT approach in human cells, we used human induced pluripotent stem cells (hiPSCs) reprogrammed from Lesch-Nyhan (LN) disease patients, taking advantage of their mutation in the X-linked HPRT gene, making the LN cells selectable and distinguishable from the resistant corrected normal cells. In this study, we demonstrate, for the first time, that CT is feasible in hiPSCs: the normal exogenous X chromosome was first transferred using an improved chromosome transfer system, and the extra sex chromosome was spontaneously lost. These CT cells were functionally corrected and maintained their pluripotency and differentiation capability. By inactivation of the autologous HPRT gene, CT paves the way to the correction of hiPSCs from several X-linked disorders.
Collapse
Affiliation(s)
- Marianna Paulis
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Lucia Susani
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Alessandra Castelli
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Stefano Duga
- Humanitas Clinical and Research Center, Rozzano (MI), Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
| | - Dario Strina
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Stefano Mantero
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Elena Caldana
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | | | - Anna Villa
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,San Raffaele-TIGET, Milan, Italy
| | - Paolo Vezzoni
- National Research Council (CNR)-IRGB/UOS, Milan, Italy.,Humanitas Clinical and Research Center, Rozzano (MI), Italy
| |
Collapse
|
40
|
Thom CS, Chou ST, French DL. Mechanistic and Translational Advances Using iPSC-Derived Blood Cells. JOURNAL OF EXPERIMENTAL PATHOLOGY 2020; 1:36-44. [PMID: 33768218 PMCID: PMC7990314 DOI: 10.33696/pathology.1.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-based model systems can be used to produce blood cells for the study of both hematologic and non-hematologic disorders. This commentary discusses recent advances that have utilized iPSC-derived red blood cells, megakaryocytes, myeloid cells, and lymphoid cells to model hematopoietic disorders. In addition, we review recent studies that have defined how microglial cells differentiated from iPSC-derived monocytes impact neurodegenerative disease. Related translational insights highlight the utility of iPSC models for studying pathologic anemia, bleeding, thrombosis, autoimmunity, immunodeficiency, blood cancers, and neurodegenerative disease such as Alzheimer's.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
41
|
Gough G, O'Brien NL, Alic I, Goh PA, Yeap YJ, Groet J, Nizetic D, Murray A. Modeling Down syndrome in cells: From stem cells to organoids. PROGRESS IN BRAIN RESEARCH 2019; 251:55-90. [PMID: 32057312 DOI: 10.1016/bs.pbr.2019.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down Syndrome (DS) is a complex chromosomal disorder, with neurological issues, featuring among the symptoms. Primary neuronal cells and tissues are extremely useful, but limited both in supply and experimental manipulability. To better understand the cellular, molecular and pathological mechanisms involved in DS neurodevelopment and neurodegeneration, a range of different cellular models have been developed over the years including human: mouse hybrid cells, transchromosomic mouse embryonic stem cells (ESCs) and human ESC and induced pluripotent stem cells derived from different sources. All of these model systems have provided useful information in the study of DS. Furthermore, different technologies to genetically modify or correct trisomy of either single genes or the whole chromosome have been developed using these cellular models. New techniques and protocols to allow better modeling of cellular mechanisms and disease processes are being developed and the use of cerebral organoids offers great promise for future research into the neural phenotypes seen in DS.
Collapse
Affiliation(s)
- Gillian Gough
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Niamh L O'Brien
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom
| | - Ivan Alic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jurgen Groet
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, United Kingdom; LonDownS Consortium, London, United Kingdom.
| | - Aoife Murray
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
42
|
Nikitina TV, Kashevarova AA, Lebedev IN. Chromosomal Instability and Karyotype Correction in Human Induced Pluripotent Stem Cells. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Hawkins KE, Duchen M. Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells. World J Stem Cells 2019; 11:236-253. [PMID: 31171953 PMCID: PMC6545525 DOI: 10.4252/wjsc.v11.i5.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. To date, only five pharmacological agents have been approved by the Food and Drug Administration for clinical use in AD, all of which target the symptoms of the disease rather than the cause. Increasing our understanding of the underlying pathophysiology of AD will facilitate the development of new therapeutic strategies. Over the years, the major hypotheses of AD etiology have focused on deposition of amyloid beta and mitochondrial dysfunction. In this review we highlight the potential of experimental model systems based on human induced pluripotent stem cells (iPSCs) to provide novel insights into the cellular pathophysiology underlying neurodegeneration in AD. Whilst Down syndrome and familial AD iPSC models faithfully reproduce features of AD such as accumulation of Aβ and tau, oxidative stress and mitochondrial dysfunction, sporadic AD is much more difficult to model in this way due to its complex etiology. Nevertheless, iPSC-based modelling of AD has provided invaluable insights into the underlying pathophysiology of the disease, and has a huge potential for use as a platform for drug discovery.
Collapse
Affiliation(s)
- Kate Elizabeth Hawkins
- Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Michael Duchen
- Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
44
|
Xu R, Brawner AT, Li S, Liu JJ, Kim H, Xue H, Pang ZP, Kim WY, Hart RP, Liu Y, Jiang P. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 2019; 24:908-926.e8. [PMID: 31130512 DOI: 10.1016/j.stem.2019.04.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a common neurodevelopmental disorder, and cognitive defects in DS patients may arise from imbalances in excitatory and inhibitory neurotransmission. Understanding the mechanisms underlying such imbalances may provide opportunities for therapeutic intervention. Here, we show that human induced pluripotent stem cells (hiPSCs) derived from DS patients overproduce OLIG2+ ventral forebrain neural progenitors. As a result, DS hiPSC-derived cerebral organoids excessively produce specific subclasses of GABAergic interneurons and cause impaired recognition memory in neuronal chimeric mice. Increased OLIG2 expression in DS cells directly upregulates interneuron lineage-determining transcription factors. shRNA-mediated knockdown of OLIG2 largely reverses abnormal gene expression in early-stage DS neural progenitors, reduces interneuron production in DS organoids and chimeric mouse brains, and improves behavioral deficits in DS chimeric mice. Thus, altered OLIG2 expression may underlie neurodevelopmental abnormalities and cognitive defects in DS patients.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew T Brawner
- Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shenglan Li
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing-Jing Liu
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hyosung Kim
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Liu
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
45
|
De Marchi F, Araki M, Komatsu N. Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Rev Hematol 2019; 12:285-293. [PMID: 30991862 DOI: 10.1080/17474086.2019.1609351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Acute megakaryoblastic leukemia (AMegL) is a rare hematological neoplasm most often diagnosed in children and is commonly associated with Down's syndrome (DS). Although AMegLs are specifically characterized and typically diagnosed by megakaryoblastic expansion, recent advancements in molecular analysis have highlighted the heterogeneity of this disease, with specific cytogenic and genetic alterations characterizing different disease subtypes. Areas covered: This review will focus on describing recurrent molecular variations in both DS and non-DS pediatric AMegL, their role in promoting leukemogenesis, their association with different clinical aspects and prognosis, and finally, their influence on future treatment strategies with a number of specific drugs beyond conventional chemotherapy already under development. Expert opinion: Deep understanding of the genetic and molecular landscape of AMegL will lead to better and more precise disease classification in terms of diagnosis, prognosis, and possible targeted therapies. Development of new therapeutic approaches based on these molecular characteristics will hopefully improve AMegL patient outcomes.
Collapse
Affiliation(s)
- Federico De Marchi
- a Department of Hematology , Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Marito Araki
- b Department of Transfusion Medicine and Stem Cell Regulation , Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Norio Komatsu
- a Department of Hematology , Juntendo University Graduate School of Medicine , Tokyo , Japan
| |
Collapse
|
46
|
Global MicroRNA Profiling Uncovers miR-206 as a Negative Regulator of Hematopoietic Commitment in Human Pluripotent Stem Cells. Int J Mol Sci 2019; 20:ijms20071737. [PMID: 30965622 PMCID: PMC6479521 DOI: 10.3390/ijms20071737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/08/2023] Open
Abstract
Although human pluripotent stem cells (hPSCs) can theoretically differentiate into any cell type, their ability to produce hematopoietic cells is highly variable from one cell line to another. The underlying mechanisms of this heterogeneity are not clearly understood. Here, using a whole miRNome analysis approach in hPSCs, we discovered that their hematopoietic competency was associated with the expression of several miRNAs and conversely correlated to that of miR-206 specifically. Lentiviral-based miR-206 ectopic expression in H1 hematopoietic competent embryonic stem (ES) cells markedly impaired their differentiation toward the blood lineage. Integrative bioinformatics identified a potential miR-206 target gene network which included hematopoietic master regulators RUNX1 and TAL1. This work sheds light on the critical role of miR-206 in the generation of blood cells off hPSCs. Our results pave the way for future genetic manipulation of hPSCs aimed at increasing their blood regenerative potential and designing better protocols for the generation of bona fide hPSC-derived hematopoietic stem cells.
Collapse
|
47
|
Castelli A, Susani L, Menale C, Muggeo S, Caldana E, Strina D, Cassani B, Recordati C, Scanziani E, Ficara F, Villa A, Vezzoni P, Paulis M. Chromosome Transplantation: Correction of the Chronic Granulomatous Disease Defect in Mouse Induced Pluripotent Stem Cells. Stem Cells 2019; 37:876-887. [PMID: 30895693 DOI: 10.1002/stem.3006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/12/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
In spite of the progress in gene editing achieved in recent years, a subset of genetic diseases involving structural chromosome abnormalities, including aneuploidies, large deletions and complex rearrangements, cannot be treated with conventional gene therapy approaches. We have previously devised a strategy, dubbed chromosome transplantation (CT), to replace an endogenous mutated chromosome with an exogenous normal one. To establish a proof of principle for our approach, we chose as disease model the chronic granulomatous disease (CGD), an X-linked severe immunodeficiency due to abnormalities in CYBB (GP91) gene, including large genomic deletions. We corrected the gene defect by CT in induced pluripotent stem cells (iPSCs) from a CGD male mouse model. The Hprt gene of the endogenous X chromosome was inactivated by CRISPR/Cas9 technology thus allowing the exploitation of the hypoxanthine-aminopterin-thymidine selection system to introduce a normal donor X chromosome by microcell-mediated chromosome transfer. X-transplanted clones were obtained, and diploid XY clones which spontaneously lost the endogenous X chromosome were isolated. These cells were differentiated toward the myeloid lineage, and functional granulocytes producing GP91 protein were obtained. We propose the CT approach to correct iPSCs from patients affected by other X-linked diseases with large deletions, whose treatment is still unsatisfactory. Stem Cells 2019;37:876-887.
Collapse
Affiliation(s)
- Alessandra Castelli
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Lucia Susani
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Ciro Menale
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Sharon Muggeo
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Elena Caldana
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Dario Strina
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Barbara Cassani
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Sciences and Public Health, University of Milan, Milan, Italy
| | - Francesca Ficara
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Anna Villa
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Vezzoni
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Marianna Paulis
- National Research Council (CNR)-IRGB/UOS of Milan, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
48
|
Watanabe K. Recent advances in the understanding of transient abnormal myelopoiesis in Down syndrome. Pediatr Int 2019; 61:222-229. [PMID: 30593694 DOI: 10.1111/ped.13776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/08/2018] [Accepted: 12/28/2018] [Indexed: 12/26/2022]
Abstract
Neonates with Down syndrome (DS) have a propensity to develop the unique myeloproliferative disorder, transient abnormal myelopoiesis (TAM). TAM usually resolves spontaneously in ≤3 months, but approximately 10% of patients with TAM die from hepatic or multi-organ failure. After remission, 20% of patients with TAM develop acute myeloid leukemia associated with Down syndrome (ML-DS). Blasts in both TAM and ML-DS have trisomy 21 and GATA binding protein 1 (GATA1) mutations. Recent studies have shown that infants with DS and no clinical signs of TAM or increases in peripheral blood blasts can have minor clones carrying GATA1 mutations, referred to as silent TAM. Low-dose cytarabine can improve the outcomes of patients with TAM and high white blood cell count. A number of studies using fetal liver cells, mouse models, or induced pluripotent stem cells have elucidated the roles of trisomy 21 and GATA1 mutations in the development of TAM. Next-generation sequencing of TAM and ML-DS patient samples identified additional mutations in genes involved in epigenetic regulation. Xenograft models of TAM demonstrate the genetic heterogeneity of TAM blasts and mimic the process of clonal selection and expansion of TAM clones that leads to ML-DS. DNA methylation analysis suggests that epigenetic dysregulation may be involved in the progression from TAM to ML-DS. Unraveling the mechanisms underlying leukemogenesis and identification of factors that predict progression to leukemia could assist in development of strategies to prevent progression to ML-DS. Investigation of TAM, a unique pre-leukemic condition, will continue to strongly influence basic and clinical research into the development of hematological malignancies.
Collapse
Affiliation(s)
- Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Aoi-ku, Shizuoka, Japan
| |
Collapse
|
49
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
50
|
Hiramatsu K, Abe S, Kazuki K, Osaki M, Kajitani N, Yakura Y, Oshimura M, Kazuki Y. Generation of a novel isogenic trisomy panel in human embryonic stem cells via microcell-mediated chromosome transfer. Biochem Biophys Res Commun 2019; 508:603-607. [PMID: 30509488 DOI: 10.1016/j.bbrc.2018.11.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 11/29/2022]
Abstract
Aneuploidy is the gain or loss of a chromosome. Down syndrome or trisomy (Ts) 21 is the most frequent live-born aneuploidy syndrome in humans and extensively studied using model mice. However, there is no available model mouse for other congenital Ts syndromes, possibly because of the lethality of Ts in vivo, resulting in the lack of studies to identify the responsible gene(s) for aneuploid syndromes. Although induced pluripotent stem cells derived from patients are useful to analyse aneuploidy syndromes, there are concerns about differences in the genetic background for comparative studies and clonal variations. Therefore, a model cell line panel with the same genetic background has been strongly desired for sophisticated comparative analyses. In this study, we established isogenic human embryonic stem (hES) cells of Ts8, Ts13, and Ts18 in addition to previously established Ts21 by transferring each single chromosome into parental hES cells via microcell-mediated chromosome transfer. Genes on each trisomic chromosome were globally overexpressed in each established cell line, and all Ts cell lines differentiated into all three embryonic germ layers. This cell line panel is expected to be a useful resource to elucidate molecular and epigenetic mechanisms of genetic imbalance and determine how aneuploidy is involved in various abnormal phenotypes including tumourigenesis and impaired neurogenesis.
Collapse
Affiliation(s)
- Kei Hiramatsu
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Division of Pathological Biochemistry, Department of Biomedical Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yuwna Yakura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|