1
|
Naderi J, Johnson AK, Thakkar H, Chandravanshi B, Ksiazek A, Anand A, Vincent V, Tran A, Kalimireddy A, Singh P, Sood A, Das A, Talbot CL, Distefano IA, Maschek JA, Cox J, Li Y, Summers SA, Atkinson DJ, Turapov T, Ratcliff JA, Fung J, Shabbir A, Shabeer Yassin M, Shiow SATE, Holland WL, Pitt GS, Chaurasia B. Ceramide-induced FGF13 impairs systemic metabolic health. Cell Metab 2025; 37:1206-1222.e8. [PMID: 40169001 PMCID: PMC12058412 DOI: 10.1016/j.cmet.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Ceramide accumulation impairs adipocytes' ability to efficiently store and utilize nutrients, leading to energy and glucose homeostasis deterioration. Using a comparative transcriptomic screen, we identified the non-canonical, non-secreted fibroblast growth factor FGF13 as a ceramide-regulated factor that impairs adipocyte function. Obesity robustly induces FGF13 expression in adipose tissue in mice and humans and is positively associated with glycemic indices of type 2 diabetes. Pharmacological or genetic inhibition of ceramide biosynthesis reduces FGF13 expression. Using mice with loss and gain of function of FGF13, we demonstrate that FGF13 is both necessary and sufficient to impair energy and glucose homeostasis independent of ceramides. Mechanistically, FGF13 exerts these effects by inhibiting mitochondrial content and function, metabolic elasticity, and caveolae formation, which cumulatively impairs glucose utilization and thermogenesis. These studies suggest the therapeutic potential of targeting FGF13 to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
- Jamal Naderi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Kelsey Johnson
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Himani Thakkar
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Bhawna Chandravanshi
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Alec Ksiazek
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ajay Anand
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Vinnyfred Vincent
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aaron Tran
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Anish Kalimireddy
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Pratibha Singh
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ayushi Sood
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aasthika Das
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Chad Lamar Talbot
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Isabella A Distefano
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - J Alan Maschek
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Donald J Atkinson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Tursun Turapov
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason A Ratcliff
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Javis Fung
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sue-Anne Toh Ee Shiow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - William L Holland
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Gardner JC, Jovanovic K, Ottaviani D, Melo US, Jackson J, Guarascio R, Ziaka K, Hau KL, Lane A, Taylor RL, Chai N, Gkertsou C, Fernando O, Piwecka M, Georgiou M, Mundlos S, Black GC, Moore AT, Michaelides M, Cheetham ME, Hardcastle AJ. Inter-chromosomal insertions at Xq27.1 associated with retinal dystrophy induce dysregulation of LINC00632 and CDR1as/ciRS-7. Am J Hum Genet 2025; 112:523-536. [PMID: 39892393 PMCID: PMC11947168 DOI: 10.1016/j.ajhg.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/03/2025] Open
Abstract
In two unrelated families with X-linked inherited retinal dystrophy, identification of the causative variants was elusive. Interrogation of the next-generation sequencing (NGS) data revealed a "dark" intergenic region on Xq27.1 with poor coverage. Long-range PCR and DNA walking across this region revealed different inter-chromosomal insertions into the human-specific palindrome on Xq27.1: a 58 kb insertion of 9p24.3 [der(X)dir ins(X;9)(q27.1;p24.3)] in family 1 and a 169 kb insertion of 3p14.2 [der(X)inv ins(X;3)(q27.1;p14.2)] in family 2. To explore the functional consequence of these structural variants in genomic and cellular contexts, induced pluripotent stem cells were derived from affected and control fibroblasts and differentiated to retinal organoids (ROs) and retinal pigment epithelium. Transcriptional dysregulation was evaluated using RNA sequencing (RNA-seq) and RT-qPCR. A downstream long non-coding RNA, LINC00632 (Xq27.1), was upregulated in ROs from both families compared to control samples. In contrast, the circular RNA CDR1as/ciRS-7 (circular RNA sponge for miR-7), spliced from linear LINC00632, was downregulated. To investigate this tissue-specific dysregulation, we interrogated the landscape of the locus using Hi-C and cleavage under targets and tagmentation sequencing (CUT&Tag). This revealed active retinal enhancers within the insertions within a topologically associated domain that also contained the upstream promoter of LINC00632, permitting ectopic contact. Furthermore, CDR1as/ciRS-7 acts as a "sponge" for miR-7, and target genes of miR-7 were also dysregulated in ROs derived from both families. We describe a new genomic mechanism for retinal dystrophy, and our data support a convergent tissue-specific mechanism of altered regulation of LINC00632 and CDR1as/ciRS-7 as a consequence of the insertions within the palindrome on Xq27.1.
Collapse
Affiliation(s)
- Jessica C Gardner
- UCL Institute of Ophthalmology, University College London, London, UK.
| | | | - Daniele Ottaviani
- UCL Institute of Ophthalmology, University College London, London, UK; Department of Biology, University of Padua, Padua, Italy
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
| | - Joshua Jackson
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kwan-Leong Hau
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Rachel L Taylor
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Niuzheng Chai
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Owen Fernando
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | | | | |
Collapse
|
3
|
Levy B, Liu J, Iqbal MA, DuPont B, Sahajpal N, Ho M, Yu J, Brody SJ, Ganapathi M, Rajkovic A, Smolarek TA, Boyar F, Bui P, Dubuc AM, Kolhe R, Stevenson RE. Multisite Evaluation and Validation of Optical Genome Mapping for Prenatal Genetic Testing. J Mol Diagn 2024; 26:906-916. [PMID: 39032820 DOI: 10.1016/j.jmoldx.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024] Open
Abstract
Prenatal diagnostic testing of amniotic fluid, chorionic villi, or more rarely, fetal cord blood is recommended following a positive or unreportable noninvasive cell-free fetal DNA test, abnormal maternal biochemical serum screen, abnormal ultrasound, or increased genetic risk for a cytogenomic abnormality based on family history. Although chromosomal microarray is recommended as the first-tier prenatal diagnostic test, in practice, multiple assays are often assessed in concert to achieve a final diagnostic result. The use of multiple methodologies is costly, time consuming, and labor intensive. Optical genome mapping (OGM) is an emerging technique with application for prenatal diagnosis because of its ability to detect and resolve, in a single assay, all classes of pathogenic cytogenomic aberrations. In an effort to characterize the potential of OGM as a novel alternative to traditional standard of care (SOC) testing of prenatal samples, OGM was performed on a total of 200 samples representing 123 unique cases, which were previously tested with SOC methods (92/123 = 74.7% cases tested with at least two SOCs). OGM demonstrated an overall accuracy of 99.6% when compared with SOC methods, a positive predictive value of 100%, and 100% reproducibility between sites, operators, and instruments. The standardized workflow, cost-effectiveness, and high-resolution cytogenomic analysis demonstrate the potential of OGM to serve as a first-tier test for prenatal diagnosis.
Collapse
Affiliation(s)
- Brynn Levy
- Columbia University Irving Medical Center, New York, New York
| | - Jie Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - M Anwar Iqbal
- University of Rochester Medical Center, Rochester, New York
| | | | | | - Monique Ho
- University of Rochester Medical Center, Rochester, New York
| | - Jingwei Yu
- University of California San Francisco, San Francisco, California
| | - Sam J Brody
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Teresa A Smolarek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Fatih Boyar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Peter Bui
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Adrian M Dubuc
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | | |
Collapse
|
4
|
Joaquim TM, Roy SD, de Albuquerque CGP, Grangeiro CHP, Squire JA, Yoshimoto M, Martelli L. Xp22.33p22.13 Duplication in a Male Patient Carrying a Recombinant X Chromosome Derived from an Inherited Intrachromosomal Insertion. Cytogenet Genome Res 2023; 163:24-31. [PMID: 37482055 DOI: 10.1159/000532051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
Intrachromosomal insertions are complex structural rearrangements that are challenging to interpret using classical cytogenetic methods. We report a male patient carrying a recombinant X chromosome derived from a maternally inherited intrachromosomal insertion. The patient exhibited developmental delay, intellectual disability, behavioral disorder, and dysmorphic facial features. To accurately identify the rearrangements in the abnormal X chromosome, additional cytogenetic studies were conducted, including fluorescence in situ hybridization (FISH), multicolor-banding FISH, and array comparative genomic hybridization. The results showed a recombinant X chromosome, resulting in a 13.05 Mb interstitial duplication of segment Xp22.33-Xp22.13, which was inserted at cytoband Xq26.1. The duplicated region encompasses 99 genes, some of which are associated with the patient's clinical manifestations. We propose that the combined effects of the Xp-duplicated genes may contribute to the patient's phenotype.
Collapse
Affiliation(s)
- Tatiana Mozer Joaquim
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of General Biology, State University of Londrina, Londrina, Brazil
| | - Scott David Roy
- Cytogenetics Laboratory North Sector, Genetics & Genomics, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Clarissa Gondim Picanço de Albuquerque
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Henrique Paiva Grangeiro
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jeremy A Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maisa Yoshimoto
- Cytogenetics Laboratory North Sector, Genetics & Genomics, Alberta Precision Laboratories, University of Alberta Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Lucia Martelli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Medical Genetics Section, Clinical Hospital of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
de Boer E, Marcelis C, Neveling K, van Beusekom E, Hoischen A, Klein WM, de Leeuw N, Mantere T, Melo US, van Reeuwijk J, Smeets D, Spielmann M, Kleefstra T, van Bokhoven H, Vissers LE. A complex structural variant near SOX3 causes X-linked split-hand/foot malformation. HGG ADVANCES 2023; 4:100200. [PMID: 37216008 PMCID: PMC10196709 DOI: 10.1016/j.xhgg.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family.
Collapse
Affiliation(s)
- Elke de Boer
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Carlo Marcelis
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willemijn M. Klein
- Department of Medical Imaging, Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Uirá S. Melo
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dominique Smeets
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Nijmegen, the Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Radboudumc University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Woo J, Suh W, Sung JH. Hair Growth Regulation by Fibroblast Growth Factor 12 (FGF12). Int J Mol Sci 2022; 23:ijms23169467. [PMID: 36012732 PMCID: PMC9409131 DOI: 10.3390/ijms23169467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fibroblast growth factor (FGF) family has various biological functions, including cell growth, tissue regeneration, embryonic development, metabolism, and angiogenesis. In the case of hair growth, several members of the FGF family, such as FGF1 and FGF2, are involved in hair growth, while FGF5 has the opposite effect. In this study, the regulation of the hair growth cycle by FGF12 was investigated. To observe its effect, the expression of FGF12 was downregulated in mice and outer root sheath (ORS) by siRNA transfection, while FGF12 overexpression was carried out using FGF12 adenovirus. For the results, FGF12 was primarily expressed in ORS cells with a high expression during the anagen phase of hair follicles. Knockdown of FGF12 delayed telogen-to-anagen transition in mice and decreased the hair length in vibrissae hair follicles. It also inhibited the proliferation and migration of ORS cells. On the contrary, FGF12 overexpression increased the migration of ORS cells. FGF12-overexpressed ORS cells induced the telogen-to-anagen transition in the animal model. In addition, FGF12 overexpression regulated the expression of PDGF-CC, MDK, and HB-EGF, and treatment of these factors exhibited hair growth promotion. Altogether, FGF12 promoted hair growth by inducing the anagen phase of hair follicles, suggesting the potential for hair loss therapy.
Collapse
Affiliation(s)
- Jiwon Woo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | - Wonhee Suh
- Department of Global Innovative Drug, The Graduate School of Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.S.); (J.-H.S.)
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- Epi Biotech Co., Ltd., Incheon 21983, Korea
- Correspondence: (W.S.); (J.-H.S.)
| |
Collapse
|
7
|
Korzh VP, Gasanov EV. Genetics of Atavism. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Atavisms have attracted people’s attention for a long time. First, atavisms excited their imagination and created fertile ground for myths and superstitions. With the development of science, atavisms became the subject of investigation, which soon provided evidence to support evolutionary theory. However, at the molecular level, the formation of atavisms remained insufficiently understood. Recent progress in comparative genomics and molecular developmental biology has helped in understanding the processes underlying the formation of one of the human atavisms: the vestigial tail.
Collapse
|
8
|
Raza R, Ullah A, Haider N, Krishin J, Shah M, Khan FU, Abdullah, Hansen T, Raza SI, Ahmad W, Basit S. Exome sequencing reveals the first intragenic deletion in ABCA5 underlying autosomal recessive hypertrichosis. Clin Exp Dermatol 2022; 47:1137-1143. [PMID: 35150007 DOI: 10.1111/ced.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hereditary hypertrichosis (HH) is characterized by excessive hair growth on various body areas, which is independent of the individual's age. This rare hair disorder has been classified by its origin (genetic or acquired), age of onset, breadth of hair distribution (universal or localized) and the affected body areas. HH is often linked to several additional congenital abnormalities involving teeth, heart and bones. Human HH is associated with heterozygous genomic duplications and deletions in the chromosomal region 17q24.2-q24.3, containing genes such as ABCA5, ABCA6, ABCA10 and MAP2K6. Recently, a homozygous splice-site variant in ABCA5 has been reported to cause autosomal recessive congenital generalized hypertrichosis terminalis (CGHT; OMIM 135400). AIM To investigate the clinical and genetic basis of autosomal recessive hypertrichosis in a large consanguineous Pakistani family. METHODS In the present study, we characterized a family of Pakistani origin segregating CGHT in an autosomal recessive pattern, using whole exome sequencing followed by Sanger sequencing. RESULTS We identified a novel 2-bp intragenic deletion [NM_172232.4(ABCA5);c.977_978delAT] causing a frameshift variant (p.His326ArgfsTer5) in ABCA5. CONCLUSIONS To our knowledge, this is the first intragenic deletion in ABCA5 underlying CGHT. The findings further validate the involvement of ABCA5 in hair development. The study will facilitate genetic counselling of families carrying CGHT-related features in Pakistani and other populations.
Collapse
Affiliation(s)
- Rubab Raza
- Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad Pakistan
| | - Asmat Ullah
- Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad Pakistan.,Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark.,Department of Pediatrics Shaheed Zulfiqar Ali Bhutto Medical University Pakistan Institute of Medical Sciences Islamabad Pakistan
| | - Nighat Haider
- Department of Pediatrics Shaheed Zulfiqar Ali Bhutto Medical University Pakistan Institute of Medical Sciences Islamabad Pakistan
| | - Jai Krishin
- Department of Pediatrics Shaheed Zulfiqar Ali Bhutto Medical University Pakistan Institute of Medical Sciences Islamabad Pakistan
| | - Muqadar Shah
- Department of Pediatrics Shaheed Zulfiqar Ali Bhutto Medical University Pakistan Institute of Medical Sciences Islamabad Pakistan
| | - Fati Ullah Khan
- Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad Pakistan
| | - Abdullah
- Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Syed Irfan Raza
- Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad Pakistan.,HBS Medical and Dental College Islamabad Pakistan
| | - Wasim Ahmad
- Department of Biochemistry Faculty of Biological Sciences Quaid-i-Azam University Islamabad Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases Taibah University Medina Saudi Arabia
| |
Collapse
|
9
|
Boyling A, Perez-Siles G, Kennerson ML. Structural Variation at a Disease Mutation Hotspot: Strategies to Investigate Gene Regulation and the 3D Genome. Front Genet 2022; 13:842860. [PMID: 35401663 PMCID: PMC8990796 DOI: 10.3389/fgene.2022.842860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
A rare form of X-linked Charcot-Marie-Tooth neuropathy, CMTX3, is caused by an interchromosomal insertion occurring at chromosome Xq27.1. Interestingly, eight other disease phenotypes have been associated with insertions (or insertion-deletions) occurring at the same genetic locus. To date, the pathogenic mechanism underlying most of these diseases remains unsolved, although local gene dysregulation has clearly been implicated in at least two phenotypes. The challenges of accessing disease-relevant tissue and modelling these complex genomic rearrangements has led to this research impasse. We argue that recent technological advancements can overcome many of these challenges, particularly induced pluripotent stem cells (iPSC) and their capacity to provide access to patient-derived disease-relevant tissue. However, to date these valuable tools have not been utilized to investigate the disease-associated insertions at chromosome Xq27.1. Therefore, using CMTX3 as a reference disease, we propose an experimental approach that can be used to explore these complex mutations, as well as similar structural variants located elsewhere in the genome. The mutational hotspot at Xq27.1 is a valuable disease paradigm with the potential to improve our understanding of the pathogenic consequences of complex structural variation, and more broadly, refine our knowledge of the multifaceted process of long-range gene regulation. Intergenic structural variation is a critically understudied class of mutation, although it is likely to contribute significantly to unsolved genetic disease.
Collapse
Affiliation(s)
- Alexandra Boyling
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| | - Gonzalo Perez-Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, Australia
- *Correspondence: Alexandra Boyling, ; Marina L. Kennerson,
| |
Collapse
|
10
|
Boschann F, Moreno DA, Mensah MA, Sczakiel HL, Skipalova K, Holtgrewe M, Mundlos S, Fischer-Zirnsak B. Xq27.1 palindrome mediated interchromosomal insertion likely causes familial congenital bilateral laryngeal abductor paralysis (Plott syndrome). J Hum Genet 2022; 67:405-410. [PMID: 35095096 PMCID: PMC9233990 DOI: 10.1038/s10038-022-01018-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023]
Abstract
Bilateral laryngeal abductor paralysis is a rare entity and the second most common cause of stridor in newborns. So far, no conclusive genetic or chromosomal aberration has been reported for X-linked isolated bilateral vocal cord paralysis, also referred to as Plott syndrome. Via whole genome sequencing (WGS), we identified a complex interchromosomal insertion in a large family with seven affected males. The 404 kb inserted fragment originates from chromosome 10q21.3, contains no genes and is inserted inversionally into the intergenic chromosomal region Xq27.1, 82 kb centromeric to the nearest gene SOX3. The patterns found at the breakpoint junctions resemble typical characteristics that arise in replication-based mechanisms with long-distance template switching. Non protein-coding insertions into the same genomic region have been described to result in different phenotypes, indicating that the phenotypic outcome likely depends on the introduction of regulatory elements. In conclusion, our data adds Plott syndrome as another entity, likely caused by the insertion of non-coding DNA into the intergenic chromosomal region Xq27.1. In this regard, we demonstrate the importance of WGS as a powerful diagnostic test in unsolved genetic diseases, as this genomic rearrangement has not been detected by current first-line diagnostic tests, i.e., exome sequencing and chromosomal microarray analysis.
Collapse
|
11
|
Hayashi R, Shimomura Y. Update of recent findings in genetic hair disorders. J Dermatol 2021; 49:55-67. [PMID: 34676598 DOI: 10.1111/1346-8138.16204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Genetic hair disorders, although unusual, are not very rare, and dermatologists often have opportunities to see patients. Significant advances in molecular genetics have led to identifying many causative genes for genetic hair disorders, including the recently identified causative genes, such as LSS and C3ORF52. Many patients have been detected with autosomal recessive woolly hair/hypotrichosis in the Japanese population caused by founder mutations in the LIPH gene. Additionally, many patients with genetic hair disorders caused by other genes have been reported in East Asia including Japan. Understanding genetic hair disorders is essential for dermatologists, and the findings obtained from analyzing these diseases will contribute to revealing the mechanisms of hair follicle morphogenesis and development in humans.
Collapse
Affiliation(s)
- Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
12
|
Fibroblast Growth Factor 13 Facilitates Peripheral Nerve Regeneration through Maintaining Microtubule Stability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5481228. [PMID: 34457114 PMCID: PMC8397546 DOI: 10.1155/2021/5481228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Peripheral nerve injury (PNI), resulting in the impairment of myelin sheaths and axons, seriously affects the transmission of sensory or motor nerves. Growth factors (GFs) provide a biological microenvironment for supporting nerve regrowth and have become a promising alternative for repairing PNI. As one number of intracellular growth factor family, fibroblast growth factor 13 (FGF13) was regard as a microtubule-stabilizing protein for regulating cytoskeletal plasticity and neuronal polarization. However, the therapeutic efficiency and underlying mechanism of FGF13 for treating PNI remained unknown. Here, the application of lentivirus that overexpressed FGF13 was delivered directly to the lesion site of transverse sciatic nerve for promoting peripheral nerve regeneration. Through behavioral analysis and histological and ultrastructure examinations, we found that FGF13 not only facilitated motor and sense functional recovery but also enhanced axon elongation and remyelination. Furthermore, pretreatment with FGF13 also promoted Schwann cell (SC) viability and upregulated the expression cellular microtubule-associated proteins in vitro PNI model. These data indicated FGF13 therapeutic effect was closely related to maintain cellular microtubule stability. Thus, this work provides the evident that FGF13-medicated microtubule stability is necessary for promoting peripheral nerve repair following PNI, highlighting the potential therapeutic value of FGF13 on ameliorating injured nerve recovery.
Collapse
|
13
|
Yu Y, Yang J, Luan F, Gu G, Zhao R, Wang Q, Dong Z, Tang J, Wang W, Sun J, Lv P, Zhang H, Wang C. Sensorineural Hearing Loss and Mitochondrial Apoptosis of Cochlear Spiral Ganglion Neurons in Fibroblast Growth Factor 13 Knockout Mice. Front Cell Neurosci 2021; 15:658586. [PMID: 34220452 PMCID: PMC8242186 DOI: 10.3389/fncel.2021.658586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Deafness is known to occur in more than 400 syndromes and accounts for almost 30% of hereditary hearing loss. The molecular mechanisms underlying such syndromic deafness remain unclear. Furthermore, deafness has been a common feature in patients with three main syndromes, the BÖrjeson-Forssman-Lehmann syndrome, Wildervanck syndrome, and Congenital Generalized Hirsutism, all of which are characterized by loss-of-function mutations in the Fgf13 gene. Whether the pathogenesis of deafness in these syndromes is associated with the Fgf13 mutation is not known. To elucidate its role in auditory function, we generated a mouse line with conditional knockout of the Fgf13 gene in the inner ear (Fgf13 cKO). FGF13 is expressed predominantly in the organ of Corti, spiral ganglion neurons (SGNs), stria vascularis, and the supporting cells. Conditional knockout of the gene in the inner ear led to sensorineural deafness with low amplitude and increased latency of wave I in the auditory brainstem response test but had a normal distortion product otoacoustic emission threshold. Fgf13 deficiency resulted in decreased SGN density from the apical to the basal region without significant morphological changes and those in the number of hair cells. TUNEL and caspase-3 immunocytochemistry assays showed that apoptotic cell death mediated the loss of SGNs. Further detection of apoptotic factors through qRT-PCR suggested the activation of the mitochondrial apoptotic pathway in SGNs. Together, this study reveals a novel role for Fgf13 in auditory function, and indicates that the gene could be a potential candidate for understanding deafness. These findings may provide new perspectives on the molecular mechanisms and novel therapeutic targets for treatment deafness.
Collapse
Affiliation(s)
- Yulou Yu
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Feng Luan
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ran Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qiong Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Zishan Dong
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Lv
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Hailin Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Svetec Miklenić M, Svetec IK. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer. Int J Mol Sci 2021; 22:2840. [PMID: 33799581 PMCID: PMC7999016 DOI: 10.3390/ijms22062840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
A palindrome in DNA consists of two closely spaced or adjacent inverted repeats. Certain palindromes have important biological functions as parts of various cis-acting elements and protein binding sites. However, many palindromes are known as fragile sites in the genome, sites prone to chromosome breakage which can lead to various genetic rearrangements or even cell death. The ability of certain palindromes to initiate genetic recombination lies in their ability to form secondary structures in DNA which can cause replication stalling and double-strand breaks. Given their recombinogenic nature, it is not surprising that palindromes in the human genome are involved in genetic rearrangements in cancer cells as well as other known recurrent translocations and deletions associated with certain syndromes in humans. Here, we bring an overview of current understanding and knowledge on molecular mechanisms of palindrome recombinogenicity and discuss possible implications of DNA palindromes in carcinogenesis. Furthermore, we overview the data on known palindromic sequences in the human genome and efforts to estimate their number and distribution, as well as underlying mechanisms of genetic rearrangements specific palindromic sequences cause.
Collapse
Affiliation(s)
| | - Ivan Krešimir Svetec
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
15
|
Aguayo‐Orozco TA, Ríos‐González BE, Castro‐Martínez AG, Ruiz‐Ramírez AV, Figuera LE. Generalized hypertrichosis syndromes in Mexico. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:1014-1022. [DOI: 10.1002/ajmg.c.31864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Thania Alejandra Aguayo‐Orozco
- División de Genética, Centro de Investigación Biomédica de Occidente Instituto Mexicano del Seguro Social Guadalajara Jalisco Mexico
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara Guadalajara Jalisco Mexico
| | | | | | - Andrea Virginia Ruiz‐Ramírez
- División de Genética, Centro de Investigación Biomédica de Occidente Instituto Mexicano del Seguro Social Guadalajara Jalisco Mexico
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara Guadalajara Jalisco Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente Instituto Mexicano del Seguro Social Guadalajara Jalisco Mexico
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara Guadalajara Jalisco Mexico
| |
Collapse
|
16
|
Kinoshita-Ise M, Tsukashima A, Kinoshita T, Yamazaki Y, Ohyama M. Altered FGF expression profile in human scalp-derived fibroblasts upon WNT activation: implication of their role to provide folliculogenetic microenvironment. Inflamm Regen 2020; 40:35. [PMID: 32973962 PMCID: PMC7507293 DOI: 10.1186/s41232-020-00141-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Background Hair follicle (HF) formation and growth are sustained by epithelial-mesenchymal interaction via growth factors and cytokines. Pivotal roles of FGFs on HF regeneration and neogenesis have been reported mainly in rodent models. FGF expression is regulated by upstream pathways, represented by canonical WNT signaling; however, how FGFs influence on human folliculogenesis remains elusive. The aim of this study is to assess if human scalp-derived fibroblasts (sFBs) are able to modulate their FGF expression profile in response to WNT activation and to evaluate the influence of WNT-activated or suppressed FGFs on folliculogenesis. Methods Dermal papilla cells (DPCs), dermal sheath cells (DSCs), and sFBs were isolated from the human scalp and cultured independently. The gene expression profile of FGFs in DPCs, DSCs, and sFBs and the influence of WNT activator, CHIR99021, on FGF expression pattern in sFBs were evaluated by reverse transcription polymerase chain reaction, which were confirmed at protein level by western blotting analysis. The changes in the expression of DPC or keratinocyte (KC) biomarkers under the presence of FGF7 or 9 were examined in both single and co-culture assay of DPCs and/or KCs. The influence of FGF 7 and FGF 9 on hair morphogenesis and growth was analyzed in vivo using mouse chamber assay. Results In single culture, sFBs were distinguished from DPCs and DSCs by relatively high expression of FGF5 and FGF18, potential inducers of hair cycle retardation or catagen phase. In WNT-activated state, sFBs downregulated FGF7 while upregulating FGF9, a positive regulator of HF morphogenesis, FGF16 and FGF20 belonging to the same FGF subfamily. In addition, CHIR99021, a WNT activator, dose-dependently modulated FGF7 and 9 expression to be folliculogenic. Altered expressions of FGF7 and FGF9 by CHIR99021 were confirmed at protein level. Supplementation of FGF9 to cultured DPCs resulted in upregulation of representative DP biomarkers and this tendency was sustained, when DPCs were co-cultured with KCs. In mouse chamber assay, FGF9 increased both the number and the diameter of newly formed HFs, while FGF7 decreased HF diameter. Conclusion The results implied that sFBs support HF formation by modulating regional FGF expression profile responding to WNT activation.
Collapse
Affiliation(s)
- Misaki Kinoshita-Ise
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| | - Aki Tsukashima
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Tomonari Kinoshita
- Division of Cellular Signaling Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoshimi Yamazaki
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611 Japan.,Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku, Tokyo, 160-8582 Japan
| |
Collapse
|
17
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
18
|
Gaynor KU, Grigorieva IV, Mirczuk SM, Piret SE, Kooblall KG, Stevenson M, Rizzoti K, Bowl MR, Nesbit MA, Christie PT, Fraser WD, Hough T, Whyte MP, Lovell-Badge R, Thakker RV. Studies of mice deleted for Sox3 and uc482: relevance to X-linked hypoparathyroidism. Endocr Connect 2020; 9:EC-19-0478.R1. [PMID: 31961795 PMCID: PMC7040864 DOI: 10.1530/ec-19-0478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Hypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families, is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.3. These could result in loss, gain, or movement of regulatory elements, which include ultraconserved element uc482, that could alter SOX3 expression,. To investigate this, we analysed SOX3 expression in EBV-transformed lymphoblastoid cells from 3 affected males, 3 unaffected males, and 4 carrier females from one XLHPT family. SOX3 expression was similar in all individuals, indicating that the spatiotemporal effect of the interstitial deletion-insertion on SOX3 expression postulated to occur in developing parathyroids did not manifest in lymphoblastoids. Expression of SNTG2, which is duplicated and inserted into the X chromosome, and ATP11C, which is moved telomerically, were also similarly expressed in all individuals. Investigation of male hemizygous (Sox3-/Y and uc482-/Y) and female heterozygous (Sox3+/- and uc482+/-) knock-out mice, together with wild-type littermates (male Sox3+/Y and uc482+/Y, and female Sox3+/+ and uc482+/+), revealed Sox3-/Y, Sox3+/-, uc482-/Y, and uc482+/- mice to have normal plasma biochemistry, compared to their respective wild-type littermates. When challenged with a low calcium diet, all mice had hypocalcaemia, and elevated plasma PTH concentrations and alkaline phosphatase activities, and Sox3-/Y, Sox3+/-, uc482-/Y, and uc482+/- mice had similar plasma biochemistry, compared to wild-type littermates. Thus, these results indicate that absence of Sox3 or uc482 does not cause hypoparathyroidism, and that XLHPT likely reflects a more complex mechanism.
Collapse
Affiliation(s)
- Katherine U Gaynor
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Irina V Grigorieva
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Samantha M Mirczuk
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Sian E Piret
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Kreepa G Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | | | - Michael R Bowl
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - M Andrew Nesbit
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - Paul T Christie
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| | - William D Fraser
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Tertius Hough
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Michael P Whyte
- Washington University in St Louis School of Medicine, Center for Metabolic Bone Disease and Molecular Research, St Louis, Missouri, USA
| | | | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK
| |
Collapse
|
19
|
Middelkamp S, Vlaar JM, Giltay J, Korzelius J, Besselink N, Boymans S, Janssen R, de la Fonteijne L, van Binsbergen E, van Roosmalen MJ, Hochstenbach R, Giachino D, Talkowski ME, Kloosterman WP, Cuppen E. Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants. Genome Med 2019; 11:79. [PMID: 31801603 PMCID: PMC6894143 DOI: 10.1186/s13073-019-0692-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Judith M Vlaar
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Jacques Giltay
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Jerome Korzelius
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Lisanne de la Fonteijne
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ron Hochstenbach
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Daniela Giachino
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wigard P Kloosterman
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Sinden DS, Holman CD, Bare CJ, Sun X, Gade AR, Cohen DE, Pitt GS. Knockout of the X-linked Fgf13 in the hypothalamic paraventricular nucleus impairs sympathetic output to brown fat and causes obesity. FASEB J 2019; 33:11579-11594. [PMID: 31339804 PMCID: PMC6994920 DOI: 10.1096/fj.201901178r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor (FGF)13, a nonsecreted, X-linked, FGF homologous factor, is differentially expressed in adipocytes in response to diet, yet Fgf13's role in metabolism has not been explored. Heterozygous Fgf13 knockouts fed normal chow and housed at 22°C showed hyperactivity accompanying reduced core temperature and obesity when housed at 30°C. Those heterozygous knockouts showed defects in thermogenesis even at 30°C and an inability to protect core temperature. Surprisingly, we detected trivial FGF13 in adipose of wild-type mice fed normal chow and no obesity in adipose-specific heterozygous knockouts housed at 30°C, and we detected an intact brown fat response through exogenous β3 agonist stimulation, suggesting a defect in sympathetic drive to brown adipose tissue. In contrast, hypothalamic-specific ablation of Fgf13 recapitulated weight gain at 30°C. Norepinephrine turnover in brown fat was reduced at both housing temperatures. Thus, our data suggest that impaired CNS regulation of sympathetic activation of brown fat underlies obesity and thermogenesis in Fgf13 heterozygous knockouts fed normal chow.-Sinden, D. S., Holman, C. D., Bare, C. J., Sun, X., Gade, A. R., Cohen, D. E., Pitt, G. S. Knockout of the X-linked Fgf13 in the hypothalamic paraventricular nucleus impairs sympathetic output to brown fat and causes obesity.
Collapse
Affiliation(s)
- Daniel S. Sinden
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Corey D. Holman
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Curtis J. Bare
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Xiaolu Sun
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
21
|
Lin H, Lu P, Zhou M, Wu F, Weng L, Meng K, Yang D, Li S, Jiang C, Tian H. Purification of recombinant human fibroblast growth factor 13 in E. coli and its molecular mechanism of mitogenesis. Appl Microbiol Biotechnol 2019; 103:7017-7027. [PMID: 31289905 DOI: 10.1007/s00253-019-09973-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor (FGF) 13, a member of the FGF11 subfamily, is a kind of intracrine protein similar to other family members including FGF11, FGF12, and FGF14. Unlike classical FGF, FGF13 exerts its bioactivities independent of fibroblast growth factor receptors (FGFRs). However, the effect of exogenous administration of FGF13 still remains further investigated. In the present study, we established an Escherichia coli expression system for the large-scale production of FGF13 and then obtained two isoform proteins including recombinant human FGF13A (rhFGF13A) and rhFGF13B with a purity greater than 90% by column chromatography, respectively. Otherwise, soluble analysis indicated that both rhFGF13A and rhFGF13B expressed in E. coli BL21 (DE3) pLysS were soluble. Furthermore, cellular-based experiments demonstrated that rhFGF13A, rather than rhFGF13B, could promote the proliferation of NIH3T3 cells in the presence of heparin. Mechanistically, the mitogenic effect of FGF13 was mediated by activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), but not p38. Moreover, blockage of FGFRs also significantly attenuated the mitogenic effects of rhFGF13A, implying that FGFRs are still related to FGF13. Thus, our research shows that exogenous FGF13 can act as secreted FGF to participate in cell signal transmission and heparin is still required as an ancillary cofactor for the mitogenic effects of FGF13, which may help people to discover more potential functions of FGF13 in cell life activities.
Collapse
Affiliation(s)
- Haipeng Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Panyu Lu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mi Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fenfang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Weng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Kuikui Meng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dan Yang
- Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Shijun Li
- Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Haishan Tian
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
22
|
Si N, Meng X, Zhao Z, Xia W, Zhang X. A 105 kb interstitial insertion in the Xq27.1 palindrome from pseudoautosomal region PAR1 causes a novel X-linked recessive compound phenotype. J Transl Med 2019; 17:138. [PMID: 31036090 PMCID: PMC6489244 DOI: 10.1186/s12967-019-1887-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic disorders present a wide spectrum of unrelated clinical entities that result from genomic rearrangements. Interstitial insertions requiring three points of breakage are rare genomic rearrangement events. The pseudoautosomal region PAR1, homologous between the Xp22 and Yp11 loci, has a high crossover and recombination rate. A 180 bp human-specific palindrome at Xq27.1 appears to be a hotspot for genomic rearrangement, and several genetic diseases/phenotypes associated with Xq27.1 palindrome-driven genomic rearrangement have been reported. Here we investigate a Chinese family with an extremely rare X-linked compound phenotype that remains undiagnosed. We attempt to identify underlying genetic causes by an integrated genome analysis. METHODS A five-generation Chinese family with a distinct X-linked compound phenotype was recruited. Peripheral blood samples were collected and genomic DNA was extracted. Systemic physical and lab examinations were performed to evaluate the phenotype. An integrated genomic analysis was performed. Genotyping and linkage analysis were conducted to map the disease locus. Whole exome sequencing was performed to detect mutations in coding region. Whole genome sequencing was used to detect single nucleotide variations, small insertions, small deletions, or large structural variations. Copy number variation scanning was also performed on the genome scale. Interstitial insertion was confirmed by gap-PCR and quantitative-PCR, and breakpoint junctions were identified by genome walking and direct sequencing. Expression of products of genes nearby to the Xq27.1 palindrome was measured in peripheral blood from patients and unrelated controls via quantitative-PCR. RESULTS The identified compound phenotype of genu varum, cubitus valgus, and everted lipsdoes not match any reported clinical entities. Fine mapping and linkage analysis identified a candidate interval of 4 Mb on the X chromosome. No potential coding region mutations were detected. A 105 kb genomic fragment of PAR1 containing no coding genes was duplicated and inserted into the center of a human-specific palindrome at Xq27.1. The interstitial insertion fully cosegregated with the family phenotype. No expression of FGF13 or SOX3 was detected in peripheral blood from the proband or unrelated controls. CONCLUSION We report an extremely rare phenotype associated with an infrequently-seen genomic rearrangement. The novel compound phenotype is X-linked and characterized by genu varum, cubitus valgus, and everted lips. A 105 kb interstitial insertion of a PAR1 fragment into the Xq27.1 palindrome is associated with the phenotype in the family. The present study identified the underlying genetic cause of the phenotype, expanding the spectrum of known human-specific Xq27.1 palindrome insertion events and associated phenotypes.
Collapse
Affiliation(s)
- Nuo Si
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaolu Meng
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhen Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
23
|
Cutrupi AN, Brewer MH, Nicholson GA, Kennerson M. Structural variations causing inherited peripheral neuropathies: A paradigm for understanding genomic organization, chromatin interactions, and gene dysregulation. Mol Genet Genomic Med 2018; 6:422-433. [PMID: 29573232 PMCID: PMC6014456 DOI: 10.1002/mgg3.390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5 Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.
Collapse
Affiliation(s)
- Anthony N. Cutrupi
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Megan H. Brewer
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Garth A. Nicholson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| | - Marina L. Kennerson
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyNSWAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- Molecular Medicine LaboratoryConcord HospitalSydneyNSWAustralia
| |
Collapse
|
24
|
Detection of an Inherited Deletion in Products of Conception in a Patient With Recurrent Losses and Normal Karyotype. Obstet Gynecol 2017; 130:126-129. [PMID: 28594768 DOI: 10.1097/aog.0000000000002104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Microarray analysis testing on products of conception can provide valuable information in the evaluation of recurrent pregnancy loss beyond ploidy status. CASE A maternally inherited deletion on the X chromosome was detected by microarray analysis performed on products of conception in a couple with recurrent pregnancy loss. The mother had a previously demonstrated normal karyotype with standard cytogenetic analysis but was subsequently determined to have the same X chromosome deletion by oligonucleotide single-nucleotide polymorphism (SNP) microarray analysis. CONCLUSION Direct testing of products of conception using oligonucleotide SNP microarray identified a maternally inherited microdeletion on the X chromosome in a patient with recurrent losses and normal karyotype. Going forward, the couple may use preimplantation genetic diagnosis testing to identify embryos free of this deletion for transfer.
Collapse
|
25
|
Wei EQ, Sinden DS, Mao L, Zhang H, Wang C, Pitt GS. Inducible Fgf13 ablation enhances caveolae-mediated cardioprotection during cardiac pressure overload. Proc Natl Acad Sci U S A 2017; 114:E4010-E4019. [PMID: 28461495 PMCID: PMC5441822 DOI: 10.1073/pnas.1616393114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fibroblast growth factor (FGF) homologous factor FGF13, a noncanonical FGF, has been best characterized as a voltage-gated Na+ channel auxiliary subunit. Other cellular functions have been suggested, but not explored. In inducible, cardiac-specific Fgf13 knockout mice, we found-even in the context of the expected reduction in Na+ channel current-an unanticipated protection from the maladaptive hypertrophic response to pressure overload. To uncover the underlying mechanisms, we searched for components of the FGF13 interactome in cardiomyocytes and discovered the complete set of the cavin family of caveolar coat proteins. Detailed biochemical investigations showed that FGF13 acts as a negative regulator of caveolae abundance in cardiomyocytes by controlling the relative distribution of cavin 1 between the sarcolemma and cytosol. In cardiac-specific Fgf13 knockout mice, cavin 1 redistribution to the sarcolemma stabilized the caveolar structural protein caveolin 3. The consequent increase in caveolae density afforded protection against pressure overload-induced cardiac dysfunction by two mechanisms: (i) enhancing cardioprotective signaling pathways enriched in caveolae, and (ii) increasing the caveolar membrane reserve available to buffer membrane tension. Thus, our results uncover unexpected roles for a FGF homologous factor and establish FGF13 as a regulator of caveolae-mediated mechanoprotection and adaptive hypertrophic signaling.
Collapse
Affiliation(s)
- Eric Q Wei
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel S Sinden
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
26
|
|
27
|
Scanning of selection signature provides a glimpse into important economic traits in goats (Capra hircus). Sci Rep 2016; 6:36372. [PMID: 27796358 PMCID: PMC5087083 DOI: 10.1038/srep36372] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
Goats (Capra hircus) are one of the oldest livestock domesticated species, and have been used for their milk, meat, hair and skins over much of the world. Detection of selection footprints in genomic regions can provide potential insights for understanding the genetic mechanism of specific phenotypic traits and better guide in animal breeding. The study presented here has generated 192.747G raw data and identified more than 5.03 million single-nucleotide polymorphisms (SNPs) and 334,151 Indels (insertions and deletions). In addition, we identified 155 and 294 candidate regions harboring 86 and 97 genes based on allele frequency differences in Dazu black goats (DBG) and Inner Mongolia cashmere goats (IMCG), respectively. Populations differentiation reflected by Fst values detected 368 putative selective sweep regions including 164 genes. The top 1% regions of both low heterozygosity and high genetic differentiation contained 239 (135 genes) and 176 (106 genes) candidate regions in DBG and IMCG, respectively. These genes were related to reproductive and productive traits, such as "neurohypophyseal hormone activity" and "adipocytokine signaling pathway". These findings may be conducive to molecular breeding and the long-term preservation of the valuable genetic resources for this species.
Collapse
|
28
|
Hayashi R, Yoshida K, Abe R, Niizeki H, Shimomura Y. First Japanese case of congenital generalized hypertrichosis with a copy number variation on chromosome 17q24. J Dermatol Sci 2016; 85:63-65. [PMID: 27780627 DOI: 10.1016/j.jdermsci.2016.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Ryota Hayashi
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazue Yoshida
- Department of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hironori Niizeki
- Department of Dermatology, National Center for Child Health and Development, Tokyo, Japan
| | - Yutaka Shimomura
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
29
|
Brewer MH, Chaudhry R, Qi J, Kidambi A, Drew AP, Menezes MP, Ryan MM, Farrar MA, Mowat D, Subramanian GM, Young HK, Zuchner S, Reddel SW, Nicholson GA, Kennerson ML. Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3. PLoS Genet 2016; 12:e1006177. [PMID: 27438001 PMCID: PMC4954712 DOI: 10.1371/journal.pgen.1006177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022] Open
Abstract
With the advent of whole exome sequencing, cases where no pathogenic coding mutations can be found are increasingly being observed in many diseases. In two large, distantly-related families that mapped to the Charcot-Marie-Tooth neuropathy CMTX3 locus at chromosome Xq26.3-q27.3, all coding mutations were excluded. Using whole genome sequencing we found a large DNA interchromosomal insertion within the CMTX3 locus. The 78 kb insertion originates from chromosome 8q24.3, segregates fully with the disease in the two families, and is absent from the general population as well as 627 neurologically normal chromosomes from in-house controls. Large insertions into chromosome Xq27.1 are known to cause a range of diseases and this is the first neuropathy phenotype caused by an interchromosomal insertion at this locus. The CMTX3 insertion represents an understudied pathogenic structural variation mechanism for inherited peripheral neuropathies. Our finding highlights the importance of considering all structural variation types when studying unsolved inherited peripheral neuropathy cases with no pathogenic coding mutations.
Collapse
Affiliation(s)
- Megan H. Brewer
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- * E-mail:
| | - Rabia Chaudhry
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Jessica Qi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Discipline of Pathology, University of Sydney, Camperdown, New South Wales, Australia
| | - Aditi Kidambi
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
| | - Alexander P. Drew
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
| | - Manoj P. Menezes
- The Institute for Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Paediatrics and Child Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Monique M. Ryan
- Department of Neurology, Royal Children’s Hospital, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital, Randwick, New South Wales, Australia
- School of Women’s and Children’s Health, UNSW Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - David Mowat
- School of Women’s and Children’s Health, UNSW Medicine, University of New South Wales, Kensington, New South Wales, Australia
- Department of Medical Genetics, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Gopinath M. Subramanian
- Department of Paediatrics, John Hunter Children’s Hospital, Newcastle, New South Wales, Australia
| | - Helen K. Young
- Department of Paediatrics, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Northern Clinical School, Sydney Medical School, University of Sydney, St Leonards, New South Wales, Australia
- Department of Neurogenetics, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Stephan Zuchner
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Stephen W. Reddel
- Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Garth A. Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Marina L. Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Molecular Medicine, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
30
|
Large Deletions at the SHOX Locus in the Pseudoautosomal Region Are Associated with Skeletal Atavism in Shetland Ponies. G3-GENES GENOMES GENETICS 2016; 6:2213-23. [PMID: 27207956 PMCID: PMC4938674 DOI: 10.1534/g3.116.029645] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Skeletal atavism in Shetland ponies is a heritable disorder characterized by abnormal growth of the ulna and fibula that extend the carpal and tarsal joints, respectively. This causes abnormal skeletal structure and impaired movements, and affected foals are usually killed. In order to identify the causal mutation we subjected six confirmed Swedish cases and a DNA pool consisting of 21 control individuals to whole genome resequencing. We screened for polymorphisms where the cases and the control pool were fixed for opposite alleles and observed this signature for only 25 SNPs, most of which were scattered on genome assembly unassigned scaffolds. Read depth analysis at these loci revealed homozygosity or compound heterozygosity for two partially overlapping large deletions in the pseudoautosomal region (PAR) of chromosome X/Y in cases but not in the control pool. One of these deletions removes the entire coding region of the SHOX gene and both deletions remove parts of the CRLF2 gene located downstream of SHOX. The horse reference assembly of the PAR is highly fragmented, and in order to characterize this region we sequenced bacterial artificial chromosome (BAC) clones by single-molecule real-time (SMRT) sequencing technology. This considerably improved the assembly and enabled size estimations of the two deletions to 160-180 kb and 60-80 kb, respectively. Complete association between the presence of these deletions and disease status was verified in eight other affected horses. The result of the present study is consistent with previous studies in humans showing crucial importance of SHOX for normal skeletal development.
Collapse
|
31
|
Cervantes A, García-Delgado C, Fernández-Ramírez F, Valencia-Herrera A, Kofman S, Morán-Barroso V. Congenital hypertrichosis universalis in Mexican female twins. Int J Dermatol 2015; 55:e29-31. [PMID: 26518157 DOI: 10.1111/ijd.13104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/22/2015] [Accepted: 06/09/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Alicia Cervantes
- Department of Genetics, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico.,Faculty of Medicine, UNAM, Mexico City, Mexico
| | | | | | | | - Susana Kofman
- Department of Genetics, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico.,Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Verónica Morán-Barroso
- Department of Genetics, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico.,Department of Genetics, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
32
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1452] [Impact Index Per Article: 145.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
33
|
Abstract
The skin is composed of a variety of cell types expressing specific molecules and possessing different properties that facilitate the complex interactions and intercellular communication essential for maintaining the structural integrity of the skin. Importantly, a single mutation in one of these molecules can disrupt the entire organization and function of these essential networks, leading to cell separation, blistering, and other striking phenotypes observed in inherited skin diseases. Over the past several decades, the genetic basis of many monogenic skin diseases has been elucidated using classical genetic techniques. Importantly, the findings from these studies has shed light onto the many classes of molecules and essential genetic as well as molecular interactions that lend the skin its rigid, yet flexible properties. With the advent of the human genome project, next-generation sequencing techniques, as well as several other recently developed methods, tremendous progress has been made in dissecting the genetic architecture of complex, non-Mendelian skin diseases.
Collapse
Affiliation(s)
- Gina M DeStefano
- Department of Genetics and Development, Columbia University, New York, New York 10032
| | - Angela M Christiano
- Department of Genetics and Development, Columbia University, New York, New York 10032 Department of Dermatology, Columbia University, New York, New York 10032
| |
Collapse
|
34
|
DeStefano GM, Kurban M, Anyane-Yeboa K, Dall'Armi C, Di Paolo G, Feenstra H, Silverberg N, Rohena L, López-Cepeda LD, Jobanputra V, Fantauzzo KA, Kiuru M, Tadin-Strapps M, Sobrino A, Vitebsky A, Warburton D, Levy B, Salas-Alanis JC, Christiano AM. Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth. PLoS Genet 2014; 10:e1004333. [PMID: 24831815 PMCID: PMC4022463 DOI: 10.1371/journal.pgen.1004333] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/07/2014] [Indexed: 01/09/2023] Open
Abstract
Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5' donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth.
Collapse
Affiliation(s)
- Gina M. DeStefano
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Mazen Kurban
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Kwame Anyane-Yeboa
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | - Claudia Dall'Armi
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, United States of America
| | - Heather Feenstra
- St. Luke's-Roosevelt Hospital Center, New York, New York, United States of America
| | - Nanette Silverberg
- St. Luke's-Roosevelt Hospital Center, New York, New York, United States of America
| | - Luis Rohena
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | | | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Katherine A. Fantauzzo
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Maija Kiuru
- Department of Dermatology, Columbia University, New York, New York, United States of America
| | - Marija Tadin-Strapps
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Antonio Sobrino
- New York Presbyterian Hospital, New York, New York, United States of America
| | - Anna Vitebsky
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Dorothy Warburton
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- Department of Pediatrics, Columbia University Medical Center, New York, New York, United States of America
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | | | - Angela M. Christiano
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
- Department of Dermatology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Esplin ED, Li B, Slavotinek A, Novelli A, Battaglia A, Clark R, Curry C, Hudgins L. Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies. Am J Med Genet A 2014; 164A:2097-103. [DOI: 10.1002/ajmg.a.36598] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Edward D. Esplin
- Division of Medical Genetics, Department of Pediatrics; Stanford University School of Medicine; Stanford California
| | - Ben Li
- Division of Medical Genetics, Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Antonio Novelli
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza Hospital; San Giovanni Rotondo (FG) Italy
| | - Agatino Battaglia
- The Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry; Calambrone (Pisa) Italy
| | - Robin Clark
- Division of Medical Genetics, Department of Pediatrics; Loma Linda University; Loma Linda California
| | - Cynthia Curry
- Division of Medical Genetics, Department of Pediatrics; UCSF Fresno; Fresno California
| | - Louanne Hudgins
- Division of Medical Genetics, Department of Pediatrics; Stanford University School of Medicine; Stanford California
| |
Collapse
|
36
|
Li Q, Xiao G, Zhu YX. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns. MOLECULAR PLANT 2014; 7:829-40. [PMID: 24398628 DOI: 10.1093/mp/sst175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alternative splicing (AS) is a vital genetic mechanism that enhances the diversity of eukaryotic transcriptomes. Here, we generated 8.3 Gb high-quality RNA-sequencing data from cotton (Gossypium raimondii) and performed a systematic, comparative analysis of AS events. We mapped 85% of the RNA-sequencing data onto the reference genome and identified 154368 splice junctions with 16437 as events in 10197 genes. Intron retention constituted the majority (40%) of all AS events in G. raimondii. Comparison across 11 eukaryote species showed that intron retention is the most common AS type in higher plants. Although transposable elements (TEs) were found in only 2.9% of all G. raimondii introns, they are present in 43% of the retained introns, suggesting that TE-insertion may be an important mechanism for intron retention during AS. The majority of the TE insertions are concentrated 0-40 nt upstream of the 3'-splice site, substantially altering the distribution of branch points from preferred positions and reducing the efficiency of intron splicing by decreasing RNA secondary structure flexibility. Our data suggest that TE-insertion-induced changes in branch point-site distribution are important for intron retention-type AS. Our findings may help explain the vast differences in intron-retention frequencies between vertebrates and higher plants.
Collapse
Affiliation(s)
- Qin Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
37
|
Küchler EC, Feng P, Deeley K, Fitzgerald CA, Meyer C, Gorbunov A, Bezamat M, Reis MF, Noel J, Kouzbari MZ, Granjeiro JM, Antunes LS, Antunes LA, de Abreu FV, Costa MC, Tannure PN, Seymen F, Koruyucu M, Patir A, Vieira AR. Fine mapping of locus Xq25.1-27-2 for a low caries experience phenotype. Arch Oral Biol 2014; 59:479-86. [PMID: 24632093 DOI: 10.1016/j.archoralbio.2014.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/17/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The purpose of this study was to fine map the locus Xq25.1-27-2 in order to identify genetic contributors involved in low caries experience. DESIGN Seventy-two families from the Philippines were studied. Caries experience was recorded and genomic DNA extracted from peripheral blood was obtained from all subjects. One hundred and twenty-eight polymorphisms in the locus Xq25.1-27-2, a region that contains 24 genes, were genotyped. Association between caries experience and alleles was tested using the transmission disequilibrium test (TDT). This initial analysis was followed by experiments with DNA samples from 1481 subjects from Pittsburgh, 918 children from Brazil, and 275 children from Turkey in order to follow up the results found in the Filipino families. Chi-square or Fisher's exact tests were used. Sequencing of the coding regions and exon-intron boundaries of MST4 and FGF13 were also performed on 91 women from Pittsburgh. RESULTS Statistically significant association with low caries experience was found for 11 markers in Xq25.1-27-2 in the Filipino families. One marker was in MST4, another marker was in FGF13, and the remaining markers were in intergenic regions. Haplotype analysis also confirmed these results, but the follow up studies with DNA samples from Pittsburgh, Brazil, and Turkey showed associations for a subset of the 11 markers. No coding mutations were identified by sequencing. CONCLUSIONS Our study failed to conclusively demonstrate that genetic factors in Xq25.1-27-2 contribute to caries experience in multiple populations.
Collapse
Affiliation(s)
- Erika C Küchler
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ping Feng
- Guiyang Stomatological Hospital, Guiyang, Guizhou, China.
| | - Kathleen Deeley
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Carly A Fitzgerald
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Chelsea Meyer
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anastasia Gorbunov
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mariana Bezamat
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Maria Fernanda Reis
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil.
| | - Jacqueline Noel
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - M Zahir Kouzbari
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - José M Granjeiro
- Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil; Directory of Programs, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil.
| | - Leonardo S Antunes
- Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil; Pediatric Clinics, School of Dentistry, Fluminense Federal University, Nova Friburgo, RJ, Brazil.
| | - Livia A Antunes
- Pediatric Clinics, School of Dentistry, Fluminense Federal University, Nova Friburgo, RJ, Brazil.
| | - Fernanda Volpe de Abreu
- Pediatric Clinics, School of Dentistry, Fluminense Federal University, Nova Friburgo, RJ, Brazil.
| | - Marcelo C Costa
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Patricia N Tannure
- Veiga de Almeida University, Rio de Janeiro, RJ, Brazil; Discipline of Cariology, School of Dentistry, Salgado de Oliveira University, Niterói, RJ, Brazil.
| | - Figen Seymen
- Department of Pedodontics, Istanbul University, Istanbul, Turkey.
| | - Mine Koruyucu
- Department of Pedodontics, Istanbul University, Istanbul, Turkey.
| | - Asli Patir
- Department of Pedodontics, Medipol Istanbul University, Istanbul, Turkey.
| | - Alexandre R Vieira
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Craniofacial and Dental Genetics, and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Duverger O, Morasso MI. To grow or not to grow: hair morphogenesis and human genetic hair disorders. Semin Cell Dev Biol 2013; 25-26:22-33. [PMID: 24361867 DOI: 10.1016/j.semcdb.2013.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/25/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, United States.
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, United States.
| |
Collapse
|
39
|
Frank J, Poblete-Gutiérrez P, Giehl K. [Genetic hair diseases. An update]. Hautarzt 2013; 64:830-42. [PMID: 24177665 DOI: 10.1007/s00105-013-2578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Patients suffering from hair loss or undesirable excessive hair growth are a challenge for dermatologists because the pathogenesis of most hair diseases is not well understood and therapeutic options are limited. This particularly holds true for genetic hair disorders, in which all current treatment attempts are unsuccessful. Furthermore, these diseases also pose a diagnostic challenge due to a broad range of clinical and genetic heterogeneity. However, the enormous progress in molecular biology over the past 20 years, in particular the availability of different new techniques such as whole exome and genome sequencing, has enabled us to elucidate the genetic basis of most monogenic hair disorders, given the availability of suitable index patients and families as well as adequate technical equipment and sufficient financial resources. In this review we provide an update on clinical and genetic aspects of selected monogenic and polygenic hair diseases manifesting with hypertrichosis and hypotrichosis.
Collapse
Affiliation(s)
- J Frank
- Hautklinik und Sektion für Genodermatosen, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland,
| | | | | |
Collapse
|