1
|
Gruber L, Schmidt S, Enzlein T, Vo HG, Bausbacher T, Cairns JL, Ucal Y, Keller F, Kerndl M, Sammour DA, Sharif O, Schabbauer G, Rudolf R, Eckhardt M, Iakab SA, Bindila L, Hopf C. Deep MALDI-MS spatial omics guided by quantum cascade laser mid-infrared imaging microscopy. Nat Commun 2025; 16:4759. [PMID: 40404613 PMCID: PMC12098849 DOI: 10.1038/s41467-025-59839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2025] [Indexed: 05/24/2025] Open
Abstract
In spatial'omics, highly confident molecular identifications are indispensable for the investigation of complex biology and for spatial biomarker discovery. However, current mass spectrometry imaging (MSI)-based spatial 'omics must compromise between data acquisition speed and biochemical profiling depth. Here, we introduce fast, label-free quantum cascade laser mid-infrared imaging microscopy (QCL-MIR imaging) to guide MSI to high-interest tissue regions as small as kidney glomeruli, cultured multicellular spheroid cores or single motor neurons. Focusing on smaller tissue areas enables extensive spatial lipid identifications by on-tissue tandem-MS employing imaging parallel reaction monitoring-Parallel Accumulation-Serial Fragmentation (iprm-PASEF). QCL-MIR imaging-guided MSI allowed for unequivocal on-tissue elucidation of 157 sulfatides selectively accumulating in kidneys of arylsulfatase A-deficient mice used as ground truth concept and provided chemical rationales for improvements to ion mobility prediction algorithms. Using this workflow, we characterized sclerotic spinal cord lesions in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, and identified upregulation of inflammation-related ceramide-1-phosphate and ceramide phosphatidylethanolamine as markers of white matter lipid remodeling. Taken together, widely applicable and fast QCL-MIR imaging-based guidance of MSI ensures that more time is available for exploration and validation of new biology by default on-tissue tandem-MS analysis.
Collapse
MESH Headings
- Animals
- Mice
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging
- Mice, Inbred C57BL
- Microscopy/methods
- Kidney/metabolism
- Female
- Tandem Mass Spectrometry
- Spinal Cord/pathology
- Spinal Cord/metabolism
- Spinal Cord/diagnostic imaging
- Lasers, Semiconductor
- Motor Neurons/metabolism
- Sulfoglycosphingolipids/metabolism
Collapse
Grants
- 161L0212F Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Federal Ministry for Education, Science, Research and Technology)
- 12FH8I05IA Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Federal Ministry for Education, Science, Research and Technology)
- 13FH8I09IA Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (Federal Ministry for Education, Science, Research and Technology)
- Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg - Mittelbauprogramm
- Christian Doppler Forschungsgesellschaft (Christian Doppler Research Association)
Collapse
Affiliation(s)
- Lars Gruber
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Stefan Schmidt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
| | - Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
| | - Huong Giang Vo
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Mainz University, Mainz, Germany
| | - Tobias Bausbacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - James Lucas Cairns
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Yasemin Ucal
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
| | - Florian Keller
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
| | - Martina Kerndl
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple, Vienna, Austria
| | - Denis Abu Sammour
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple, Vienna, Austria
| | - Rüdiger Rudolf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Stefania Alexandra Iakab
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Center, Mainz University, Mainz, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Technische Hochschule Mannheim, Mannheim, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
2
|
Xu Z, He S, Begum MM, Han X. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Antioxid Redox Signal 2024; 41:1073-1099. [PMID: 39575748 PMCID: PMC11971557 DOI: 10.1089/ars.2024.0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Significance: Lipids, which constitute the highest portion (over 50%) of brain dry mass, are crucial for brain integrity, energy homeostasis, and signaling regulation. Emerging evidence revealed that lipid profile alterations and abnormal lipid metabolism occur during normal aging and in different forms of neurodegenerative diseases. Moreover, increasing genome-wide association studies have validated new targets on lipid-associated pathways involved in disease development. Myelin, the protective sheath surrounding axons, is crucial for efficient neural signaling transduction. As the primary site enriched with lipids, impairments of myelin are increasingly recognized as playing significant and complex roles in various neurodegenerative diseases, beyond simply being secondary effects of neuronal loss. Recent Advances: With advances in the lipidomics field, myelin lipid alterations and their roles in contributing to or reflecting the progression of diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and others, have recently caught great attention. Critical Issues: This review summarizes recent findings of myelin lipid alterations in the five most common neurodegenerative diseases and discusses their implications in disease pathogenesis. Future Directions: By highlighting myelin lipid abnormalities in neurodegenerative diseases, this review aims to encourage further research focused on lipids and the development of new lipid-oriented therapeutic approaches in this area. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Mst Marium Begum
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas, USA
- Department of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Bourgeois S, Houillier P. State of knowledge on ammonia handling by the kidney. Pflugers Arch 2024; 476:517-531. [PMID: 38448728 PMCID: PMC11006756 DOI: 10.1007/s00424-024-02940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The disposal of ammonia, the main proton buffer in the urine, is important for acid-base homeostasis. Renal ammonia excretion is the predominant contributor to renal net acid excretion, both under basal condition and in response to acidosis. New insights into the mechanisms of renal ammonia production and transport have been gained in the past decades. Ammonia is the only urinary solute known to be produced in the kidney and selectively transported through the different parts of the nephron. Both molecular forms of total ammonia, NH3 and NH4+, are transported by specific proteins. Proximal tubular ammoniagenesis and the activity of these transport processes determine the eventual fate of total ammonia produced and excreted by the kidney. In this review, we summarized the state of the art of ammonia handling by the kidney and highlighted the newest processes described in the last decade.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institut of Physiology, University of Zurich, Zurich, Switzerland.
| | - Pascal Houillier
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Centre National de La Recherche Scientifique (CNRS), EMR 8228, Paris, France
| |
Collapse
|
4
|
Kuhn C, Mohebbi N, Ritter A. Metabolic acidosis in chronic kidney disease: mere consequence or also culprit? Pflugers Arch 2024; 476:579-592. [PMID: 38279993 PMCID: PMC11006741 DOI: 10.1007/s00424-024-02912-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Metabolic acidosis is a frequent complication in non-transplant chronic kidney disease (CKD) and after kidney transplantation. It occurs when net endogenous acid production exceeds net acid excretion. While nephron loss with reduced ammoniagenesis is the main cause of acid retention in non-transplant CKD patients, additional pathophysiological mechanisms are likely inflicted in kidney transplant recipients. Functional tubular damage by calcineurin inhibitors seems to play a key role causing renal tubular acidosis. Notably, experimental and clinical studies over the past decades have provided evidence that metabolic acidosis may not only be a consequence of CKD but also a driver of disease. In metabolic acidosis, activation of hormonal systems and the complement system resulting in fibrosis have been described. Further studies of changes in renal metabolism will likely contribute to a deeper understanding of the pathophysiology of metabolic acidosis in CKD. While alkali supplementation in case of reduced serum bicarbonate < 22 mmol/l has been endorsed by CKD guidelines for many years to slow renal functional decline, among other considerations, beneficial effects and thresholds for treatment have lately been under intense debate. This review article discusses this topic in light of the most recent results of trials assessing the efficacy of dietary and pharmacological interventions in CKD and kidney transplant patients.
Collapse
Affiliation(s)
- Christian Kuhn
- Clinic for Nephrology and Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Alexander Ritter
- Clinic for Nephrology and Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.
- Clinic for Nephrology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Singh N, Singh AK. A comprehensive review on structural and therapeutical insight of Cerebroside sulfotransferase (CST) - An important target for development of substrate reduction therapy against metachromatic leukodystrophy. Int J Biol Macromol 2024; 258:128780. [PMID: 38104688 DOI: 10.1016/j.ijbiomac.2023.128780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation. Structural similarity and computational studies revealed that LYS85, SER172 and HIS141 are key catalytic residues that determine the catalytic action of CST through the transfer of sulfuryl group from the donor PAPS to the acceptor galactosylceramide. Computational studies revealed catalytic site of CST consists two binding site pocket including PAPS binding pocket and substrate binding pocket. Specific substrate site residues in CST can be targeted to develop specific CST inhibitors. This review also explores the challenges of CST-directed substrate reduction therapy as well as the opportunities available in natural products for inhibitor development.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS. HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes. J Am Soc Nephrol 2023; 34:412-432. [PMID: 36522156 PMCID: PMC10103355 DOI: 10.1681/asn.2022010076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
SIGNIFICANCE STATEMENT Mutations in hepatocyte nuclear factor-1 β ( HNF1B ) are the most common monogenic causes of congenital renal malformations. HNF1B is necessary to directly reprogram fibroblasts to induced renal tubule epithelial cells (iRECs) and, as we demonstrate, can induce ectopic pronephric tissue in Xenopus ectodermal organoids. Using these two systems, we analyzed the effect of HNF1B mutations found in patients with cystic dysplastic kidney disease. We found cross-species conserved targets of HNF1B, identified transcripts that are differentially regulated by the patient-specific mutant protein, and functionally validated novel HNF1B targets in vivo . These results highlight evolutionarily conserved transcriptional mechanisms and provide insights into the genetic circuitry of nephrogenesis. BACKGROUND Hepatocyte nuclear factor-1 β (HNF1B) is an essential transcription factor during embryogenesis. Mutations in HNF1B are the most common monogenic causes of congenital cystic dysplastic renal malformations. The direct functional consequences of mutations in HNF1B on its transcriptional activity are unknown. METHODS Direct reprogramming of mouse fibroblasts to induced renal tubular epithelial cells was conducted both with wild-type HNF1B and with patient mutations. HNF1B was expressed in Xenopus ectodermal explants. Transcriptomic analysis by bulk RNA-Seq identified conserved targets with differentially regulated expression by the wild-type or R295C mutant. CRISPR/Cas9 genome editing in Xenopus embryos evaluated transcriptional targets in vivo . RESULTS HNF1B is essential for reprogramming mouse fibroblasts to induced renal tubular epithelial cells and induces development of ectopic renal organoids from pluripotent Xenopus cells. The mutation R295C retains reprogramming and inductive capacity but alters the expression of specific sets of downstream target genes instead of diminishing overall transcriptional activity of HNF1B. Surprisingly, targets associated with polycystic kidney disease were less affected than genes affected in congenital renal anomalies. Cross-species-conserved transcriptional targets were dysregulated in hnf1b CRISPR-depleted Xenopus embryos, confirming their dependence on hnf1b . CONCLUSIONS HNF1B activates an evolutionarily conserved program of target genes that disease-causing mutations selectively disrupt. These findings provide insights into the renal transcriptional network that controls nephrogenesis.
Collapse
Affiliation(s)
- Kelli Grand
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Martine Stoltz
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Michael M. Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Maike Getwan
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Roman Pichler
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soeren S. Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Martín-Saiz L, Abad-García B, Solano-Iturri JD, Mosteiro L, Martín-Allende J, Rueda Y, Pérez-Fernández A, Unda M, Coterón-Ochoa P, Goya A, Saiz A, Martínez J, Ochoa B, Fresnedo O, Larrinaga G, Fernández JA. Using the Synergy between HPLC-MS and MALDI-MS Imaging to Explore the Lipidomics of Clear Cell Renal Cell Carcinoma. Anal Chem 2023; 95:2285-2293. [PMID: 36638042 PMCID: PMC9893214 DOI: 10.1021/acs.analchem.2c03953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lipid imaging mass spectrometry (LIMS) has been tested in several pathological contexts, demonstrating its ability to segregate and isolate lipid signatures in complex tissues, thanks to the technique's spatial resolution. However, it cannot yet compete with the superior identification power of high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS), and therefore, very often, the latter is used to refine the assignment of the species detected by LIMS. Also, it is not clear if the differences in sensitivity and spatial resolution between the two techniques lead to a similar panel of biomarkers for a given disease. Here, we explore the capabilities of LIMS and HPLC-MS to produce a panel of lipid biomarkers to screen nephrectomy samples from 40 clear cell renal cell carcinoma patients. The same set of samples was explored by both techniques, and despite the important differences between them in terms of the number of detected and identified species (148 by LIMS and 344 by HPLC-MS in negative-ion mode) and the presence/absence of image capabilities, similar conclusions were reached: using the lipid fingerprint, it is possible to set up classifiers that correctly identify the samples as either healthy or tumor samples. The spatial resolution of LIMS enables extraction of additional information, such as the existence of necrotic areas or the existence of different tumor cell populations, but such information does not seem determinant for the correct classification of the samples, or it may be somehow compensated by the higher analytical power of HPLC-MS. Similar conclusions were reached with two very different techniques, validating their use for the discovery of lipid biomarkers.
Collapse
Affiliation(s)
- Lucía Martín-Saiz
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain
| | - Beatriz Abad-García
- Central
Analysis Service, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Jon D. Solano-Iturri
- Service
of Anatomic Pathology, Donostia University
Hospital, Donostia/San
Sebastian 20014, Spain,Biocruces
Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Lorena Mosteiro
- Service
of Anatomic Pathology, Cruces University
Hospital, Barakaldo 48903, Spain
| | - Javier Martín-Allende
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain
| | - Yuri Rueda
- Lipids &
Liver, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain
| | | | - Miguel Unda
- Service
of Urology, Basurto University Hospital, Bilbao 48003, Spain
| | - Pedro Coterón-Ochoa
- Service
of Urology, Galdakao-Usansolo University
Hospital, Galdakao 48960, Spain
| | - Aintzane Goya
- Service
of Urology, Galdakao-Usansolo University
Hospital, Galdakao 48960, Spain
| | - Alberto Saiz
- Service
of Anatomic Pathology, Galdakao-Usansolo
University Hospital, Galdakao 48960, Spain
| | - Jennifer Martínez
- Service
of Anatomic Pathology, Galdakao-Usansolo
University Hospital, Galdakao 48960, Spain
| | - Begoña Ochoa
- Lipids &
Liver, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain
| | - Olatz Fresnedo
- Lipids &
Liver, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain
| | - Gorka Larrinaga
- Biocruces
Bizkaia Health Research Institute, Barakaldo 48903, Spain,Department
of Nursing and Department of Physiology, Faculty of Medicine and Nursing (UPV/EHU), Leioa 48940, Spain
| | - José A. Fernández
- Department
of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B. Sarriena, s/n, Leioa 48940, Spain,. Phone: +34 6015387
| |
Collapse
|
8
|
Jirásko R, Idkowiak J, Wolrab D, Kvasnička A, Friedecký D, Polański K, Študentová H, Študent V, Melichar B, Holčapek M. Altered Plasma, Urine, and Tissue Profiles of Sulfatides and Sphingomyelins in Patients with Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194622. [PMID: 36230546 PMCID: PMC9563753 DOI: 10.3390/cancers14194622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is among the most common cancer types in both men and women, and its early detection significantly improves survival. Minimally-invasive blood- or urine-based tests may increase the RCC detection rate, especially before patients develop symptoms. Here, we report significant changes in concentrations of sulfatides and sphingomyelins in plasma and urine in RCC patients compared to healthy controls. For the first time, we present findings that similar alterations appear in the lipid profiles of body fluids and tissues in patients. We observe gradual changes in sulfatide and sphingomyelin concentrations with increasing tumor stage and grade. We built binary classifiers that detect RCC based on plasma and urine lipidome dysregulations, and we show that the plasma lipidome alterations enable distinguishing between early-stage RCC and controls. Our results demonstrate the considerable potential of lipid screening in biofluids for RCC detection and monitoring in clinical settings. Abstract Purpose: RCC, the most common type of kidney cancer, is associated with high mortality. A non-invasive diagnostic test remains unavailable due to the lack of RCC-specific biomarkers in body fluids. We have previously described a significantly altered profile of sulfatides in RCC tumor tissues, motivating us to investigate whether these alterations are reflected in collectible body fluids and whether they can enable RCC detection. Methods: We collected and further analyzed 143 plasma, 100 urine, and 154 tissue samples from 155 kidney cancer patients, together with 207 plasma and 70 urine samples from 214 healthy controls. Results: For the first time, we show elevated concentrations of lactosylsulfatides and decreased levels of sulfatides with hydroxylated fatty acyls in body fluids of RCC patients compared to controls. These alterations are emphasized in patients with the advanced tumor stage. Classification models are able to distinguish between controls and patients with RCC. In the case of all plasma samples, the AUC for the testing set was 0.903 (0.844–0.954), while for urine samples it was 0.867 (0.763–0.953). The models are able to efficiently detect patients with early- and late-stage RCC based on plasma samples as well. The test set sensitivities were 80.6% and 90%, and AUC values were 0.899 (0.832–0.952) and 0.981 (0.956–0.998), respectively. Conclusion: Similar trends in body fluids and tissues indicate that RCC influences lipid metabolism, and highlight the potential of the studied lipids for minimally-invasive cancer detection, including patients with early tumor stages, as demonstrated by the predictive ability of the applied classification models.
Collapse
Affiliation(s)
- Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
- Correspondence:
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Aleš Kvasnička
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacký University, 77900 Olomouc, Czech Republic
| | - David Friedecký
- Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacký University, 77900 Olomouc, Czech Republic
| | - Krzysztof Polański
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, University Hospital, Palacký University, 77900 Olomouc, Czech Republic
| | - Vladimír Študent
- Department of Urology, Faculty of Medicine and Dentistry, University Hospital, Palacký University, 77900 Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, University Hospital, Palacký University, 77900 Olomouc, Czech Republic
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| |
Collapse
|
9
|
Imenez Silva PH, Mohebbi N. Kidney metabolism and acid-base control: back to the basics. Pflugers Arch 2022; 474:919-934. [PMID: 35513635 PMCID: PMC9338915 DOI: 10.1007/s00424-022-02696-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Kidneys are central in the regulation of multiple physiological functions, such as removal of metabolic wastes and toxins, maintenance of electrolyte and fluid balance, and control of pH homeostasis. In addition, kidneys participate in systemic gluconeogenesis and in the production or activation of hormones. Acid-base conditions influence all these functions concomitantly. Healthy kidneys properly coordinate a series of physiological responses in the face of acute and chronic acid-base disorders. However, injured kidneys have a reduced capacity to adapt to such challenges. Chronic kidney disease patients are an example of individuals typically exposed to chronic and progressive metabolic acidosis. Their organisms undergo a series of alterations that brake large detrimental changes in the homeostasis of several parameters, but these alterations may also operate as further drivers of kidney damage. Acid-base disorders lead not only to changes in mechanisms involved in acid-base balance maintenance, but they also affect multiple other mechanisms tightly wired to it. In this review article, we explore the basic renal activities involved in the maintenance of acid-base balance and show how they are interconnected to cell energy metabolism and other important intracellular activities. These intertwined relationships have been investigated for more than a century, but a modern conceptual organization of these events is lacking. We propose that pH homeostasis indissociably interacts with central pathways that drive progression of chronic kidney disease, such as inflammation and metabolism, independent of etiology.
Collapse
Affiliation(s)
- Pedro Henrique Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Nilufar Mohebbi
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
- Praxis Und Dialysezentrum Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Nagami GT, Kraut JA. Regulation of Acid-Base Balance in Patients With Chronic Kidney Disease. Adv Chronic Kidney Dis 2022; 29:337-342. [PMID: 36175071 DOI: 10.1053/j.ackd.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023]
Abstract
Normallly the kidneys handle the daily acid load arising from net endogenous acid production from the metabolism of ingested animal protein (acid) and vegetables (base). With chronic kidney disease, reduced acid excretion by the kidneys is primarily due to reduced ammonium excretion such that when acid excertion falls below acid porduction, acid accumulation occurs. With even mild reductions in glomerular filtration rate (60 to 90 ml/min), net acid excretion may fall below net acid production resulting in acid retention which may be initially sequestered in interstitial compartments in the kidneys, bones, and muscles resulting in no fall in measured systemic bicarbonate levels (eubicarbonatemic metabolic acidosis). With greater reductions in kidney function, the greater quantities of acid retained spillover systemically resulting in low pH (overt metabolic acidosis). The evaluation of acid-base balance in patients with CKD is complicated by the heterogeneity of clinical acid-base disorders and by the eubicarbonatemic nature of the early phase of acid retention. If supported by more extensive studies, blood gas analyses to confirm the acid-base disorder and newer ways for assessing the presence of acidosis such as urinary citrate measurements may become routine tools to evaluate and treat acid-base disorders in individuals with CKD.
Collapse
Affiliation(s)
- Glenn T Nagami
- Division of Nephrology, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA; David Geffen School of Medicine, UCLA, Los Angeles, CA.
| | - Jeffrey A Kraut
- Division of Nephrology, VHAGLA Healthcare System, Los Angeles, CA; UCLA Membrane Biology Laboratory, David Geffen UCLA School of Medicine, Los Angeles, CA
| |
Collapse
|
11
|
Nakashima K, Hirahara Y, Koike T, Tanaka S, Gamo K, Oe S, Hayashi S, Seki-Omura R, Nakano Y, Ohe C, Yoshida T, Kataoka Y, Tsuda M, Yamashita T, Honke K, Kitada M. Sulfatide with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy fatty acids in renal intercalated cells. J Lipid Res 2022; 63:100210. [PMID: 35439525 PMCID: PMC9157219 DOI: 10.1016/j.jlr.2022.100210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022] Open
Abstract
Diverse molecular species of sulfatide with differences in FA lengths, unsaturation degrees, and hydroxylation statuses are expressed in the kidneys. However, the physiological functions of specific sulfatide species in the kidneys are unclear. Here, we evaluated the distribution of specific sulfatide species in the kidneys and their physiological functions. Electron microscopic analysis of kidneys of Cst-deficient mice lacking sulfatide showed vacuolar accumulation in the cytoplasm of intercalated cells in the collecting duct, whereas the proximal and distal tubules were unchanged. Immunohistochemical analysis revealed that vacuolar H+-ATPase-positive vesicles were accumulated in intercalated cells in sulfatide-deficient kidneys. Seventeen sulfatide species were detected in the murine kidney by iMScope MALDI-MS analysis. The distribution of the specific sulfatide species was classified into four patterns. Although most sulfatide species were highly expressed in the outer medullary layer, two unique sulfatide species of m/z 896.6 (predicted ceramide structure: t18:0-C22:0h) and m/z 924.6 (predicted ceramide structure: t18:0-C24:0h) were dispersed along the collecting duct, implying expression in intercalated cells. In addition, the intercalated cell-enriched fraction was purified by fluorescence-activated cell sorting using the anti-vacuolar H+-ATPase subunit 6V0A4, which predominantly contained sulfatide species (m/z 896.6 and 924.6). The Degs2 and Fa2h genes, which are responsible for ceramide hydroxylation, were expressed in the purified intercalated cells. These results suggested that sulfatide molecular species with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs, which were characteristically expressed in intercalated cells, were involved in the excretion of NH3 and protons into the urine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research; Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Hyogo, Japan
| | | | - Tatsuyuki Yamashita
- Department of Biochemistry, Kochi University Medical School, Nangoku, Kochi, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Nangoku, Kochi, Japan
| | | |
Collapse
|
12
|
Martín-Saiz L, Mosteiro L, Solano-Iturri JD, Rueda Y, Martín-Allende J, Imaz I, Olano I, Ochoa B, Fresnedo O, Fernández JA, Larrinaga G. High-Resolution Human Kidney Molecular Histology by Imaging Mass Spectrometry of Lipids. Anal Chem 2021; 93:9364-9372. [PMID: 34192457 PMCID: PMC8922278 DOI: 10.1021/acs.analchem.1c00649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
For many years, traditional histology
has been the gold standard
for the diagnosis of many diseases. However, alternative and powerful
techniques have appeared in recent years that complement the information
extracted from a tissue section. One of the most promising techniques
is imaging mass spectrometry applied to lipidomics. Here, we demonstrate
the capabilities of this technique to highlight the architectural
features of the human kidney at a spatial resolution of 10 μm.
Our data demonstrate that up to seven different segments of the nephron
and the interstitial tissue can be readily identified in the sections
according to their characteristic lipid fingerprints and that such
fingerprints are maintained among different individuals (n = 32). These results set the foundation for further studies on the
metabolic bases of the diseases affecting the human kidney.
Collapse
Affiliation(s)
- Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Lorena Mosteiro
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain
| | - Jon D Solano-Iturri
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain.,BioCruces Health Research Institute, Cruces (Barakaldo) 48903, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Javier Martín-Allende
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Igone Imaz
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain
| | - Iván Olano
- Service of Urology, Cruces University Hospital, Cruces (Barakaldo) 48903, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Gorka Larrinaga
- BioCruces Health Research Institute, Cruces (Barakaldo) 48903, Spain.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain.,Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| |
Collapse
|
13
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
14
|
Porubsky S, Nientiedt M, Kriegmair MC, Siemoneit JHH, Sandhoff R, Jennemann R, Borgmann H, Gaiser T, Weis CA, Erben P, Hielscher T, Popovic ZV. The prognostic value of galactosylceramide-sulfotransferase (Gal3ST1) in human renal cell carcinoma. Sci Rep 2021; 11:10926. [PMID: 34035403 PMCID: PMC8149814 DOI: 10.1038/s41598-021-90381-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) is the deadliest primary genitourinary malignancy typically associated with asymptomatic initial presentation and poorly predictable survival. Next to established risk factors, tumor microenvironment may alter metastatic capacity and immune landscape. Due to their high concentrations, sulfoglycolipids (sulfatides) were among the first well-described antigens in RCC that are associated with worse prognosis. As sulfatide detection in routine diagnostics is not possible, we aimed to test the prognostic value of its protein counterpart, sulfatide-producing enzyme Gal3ST1. We performed retrospective long-term follow up analysis of Gal3ST1 expression as prognostic risk factor in a representative RCC patient cohort. We observed differentially regulated Gal3ST1 expression in all RCC types, being significantly more associated with clear cell RCC than to chromophobe RCC (p = 0.001). Surprisingly, in contrast to published observations from in vitro models, we could not confirm an association between Gal3ST1 expression and a malignant clinical behaviour of the RCC. In our cohort, Gal3ST1 did not significantly influence progression-free survival (Hazard Ratio (HR): 1.7 95% CI (0.6–4.9), p = 0.327). Particularly after adjusting for histology, T-stage, N-status and M-status at baseline, we observed no independent prognostic effect (HR = 1.0 95% CI (0.3–3.3), p = 0.96). The analysis of Gal3ST1 mRNA expression in a TCGA dataset supported the results of our cohort. Thus, Gal3ST1 might help to differentiate between chromophobe RCC and other frequent RCC entities but—despite previously published data from cell culture models—does not qualify as a prognostic marker for RCC. Further investigation of regulatory mechanisms of sulfatide metabolism in human RCC microenvironment is necessary to understand the role of this quantitatively prominent glycosphingolipid in RCC progression.
Collapse
Affiliation(s)
- Stefan Porubsky
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Institute of Pathology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Malin Nientiedt
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian C Kriegmair
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jörn-Helge Heinrich Siemoneit
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hendrik Borgmann
- Department of Urology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Philipp Erben
- Department of Urology and Urosurgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Hielscher
- Department of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Zoran V Popovic
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
15
|
Wang Y, Nakajima T, Diao P, Yamada Y, Nakamura K, Nakayama J, Tanaka N, Aoyama T, Kamijo Y. Polyunsaturated fatty acid deficiency affects sulfatides and other sulfated glycans in lysosomes through autophagy-mediated degradation. FASEB J 2020; 34:9594-9614. [PMID: 32501606 DOI: 10.1096/fj.202000030rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Metabolic changes in sulfatides and other sulfated glycans have been related to various diseases, including Alzheimer's disease (AD). However, the importance of polyunsaturated fatty acids (PUFA) in sulfated lysosomal substrate metabolism and its related disorders is currently unknown. We investigated the effects of deficiency or supplementation of PUFA on the metabolism of sulfatides and sulfated glycosaminoglycans (sGAGs) in sulfatide-rich organs (brain and kidney) of mice. A PUFA-deficient diet for over 5 weeks significantly reduced the sulfatide expression by increasing the sulfatide degradative enzymes arylsulfatase A and galactosylceramidase in brain and kidney. This sulfatide degradation was clearly associated with the activation of autophagy and lysosomal hyperfunction, the former of which was induced by suppression of the Erk/mTOR pathway. A PUFA-deficient diet also activated the degradation of sGAGs in the brain and kidney and that of amyloid precursor proteins in the brain, indicating an involvement in general lysosomal function and the early developmental process of AD. PUFA supplementation prevented all of the above abnormalities. Taken together, a PUFA deficiency might lead to sulfatide and sGAG degradation associated with autophagy activation and general lysosomal hyperfunction and play a role in many types of disease development, suggesting a possible benefit of prophylactic PUFA supplementation.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yosuke Yamada
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kozo Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Minamiminowa, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Kamijo
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Nephrology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
16
|
Weiner ID, Verlander JW. Emerging Features of Ammonia Metabolism and Transport in Acid-Base Balance. Semin Nephrol 2020; 39:394-405. [PMID: 31300094 DOI: 10.1016/j.semnephrol.2019.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ammonia metabolism has a critical role in acid-base homeostasis and in other cellular functions. Kidneys have a central role in bicarbonate generation, which occurs through the process of net acid excretion; ammonia metabolism is the quantitatively greatest component of net acid excretion, both under basal conditions and in response to acid-base disturbances. Several recent studies have advanced our understanding substantially of the molecular mechanisms and regulation of ammonia metabolism. First, the previous paradigm that ammonia transport could be explained by passive NH3 diffusion and NH4+ trapping has been advanced by the recognition that specific transport of NH3 and of NH4+ by specific membrane proteins is critical to ammonia transport. Second, significant advances have been made in the understanding of the regulation of ammonia metabolism. Novel studies have shown that hyperkalemia directly inhibits ammonia metabolism, thereby leading to the metabolic acidosis present in type IV renal tubular acidosis. Other studies have shown that the proximal tubule protein NBCe1, specifically the A variant NBCe1-A, has a major role in regulating renal ammonia metabolism. Third, there are important sex differences in ammonia metabolism that involve structural and functional differences in the kidney. This review addresses these important aspects of ammonia metabolism and transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL; Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, FL.
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
17
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
18
|
Lulli M, Nencioni D, Papucci L, Schiavone N. Zeta-crystallin: a moonlighting player in cancer. Cell Mol Life Sci 2020; 77:965-976. [PMID: 31563996 PMCID: PMC11104887 DOI: 10.1007/s00018-019-03301-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Crystallins were firstly found as structural proteins of the eye lens. To this family belong proteins, such as ζ-crystallin, expressed ubiquitously, and endowed with enzyme activity. ζ-crystallin is a moonlighting protein endowed with two main different functions: (1) mRNA binding with stabilizing activity; (2) NADPH:quinone oxidoreductase. ζ-crystallin has been clearly demonstrated to stabilize mRNAs encoding proteins involved in renal glutamine catabolism during metabolic acidosis resulting in ammoniagenesis and bicarbonate ion production that concur to compensate such condition. ζ-crystallin binds also mRNAs encoding for antiapoptotic proteins, such as Bcl-2 in leukemia cells. On the other hand, the physiological role of its enzymatic activity is still elusive. Gathering research evidences and data mined from public databases, we provide a framework where all the known ζ-crystallin properties are called into question, making it a hypothetical pivotal player in cancer, allowing cells to hijack or subjugate the acidity response mechanism to increase their ability to resist oxidative stress and apoptosis, while fueling their glutamine addicted metabolism.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| | - Daniele Nencioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Università Degli Studi di Firenze, Viale G.B. Morgagni, 50, Firenze, 50134, Italy.
| |
Collapse
|
19
|
Robinson CM, Poon BPK, Kano Y, Pluthero FG, Kahr WHA, Ohh M. A Hypoxia-Inducible HIF1-GAL3ST1-Sulfatide Axis Enhances ccRCC Immune Evasion via Increased Tumor Cell-Platelet Binding. Mol Cancer Res 2019; 17:2306-2317. [PMID: 31427440 DOI: 10.1158/1541-7786.mcr-19-0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer and the major cause of mortality for individuals with von Hippel-Lindau (VHL) disease. ccRCC is characterized most frequently by inactivation of VHL tumor suppressor protein that mediates degradation of the alpha subunit of the hypoxia-inducible factor (HIF) transcription factor family. HIF has been implicated in disease progression and the aim of this study was to identify novel HIF target genes that may contribute to ccRCC. We show that GAL3ST1, an enzyme that catalyzes the sulfonation of the plasma membrane sulfolipid sulfatide, is among the top 50 upregulated genes in ccRCC tissue relative to matched normal tissue. Increased expression of GAL3ST1 in primary ccRCC correlates with decreased survival. We show that GAL3ST1 is a HIF target gene whose expression is induced upon VHL loss leading to the accumulation of its enzymatic product sulfatide. Notably, platelets bind more efficiently to renal cancer cells with high GAL3ST1-sulfatide expression than to GAL3ST1-sulfatide-negative counterparts, which protects ccRCC cells against natural killer cell-mediated cytotoxicity. These results suggest that GAL3ST1 is a HIF-responsive gene that may contribute to ccRCC development via promoting cancer cell evasion of immune surveillance. IMPLICATIONS: Cancer development is in part dependent on evasion of immune response. We identify a HIF target gene product GAL3ST1 that may play a role in this critical process.
Collapse
Affiliation(s)
- Claire M Robinson
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Betty P K Poon
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoshihito Kano
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Division of Haematology/Oncology and Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology and Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
21
|
Morace I, Pilz R, Federico G, Jennemann R, Krunic D, Nordström V, von Gerichten J, Marsching C, Schießl IM, Müthing J, Wunder C, Johannes L, Sandhoff R, Gröne HJ. Renal globotriaosylceramide facilitates tubular albumin absorption and its inhibition protects against acute kidney injury. Kidney Int 2019; 96:327-341. [PMID: 31101366 DOI: 10.1016/j.kint.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Abstract
To elucidate the physiologic function of renal globotriaosylceramide (Gb3/CD77), which up-to-date has been associated exclusively with Shiga toxin binding, we have analyzed renal function in Gb3-deficient mice. Gb3 synthase KO (Gb3S-/-) mice displayed an increased renal albumin and low molecular weight protein excretion compared to WT. Gb3 localized at the brush border and within vesicular structures in WT proximal tubules and has now been shown to be closely associated with the receptor complex megalin/cubilin and with albumin uptake. In two clinically relevant mouse models of acute kidney injury caused by myoglobin as seen in rhabdomyolysis and the aminoglycoside gentamicin, Gb3S-/- mice showed a preserved renal function and morphology, compared to WT. Pharmacologic inhibition of glucosylceramide-based glycosphingolipids, including Gb3, in WT mice corroborated the results of genetically Gb3-deficient mice. In conclusion, our data significantly advance the current knowledge on the physiologic and pathophysiologic role of Gb3 in proximal tubules, showing an involvement in the reabsorption of filtered albumin, myoglobin and the aminoglycoside gentamicin.
Collapse
Affiliation(s)
- Ivan Morace
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | - Robert Pilz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Johanna von Gerichten
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Christian Marsching
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Institute of Pharmacology, University of Marburg, Marburg, Germany.
| |
Collapse
|
22
|
Tang D, Fakiola M, Syn G, Anderson D, Cordell HJ, Scaman ESH, Davis E, Miles SJ, McLeay T, Jamieson SE, Lassmann T, Blackwell JM. Arylsulphatase A Pseudodeficiency (ARSA-PD), hypertension and chronic renal disease in Aboriginal Australians. Sci Rep 2018; 8:10912. [PMID: 30026549 PMCID: PMC6053446 DOI: 10.1038/s41598-018-29279-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic renal disease (CRD) associated with cardiovascular disease (CVD) and/or type 2 diabetes (T2D) is a significant problem in Aboriginal Australians. Whole exome sequencing data (N = 72) showed enrichment for ClinVar pathogenic variants in gene sets/pathways linking lipoprotein, lipid and glucose metabolism. The top Ingenuity Pathway Analysis canonical pathways were Farsenoid X Receptor and Retinoid Receptor (FXR/RXR; (P = 1.86 × 10-7), Liver X Receptor and Retinoid Receptor (LXR/RXR; P = 2.88 × 10-6), and atherosclerosis signalling (P = 3.80 × 10-6). Top pathways/processes identified using Enrichr included: Reactome 2016 chylomicron-mediated lipid transport (P = 3.55 × 10-7); Wiki 2016 statin (P = 8.29 × 10-8); GO Biological Processes 2017 chylomicron remodelling (P = 1.92 × 10-8). ClinVar arylsulfatase A pseudodeficiency (ARSA-PD) pathogenic variants were common, including the missense variant c.511 G > A (p.Asp171Asn; rs74315466; frequency 0.44) only reported in Polynesians. This variant is in cis with known ARSA-PD 3' regulatory c.*96 A > G (rs6151429; frequency 0.47) and missense c.1055 A > G (p.Asn352Ser; rs2071421; frequency 0.47) variants. These latter two variants are associated with T2D (risk haplotype GG; odds ratio 2.67; 95% CI 2.32-3.08; P = 2.43 × 10-4) in genome-wide association data (N = 402), but are more strongly associated with quantitative traits (DBP, SBP, ACR, eGFR) for hypertension and renal function in non-diabetic than diabetic subgroups. Traits associated with CVD, CRD and T2D in Aboriginal Australians provide novel insight into function of ARSA-PD variants.
Collapse
Affiliation(s)
- Dave Tang
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | | | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Elizabeth S H Scaman
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth Davis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Subiaco, Western Australia, 6008, Australia
| | - Simon J Miles
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Toby McLeay
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Timo Lassmann
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia.
| |
Collapse
|
23
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
24
|
Kurtz I. Renal Tubular Acidosis: H +/Base and Ammonia Transport Abnormalities and Clinical Syndromes. Adv Chronic Kidney Dis 2018; 25:334-350. [PMID: 30139460 PMCID: PMC6128697 DOI: 10.1053/j.ackd.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal tubular acidosis (RTA) represents a group of diseases characterized by (1) a normal anion gap metabolic acidosis; (2) abnormalities in renal HCO3- absorption or new renal HCO3- generation; (3) changes in renal NH4+, Ca2+, K+, and H2O homeostasis; and (4) extrarenal manifestations that provide etiologic diagnostic clues. The focus of this review is to give a general overview of the pathogenesis of the various clinical syndromes causing RTA with a particular emphasis on type I (hypokalemic distal RTA) and type II (proximal) RTA while reviewing their pathogenesis from a physiological "bottom-up" approach. In addition, the factors involved in the generation of metabolic acidosis in both type I and II RTA are reviewed highlighting the importance of altered renal ammonia production/partitioning and new HCO3- generation. Our understanding of the underlying tubular transport and extrarenal abnormalities has significantly improved since the first recognition of RTA as a clinical entity because of significant advances in clinical acid-base chemistry, whole tubule and single-cell H+/base transport, and the molecular characterization of the various transporters and channels that are functionally affected in patients with RTA. Despite these advances, additional studies are needed to address the underlying mechanisms involved in hypokalemia, altered ammonia production/partitioning, hypercalciuria, nephrocalcinosis, cystic abnormalities, and CKD progression in these patients.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA.
| |
Collapse
|
25
|
Honke K. Biological functions of sulfoglycolipids and the EMARS method for identification of co-clustered molecules in the membrane microdomains. J Biochem 2018; 163:253-263. [PMID: 29186467 DOI: 10.1093/jb/mvx078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/03/2017] [Indexed: 01/04/2025] Open
Abstract
Two major sulfoglycolipids, sulfatide (SO3-3Gal-ceramide) and seminolipid (SO3-3Gal-alkylacylglycerol) exist in mammals. Sulfatide is abundant in the myelin sheath and seminolipid is unique to the spermatogenic cells. The carbohydrate moiety of sulfatide and seminolipid is identical and synthesized by common enzymes: ceramide galactosyltransferase (CGT) and cerebroside sulfotransferase (CST). We have purified CST homogenously, cloned the CST gene and generated CST-knockout mice. CST-null mice completely lack sulfoglycolipids all over the body. Analysis of CST-null mice has revealed that sulfatide is an essential component for the axo-glial junction at the paranode region and regulates terminal differentiation of oligodendrocytes, and that seminolipid is responsible for the formation of a functional lactate transporter assembly to take up the critical energy source for spermatocytes. We have developed a new analytical method termed EMARS to identify co-clustered molecules in the membrane microdomains in order to elucidate the functional molecules that collaborate with sulfoglycolipids.
Collapse
Affiliation(s)
- Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
- Center for Innovative and Translational Medicine, Kochi University Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
26
|
Bourgeois S, Bounoure L, Mouro-Chanteloup I, Colin Y, Brown D, Wagner CA. The ammonia transporter RhCG modulates urinary acidification by interacting with the vacuolar proton-ATPases in renal intercalated cells. Kidney Int 2018; 93:390-402. [PMID: 29054531 PMCID: PMC6166241 DOI: 10.1016/j.kint.2017.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Ammonium, stemming from renal ammoniagenesis, is a major urinary proton buffer and is excreted along the collecting duct. This process depends on the concomitant secretion of ammonia by the ammonia channel RhCG and of protons by the vacuolar-type proton-ATPase pump. Thus, urinary ammonium content and urinary acidification are tightly linked. However, mice lacking Rhcg excrete more alkaline urine despite lower urinary ammonium, suggesting an unexpected role of Rhcg in urinary acidification. RhCG and the B1 and B2 proton-ATPase subunits could be co-immunoprecipitated from kidney. In ex vivo microperfused cortical collecting ducts (CCD) proton-ATPase activity was drastically reduced in the absence of Rhcg. Conversely, overexpression of RhCG in HEK293 cells resulted in higher proton secretion rates and increased B1 proton-ATPase mRNA expression. However, in kidneys from Rhcg-/- mice the expression of only B1 and B2 subunits was altered. Immunolocalization of proton-ATPase subunits together with immuno-gold detection of the A proton-ATPase subunit showed similar localization and density of staining in kidneys from Rhcg+/+ and Rhcg-/-mice. In order to test for a reciprocal effect of intercalated cell proton-ATPases on Rhcg activity, we assessed Rhcg and proton-ATPase activities in microperfused CCD from Atp6v1b1-/- mice and showed reduced proton-ATPase activity without altering Rhcg activity. Thus, RhCG and proton-ATPase are located within the same cellular protein complex. RhCG may modulate proton-ATPase function and urinary acidification, whereas proton-ATPase activity does not affect RhCG function. This mechanism may help to coordinate ammonia and proton secretion beyond physicochemical driving forces.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Bounoure
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Yves Colin
- UMR_S1134, INSERM, Université Paris Diderot, INTS, Labex GR-Ex, Paris, France
| | - Dennis Brown
- Center for Systems Biology, Program in Membrane Biology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Jirásko R, Holčapek M, Khalikova M, Vrána D, Študent V, Prouzová Z, Melichar B. MALDI Orbitrap Mass Spectrometry Profiling of Dysregulated Sulfoglycosphingolipids in Renal Cell Carcinoma Tissues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1562-1574. [PMID: 28361385 DOI: 10.1007/s13361-017-1644-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/07/2023]
Abstract
Matrix-assisted laser desorption/ionization coupled with Orbitrap mass spectrometry (MALDI-Orbitrap-MS) is used for the clinical study of patients with renal cell carcinoma (RCC), as the most common type of kidney cancer. Significant changes in sulfoglycosphingolipid abundances between tumor and autologous normal kidney tissues are observed. First, sulfoglycosphingolipid species in studied RCC samples are identified using high mass accuracy full scan and tandem mass spectra. Subsequently, optimization, method validation, and statistical evaluation of MALDI-MS data for 158 tissues of 80 patients are discussed. More than 120 sulfoglycosphingolipids containing one to five hexosyl units are identified in human RCC samples based on the systematic study of their fragmentation behavior. Many of them are recorded here for the first time. Multivariate data analysis (MDA) methods, i.e., unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples to reveal the most up- and downregulated lipids in tumor tissues. Obtained results are closely correlated with MALDI mass spectrometry imaging (MSI) and histologic staining. Important steps of the present MALDI-Orbitrap-MS approach are also discussed, such as the selection of best matrix, correct normalization, validation for semiquantitative study, and problems with possible isobaric interferences on closed masses in full scan mass spectra. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Maria Khalikova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - David Vrána
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Vladimír Študent
- Department of Urology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Zuzana Prouzová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| |
Collapse
|
28
|
Sulaj A, Kopf S, Gröne E, Gröne HJ, Hoffmann S, Schleicher E, Häring HU, Schwenger V, Herzig S, Fleming T, Nawroth PP, von Bauer R. ALCAM a novel biomarker in patients with type 2 diabetes mellitus complicated with diabetic nephropathy. J Diabetes Complications 2017; 31:1058-1065. [PMID: 28325697 DOI: 10.1016/j.jdiacomp.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIM Activated leukocyte cell adhesion molecule (ALCAM/CD166) functions analogue to the receptor of advanced glycation end products, which has been implicated in the development of diabetic nephropathy (DN). We investigated the expression of ALCAM and its ligand S100B in patients with DN. METHODS A total of 34 non-diabetic patients, 29 patients with type 2 diabetes and normal albuminuria and 107 patients with type 2 diabetes complicated with DN were assessed for serum concentration of soluble ALCAM (sALCAM) by ELISA. Expression of ALCAM and S100B in kidney histology from patients with DN was determined by immunohistochemistry. Cell expression of ALCAM and S100B was analyzed through confocal immunofluorescence microscopy. RESULTS Serum concentration of sALCAM was increased in diabetic patients with DN compared to non-diabetic (59.85±14.99ng/ml vs. 126.88±66.45ng/ml, P<0.0001). Moreover sALCAM correlated positively with HbA1c (R=0.31, P<0.0001), as well as with the stages of chronic kidney disease and negatively correlated with eGFR (R=-0.20, P<0.05). In diabetic patients with normal albuminuria sALCAM was increased compared to patients with DN (126.88±66.45ng/ml vs. 197.50±37.17ng/ml, P<0.0001). In diabetic patients, ALCAM expression was significantly upregulated in both the glomeruli and tubules (P<0.001). ALCAM expression in the glomeruli correlated with presence of sclerosis (R=0.25, P<0.001) and localized mainly in the podocytes supporting the hypothesis that membrane bound ALCAM drives diabetic nephropathy and thus explaining sALCAM decrease in diabetic patients with DN. The expression of S100B was increased significantly in the glomeruli of diabetic patients (P<0.001), but not in the tubules. S100B was as well localized in the podocytes. CONCLUSIONS This study identifies for the first time ALCAM as a potential mediator in the late complications of diabetes in the kidney.
Collapse
Affiliation(s)
- Alba Sulaj
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany.
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Elisabeth Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, 68135 Mannheim, Germany
| | - Erwin Schleicher
- Department of Internal Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, University of Tübingen, 72074 Tübingen, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer IDC, Helmholtz Center Munich and Joint Heidelberg-IDC Translational, Diabetes Program, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany; Institute for Diabetes and Cancer IDC, Helmholtz Center Munich and Joint Heidelberg-IDC Translational, Diabetes Program, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Rüdiger von Bauer
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
von Gerichten J, Schlosser K, Lamprecht D, Morace I, Eckhardt M, Wachten D, Jennemann R, Gröne HJ, Mack M, Sandhoff R. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals. J Lipid Res 2017; 58:1247-1258. [PMID: 28373486 DOI: 10.1194/jlr.d076190] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
Mammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, β-galactosylceramide (GalCer) and β-glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce α-GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS2 method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous β-GlcCer, β-GalCer, and α-GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of β-GlcCers versus β-GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific β-GlcCers due to loss of β-glucoceramidase 2 activity. Vice versa, β-GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm β-GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic α-GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Kerstin Schlosser
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ivan Morace
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology and Center for Rare Diseases University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany.,Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Richard Jennemann
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Molecular and Cellular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Mack
- Department of Biotechnology, Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group German Cancer Research Center, Heidelberg, Germany .,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
30
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
31
|
Sandhoff R, Gröne HJ. Rat kidney lipid composition addressed by mass spectrometry imaging. Kidney Int 2016; 90:1129-1130. [PMID: 27742183 DOI: 10.1016/j.kint.2016.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022]
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group within the; Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Center for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Center for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany. h.-
| |
Collapse
|
32
|
Weiner ID, Verlander JW. Recent advances in understanding renal ammonia metabolism and transport. Curr Opin Nephrol Hypertens 2016; 25:436-43. [PMID: 27367914 PMCID: PMC4974126 DOI: 10.1097/mnh.0000000000000255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a succinct description of the recent findings that advance our understanding of the fundamental renal process of ammonia metabolism and transport in conditions relevant to the clinician. RECENT FINDINGS Recent studies advance our understanding of renal ammonia metabolism. Mechanisms through which chronic kidney disease and altered dietary protein intake alter ammonia excretion have been identified. Lithium, although it can acutely cause distal renal tubular acidosis, was shown with long-term use to increase urinary ammonia excretion, and this appeared to be mediated, at least in part, by increased Rhcg expression. Gene deletion studies showed that the ammonia recycling enzyme, glutamine synthetase, has a critical role in normal-stimulated and acidosis-stimulated ammonia metabolism and that the proximal tubule basolateral bicarbonate transporter, NBCe1, is necessary for normal ammonia metabolism. Finally, our understanding of the molecular ammonia species, NH3 versus NH4, transported by Rh glycoproteins continues to be advanced. SUMMARY Fundamental studies have been recently published that advance our understanding of the regulation of ammonia metabolism in clinically important circumstances, and our understanding of the mechanisms and regulation of proximal tubule ammonia generation, and the mechanisms through which Rh glycoproteins contribute to ammonia secretion.
Collapse
Affiliation(s)
- I. David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, FL 32611
| | - Jill W. Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
33
|
Maida A, Zota A, Sjøberg KA, Schumacher J, Sijmonsma TP, Pfenninger A, Christensen MM, Gantert T, Fuhrmeister J, Rothermel U, Schmoll D, Heikenwälder M, Iovanna JL, Stemmer K, Kiens B, Herzig S, Rose AJ. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. J Clin Invest 2016; 126:3263-78. [PMID: 27548521 PMCID: PMC5004939 DOI: 10.1172/jci85946] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Dietary protein intake is linked to an increased incidence of type 2 diabetes (T2D). Although dietary protein dilution (DPD) can slow the progression of some aging-related disorders, whether this strategy affects the development and risk for obesity-associated metabolic disease such as T2D is unclear. Here, we determined that DPD in mice and humans increases serum markers of metabolic health. In lean mice, DPD promoted metabolic inefficiency by increasing carbohydrate and fat oxidation. In nutritional and polygenic murine models of obesity, DPD prevented and curtailed the development of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21 expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis.
Collapse
Affiliation(s)
- Adriano Maida
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Annika Zota
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Kim A. Sjøberg
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Schumacher
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Tjeerd P. Sijmonsma
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Anja Pfenninger
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Marie M. Christensen
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Gantert
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Fuhrmeister
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Rothermel
- Division of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Kerstin Stemmer
- Division of Metabolism and Cancer, Institute for Diabetes and Obesity, Helmholtz Centre Munich, Munich, Germany
| | - Bente Kiens
- Section of Molecular Physiology, August Krogh Centre, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Adam J. Rose
- Joint Research Division Molecular Metabolic Control, German Cancer Research Center, Center for Molecular Biology, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
34
|
Sugimoto M, Wakabayashi M, Shimizu Y, Yoshioka T, Higashino K, Numata Y, Okuda T, Zhao S, Sakai S, Igarashi Y, Kuge Y. Imaging Mass Spectrometry Reveals Acyl-Chain- and Region-Specific Sphingolipid Metabolism in the Kidneys of Sphingomyelin Synthase 2-Deficient Mice. PLoS One 2016; 11:e0152191. [PMID: 27010944 PMCID: PMC4806983 DOI: 10.1371/journal.pone.0152191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022] Open
Abstract
Obesity was reported to cause kidney injury by excessive accumulation of sphingolipids such as sphingomyelin and ceramide. Sphingomyelin synthase 2 (SMS2) is an important enzyme for hepatic sphingolipid homeostasis and its dysfunction is considered to result in fatty liver disease. The expression of SMS2 is also high in the kidneys. However, the contribution of SMS2 on renal sphingolipid metabolism remains unclear. Imaging mass spectrometry is a powerful tool to visualize the distribution and provide quantitative data on lipids in tissue sections. Thus, in this study, we analyzed the effects of SMS2 deficiency on the distribution and concentration of sphingomyelins in the liver and kidneys of mice fed with a normal-diet or a high-fat-diet using imaging mass spectrometry and liquid chromatography/electrospray ionization-tandem mass spectrometry. Our study revealed that high-fat-diet increased C18–C22 sphingomyelins, but decreased C24-sphingomyelins, in the liver and kidneys of wild-type mice. By contrast, SMS2 deficiency decreased C18–C24 sphingomyelins in the liver. Although a similar trend was observed in the whole-kidneys, the effects were minor. Interestingly, imaging mass spectrometry revealed that sphingomyelin localization was specific to each acyl-chain length in the kidneys. Further, SMS2 deficiency mainly decreased C22-sphingomyelin in the renal medulla and C24-sphingomyelins in the renal cortex. Thus, imaging mass spectrometry can provide visual assessment of the contribution of SMS2 on acyl-chain- and region-specific sphingomyelin metabolism in the kidneys.
Collapse
Affiliation(s)
- Masayuki Sugimoto
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Masato Wakabayashi
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoichi Shimizu
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- Laboratory of Bioanalysis and Molecular Imaging, Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Yoshioka
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery, Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Sapporo, Japan
| | - Tomohiko Okuda
- Drug Discovery Technologies, Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Japan
| | - Songji Zhao
- Department of Tracer Kinetics & Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Sakai
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Igarashi
- Department of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
35
|
Noiret L, Baigent S, Jalan R, Thomas SR. Mathematical Model of Ammonia Handling in the Rat Renal Medulla. PLoS One 2015; 10:e0134477. [PMID: 26280830 PMCID: PMC4539222 DOI: 10.1371/journal.pone.0134477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/10/2015] [Indexed: 01/19/2023] Open
Abstract
The kidney is one of the main organs that produces ammonia and release it into the circulation. Under normal conditions, between 30 and 50% of the ammonia produced in the kidney is excreted in the urine, the rest being absorbed into the systemic circulation via the renal vein. In acidosis and in some pathological conditions, the proportion of urinary excretion can increase to 70% of the ammonia produced in the kidney. Mechanisms regulating the balance between urinary excretion and renal vein release are not fully understood. We developed a mathematical model that reflects current thinking about renal ammonia handling in order to investigate the role of each tubular segment and identify some of the components which might control this balance. The model treats the movements of water, sodium chloride, urea, NH3 and NH4+, and non-reabsorbable solute in an idealized renal medulla of the rat at steady state. A parameter study was performed to identify the transport parameters and microenvironmental conditions that most affect the rate of urinary ammonia excretion. Our results suggest that urinary ammonia excretion is mainly determined by those parameters that affect ammonia recycling in the loops of Henle. In particular, our results suggest a critical role for interstitial pH in the outer medulla and for luminal pH along the inner medullary collecting ducts.
Collapse
Affiliation(s)
- Lorette Noiret
- CoMPLEX, University College London (UCL), London, United Kingdom
- * E-mail:
| | - Stephen Baigent
- CoMPLEX, University College London (UCL), London, United Kingdom
- Mathematics, UCL, London, United Kingdom
| | - Rajiv Jalan
- Institute of Hepatology, UCL Medical School, London, United Kingdom
| | - S. Randall Thomas
- IR4M (UMR8081), Université Paris-Sud, Centre National de la Recherche Scientifique, Orsay, France
| |
Collapse
|
36
|
Weiner ID, Mitch WE, Sands JM. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin J Am Soc Nephrol 2015; 10:1444-58. [PMID: 25078422 PMCID: PMC4527031 DOI: 10.2215/cjn.10311013] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| | - William E Mitch
- Nephrology Division, Baylor College of Medicine, Houston, Texas; and
| | - Jeff M Sands
- Nephrology Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
37
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
38
|
Quijada-Rodriguez AR, Treberg JR, Weihrauch D. Mechanism of ammonia excretion in the freshwater leech Nephelopsis obscura: characterization of a primitive Rh protein and effects of high environmental ammonia. Am J Physiol Regul Integr Comp Physiol 2015; 309:R692-705. [PMID: 26180186 DOI: 10.1152/ajpregu.00482.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/14/2015] [Indexed: 12/23/2022]
Abstract
Remarkably little is known about nitrogenous excretion in freshwater invertebrates. In the current study, the nitrogen excretion mechanism in the carnivorous ribbon leech, Nephelopsis obscura, was investigated. Excretion experiments showed that the ribbon leech is ammonotelic, excreting 166.0 ± 8.6 nmol·grams fresh weight (gFW)(-1)·h(-1) ammonia and 14.7 ± 1.9 nmol·gFW(-1)·h(-1) urea. Exposure to high and low pH hampered and enhanced, respectively, ammonia excretion rates, indicating an acid-linked ammonia trapping mechanism across the skin epithelia. Accordingly, compared with body tissues, the skin exhibited elevated mRNA expression levels of a newly identified Rhesus protein and at least in tendency the Na(+)/K(+)-ATPase. Pharmacological experiments and enzyme assays suggested an ammonia excretion mechanism that involves the V-ATPase, Na(+)/K(+)-ATPase, and carbonic anhydrase, but not necessarily a functional microtubule system. Most importantly, functional expression studies of the identified Rh protein cloned from leech skin tissue revealed an ammonia transport capability of this protein when expressed in yeast. The leech Rh-ammonia transporter (NoRhp) is a member of the primitive Rh protein family, which is a sister group to the common ancestor of vertebrate ammonia-transporting Rh proteins. Exposure to high environmental ammonia (HEA) caused a new adjustment of body ammonia, accompanied with a decrease in NoRhp and Na(+)/K(+)-ATPase mRNA levels, but unaltered ammonia excretion rates. To our knowledge, this is only the second comprehensive study regarding the ammonia excretion mechanisms in a freshwater invertebrate, but our results show that basic processes of ammonia excretion appear to also be comparable to those found in freshwater fish, suggesting an early evolution of ionoregulatory mechanisms in freshwater organisms.
Collapse
Affiliation(s)
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; and Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; and
| |
Collapse
|
39
|
Mirzaian M, Kramer G, Poorthuis BJHM. Quantification of sulfatides and lysosulfatides in tissues and body fluids by liquid chromatography-tandem mass spectrometry. J Lipid Res 2015; 56:936-43. [PMID: 25632048 DOI: 10.1194/jlr.m057232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sulfatides are found in brain as components of myelin, oligodendrocytes, and neurons but are also present in various visceral tissues. Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder caused by a deficiency of arylsulfatase A, leading to severe white matter disease due to the accumulation of sulfatides and lysosulfatides. To study the physiological role of sulfatides, accessible and sensitive quantitative methods are required. We developed a sensitive LC/MS/MS method to quantify total sulfatide and lysosulfatide content as well as individual molecular species in urine and plasma from MLD patients and plasma and tissues from an MLD mouse model. Our results demonstrate that the method can quantify a wide range of sulfatide concentrations and can be used to quantify total sulfatide content and levels of individual molecular species of sulfatides in tissues, cells, and body fluids. Even though plasma sulfatides and lysosulfatides would seem attractive candidate biomarkers that could possibly correlate with the severity of MLD and be of use to monitor the effects of therapeutic intervention, our results indicate that it is unlikely that the determination of these storage products in plasma will be useful in this respect.
Collapse
Affiliation(s)
- Mina Mirzaian
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Gertjan Kramer
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Ben J H M Poorthuis
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Bürki R, Mohebbi N, Bettoni C, Wang X, Serra AL, Wagner CA. Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease. Nephrol Dial Transplant 2014; 30:770-81. [PMID: 25523450 DOI: 10.1093/ndt/gfu384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/19/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mechanisms, however, have not been addressed to date. METHODS We examined the Han:SPRD rat model and used a combination of metabolic studies, mRNA and protein analysis of renal molecules involved in acid-base handling. RESULTS We demonstrate that rats with reduced kidney function as evident from lower creatinine clearance, lower haematocrit, higher plasma blood urea nitrogen, creatinine, phosphate and potassium had metabolic acidosis that could be aggravated by HCl acid loading. Urinary ammonium excretion was highly reduced whereas urinary pH was more acidic in CKD compared with control animals. The abundance of key enzymes and transporters of proximal tubular ammoniagenesis (phosphate-dependent glutaminase, PEPCK and SNAT3) and bicarbonate transport (NBCe1) was reduced in CKD compared with control animals. In the collecting duct, normal expression of the B1 H(+)-ATPase subunit is in agreement with low urinary pH. In contrast, the RhCG ammonia transporter, critical for the final secretion of ammonia into urine was strongly down-regulated in CKD animals. CONCLUSION In the Han:SPRD rat model for CKD, key molecules required for renal ammoniagenesis and ammonia excretion are highly down-regulated providing a possible molecular explanation for the development and maintenance of renal acidosis in CKD patients.
Collapse
Affiliation(s)
- Remy Bürki
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| | - Xueqi Wang
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Andreas L Serra
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology and ZIHP, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
|
42
|
Allende ML, Proia RL. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 2014; 31:613-22. [PMID: 25351657 PMCID: PMC4245496 DOI: 10.1007/s10719-014-9563-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
Glycosphingolipids (GSLs) are a group of plasma-membrane lipids notable for their extremely diverse glycan head groups. The metabolic pathways for GSLs, including the identity of the biosynthetic enzymes needed for synthesis of their glycans, are now well understood. Many of their cellular functions, which include plasma-membrane organization, regulation of cell signaling, endocytosis, and serving as binding sites for pathogens and endogenous receptors, have also been established. However, an understanding of their functions in vivo had been lagging. Studies employing genetic manipulations of the GSL synthesis pathways in mice have been used to systematically reduce the large numbers and complexity of GSL glycan structures, allowing the in vivo functions of GSLs to be revealed from analysis of the resulting phenotypes. Findings from these studies have produced a clearer picture of the role of GSLs in mammalian physiology, which is the topic of this review.
Collapse
Affiliation(s)
- Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 9D-06; 10 Center DR MSC 1821, Bethesda, MD, 20892-1821, USA
| | | |
Collapse
|
43
|
Marsching C, Jennemann R, Heilig R, Gröne HJ, Hopf C, Sandhoff R. Quantitative imaging mass spectrometry of renal sulfatides: validation by classical mass spectrometric methods. J Lipid Res 2014; 55:2343-53. [PMID: 25274613 DOI: 10.1194/jlr.m051821] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Owing to its capability of discriminating subtle mass-altering structural differences such as double bonds or elongated acyl chains, MALDI-based imaging MS (IMS) has emerged as a powerful technique for analysis of lipid distribution in tissue at moderate spatial resolution of about 50 μm. However, it is still unknown if MS(1)-signals and ion intensity images correlate with the corresponding apparent lipid concentrations. Analyzing renal sulfated glycosphingolipids, sulfatides, we validate for the first time IMS-signal identities using corresponding sulfatide-deficient kidneys. To evaluate the extent of signal quenching effects interfering with lipid quantification, we surgically dissected the three major renal regions (papillae, medulla, and cortex) and systematically compared MALDI IMS of renal sulfatides with quantitative analyses of corresponding lipid extracts by on-target MALDI TOF-MS and by ultra-performance LC-ESI-(triple-quadrupole)tandem MS. Our results demonstrate a generally strong correlation (R(2) > 0.9) between the local relative sulfatide signal intensity in MALDI IMS and absolute sulfatide quantities determined by the other two methods. However, high concentrations of sulfatides in the papillae and medulla result in an up to 4-fold signal suppression. In conclusion, our study suggests that MALDI IMS is useful for semi-quantitative dissection of relative local changes of sulfatides and possibly other lipids in tissue.
Collapse
Affiliation(s)
- Christian Marsching
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Lipid Pathobiochemistry Group within German Cancer Research Center (DKFZ), Heidelberg, Germany Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raphael Heilig
- Lipid Pathobiochemistry Group within German Cancer Research Center (DKFZ), Heidelberg, Germany Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Hermann-Josef Gröne
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Hopf
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roger Sandhoff
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Lipid Pathobiochemistry Group within German Cancer Research Center (DKFZ), Heidelberg, Germany Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
44
|
Marsching C, Rabionet M, Mathow D, Jennemann R, Kremser C, Porubsky S, Bolenz C, Willecke K, Gröne HJ, Hopf C, Sandhoff R. Renal sulfatides: sphingoid base-dependent localization and region-specific compensation of CerS2-dysfunction. J Lipid Res 2014; 55:2354-69. [PMID: 25267995 DOI: 10.1194/jlr.m051839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mammalian kidneys are rich in sulfatides. Papillary sulfatides, especially, contribute to renal adaptation to chronic metabolic acidosis. Due to differences in their cer-amide (Cer) anchors, the structural diversity of renal sulfatides is large. However, the underling biological function of this complexity is not understood. As a compound's function and its tissue location are intimately connected, we analyzed individual renal sulfatide distributions of control and Cer synthase 2 (CerS)2-deficient mice by imaging MS (IMS) and by LC-MS(2) (in controls for the cortex, medulla, and papillae separately). To explain locally different structures, we compared our lipid data with regional mRNA levels of corresponding anabolic enzymes. The combination of IMS and in source decay-LC-MS(2) analyses revealed exclusive expression of C20-sphingosine-containing sulfatides within the renal papillae, whereas conventional C18-sphingosine-containing compounds were predominant in the medulla, and sulfatides with a C18-phytosphingosine were restricted to special cortical structures. CerS2 deletion resulted in bulk loss of sulfatides with C23/C24-acyl chains, but did not lead to decreased urinary pH, as previously observed in sulfatide-depleted kidneys. The reasons may be the almost unchanged C22-sulfatide levels and constant total renal sulfatide levels due to compensation with C16- to C20-acyl chain-containing compounds. Intriguingly, CerS2-deficient kidneys were completely depleted of phytosphingosine-containing cortical sulfatides without any compensation.
Collapse
Affiliation(s)
- Christian Marsching
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology German Cancer Research Center (DKFZ), Heidelberg, Germany Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mariona Rabionet
- Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Mathow
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Christiane Kremser
- Molecular Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | - Christian Bolenz
- University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Hermann-Josef Gröne
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Hopf
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Mannheim, Germany Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology
| | - Roger Sandhoff
- Center for Applied Research "Applied Biomedical Mass Spectrometry" (ABIMAS), Mannheim, Germany Lipid Pathobiochemistry Group within Department of Cellular and Molecular Pathology German Cancer Research Center (DKFZ), Heidelberg, Germany Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
45
|
Porubsky S, Federico G, Müthing J, Jennemann R, Gretz N, Büttner S, Obermüller N, Jung O, Hauser IA, Gröne E, Geiger H, Gröne HJ, Betz C. Direct acute tubular damage contributes to Shigatoxin-mediated kidney failure. J Pathol 2014; 234:120-33. [PMID: 24909663 PMCID: PMC4282478 DOI: 10.1002/path.4388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/11/2023]
Abstract
The pathogenesis and therapy of Shigatoxin 2 (Stx2)-mediated kidney failure remain controversial. Our aim was to test whether, during an infection with Stx2-producing E. coli (STEC), Stx2 exerts direct effects on renal tubular epithelium and thereby possibly contributes to acute renal failure. Mice represent a suitable model because they, like humans, express the Stx2-receptor Gb3 in the tubular epithelium but, in contrast to humans, not in glomerular endothelia, and are thus free of glomerular thrombotic microangiopathy (TMA). In wild-type mice, Stx2 caused acute tubular dysfunction with consequent electrolyte disturbance, which was most likely the cause of death. Tubule-specific depletion of Gb3 protected the mice from acute renal failure. In vitro, Stx2 induced secretion of proinflammatory cytokines and apoptosis in human tubular epithelial cells, thus implicating a direct effect of Stx2 on the tubular epithelium. To correlate these results to human disease, kidney biopsies and outcome were analysed in patients with Stx2-associated kidney failure (n = 11, aged 22–44 years). The majority of kidney biopsies showed different stages of an ongoing TMA; however, no glomerular complement activation could be demonstrated. All biopsies, including those without TMA, showed severe acute tubular damage. Due to these findings, patients were treated with supportive therapy without complement-inhibiting antibodies (eculizumab) or immunoadsorption. Despite the severity of the initial disease [creatinine 6.34 (1.31–17.60) mg/dl, lactate dehydrogenase 1944 (753–2792) U/l, platelets 33 (19–124)/nl and haemoglobin 6.2 (5.2–7.8) g/dl; median (range)], all patients were discharged after 33 (range 19–43) days with no neurological symptoms and no dialysis requirement [creatinine 1.39 (range 0.84–2.86) mg/dl]. The creatinine decreased further to 0.90 (range 0.66–1.27) mg/dl after 24 months. Based on these data, one may surmise that acute tubular damage represents a separate pathophysiological mechanism, importantly contributing to Stx2-mediated acute kidney failure. Specifically in young adults, an excellent outcome can be achieved by supportive therapy only. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stefan Porubsky
- Department of Cellular and Molecular Pathology, German Cancer Research Centre, Heidelberg, Germany; Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kawada N, Isaka Y, Rakugi H, Moriyama T. SCAD syndrome: A vicious cycle of kidney stones, CKD, and AciDosis. World J Clin Urol 2014; 3:113-118. [DOI: 10.5410/wjcu.v3.i2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Cumulative evidence has shown that kidney stone formers are at high risk for developing end-stage renal disease (ESRD) and cardiovascular disease. The aim of this mini-review is to summarize the present knowledge about the close relationships among kidney stone formation, chronic kidney disease (CKD), and plasma and urine acidosis (SCAD). Part of the cause of the positive relationships between higher risk of developing ESRD and cardiovascular diseases in stone formers may be explained by inflammation and cell death due to the components of kidney stones. In CKD patients, acidic urine and loss of anti-crystallization factors may cause stone formation. Acidosis can promote tissue inflammation and may affect vascular tone. Correction of plasma and urine acidosis may improve renal and cardiovascular outcome of stone formers and CKD patients. More intensive and long-term interventions, which include correction of plasma and urine pH in patients with reduced renal function and correction of urine pH in patients with normal renal function, may be considered in treating patients with SCAD syndrome.
Collapse
|
47
|
Grove KJ, Voziyan PA, Spraggins JM, Wang S, Paueksakon P, Harris RC, Hudson BG, Caprioli RM. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res 2014; 55:1375-85. [PMID: 24864273 DOI: 10.1194/jlr.m049189] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN) is a major life-threatening complication of diabetes. Renal lesions affect glomeruli and tubules, but the pathogenesis is not completely understood. Phospholipids and glycolipids are molecules that carry out multiple cell functions in health and disease, and their role in DN pathogenesis is unknown. We employed high spatial resolution MALDI imaging MS to determine lipid changes in kidneys of eNOS(-/-) db/db mice, a robust model of DN. Phospholipid and glycolipid structures, localization patterns, and relative tissue levels were determined in individual renal glomeruli and tubules without disturbing tissue morphology. A significant increase in the levels of specific glomerular and tubular lipid species from four different classes, i.e., gangliosides, sulfoglycosphingolipids, lysophospholipids, and phosphatidylethanolamines, was detected in diabetic kidneys compared with nondiabetic controls. Inhibition of nonenzymatic oxidative and glycoxidative pathways attenuated the increase in lipid levels and ameliorated renal pathology, even though blood glucose levels remained unchanged. Our data demonstrate that the levels of specific phospho- and glycolipids in glomeruli and/or tubules are associated with diabetic renal pathology. We suggest that hyperglycemia-induced DN pathogenic mechanisms require intermediate oxidative steps that involve specific phospholipid and glycolipid species.
Collapse
Affiliation(s)
- Kerri J Grove
- Departments of Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232 Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN 37232 Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Paul A Voziyan
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232 Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN 37232 Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Suwan Wang
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232 Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Paisit Paueksakon
- Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Raymond C Harris
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232 Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Billy G Hudson
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37232 Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232 Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Richard M Caprioli
- Departments of Chemistry, Vanderbilt University Medical Center, Nashville, TN 37232 Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, TN 37232 Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
48
|
Kim IC, Bang G, Lee JH, Kim KP, Kim YH, Kim HK, Chung J. Low C24-OH and C22-OH sulfatides in human renal cell carcinoma. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:409-416. [PMID: 24809902 DOI: 10.1002/jms.3358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Histopathologic diagnosis of renal cell carcinoma (RCC) may sometimes be difficult with small biopsy samples. We applied histology-directed matrix-assisted laser desorption/ionization mass spectrometry to RCC samples to evaluate whether and how lipid profiles are different between RCC and normal tissue. We evaluated 59 RCC samples and 24 adjacent normal tissue samples collected from patients who underwent surgery. Five peaks were significantly differently expressed (p < 10(-7)) between RCCs and adjacent normal tissue samples. C24-OH sulfatide (ST-OH {18:1/24:0}[M-H](-); m/z 906.7 in the negative ion mode) and C22-OH sulfatide (ST-OH {18:1/22:0}[M-H](-); m/z 878.6 in the negative ion mode) were most significantly underexpressed in RCC samples, compared with adjacent normal tissue samples. With 100 random training-to-test partitions within these samples, the median prediction accuracy (RCC vs. normal) ranged from 96.3% to 100% at p cutoff values for feature selection ranging from 0.001 to 10(-7). Two oncocytoma samples were predicted as normal tissue by five lipids that were differentially expressed between RCC and normal tissue at p < 10(-7). Clear-cell, papillary, and chromophobe RCCs were different in lipid profiles. Permutation p- values for 0.632+ bootstrap cross-validated misclassification rates were less than 0.05 for all the classifiers. Thus, lipid profiles differentiate RCC from normal tissue and may possibly classify the histology of RCC.
Collapse
Affiliation(s)
- Il Chan Kim
- National Cancer Center, Goyang, Gyeonggi, 410-769, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Wagner CA, Bourgeois S. Two Rhesus protein ammonia transporters team up to eliminate ammonium into urine. Am J Physiol Renal Physiol 2014; 306:F721-3. [PMID: 24431200 DOI: 10.1152/ajprenal.00681.2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|