1
|
Eldred KC, Edgerton SJ, Ortuño-Lizarán I, Wohlschlegel J, Sherman SM, Petter S, Wyatt-Draher G, Hoffer D, Glass I, La Torre A, Reh TA. Ciliary marginal zone of the developing human retina maintains retinal progenitor cells until late gestational stages. Cell Rep 2025; 44:115460. [PMID: 40178972 DOI: 10.1016/j.celrep.2025.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Non-mammalian vertebrates maintain a proliferative cell population at the far periphery of their retina called the ciliary marginal zone (CMZ), which contributes to retinal regeneration upon injury. Humans do not maintain a proliferative CMZ into adulthood; however, it is unknown how long in development this region continues to generate neurons. Here, we identify a population of cells in the far-peripheral retina of the human that continues to proliferate after the rest of the retina is quiescent. Single-cell RNA sequencing and 5-ethynyl-2'-deoxyuridine tracing at late developmental time points reveal that this region has the capacity to produce both early- and late-born cell types late in development and a longer cell cycle than more centrally located retinal progenitor cells (RPCs). Moreover, while most RPCs exit the cell cycle with the addition of a transforming growth factor β inhibitor, early RPCs within the CMZ do not. These findings define the late stages of neurogenesis in human retinal development.
Collapse
Affiliation(s)
- Kiara C Eldred
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sierra J Edgerton
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isabel Ortuño-Lizarán
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA; Physiology, Genetics, and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Juliette Wohlschlegel
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephanie M Sherman
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sidnee Petter
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Gracious Wyatt-Draher
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ian Glass
- Pediatrics/Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Medical Genetics, Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Thomas A Reh
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Liu D, Pu Z, Li B, Tan G, Xie T, Shen Y. Chrdl1-mediated BMP4 inhibition disrupts the balance between retinal neurons and Müller Glia. Cell Death Discov 2024; 10:367. [PMID: 39152126 PMCID: PMC11329631 DOI: 10.1038/s41420-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Chordin-like 1 (CHRDL1) is a secreted protein that serves as an endogenous antagonist of bone morphogenetic proteins (BMPs). In the developing retina, Bmp4 has been demonstrated to be essential for sustaining the proliferation of progenitor cells and facilitating the differentiation of glial cells. Despite these efforts, the precise effects of Bmp4 inhibition on the developing retina are yet to be fully understood. We sought to address this question by overexpressing Chrdl1 in the developing retina. In this study, we explored the impact of Bmp4 inhibition on the developing mouse retina by conditionally overexpressing the Bmp4 inhibitor Chrdl1. Initially, we characterized the expression patterns of Bmp4 and Chrdl1 in the developing mouse retina from E10.5 to P12.5. Additionally, we utilized various molecular markers to demonstrate that Bmp4 inhibition disrupts both neuronal and Müller glial differentiation in the developing mouse retina. Moreover, through the application of RNA-seq analysis, distinctively expressed retinal genes under the modulation of Bmp4 signaling were discerned, encompassing the upregulation of Id1/2/3/4 and Hes1/5, as well as the downregulation of Neurod1/2/4 and Bhlhe22/23. Lastly, electroretinogram (ERG) and optomotor response (OMR) assays were conducted to illustrate that Bmp4 inhibition impairs the functional connectivity of various cells in the retina and consequently affects visual function. Collectively, this study demonstrates that inhibiting Bmp4 promotes the differentiation of retinal neurons over Müller glia by activating the expression of genes associated with neuron specification. These findings offer molecular insights into the role of Bmp4 signaling in mammalian retinal development.
Collapse
Affiliation(s)
- Dongmei Liu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, P. R. China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Ting Xie
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, 430060, P. R. China.
| |
Collapse
|
4
|
Li B, Xie T, Nawy S, Shen Y. The development and the genetic diseases of the ciliary body. CELL INSIGHT 2024; 3:100162. [PMID: 38595769 PMCID: PMC11002873 DOI: 10.1016/j.cellin.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
The ciliary body, located at the junction of the choroid and iris, is crucial in the development of the embryonic eye. Notch2 signalling, Wnt signalling, transforming growth factor β (TGF-β) signalling, and Pax6 signalling are critical for coordinating the ciliary body formation. These signalling pathways are coordinated with each other and participate in the ciliary body development, ensuring the precise formation and optimal functioning of the eye structure. Although rare, ciliary body hypoplasia, ciliary tumours, and genetic-related iritis indicate the intricate nature of ciliary body development. Given the ciliary body's important biological significance and potential medical relevance, we aim to provide a comprehensive overview of the developmental molecular mechanisms governing ciliary body formation and function. Here, we focus on the intricate signalling pathways governing ciliary body development and corresponding genetic ciliary diseases.
Collapse
Affiliation(s)
- Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, USA
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Hung SS, Tsai PS, Po CW, Hou PS. Pax6 isoforms shape eye development: Insights from developmental stages and organoid models. Differentiation 2024; 137:100781. [PMID: 38631141 DOI: 10.1016/j.diff.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Pax6 is a critical transcription factor involved in the development of the central nervous system. However, in humans, mutations in Pax6 predominantly result in iris deficiency rather than neurological phenotypes. This may be attributed to the distinct functions of Pax6 isoforms, Pax6a and Pax6b. In this study, we investigated the spatial and temporal expression patterns of Pax6 isoforms during different stages of mouse eye development. We observed a strong correlation between Pax6a expression and the neuroretina gene Sox2, while Pax6b showed a high correlation with iris-component genes, including the mesenchymal gene Foxc1. During early patterning from E10.5, Pax6b was expressed in the hinge of the optic cup and neighboring mesenchymal cells, whereas Pax6a was absent in these regions. At E14.5, both Pax6a and Pax6b were expressed in the future iris and ciliary body, coinciding with the integration of mesenchymal cells and Mitf-positive cells in the outer region. From E18.5, Pax6 isoforms exhibited distinct expression patterns as lineage genes became more restricted. To further validate these findings, we utilized ESC-derived eye organoids, which recapitulated the temporal and spatial expression patterns of lineage genes and Pax6 isoforms. Additionally, we found that the spatial expression patterns of Foxc1 and Mitf were impaired in Pax6b-mutant ESC-derived eye organoids. This in vitro eye organoids model suggested the involvement of Pax6b-positive local mesodermal cells in iris development. These results provide valuable insights into the regulatory roles of Pax6 isoforms during iris and neuroretina development and highlight the potential of ESC-derived eye organoids as a tool for studying normal and pathological eye development.
Collapse
Affiliation(s)
- Shih-Shun Hung
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan.
| | - Po-Sung Tsai
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan.
| | - Ching-Wen Po
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan; Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Beitou Dist, Taipei, 11221, Taiwan; Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
6
|
Sun K, Yu M, Wang J, Zhao H, Liu H, Feng H, Liu Y, Han D. A Wnt10a-Notch signaling axis controls Hertwig's epithelial root sheath cell behaviors during root furcation patterning. Int J Oral Sci 2024; 16:25. [PMID: 38480698 PMCID: PMC10937922 DOI: 10.1038/s41368-024-00288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/17/2024] Open
Abstract
Human with bi-allelic WNT10A mutations and epithelial Wnt10a knockout mice present enlarged pulp chamber and apical displacement of the root furcation of multi-rooted teeth, known as taurodontism; thus, indicating the critical role of Wnt10a in tooth root morphogenesis. However, the endogenous mechanism by which epithelial Wnt10a regulates Hertwig's epithelial root sheath (HERS) cellular behaviors and contributes to root furcation patterning remains unclear. In this study, we found that HERS in the presumptive root furcating region failed to elongate at an appropriate horizontal level in K14-Cre;Wnt10afl/fl mice from post-natal day 0.5 (PN0.5) to PN4.5. EdU assays and immunofluorescent staining of cyclin D1 revealed significantly decreased proliferation activity of inner enamel epithelial (IEE) cells of HERS in K14-Cre;Wnt10afl/fl mice at PN2.5 and PN3.5. Immunofluorescent staining of E-Cadherin and acetyl-α-Tubulin demonstrated that the IEE cells of HERS tended to divide perpendicularly to the horizontal plane, which impaired the horizontal extension of HERS in the presumptive root furcating region of K14-Cre;Wnt10afl/fl mice. RNA-seq and immunofluorescence showed that the expressions of Jag1 and Notch2 were downregulated in IEE cells of HERS in K14-Cre;Wnt10afl/fl mice. Furthermore, after activation of Notch signaling in K14-Cre;Wnt10afl/fl molars by Notch2 adenovirus and kidney capsule grafts, the root furcation defect was partially rescued. Taken together, our study demonstrates that an epithelial Wnt10a-Notch signaling axis is crucial for modulating HERS cell proper proliferation and horizontal-oriented division during tooth root furcation morphogenesis.
Collapse
Affiliation(s)
- Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiayu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
7
|
Kuang L, Zhang M, Wang T, Huang T, Li J, Gan R, Yu M, Cao W, Yan X. The molecular genetics of anterior segment dysgenesis. Exp Eye Res 2023; 234:109603. [PMID: 37495069 DOI: 10.1016/j.exer.2023.109603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Anterior segment dysgenesis is a severe developmental eye disorder that leads to blindness in children. The exact mechanisms underlying this condition remain elusive. Recently, an increasing amount of studies have focused on genes and signal transduction pathways that affect anterior segment dysgenesis;these factors include transcription factors, developmental regulators, extracellular matrix genes, membrane-related proteins, cytoskeleton proteins and other associated genes. To date, dozens of gene variants have been found to cause anterior segment dysgenesis. However, there is still a lack of effective treatments. With a broader and deeper understanding of the molecular mechanisms underlying anterior segment development in the future, gene editing technology and stem cell technology may be new treatments for anterior segment dysgenesis. Further studies on the mechanisms of how different genes influence the onset and progression of anterior segment dysgenesis are still needed.
Collapse
Affiliation(s)
- Longhao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Min Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, China
| | - Ting Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Jin Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Run Gan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Mingyu Yu
- Department of the Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital), Shenzhen, 518020, China
| | - Wenchao Cao
- Department of the Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital), Shenzhen, 518020, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China.
| |
Collapse
|
8
|
Wu J, Xu M, Liu W, Huang Y, Wang R, Chen W, Feng L, Liu N, Sun X, Zhou M, Qian K. Glaucoma Characterization by Machine Learning of Tear Metabolic Fingerprinting. SMALL METHODS 2022; 6:e2200264. [PMID: 35388987 DOI: 10.1002/smtd.202200264] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Glaucoma is a common optic neuropathy disease affecting over 76 million people. Both timely diagnosis and progression monitoring are critical but challenging. Conventional characterization of glaucoma needs a combination of methods, calling for tedious procedures and experienced doctors. Herein, a platform through machine learning of tear metabolic fingerprinting (TMF) using nanoparticle enhanced laser desorption-ionization mass spectrometry is built. Direct TMF is obtained noninvasively, with fast speed and high reproducibility, using trace tear samples (down to 10 nL). Consequently, glaucoma patients are screened against healthy controls with the area under the curve (AUC) of 0.866, through machine learning of TMF. Further, primary open-angle glaucoma (POAG) is differentiated from primary angle-closure glaucoma (PACG) and an early-stage POAG is identified. Finally, a biomarker panel of six metabolites for glaucoma characterization (including screening, subtyping, and early diagnosis) with AUC of 0.827-0.891 is constructed, showing related metabolic pathways. The work will provide insights into eye diseases not limited to glaucoma.
Collapse
Affiliation(s)
- Jiao Wu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Mengqiao Xu
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yida Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Ruimin Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Wei Chen
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ning Liu
- School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Minwen Zhou
- Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Fundus Disease, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
9
|
Cross-talk between NOTCH2 and BMP4/SMAD signaling pathways in bovine follicular granulosa cells. Theriogenology 2022; 187:74-81. [DOI: 10.1016/j.theriogenology.2022.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
|
10
|
Upregulated NOTCH Signaling in the Lens of Patients with Pseudoexfoliation Syndrome Compared to Pseudoexfoliation Glaucoma Suggests Protective Role. J Glaucoma 2022; 31:e1-e9. [DOI: 10.1097/ijg.0000000000001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
|
11
|
Grisé KN, Coles BLK, Bautista NX, van der Kooy D. Activation of adult mammalian retinal stem cells in vivo via antagonism of BMP and sFRP2. Stem Cell Res Ther 2021; 12:560. [PMID: 34717744 PMCID: PMC8557620 DOI: 10.1186/s13287-021-02630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2021] [Indexed: 11/15/2022] Open
Abstract
Background The adult mammalian retina does not have the capacity to regenerate cells lost due to damage or disease. Therefore, retinal injuries and blinding diseases result in irreversible vision loss. However, retinal stem cells (RSCs), which participate in retinogenesis during development, persist in a quiescent state in the ciliary epithelium (CE) of the adult mammalian eye. Moreover, RSCs retain the ability to generate all retinal cell types when cultured in vitro, including photoreceptors. Therefore, it may be possible to activate endogenous RSCs to induce retinal neurogenesis in vivo and restore vision in the adult mammalian eye. Methods To investigate if endogenous RSCs can be activated, we performed combinatorial intravitreal injections of antagonists to BMP and sFRP2 proteins (two proposed mediators of RSC quiescence in vivo), with or without growth factors FGF and Insulin. We also investigated the effects of chemically-induced N-methyl-N-Nitrosourea (MNU) retinal degeneration on RSC activation, both alone and in combination withthe injected factors. Further, we employed inducible Msx1-CreERT2 genetic lineage labeling of the CE followed by stimulation paradigms to determine if activated endogenous RSCs could migrate into the retina and differentiate into retinal neurons. Results We found that in vivo antagonism of BMP and sFRP2 proteins induced CE cells in the RSC niche to proliferate and expanded the RSC population. BMP and sFRP2 antagonism also enhanced CE cell proliferation in response to exogenous growth factor stimulation and MNU-induced retinal degeneration. Furthermore, Msx1-CreERT2 genetic lineage tracing revealed that CE cells migrated into the retina following stimulation and/or injury, where they expressed markers of mature photoreceptors and retinal ganglion cells. Conclusions Together, these results indicate that endogenous adult mammalian RSCs may have latent regenerative potential that can be activated by modulating the RSC niche and hold promise as a means for endogenous retinal cell therapy to repair the retina and improve vision. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02630-0.
Collapse
Affiliation(s)
- Kenneth N Grisé
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Nelson X Bautista
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Donnelly Centre Rm 1110, 160 College Street, Toronto, ON, M5S 3E1, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
12
|
Pang J, Le L, Zhou Y, Tu R, Hou Q, Tsuchiya D, Thomas N, Wang Y, Yu Z, Alexander R, Thexton M, Lewis B, Corbin T, Durnin M, Li H, Ashery-Padan R, Yan D, Xie T. NOTCH Signaling Controls Ciliary Body Morphogenesis and Secretion by Directly Regulating Nectin Protein Expression. Cell Rep 2021; 34:108603. [PMID: 33440163 DOI: 10.1016/j.celrep.2020.108603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.
Collapse
Affiliation(s)
- Ji Pang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Le
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yi Zhou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Qiang Hou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; State Key Laboratory and Key Laboratory of Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Richard Alexander
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Marina Thexton
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brandy Lewis
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Timothy Corbin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Michael Durnin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
13
|
Moazzeni H, Khani M, Elahi E. Insights into the regulatory molecules involved in glaucoma pathogenesis. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:782-827. [PMID: 32935930 DOI: 10.1002/ajmg.c.31833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is an important cause of irreversible blindness, characterized by optic nerve anomalies. Increased intraocular pressure (IOP) and aging are major risk factors. Retinal ganglion cells and trabecular meshwork cells are certainly involved in the etiology of glaucoma. Glaucoma is usually a complex disease, and various genes and functions may contribute to its etiology. Among these may be genes that encode regulatory molecules. In this review, regulatory molecules including 18 transcription factors (TFs), 195 microRNAs (miRNAs), 106 long noncoding RNAs (lncRNAs), and two circular RNAs (circRNAs) that are reasonable candidates for having roles in glaucoma pathogenesis are described. The targets of the regulators are reported. Glaucoma-related features including apoptosis, stress responses, immune functions, ECM properties, IOP, and eye development are affected by the targeted genes. The targeted genes that are frequently targeted by multiple regulators most often affect apoptosis and the related features of cell death and cell survival. BCL2, CDKN1A, and TP53 are among the frequent targets of three types of glaucoma-relevant regulators, TFs, miRNAs, and lncRNAs. TP53 was itself identified as a glaucoma-relevant TF. Several of the glaucoma-relevant TFs are themselves among frequent targets of regulatory molecules, which is consistent with existence of a complex network involved in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Zhao J, Zhang Y, Liu B. MicroRNA‑204‑5p inhibits the osteogenic differentiation of ankylosing spondylitis fibroblasts by regulating the Notch2 signaling pathway. Mol Med Rep 2020; 22:2537-2544. [PMID: 32705191 PMCID: PMC7411397 DOI: 10.3892/mmr.2020.11303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory systemic disease and is difficult to detect in the early stages. The present study aimed to investigate the role of microRNA (miR)-204-5p in osteogenic differentiation of AS fibroblasts. Bone morphogenetic protein 2 (BMP-2) was used to induce osteogenic differentiation. Cells were divided into the following groups: AS group, AS + BMP-2 group, AS + BMP-2 + miR-negative control group, AS + BMP-2 + miR-204-5p mimics group and AS + BMP-2 + miR-204-5p mimics + pcDNA-Notch2 group. The expression levels of miR-204-5p, Notch2, runt-related transcription factor 2 (RUNX2) and osteocalcin were detected via reverse transcription-quantitative PCR analysis. The binding site between Notch2 and miR-204-5p was predicted using TargetScan software and verified via the dual-luciferase reporter assay. Alkaline phosphatase (ALP) activity was assessed via the ALP assay, while the mineralized nodules area was determined via the Alizarin Red S staining assay. The results demonstrated that Notch2 is a target gene of miR-204-5p. Furthermore, treatment with BMP-2 significantly decreased miR-204-5p expression, and significantly increased ALP activity, the mineralized nodules area and the expression levels of Notch2, RUNX2 and osteocalcin in ligament fibroblasts (all P<0.05). Conversely, transfection with miR-204-5p mimics significantly increased miR-204-5p expression, and significantly decreased ALP activity, the mineralized nodules area and the expression levels of Notch2, RUNX2 and osteocalcin in ligament fibroblasts (all P<0.05). Notably, transfection with pcDNA-Notch2 significantly reversed the inhibitory effects induced by miR-204-5p mimics on the osteogenic differentiation of ligament fibroblasts (all P<0.05). Furthermore, miR-204-5p inhibited the osteogenic differentiation of ligament fibroblasts in patients with AS by targeting Notch2. Thus, miR-204-5p may negatively regulate Notch2 expression and may be a potential therapeutic target for AS. Collectively, the results of the present study provide a theoretical basis for the effective treatment of patients with AS.
Collapse
Affiliation(s)
- Jianjun Zhao
- Department of Joint Surgery and Traumatic Orthopedics, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Yanyan Zhang
- Department of General Surgery, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Bo Liu
- Department of Trauma Orthopedics, The No. 4 Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
15
|
Notch Signaling and Embryonic Development: An Ancient Friend, Revisited. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:9-37. [PMID: 32060869 DOI: 10.1007/978-3-030-34436-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary highly conserved Notch pathway, which first developed during evolution in metazoans and was first discovered in fruit flies (Drosophila melanogaster), governs many core processes including cell fate decisions during embryonic development. A huge mountain of scientific evidence convincingly demonstrates that Notch signaling represents one of the most important pathways that regulate embryogenesis from sponges, roundworms, Drosophila melanogaster, and mice to humans. In this review, we give a brief introduction on how Notch orchestrates the embryonic development of several selected tissues, summarizing some of the most relevant findings in the central nervous system, skin, kidneys, liver, pancreas, inner ear, eye, skeleton, heart, and vascular system.
Collapse
|
16
|
Moazzeni H, Mirrahimi M, Moghadam A, Banaei-Esfahani A, Yazdani S, Elahi E. Identification of genes involved in glaucoma pathogenesis using combined network analysis and empirical studies. Hum Mol Genet 2019; 28:3637-3663. [PMID: 31518395 DOI: 10.1093/hmg/ddz222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is a leading cause of blindness. We aimed in this study to identify genes that may make subtle and cumulative contributions to glaucoma pathogenesis. To this end, we identified molecular interactions and pathways that include transcription factors (TFs) FOXC1, PITX2, PAX6 and NFKB1 and various microRNAs including miR-204 known to have relevance to trabecular meshwork (TM) functions and/or glaucoma. TM tissue is involved in glaucoma pathogenesis. In-house microarray transcriptome results and data sources were used to identify target genes of the regulatory molecules. Bioinformatics analyses were done to filter TM and glaucoma relevant genes. These were submitted to network-creating softwares to define interactions, pathways and a network that would include the genes. The network was stringently scrutinized and minimized, then expanded by addition of microarray data and data on TF and microRNA-binding sites. Selected features of the network were confirmed by empirical studies such as dual luciferase assays, real-time PCR and western blot experiments and apoptosis assays. MYOC, WDR36, LTPBP2, RHOA, CYP1B1, OPA1, SPARC, MEIS2, PLEKHG5, RGS5, BBS5, ALDH1A1, NOMO2, CXCL6, FMNL2, ADAMTS5, CLOCK and DKK1 were among the genes included in the final network. Pathways identified included those that affect ECM properties, IOP, ciliary body functions, retinal ganglion cell viability, apoptosis, focal adhesion and oxidative stress response. The identification of many genes potentially involved in glaucoma pathology is consistent with its being a complex disease. The inclusion of several known glaucoma-related genes validates the approach used.
Collapse
Affiliation(s)
- Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehraban Mirrahimi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abolfazl Moghadam
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Congenital Glaucoma: a Novel Ocular Manifestation of Hajdu-Cheney Syndrome. Case Rep Genet 2018; 2018:2508345. [PMID: 30420927 PMCID: PMC6215579 DOI: 10.1155/2018/2508345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022] Open
Abstract
Hajdu-Cheney Syndrome (HSC) is a rare multisystem disease in which the phenotype involves acro-osteolysis, severe osteoporosis, short stature, wormian bones, facial dysmorphism, central neurological abnormalities, cardiovascular defects, and polycystic kidneys. We describe an infant with severe manifestations of HCS in whom congenital glaucoma was a significant early feature, which has not been reported to date. HCS cases reported to date have involved truncating mutations in exon 34 of NOTCH2 upstream the PEST domain that lead to the development of a truncated and stable NOTCH2 protein which upregluates notch signaling. We describe a hitherto undescribed missense mutation that is predicted to be pathogenic, with functional characterization remaining to be performed. Serpentine fibula-polycystic kidney syndrome (SFPKS) is allelic to HCS and commonly associated with missense NOTCH2 mutations. Our patient provides new ophthalmological manifestations of HCS and provides insight into the potential role of notch signaling in the anterior chamber development.
Collapse
|
18
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
19
|
Rausch RL, Libby RT, Kiernan AE. Ciliary margin-derived BMP4 does not have a major role in ocular development. PLoS One 2018; 13:e0197048. [PMID: 29738572 PMCID: PMC5940228 DOI: 10.1371/journal.pone.0197048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
Heterozygous Bmp4 mutations in humans and mice cause severe ocular anterior segment dysgenesis (ASD). Abnormalities include pupil displacement, corneal opacity, iridocorneal adhesions, and variable intraocular pressure, as well as some retinal and vascular defects. It is presently not known what source of BMP4 is responsible for these defects, as BMP4 is expressed in several developing ocular and surrounding tissues. In particular, BMP4 is expressed in the ciliary margins of the optic cup which give rise to anterior segment structures such as the ciliary body and iris, making it a good candidate for the required source of BMP4 for anterior segment development. Here, we test whether ciliary margin-derived BMP4 is required for ocular development using two different conditional knockout approaches. In addition, we compared the conditional deletion phenotypes with Bmp4 heterozygous null mice. Morphological, molecular, and functional assays were performed on adult mutant mice, including histology, immunohistochemistry, in vivo imaging, and intraocular pressure measurements. Surprisingly, in contrast to Bmp4 heterozygous mutants, our analyses revealed that the anterior and posterior segments of Bmp4 conditional knockouts developed normally. These results indicate that ciliary margin-derived BMP4 does not have a major role in ocular development, although subtle alterations could not be ruled out. Furthermore, we demonstrated that the anterior and posterior phenotypes observed in Bmp4 heterozygous animals showed a strong propensity to co-occur, suggesting a common, non-cell autonomous source for these defects.
Collapse
Affiliation(s)
- Rebecca L. Rausch
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
| | - Richard T. Libby
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States of America
- Center for Visual Sciences, University of Rochester, Rochester, NY, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Amy E. Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
20
|
Moon KH, Kim JW. Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye. Mol Cells 2018; 41:257-263. [PMID: 29665674 PMCID: PMC5935098 DOI: 10.14348/molcells.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023] Open
Abstract
Vertebrate organ development is accompanied by demarcation of tissue compartments, which grow coordinately with their neighbors. Hence, perturbing the coordinative growth of neighboring tissue compartments frequently results in organ malformation. The growth of tissue compartments is regulated by multiple intercellular and intracellular signaling pathways, including the Hippo signaling pathway that limits the growth of various organs. In the optic neuroepithelial continuum, which is partitioned into the retina, retinal pigment epithelium (RPE) and ciliary margin (CM) during eye development, the Hippo signaling activity operates differentially, as it does in many tissues. In this review, we summarize recent studies that have explored the relationship between the Hippo signaling pathway and growth of optic neuroepithelial compartments. We will focus particularly on the roles of a tumor suppressor, neurofibromin 2 (NF2), whose expression is not only dependent on compartment-specific transcription factors, but is also subject to regulation by a Hippo-Yap feedback signaling circuit.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
21
|
Moon KH, Kim HT, Lee D, Rao MB, Levine EM, Lim DS, Kim JW. Differential Expression of NF2 in Neuroepithelial Compartments Is Necessary for Mammalian Eye Development. Dev Cell 2017; 44:13-28.e3. [PMID: 29249622 DOI: 10.1016/j.devcel.2017.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Mahesh B Rao
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Edward M Levine
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Dae-Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
22
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
23
|
Riesenberg AN, Conley KW, Le TT, Brown NL. Separate and coincident expression of Hes1 and Hes5 in the developing mouse eye. Dev Dyn 2017; 247:212-221. [PMID: 28675662 DOI: 10.1002/dvdy.24542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Notch signaling is broadly required during embryogenesis, frequently activating the transcription of two basic helix-loop-helix transcription factors, Hes1 and Hes5. But, it remains unresolved when and where Hes1 and Hes5 act alone or together during development. Here, we analyzed a Hes5-green fluorescent protein (GFP) bacterial artificial chromosome (BAC) transgenic mouse, as a proxy for endogenous Hes5. We directly compared transgenic GFP expression with Hes1, and particular markers of embryonic lens and retina development. RESULTS Hes5-GFP is dynamic within subsets of retinal and lens progenitor cells, and differentiating retinal ganglion neurons, in contrast to Hes1 found in all progenitor cells. In the adult retina, only Müller glia express Hes5-GFP. Finally, Hes5-GFP is up-regulated in Hes1 germline mutants, consistent with previous demonstration that Hes1 suppresses Hes5 transcription. CONCLUSIONS Hes5-GFP BAC transgenic mice are useful for identifying Hes5-expressing cells. Although Hes5-GFP and Hes1 are coexpressed in particular developmental contexts, we also noted cohorts of lens or retinal cells expressing just one factor. The dynamic Hes5-GFP expression pattern, coupled with its derepressed expression in Hes1 mutants, suggests that this transgene contains the relevant cis-regulatory elements that regulate endogenous Hes5 in the mouse lens and retina. Developmental Dynamics 247:212-221, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amy N Riesenberg
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Kevin W Conley
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Tien T Le
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio
| | - Nadean L Brown
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio.,Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California
| |
Collapse
|
24
|
Ku HY, Sun YH. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna. PLoS Genet 2017; 13:e1006898. [PMID: 28708823 PMCID: PMC5533456 DOI: 10.1371/journal.pgen.1006898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/28/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields. During development, boundary formation between adjacent developmental fields is important to maintain the integrity of complex organs and tissues. We examined how boundaries become established between adjacent developmental fields—which are defined by expression of distinct selector genes and developmental fates—using the Drosophila eye-antennal disc as a model. We show that boundary formation is a progressive process. We focused our analysis on the antennal A1 fold that separates the A1 and A2-Ar segments, corresponding to the evolutionarily conserved segregation between coxopodite and telopodite segments of arthropod appendages. We describe a clear temporal and causal sequence of events from selector gene expression to establishment of a lineage-restricting boundary. We found that Notch activation at the boundary between adjacent fields of selector gene expression triggers actomyosin-mediated cell apical constriction, which induces the formation of an epithelial fold and prevents intermixing of cells from adjacent fields. Our findings describe a novel mechanism by which epithelial fold provides a physical barrier for cell segregation.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Y. Henry Sun
- Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
25
|
Irshad S, Bansal M, Guarnieri P, Davis H, Al Haj Zen A, Baran B, Pinna CMA, Rahman H, Biswas S, Bardella C, Jeffery R, Wang LM, East JE, Tomlinson I, Lewis A, Leedham SJ. Bone morphogenetic protein and Notch signalling crosstalk in poor-prognosis, mesenchymal-subtype colorectal cancer. J Pathol 2017; 242:178-192. [PMID: 28299802 PMCID: PMC5488238 DOI: 10.1002/path.4891] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/30/2017] [Accepted: 02/20/2017] [Indexed: 01/13/2023]
Abstract
The functional role of bone morphogenetic protein (BMP) signalling in colorectal cancer (CRC) is poorly defined, with contradictory results in cancer cell line models reflecting the inherent difficulties of assessing a signalling pathway that is context-dependent and subject to genetic constraints. By assessing the transcriptional response of a diploid human colonic epithelial cell line to BMP ligand stimulation, we generated a prognostic BMP signalling signature, which was applied to multiple CRC datasets to investigate BMP heterogeneity across CRC molecular subtypes. We linked BMP and Notch signalling pathway activity and function in human colonic epithelial cells, and normal and neoplastic tissue. BMP induced Notch through a γ-secretase-independent interaction, regulated by the SMAD proteins. In homeostasis, BMP/Notch co-localization was restricted to cells at the top of the intestinal crypt, with more widespread interaction in some human CRC samples. BMP signalling was downregulated in the majority of CRCs, but was conserved specifically in mesenchymal-subtype tumours, where it interacts with Notch to induce an epithelial-mesenchymal transition (EMT) phenotype. In intestinal homeostasis, BMP-Notch pathway crosstalk is restricted to differentiating cells through stringent pathway segregation. Conserved BMP activity and loss of signalling stringency in mesenchymal-subtype tumours promotes a synergistic BMP-Notch interaction, and this correlates with poor patient prognosis. BMP signalling heterogeneity across CRC subtypes and cell lines can account for previous experimental contradictions. Crosstalk between the BMP and Notch pathways will render mesenchymal-subtype CRC insensitive to γ-secretase inhibition unless BMP activation is concomitantly addressed. © 2017 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Shazia Irshad
- Gastrointestinal Stem‐cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Mukesh Bansal
- Department of Systems BiologyColumbia University Medical CenterNew YorkNYUSA
- PsychoGenics Inc., 765 Old Saw Mill River RoadTarrytownNYUSA
| | - Paolo Guarnieri
- Department of Systems BiologyColumbia University Medical CenterNew YorkNYUSA
| | - Hayley Davis
- Gastrointestinal Stem‐cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Ayman Al Haj Zen
- Wellcome Trust Centre For Human Genetics, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Brygida Baran
- Department of Genetics, Faculty of Biology and Environmental ProtectionUniversity of SilesiaKatowicePoland
| | - Claudia Maria Assunta Pinna
- Gastrointestinal Stem‐cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Surgery, Oncology and GastroenterologyUniversity Hospital PadovaPadovaItaly
| | - Haseeb Rahman
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
| | - Sujata Biswas
- Gastrointestinal Stem‐cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Chiara Bardella
- Molecular and Population Genetics Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rosemary Jeffery
- Colorectal Cancer Genetics, Centre for Digestive Diseases, Blizard Institute, Barts and the London School of Medicine and DentistryLondonUK
| | - Lai Mun Wang
- Cellular Pathology, Level 1John Radcliffe HospitalOxfordUK
| | - James Edward East
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical MedicineJohn Radcliffe HospitalOxfordUK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Annabelle Lewis
- Molecular and Population Genetics Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Simon John Leedham
- Gastrointestinal Stem‐cell Biology Laboratory, Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical MedicineJohn Radcliffe HospitalOxfordUK
| |
Collapse
|
26
|
Liu L, Zhou X, Kuang X, Long C, Liu W, Tang Y, Liu H, He J, Huang Z, Fan Y, Zhang Q, Shen H. The inhibition of NOTCH2 reduces UVB-induced damage in retinal pigment epithelium cells. Mol Med Rep 2017; 16:730-736. [PMID: 28560393 PMCID: PMC5482198 DOI: 10.3892/mmr.2017.6625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 03/08/2017] [Indexed: 01/26/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly. The pathogenesis of dry AMD remains indistinct and the mechanism of retinal pigment epithelium (RPE) cells death in dry AMD is controversial. The aim of the present study was to investigate the functions of Notch signaling in ultraviolet B (UVB)-induced damage of RPE cells. It was identified that, in RPE cells, UVB increased intracellular reactive oxygen species (ROS) and induced cell apoptosis. In addition, UVB activated Notch signaling in a dose dependent manner. Surprisingly, NOTCH2, but not NOTCH1, was demonstrated to be the major Notch receptor in RPE cells. Under normal conditions, the inhibition of NOTCH2 reduced cell growth and cell migration, but had no impact on intracellular ROS and cell apoptosis. However, in the presence of UVB, the inhibition of NOTCH2, but not NOTCH1, attenuated intracellular ROS and cell apoptosis. The function of Notch signaling involved in UVB damage of RPE cells may not only be significant to understanding the pathogenesis of AMD (especially dry AMD), but also useful for designing effective therapeutic agents for dry AMD.
Collapse
Affiliation(s)
- Lanying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Weiwei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yan Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huijun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jia He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zixin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yuting Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
27
|
Ha T, Moon KH, Dai L, Hatakeyama J, Yoon K, Park HS, Kong YY, Shimamura K, Kim JW. The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina. Cell Rep 2017; 19:351-363. [PMID: 28402857 DOI: 10.1016/j.celrep.2017.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
Abstract
Notch signaling in neural progenitor cell is triggered by ligands expressed in adjacent cells. To identify the sources of active Notch ligands in the mouse retina, we negatively regulated Notch ligand activity in various neighbors of retinal progenitor cells (RPCs) by eliminating mindbomb E3 ubiquitin protein ligase 1 (Mib1). Mib1-deficient retinal cells failed to induce Notch activation in intra-lineage RPCs, which prematurely differentiated into neurons; however, Mib1 in post-mitotic retinal ganglion cells was not important. Interestingly, Mib1 in the retinal pigment epithelium (RPE) also contributed to Notch activation in adjacent RPCs by supporting the localization of active Notch ligands at RPE-RPC contacts. Combining this RPE-driven Notch signaling and intra-retinal Notch signaling, we propose a model in which one RPC daughter receives extra Notch signals from the RPE to become an RPC, whereas its sister cell receives only a subthreshold level of intra-retinal Notch signal and differentiates into a neuron.
Collapse
Affiliation(s)
- Taejeong Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Le Dai
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keejung Yoon
- School of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Young-Yoon Kong
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
28
|
Bélanger MC, Robert B, Cayouette M. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals. Dev Cell 2016; 40:137-150. [PMID: 28011038 DOI: 10.1016/j.devcel.2016.11.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
Abstract
In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis.
Collapse
Affiliation(s)
- Marie-Claude Bélanger
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Benoit Robert
- Department of Molecular Genetics of Morphogenesis, Institut Pasteur, Paris 75015, France
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
29
|
Chi and dLMO function antagonistically on Notch signaling through directly regulation of fng transcription. Sci Rep 2016; 6:18937. [PMID: 26738424 PMCID: PMC4704065 DOI: 10.1038/srep18937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022] Open
Abstract
Gene apterous (ap), chip (chi) and beadex (bx) play important roles in the dorsal-ventral compartmentalization in Drosophila wing discs. Meanwhile, Notch signaling is essential to the same process. It has been reported that Ap and Chi function as a tetramer to regulate Notch signaling. At the same time, dLMO (the protein product of gene bx) regulates the activity of Ap by competing its binding with Chi. However, the detailed functions of Chi and dLMO on Notch signaling and the relevant mechanisms remain largely unknown. Here, we report the detailed functions of Chi and dLMO on Notch signaling. Different Chi protein levels in adjacent cells could activate Notch signaling mainly in the cells with higher level of Chi. dLMO could induce antagonistical phenotypes on Notch signaling compared to that induced by Chi. These processes depend on their direct regulation of fringe (fng) transcription.
Collapse
|
30
|
Huang X, Han Y, Shao Y, Yi JL. Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats. Int J Ophthalmol 2015; 8:860-5. [PMID: 26558192 DOI: 10.3980/j.issn.2222-3959.2015.05.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
AIM To evaluate the therapeutic effect of Nodinhibit-1 on alkali-burn-induced corneal neovascularization (CNV) and inflammation. The nucleotide-binding oligomerzation domain 1 (NOD1) is a potent angiogenic gene. METHODS The alkali-burned rat corneas (32 right eyes) were treated with eye drops containing Nodinhibit-1 or phosphate buffered solution (PBS, PH 7.4) only, four times per day. CNV and inflammation were monitored using slit lamp microscopy, and the area of CNV was measured by formula. Vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) was determined by Western blot analysis. The TUNEL assay was used to assess the corneal apoptosis cells. RESULTS Alkali-burn-induced progressive CNV and inflammation in the cornea. After treatment for 7d and 14d, there were statistically significant differences in the CNV areas and inflammatory index on that between two group(P<0.05, respectively). Epithelial defect quantification showed a significant difference between the two groups at days 4 and 7 after the alkali burns (P<0.05). The apoptotic cells on days 1, 4, and 7 between the two groups showed significant differences at all time points (P<0.05, respectively). Compared to that in control group, the protein level of VEGF expression was significantly reduced whereas the PEDF expression was increase in the Nodinhibit-1 groups on day 14 (P<0.05, respectively). CONCLUSION Topical application of 10.0 µg/mL Nodinhibit-1 may have potential effect for the alkali burn-induced CNV and inflammation. The effect of Nodinhibit-1 on CNV may be by regulation the equilibrium of VEGF and PEDF in the wounded cornea.
Collapse
Affiliation(s)
- Xu Huang
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing-Lin Yi
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
31
|
Sugiyama Y, Shelley EJ, Badouel C, McNeill H, McAvoy JW. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation. Invest Ophthalmol Vis Sci 2015; 56:4099-107. [PMID: 26114487 DOI: 10.1167/iovs.15-17008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The Fat family of atypical cadherins, originally identified in Drosophila, play diverse roles during embryogenesis and adult tissue maintenance. Among four mammalian members, Fat1 is essential for kidney and muscle organization, and is also essential for eye development; Fat1 knockout causes partial penetrant microphthalmia or anophthalmia. To account for the partial penetrance of the Fat1 phenotype, involvement of Fat4 in eye development was assessed. Lens phenotypes in Fat1 and 4 knockouts were also examined. METHODS Fat1 and Fat4 mRNA expression was examined by in situ hybridization. Knockout phenotypes of Fat1 and Fat4 were analyzed by hematoxylin and eosin (H&E) and immunofluorescent staining. RESULTS We found Fat4 knockout did not affect eye induction or enhance severity of Fat1 eye defects. Although Fat1 and Fat4 mRNAs are similarly expressed in the lens epithelial cells, only Fat1 knockout caused a fully penetrant lens epithelial cell defect, which was apparent at embryonic day 14.5 (E14.5). The columnar structure of the lens epithelial cells was disrupted and in some regions cell aggregates were formed. In these multilayered regions, apical cell junctions were fragmented and the apical-basal polarity was lost. EdU incorporation assay also showed enhanced proliferation in the lens epithelial cells. Interestingly, these defects were found mainly in the central zone of the epithelial layer. The lens epithelial cells of the germinative zone maintained their normal morphology and fiber differentiation occurred normally at the equator. CONCLUSIONS These observations indicate that Fat1 is essential for lens epithelial cell polarity and proliferation but not for terminal differentiation.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Save Sight Institute University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth J Shelley
- Save Sight Institute University of Sydney, Sydney, New South Wales, Australia
| | - Caroline Badouel
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John W McAvoy
- Save Sight Institute University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res 2015; 141:42-56. [PMID: 26116903 DOI: 10.1016/j.exer.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.
Collapse
|
33
|
Storm T, Heegaard S, Christensen EI, Nielsen R. Megalin-deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice. Cell Tissue Res 2014; 358:99-107. [PMID: 24980834 PMCID: PMC4186978 DOI: 10.1007/s00441-014-1919-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/15/2014] [Indexed: 11/28/2022]
Abstract
In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients including vitamin A; however, the role of megalin in ocular physiology and development is presently unknown. Therefore, we investigate ocular megalin expression and the ocular phenotype of megalin-deficient mice. Topographical and subcellular localization of megalin as well as the ocular phenotype of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed that megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular phenotype observed in the megalin-deficient mice suggests that megalin-mediated developmental abnormalities may contribute to the high myopia phenotype observed in the Donnai-Barrow Syndrome patients and, thus, that megalin harbors important roles in ocular development and physiology. Finally, our data show that megalin-deficient mice may provide a valuable model for future studies of megalin in ocular physiology and pathology.
Collapse
Affiliation(s)
- Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Wilhelm Meyers Allé 3, DK-8000, Aarhus, Denmark,
| | | | | | | |
Collapse
|
34
|
Sarode B, Nowell CS, Ihm J, Kostic C, Arsenijevic Y, Moulin AP, Schorderet DF, Beermann F, Radtke F. Notch signaling in the pigmented epithelium of the anterior eye segment promotes ciliary body development at the expense of iris formation. Pigment Cell Melanoma Res 2014; 27:580-9. [DOI: 10.1111/pcmr.12236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/12/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Bhushan Sarode
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| | - Craig S. Nowell
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| | - JongEun Ihm
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
| | - Alexandre P. Moulin
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
| | - Daniel F. Schorderet
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
- IRO - Institute for Research in Ophthalmology; Sion Switzerland
| | - Friedrich Beermann
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| | - Freddy Radtke
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| |
Collapse
|