1
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
2
|
Oncel S, Wang Q, Elsayed AAR, Vomhof-DeKrey EE, Brown ND, Golovko MY, Golovko SA, Gallardo-Macias R, Gurvich VJ, Basson MD. Sustained intestinal epithelial monolayer wound closure after transient application of a FAK-activating small molecule. PLoS One 2024; 19:e0304010. [PMID: 39150901 PMCID: PMC11329154 DOI: 10.1371/journal.pone.0304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/03/2024] [Indexed: 08/18/2024] Open
Abstract
M64HCl, which has drug-like properties, is a water-soluble Focal Adhesion Kinase (FAK) activator that promotes murine mucosal healing after ischemic or NSAID-induced injury. Since M64HCl has a short plasma half-life in vivo (less than two hours), it has been administered as a continuous infusion with osmotic minipumps in previous animal studies. However, the effects of more transient exposure to M64HCl on monolayer wound closure remained unclear. Herein, we compared the effects of shorter M64HCl treatment in vitro to continuous treatment for 24 hours on monolayer wound closure. We then investigated how long FAK activation and downstream ERK1/2 activation persist after two hours of M64HCl treatment in Caco-2 cells. M64HCl concentrations immediately after washing measured by mass spectrometry confirmed that M64HCl had been completely removed from the medium while intracellular concentrations had been reduced by 95%. Three-hour and four-hour M64HCl (100 nM) treatment promoted epithelial sheet migration over 24 hours similar to continuous 24-hour exposure. 100nM M64HCl did not increase cell number. Exposing cells twice with 2-hr exposures of M64HCl during a 24-hour period had a similar effect. Both FAK inhibitor PF-573228 (10 μM) and ERK kinase (MEK) inhibitor PD98059 (20 μM) reduced basal wound closure in the absence of M64HCl, and each completely prevented any stimulation of wound closure by M64HCl. Rho kinase inhibitor Y-27632 (20 μM) stimulated Caco-2 monolayer wound closure but no further increase was seen with M64HCl in the presence of Y-27632. M64HCl (100 nM) treatment for 3 hours stimulated Rho kinase activity. M64HCl decreased F-actin in Caco-2 cells. Furthermore, a two-hour treatment with M64HCl (100 nM) stimulated sustained FAK activation and ERK1/2 activation for up to 16 and hours 24 hours, respectively. These results suggest that transient M64HCl treatment promotes prolonged intestinal epithelial monolayer wound closure by stimulating sustained activation of the FAK/ERK1/2 pathway. Such molecules may be useful to promote gastrointestinal mucosal repair even with a relatively short half-life.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Ahmed Adham R. Elsayed
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Nicholas D. Brown
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Svetlana A. Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Ricardo Gallardo-Macias
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vadim J. Gurvich
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marc D. Basson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Department of Surgery, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- University Hospitals-NEOMED Scholar, Cleveland, Ohio, United States of America
| |
Collapse
|
3
|
Castro C, Niknafs S, Gonzalez-Ortiz G, Tan X, Bedford MR, Roura E. Dietary xylo-oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens. J Anim Sci Biotechnol 2024; 15:35. [PMID: 38433214 PMCID: PMC10910751 DOI: 10.1186/s40104-024-00991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND One of the main roles of the intestinal mucosa is to protect against environmental hazards. Supplementation of xylo-oligosaccharides (XOS) is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens. XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions. The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction (AXRF) supplementation on gut function and epithelial integrity in broiler chickens. METHODS A total of 128 broiler chickens (Ross 308) were assigned into one of two different dietary treatments for a period of 42 d: 1) control diet consisting of a corn/soybean meal-based diet; or 2) a control diet supplemented with 0.5% XOS and 1% AXRF. Each treatment was randomly distributed across 8 pens (n = 8) with 8 chickens each. Feed intake and body weight were recorded weekly. On d 42, one male chicken per pen was selected based on average weight and euthanized, jejunum samples were collected for proteomics analysis. RESULTS Dietary XOS/AXRF supplementation improved feed efficiency (P < 0.05) from d 1 to 42 compared to the control group. Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 differentially abundant proteins (DAP) (Padj < 0.00001) in supplemented chickens compared to the non-supplemented group. In the jejunum, the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue (e.g., inhibition of glycolysis and tricarboxylic acid cycle pathways). In addition, DAP were associated with decreased epithelial cell differentiation, and migration by reducing the actin polymerization pathway. Putting the two main pathways together, XOS/AXRF supplementation may decrease around 19% the energy required for the maintenance of the gastrointestinal tract. CONCLUSIONS Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation (hence, turnover), actin polymerization, and consequently energy requirement for maintenance of the jejunum of broiler chickens.
Collapse
Affiliation(s)
- Carla Castro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
4
|
Thottacherry JJ, Chen J, Johnston DS. Apical-basal polarity in the gut. Semin Cell Dev Biol 2023; 150-151:15-22. [PMID: 36670034 DOI: 10.1016/j.semcdb.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Apical-Basal polarity is a fundamental property of all epithelial cells that underlies both their form and function. The gut is made up of a single layer of intestinal epithelial cells, with distinct apical, lateral and basal domains. Occluding junctions at the apical side of the lateral domains create a barrier between the gut lumen and the body, which is crucial for tissue homeostasis, protection against gastrointestinal pathogens and for the maintenance of the immune response. Apical-basal polarity in most epithelia is established by conserved polarity factors, but recent evidence suggests that the gut epithelium in at least some organisms polarises by novel mechanisms. In this review, we discuss the recent advances in understanding polarity factors by focussing on work in C. elegans, Drosophila, Zebrafish and Mouse.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
5
|
Tatge L, Solano Fonseca R, Douglas PM. A framework for intestinal barrier dysfunction in aging. NATURE AGING 2023; 3:1172-1174. [PMID: 37723210 DOI: 10.1038/s43587-023-00492-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Affiliation(s)
- Lexus Tatge
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rene Solano Fonseca
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter M Douglas
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Lim CH, Song IS, Lee J, Lee MS, Cho YY, Lee JY, Kang HC, Lee HS. Toxicokinetics and tissue distribution of phalloidin in mice. Food Chem Toxicol 2023; 179:113994. [PMID: 37598851 DOI: 10.1016/j.fct.2023.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Phalloidin, a bicyclic heptapeptide found in Amanita mushroom, specifically binds to F-actin in the liver causing cholestatic hepatotoxicity. However, the toxicokinetics and tissue distribution properties of phalloidin as well as their underlying mechanisms have to be studied further. The area under the plasma concentration curve (AUC) of phalloidin increased in proportion to the doses (0.2, 0.4, and 0.8 mg/kg for intravenous injection and 2, 5, and 10 mg/kg for oral administration). Phalloidin exhibited dose-independent low volume of distribution (395.6-456.9 mL/kg) and clearance (21.4-25.5 mL/min/kg) and low oral bioavailability (2.4%-3.3%). This could be supported with its low absorptive permeability (0.23 ± 0.05 × 10-6 cm/s) in Caco-2 cells. The tissue-to-plasma AUC ratios of intravenously injected and orally administered phalloidin were the highest in the liver and intestines, respectively, and also high in the kidneys, suggesting that the liver, kidneys, and intestines could be susceptible to phalloidin exposure and that active transport via the hepatic and renal organic anion transporters (OATP1B1, OATP1B3, and OAT3) may contribute to the higher distribution of phalloidin in the liver and kidneys.
Collapse
Affiliation(s)
- Chang Ho Lim
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
7
|
Ramayo-Caldas Y, Crespo-Piazuelo D, Morata J, González-Rodríguez O, Sebastià C, Castello A, Dalmau A, Ramos-Onsins S, Alexiou KG, Folch JM, Quintanilla R, Ballester M. Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs. Microbiol Spectr 2023; 11:e0527122. [PMID: 37255458 PMCID: PMC10433821 DOI: 10.1128/spectrum.05271-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Genetic variation in the pig genome partially modulates the composition of porcine gut microbial communities. Previous studies have been focused on the association between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is known about the relationship between structural variants and fecal microbial traits. The main goal of this study was to explore the association between porcine genome copy number variants (CNVs) and the diversity and composition of pig fecal microbiota. For this purpose, we used whole-genome sequencing data to undertake a comprehensive identification of CNVs followed by a genome-wide association analysis between the estimated CNV status and the fecal bacterial diversity in a commercial Duroc pig population. A CNV predicted as gain (DUP) partially harboring ABCC2-DNMBP loci was associated with richness (P = 5.41 × 10-5, false discovery rate [FDR] = 0.022) and Shannon α-diversity (P = 1.42 × 10-4, FDR = 0.057). The in silico predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its segregation, and positive association with the richness and Shannon α-diversity of the porcine fecal bacterial ecosystem was confirmed in an unrelated F1 (Duroc × Iberian) cross. Our results advise the relevance of considering the role of host-genome structural variants as potential modulators of microbial ecosystems and suggest the ABCC2-DNMBP CNV as a host-genetic factor for the modulation of the diversity and composition of the fecal microbiota in pigs. IMPORTANCE A better understanding of the environmental and host factors modulating gut microbiomes is a topic of greatest interest. Recent evidence suggests that genetic variation in the pig genome partially controls the composition of porcine gut microbiota. However, since previous studies have been focused on the association between single nucleotide polymorphisms and the fecal microbiota, little is known about the relationship between other sources of genetic variation, like the structural variants and microbial traits. Here, we identified, experimentally validated, and replicated in an independent population a positive link between the gain of copies of ABCC2-DNMBP loci and the diversity and composition of pig fecal microbiota. Our results advise the relevance of considering the role of host-genome structural variants as putative modulators of microbial ecosystems and open the possibility of implementing novel holobiont-based management strategies in breeding programs for the simultaneous improvement of microbial traits and host performance.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Cristina Sebastià
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Anna Castello
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Antoni Dalmau
- Animal Welfare Program, Institute of Agrifood Research and Technology, Girona, Spain
| | - Sebastian Ramos-Onsins
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Konstantinos G. Alexiou
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| |
Collapse
|
8
|
Tong DQ, Lu ZJ, Zeng N, Wang XQ, Yan HC, Gao CQ. Dietary supplementation with probiotics increases growth performance, improves the intestinal mucosal barrier and activates the Wnt/β-catenin pathway activity in chicks. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4649-4659. [PMID: 36930725 DOI: 10.1002/jsfa.12562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Probiotics comprise effective feed additives that can replace antibiotics in animal livestock production. However, mono-strain probiotics appear less effective because of their instability. Therefore, the present study aimed to investigate dietary supplementation with compound probiotics (CPP) on growth performance, diarrhea rate and intestinal mucosal barrier, as well as the possible molecular mechanism, in chicks. In total, 360 1-day-old chicks of the Hy-Line Brown Chicks were randomly divided into the control group (CON, basal diet), chlortetracycline group (500 mg kg-1 CTC) and compound probiotics group (1000 mg kg-1 CPP, consisting of Bacillus subtilis, Bacillus licheniformis, Enterococcus faecium and yeast). The experiment period was 56 days. RESULTS The results showed that, in comparison with the CON group, CPP significantly increased the average daily feed intake and average daily gain of chicks and reduced diarrhea (P < 0.05). The probiotic group exhibited increased immune organ (i.e. spleen and thymus) mass and increased levels of serum immunoglobulin (Ig)A, IgM and IgG (P < 0.05) compared to the CTC group. In addition, the jejunal mass and morphology were improved in the probiotic group (P < 0.05). Moreover, CPP reinforced jejunal barrier function, as indicated by increased transepithelial electrical resistance, protein expression of occludin and claudin-1, and diamine oxidase levels in the jejunum (P < 0.05). Likewise, enhanced fluorescence signals of proliferating cell nuclear antigen-labeled mitotic cells and villin-labeled absorptive cells in the jejunum (P < 0.05) suggested that CPP promoted intestinal stem cells activity. Mechanistically, the Wnt/β-catenin signaling pathway, including β-catenin, TCF4, c-Myc, cyclin D1 and Lgr5, was amplified in the jejunum by CPP addition (P < 0.05). CONCLUSION The present study demonstrated that dietary supplementation with CPP reinforced the jejunal epithelial integrity by activating Wnt/β-catenin signaling and enhanced immune function in chicks. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Di-Qing Tong
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Zhu-Jin Lu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Nan Zeng
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
| |
Collapse
|
9
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
10
|
Esmaeilniakooshkghazi A, Pham E, George SP, Ahrorov A, Villagomez FR, Byington M, Mukhopadhyay S, Patnaik S, Conrad JC, Naik M, Ravi S, Tebbutt N, Mooi J, Reehorst CM, Mariadason JM, Khurana S. In colon cancer cells fascin1 regulates adherens junction remodeling. FASEB J 2023; 37:e22786. [PMID: 36786724 DOI: 10.1096/fj.202201454r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/β-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/β-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/β-catenin signaling in the growth and dissemination of colorectal carcinomas.
Collapse
Affiliation(s)
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Afzal Ahrorov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Fabian R Villagomez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Byington
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Srinivas Patnaik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jacinta C Conrad
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Monali Naik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Saathvika Ravi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Niall Tebbutt
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jennifer Mooi
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Camilla M Reehorst
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,School of Health Professions, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Felipe-López A, Hansmeier N, Danzer C, Hensel M. Manipulation of microvillar proteins during Salmonella enterica invasion results in brush border effacement and actin remodeling. Front Cell Infect Microbiol 2023; 13:1137062. [PMID: 36936760 PMCID: PMC10018140 DOI: 10.3389/fcimb.2023.1137062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Enterocyte invasion by the gastrointestinal pathogen Salmonella enterica is accompanied by loss of brush border and massive remodeling of the actin cytoskeleton, leading to microvilli effacement and formation of membrane ruffles. These manipulations are mediated by effector proteins translocated by the Salmonella Pathogenicity Island 1-encoded type III secretion system (SPI1-T3SS). To unravel the mechanisms of microvilli effacement and contribution of SPI1-T3SS effector proteins, the dynamics of host-pathogen interactions was analyzed using live cell imaging (LCI) of polarized epithelial cells (PEC) expressing LifeAct-GFP. PEC were infected with S. enterica wild-type and mutant strains with defined defects in SPI1-T3SS effector proteins, and pharmacological inhibition of actin assembly were applied. We identified that microvilli effacement involves two distinct mechanisms: i) F-actin depolymerization mediated by villin and ii), the consumption of cytoplasmic G-actin by formation of membrane ruffles. By analyzing the contribution of individual SPI1-T3SS effector proteins, we demonstrate that SopE dominantly triggers microvilli effacement and formation of membrane ruffles. Furthermore, SopE via Rac1 indirectly manipulates villin, which culminates in F-actin depolymerization. Collectively, these results indicate that SopE has dual functions during F-actin remodeling in PEC. While SopE-Rac1 triggers F-actin polymerization and ruffle formation, activation of PLCγ and villin by SopE depolymerizes F-actin in PEC. These results demonstrate the key role of SopE in destruction of the intestinal barrier during intestinal infection by Salmonella.
Collapse
Affiliation(s)
| | | | - Claudia Danzer
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- *Correspondence: Michael Hensel,
| |
Collapse
|
12
|
Bashir ST, Chiu K, Zheng E, Martinez A, Chiu J, Raj K, Stasiak S, Lai NZE, Arcanjo RB, Flaws JA, Nowak RA. Subchronic exposure to environmentally relevant concentrations of di-(2-ethylhexyl) phthalate differentially affects the colon and ileum in adult female mice. CHEMOSPHERE 2022; 309:136680. [PMID: 36209858 DOI: 10.1016/j.chemosphere.2022.136680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a large-molecular-weight phthalate added to plastics to impart versatile properties. DEHP can be found in medical equipment and devices, food containers, building materials, and children's toys. Although DEHP exposure occurs most commonly by ingesting contaminated foods in the majority of the population, its effects on the gastrointestinal tract have not been well studied. Therefore, we analyzed the effects of subchronic exposure to DEHP on the ileum and colon morphology, gene expression, and immune microenvironment. Adult C57BL/6 female mice were orally dosed with corn oil (control, n = 7) or DEHP (0.02, 0.2, or 30 mg/kg, n = 7/treatment dose) for 30-34 days. Mice were euthanized during diestrus, and colon and ileum tissues were collected for RT-qPCR and immunohistochemistry. Subchronic DEHP exposure in the ileum altered the expression of several immune-mediating factors (Muc1, Lyz1, Cldn1) and cell viability factors (Bcl2 and Aifm1). Similarly, DEHP exposure in the colon impacted the gene expression of factors involved in mediating immune responses (Muc3a, Zo2, Ocln, Il6, and Il17a); and also altered the expression of cell viability factors (Ki67, Bcl2, Cdk4, and Aifm1) as well as a specialized epithelial cell marker (Vil1). Immunohistochemical analysis of the ileum showed DEHP increased expression of VIL1, CLDN1, and TNF and decreased number of T-cells in the villi. Histological analysis of the colon showed DEHP altered morphology and reduced cell proliferation. Moreover, in the colon, DEHP increased the expression of MUC2, MUC1, VIL1, CLDN1, and TNF. DEHP also increased the number of T-cells and Type 2 immune cells in the colon. These data suggest that subchronic DEHP exposure differentially affects the ileum and colon and alters colonic morphology and the intestinal immune microenvironment. These results have important implications for understanding the effects of DEHP on the gastrointestinal system.
Collapse
Affiliation(s)
- Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, College of Liberal Arts & Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Karen Chiu
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Eileen Zheng
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Angel Martinez
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Justin Chiu
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Kishori Raj
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Sandra Stasiak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Nastasia Zhen Ee Lai
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Rachel B Arcanjo
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Romana A Nowak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
13
|
Li Y, Wang D, Ge H, Güngör C, Gong X, Chen Y. Cytoskeletal and Cytoskeleton-Associated Proteins: Key Regulators of Cancer Stem Cell Properties. Pharmaceuticals (Basel) 2022; 15:1369. [PMID: 36355541 PMCID: PMC9698833 DOI: 10.3390/ph15111369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 08/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness characteristics that are closely associated with tumor proliferation, recurrence and resistance to therapy. Recent studies have shown that different cytoskeletal components and remodeling processes have a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately improve patient survival.
Collapse
Affiliation(s)
- Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cenap Güngör
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xuejun Gong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
14
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
15
|
Association between Immunohistochemistry Markers and Tumor Features and Their Diagnostic and Prognostic Values in Intrahepatic Cholangiocarcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8367395. [PMID: 35529254 PMCID: PMC9071873 DOI: 10.1155/2022/8367395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/28/2022]
Abstract
This study investigated the expression of some frequently used immunohistochemistry (IHC) markers. Besides, we evaluated their correlations with the clinical features and outcomes of intrahepatic cholangiocarcinoma (ICC). Patients who underwent surgical removal of the ICC tumors were followed up for 4 years. The paraffin-embedded sections were used to obtain different markers, including CK7, CK19, CK20, CDX2, Glypican3, Hepa1, Ki-67, Villin, and SATB1. Overall survival in relation to IHC marker expression patterns and other clinical characteristics was evaluated by Kaplan-Meier survival curve and log-rank test, followed by the Cox proportional hazard model (to evaluate the relationship between multiple factors and the overall postoperative survival). A total of 122 ICC patients (67 males and 55 females, averagely aged 57.75) were included in this study. There were 44 cases with vascular invasion, 46 cases with lymphatic metastasis, and 13 cases with distant metastasis. CK7 was negatively correlated with lymphatic metastasis; and in distant-metastasis cases, the positive ratio of SATB1 was lower. Interestingly, SATB1 expression indicated a poorer survival, while Villin expression was associated with a better survival. The COX regression analysis showed that female was a protective factor versus male, Villin expression was a strong protective factor, and Ki-67 expression was correlated with a poor survival. Together, IHC markers are associated with tumor features and postoperative survival, especially for SATB1 as a risk factor and Villin as a protective marker, and female ICC patients may have better survival than males.
Collapse
|
16
|
Yuan R, Yang N, Fan S, Huang Y, You D, Wang J, Zhang Q, Chu C, Chen Z, Liu L, Ge L. Biomechanical Motion-Activated Endogenous Wound Healing through LBL Self-Powered Nanocomposite Repairer with pH-Responsive Anti-Inflammatory Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103997. [PMID: 34713581 DOI: 10.1002/smll.202103997] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Indexed: 05/27/2023]
Abstract
Wound care is still worthy of concern, and effective measures such as electrical stimulating therapy (EST) have sparked compellingly for wound repair. Especially, portable and point-of-care EST devices get extremely desired but these are often limited by inevitable external power sources, lack of biological functions, and mechanical properties conforming to skin tissue. Herein, a dress-on-person self-powered nanocomposite bioactive repairer of wound is designed. As such, the cooperation of the film prepared by layer-by-layer self-assembling 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC), alginate (ALG), and poly-dopamine/Fe3+ nanoparticles (PFNs), with a self-powered nanogenerator (SN) driven by motion into a nanocomposite repairer (HAP/SN-NR) is conducted. The HAP/SN-NR not only guides cell behavior (proliferation and migration rate ≈61.7%, ≈52.3%), but also facilitates neovascularization (enhanced CD31 expression >4-fold) through its self-powered EST, and the endogenous wound closure with no inflammatory in rats owing to reactive oxygen species (ROS)-clearance of HAP/SN-NR in vitro/vivo through responsively releasing poly-dopamine nanoparticles at wound pH. Enormous efforts illustrate that the repairer is endowed with high self-adhesion to tissue, self-healing, and biodegradation, accelerating wound healing (50% closure ≈5 days). This strategy sheds light on novel multifunctional portable sensor-type dressings and propels the development of intelligent medical devices.
Collapse
Affiliation(s)
- Renqiang Yuan
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Yang
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Shanwen Fan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Yueru Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Dan You
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Anhui Huaneng Cable Group Co., LTD Bawan Industrial Zone, Gaogou Town, Wuwei City, Wuhu, 341400, P. R. China
| | - Jieran Wang
- Anhui Huaneng Cable Group Co., LTD Bawan Industrial Zone, Gaogou Town, Wuwei City, Wuhu, 341400, P. R. China
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Liqin Ge
- State Key Laboratory of Bioelectronics & National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
17
|
Trujillo-Cenóz O, Rehermann MI, Maciel C, Falco MV, Fabbiani G, Russo RE. The ependymal cell cytoskeleton in the normal and injured spinal cord of mice. J Neurosci Res 2021; 99:2592-2609. [PMID: 34288039 DOI: 10.1002/jnr.24918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022]
Abstract
The cytoskeleton of ependymal cells is fundamental to organize and maintain the normal architecture of the central canal (CC). However, little is known about the plasticity of cytoskeletal components after spinal cord injury. Here, we focus on the structural organization of the cytoskeleton of ependymal cells in the normal and injured spinal cord of mice (both females and males) using immunohistochemical and electron microscopy techniques. We found that in uninjured animals, the actin cytoskeleton (as revealed by phalloidin staining) was arranged following the typical pattern of polarized epithelial cells with conspicuous actin pools located in the apical domain of ependymal cells. Transmission electron microscopy images showed microvilli tufts, long cilia, and characteristic intercellular membrane specializations. After spinal cord injury, F-actin rearrangements paralleled by fine structural modifications of the apical domain of ependymal cells were observed. These changes involved disruptions of the apical actin pools as well as fine structural modifications of the microvilli tufts. When comparing the control and injured spinal cords, we also found modifications in the expression of vimentin and glial fibrillary acidic protein (GFAP). After injury, vimentin expression disappeared from the most apical domains of ependymal cells but the number of GFAP-expressing cells within the CC increased. As in other polarized epithelia, the plastic changes in the cytoskeleton may be critically involved in the reaction of ependymal cells following a traumatic injury of the spinal cord.
Collapse
Affiliation(s)
- Omar Trujillo-Cenóz
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - María I Rehermann
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Maciel
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - María V Falco
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gabriela Fabbiani
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Raúl E Russo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
18
|
Calculation of the force field required for nucleus deformation during cell migration through constrictions. PLoS Comput Biol 2021; 17:e1008592. [PMID: 34029312 PMCID: PMC8177636 DOI: 10.1371/journal.pcbi.1008592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/04/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022] Open
Abstract
During cell migration in confinement, the nucleus has to deform for a cell to pass through small constrictions. Such nuclear deformations require significant forces. A direct experimental measure of the deformation force field is extremely challenging. However, experimental images of nuclear shape are relatively easy to obtain. Therefore, here we present a method to calculate predictions of the deformation force field based purely on analysis of experimental images of nuclei before and after deformation. Such an inverse calculation is technically non-trivial and relies on a mechanical model for the nucleus. Here we compare two simple continuum elastic models of a cell nucleus undergoing deformation. In the first, we treat the nucleus as a homogeneous elastic solid and, in the second, as an elastic shell. For each of these models we calculate the force field required to produce the deformation given by experimental images of nuclei in dendritic cells migrating in microchannels with constrictions of controlled dimensions. These microfabricated channels provide a simplified confined environment mimicking that experienced by cells in tissues. Our calculations predict the forces felt by a deforming nucleus as a migrating cell encounters a constriction. Since a direct experimental measure of the deformation force field is very challenging and has not yet been achieved, our numerical approaches can make important predictions motivating further experiments, even though all the parameters are not yet available. We demonstrate the power of our method by showing how it predicts lateral forces corresponding to actin polymerisation around the nucleus, providing evidence for actin generated forces squeezing the sides of the nucleus as it enters a constriction. In addition, the algorithm we have developed could be adapted to analyse experimental images of deformation in other situations. Many cell types are able to migrate and squeeze through constrictions that are narrower than the cell’s resting radius. For example, both immune cells and metastatic cancer cells change their shape to migrate through small holes in the complex tissue media they move in. During migration the cell nucleus is more difficult to deform than the cell cytoplasm and therefore significant forces are required for a cell to pass through spaces that are smaller than the resting size of the nucleus. Experimental measurements of these forces are extremely challenging but experimental images of nuclear deformation are regularly obtained in many labs. Therefore we present a computational method to analyse experimental images of nuclear deformation to deduce the forces required to produce such deformations. A mechanical model of the nucleus is necessary for this analysis and here we present two different models. Our computational tool enables us to obtain detailed information about forces causing deformation from microscopy images and consequently provide evidence for actin generated forces squeezing the sides of the nucleus as it enters a constriction.
Collapse
|
19
|
Oncel S, Gupta R, Wang Q, Basson MD. ZINC40099027 Promotes Gastric Mucosal Repair in Ongoing Aspirin-Associated Gastric Injury by Activating Focal Adhesion Kinase. Cells 2021; 10:908. [PMID: 33920786 PMCID: PMC8071155 DOI: 10.3390/cells10040908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs cause gastric ulcers and gastritis. No drug that treats GI injury directly stimulates mucosal healing. ZINC40099027 (ZN27) activates focal adhesion kinase (FAK) and heals acute indomethacin-induced small bowel injury. We investigated the efficacy of ZN27 in rat and human gastric epithelial cells and ongoing aspirin-associated gastric injury. ZN27 (10 nM) stimulated FAK activation and wound closure in rat and human gastric cell lines. C57BL/6J mice were treated with 300 mg/kg/day aspirin for five days to induce ongoing gastric injury. One day after the initial injury, mice received 900 µg/kg/6 h ZN27, 10 mg/kg/day omeprazole, or 900 µg/kg/6 h ZN27 plus 10 mg/kg/day omeprazole. Like omeprazole, ZN27 reduced gastric injury vs. vehicle controls. ZN27-treated mice displayed better gastric architecture, with thicker mucosa and less hyperemia, inflammation, and submucosal edema, and lost less weight than vehicle controls. Gastric pH, serum creatinine, serum alanine aminotransferase (ALT), and renal and hepatic histology were unaffected by ZN27. Blinded scoring of pFAK-Y-397 immunoreactivity at the edge of ZN27-treated lesions demonstrated increased FAK activation, compared to vehicle-treated lesions, confirming target activation in vivo. These results suggest that ZN27 ameliorates ongoing aspirin-associated gastric mucosal injury by a pathway involving FAK activation. ZN27-derivatives may be useful to promote gastric mucosal repair.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA;
| | - Rashmi Gupta
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA; (R.G.); (Q.W.)
| | - Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA; (R.G.); (Q.W.)
| | - Marc D. Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA;
- Department of Surgery, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA; (R.G.); (Q.W.)
- Department of Pathology, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
20
|
Thymosin β4 dynamics during chicken enteroid development. Mol Cell Biochem 2020; 476:1303-1312. [PMID: 33301106 PMCID: PMC7873109 DOI: 10.1007/s11010-020-04008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/26/2020] [Indexed: 11/11/2022]
Abstract
The sheared avian intestinal villus-crypts exhibit high tendency to self-repair and develop enteroids in culture. Presuming that this transition process involves differential biomolecular changes, we employed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF–MS) to find whether there were differences in the spectral profiles of sheared villi versus the enteroids, assessed in the mass range of 2–18 kDa. The results showed substantial differences in the intensities of the spectral peaks, one particularly corresponding to the mass of 4963 Da, which was significantly low in the sheared villus-crypts compared with the enteroids. Based on our previous results with other avian tissues and further molecular characterization by LC-ESI-IT-TOF–MS, and multiple reaction monitoring (MRM), the peak was identified to be thymosin β4 (Tβ4), a ubiquitously occurring regulatory peptide implicated in wound healing process. The identity of the peptide was further confirmed by immunohistochemistry which showed it to be present in a very low levels in the sheared villi but replete in the enteroids. Since Tβ4 sequesters G-actin preventing its polymerization to F-actin, we compared the changes in F-actin by its immunohistochemical localization that showed no significant differences between the sheared villi and enteroids. We propose that depletion of Tβ4 likely precedes villous reparation process. The possible mechanism for the differences in Tβ4 profile in relation to the healing of the villus-crypts to developing enteroids is discussed.
Collapse
|
21
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
22
|
Abstract
Actin is a conserved cytoskeletal protein with essential functions. Here, we review the state-of-the-art reagents, tools and methods used to probe actin biology and functions in zebrafish embryo and larvae. We also discuss specific cell types and tissues where the study of actin in zebrafish has provided new insights into its functions.
Collapse
|
23
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
24
|
George SP, Esmaeilniakooshkghazi A, Roy S, Khurana S. F-actin-bundling sites are conserved in proteins with villin-type headpiece domains. Mol Biol Cell 2020; 31:1857-1866. [PMID: 32520642 PMCID: PMC7525818 DOI: 10.1091/mbc.e20-02-0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Villin is a major actin-bundling protein that assembles the brush border of intestinal and renal epithelial cells. The villin "headpiece" domain and the actin-binding residues within it regulate its actin-bundling function. Substantial experimental and theoretical information about the three-dimensional structure of the isolated villin headpiece, including a description of the actin-binding residues within the headpiece, is available. Despite that, the actin-bundling site in the full-length (FL) villin protein remains unidentified. We used this existing villin headpiece nuclear magnetic resonance data and performed mutational analysis and functional assays to identify the actin-bundling site in FL human villin protein. By careful evaluation of these conserved actin-binding residues in human advillin protein, we demonstrate their functional significance in the over 30 proteins that contain a villin-type headpiece domain. Our study is the first that combines the available structural data on villin headpiece with functional assays to identify the actin-binding residues in FL villin that regulate its filament-bundling activity. Our findings could have wider implications for other actin-bundling proteins that contain a villin-type headpiece domain.
Collapse
Affiliation(s)
- Sudeep P. George
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77044
| | | | - Swati Roy
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77044
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77044
- Department of Allied Health, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
25
|
Pan P, Bai L, Hua X, Wang Y, Jiang X, Cheng X, Song Y, Yu X. miR-155 Regulates claudin1 Expression in Humans With Intestinal Mucosa Dysfunction After Brain Injury. Transplant Proc 2020; 51:3474-3480. [PMID: 31810510 DOI: 10.1016/j.transproceed.2019.08.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
Abstract
Patients with craniocerebral trauma often have intestinal mucosal dysfunction, and the claudin1 protein plays an important role in intestinal mucosal function. Our previous work has shown that the expression of microRNA-155 (miR-155) in the peripheral blood of patients with craniocerebral trauma is decreased. Animal experiments also suggest that the expression of miR-155 is increased in the intestinal mucosa of mice with brain injury and the expression of claudin1 is decreased. We recruited 56 samples (35 patients with traumatic brain injury [TBI] and 21 patients without history of head trauma) to detect the expression of miR-155 on claudin1 regulation by quantitative polymerase chain reaction, reverse transcriptase polymerase chain reaction, and so on. We also used the receiver operating characteristic curve (ROC) to further evaluate the diagnostic value of the 2 biomarkers. From the results, we found that the expression level of miR-155 and claudin1 in the case group was lower than that in the control group. Human miR-155 (Hsa-miR-155) may positively regulate intestinal mucosal function by inhibiting the expression of claudin1, leading to intestinal mucosal barrier dysfunction. Combining the ROC curve data, the results further prove that miR-155 and claudin1 might be the new clinical diagnostic markers and treatment targets for the intestinal mucosal barrier dysfunction after TBI.
Collapse
Affiliation(s)
- Pengfei Pan
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Linlin Bai
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Xiaoli Hua
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yuqiang Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Xiaofang Jiang
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Xi Cheng
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yunlin Song
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China.
| | - Xiangyou Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
26
|
Krndija D, El Marjou F, Guirao B, Richon S, Leroy O, Bellaiche Y, Hannezo E, Matic Vignjevic D. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 2020; 365:705-710. [PMID: 31416964 DOI: 10.1126/science.aau3429] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Steady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover.
Collapse
Affiliation(s)
- Denis Krndija
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | - Fatima El Marjou
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Boris Guirao
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Olivier Leroy
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Yohanns Bellaiche
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Edouard Hannezo
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | | |
Collapse
|
27
|
Xavier M, García-Hevia L, Amado IR, Pastrana L, Gonçalves C. In Vitro Intestinal Uptake And Permeability Of Fluorescently-Labelled Hyaluronic Acid Nanogels. Int J Nanomedicine 2019; 14:9077-9088. [PMID: 31819420 PMCID: PMC6877450 DOI: 10.2147/ijn.s224255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022] Open
Abstract
Background Oral administration remains the most common mode of drug delivery. However, orally administered bioactive compounds must first survive digestion and then be absorbed at the intestine in order to reach other tissues or organs. The efficiency of both processes can be improved by encapsulation or conjugation with polymeric nanoparticles. Here we report the synthesis of amphiphilic hyaluronic acid (HyA) nanogels as nanocarriers for drug delivery. Methods HyA nanogels were prepared by self-assembly from amphiphilic HyA conjugates produced by grafting hydrophobic alkyl chains to the HyA backbone. The dye Cy5.5 was covalently bonded and used for tracking. The nanogels were characterised according to their structure, size and zeta potential, as well as biocompatibility towards an intestinal epithelial cell line. The uptake and intestinal permeability of the nanogels were assessed using in vitro models, which physiological relevance was verified regarding the morphology of the epithelium, the production of mucus, the expression of occludin and the transepithelial electrical resistance. Results The covalent binding of Cy5.5 did not affect significantly the size and surface charge of the nanogels at 125.1 ± 3.2 nm and -57.6 ± 6.2 mV respectively after labelling. Studies of biocompatibility showed that the nanogels were non-toxic to Caco-2 cells up to the concentration of 0.1 mg∙mL-1. The presence of mucus affected the nanogel uptake and highlighted the importance of considering mucus-producing cells in in vitro intestinal models. The uptake or adsorption to a Caco-2/HT29-MTX co-culture (8.1%) was higher than with single Caco-2 cell cultures (4.3%). Interestingly, both models led to minute (<0.5%) permeation of the nanogels across the intestinal barrier. Conclusion The HyA nanogels demonstrated to be mucoadhesive and effectively uptaken by intestinal cells. Both are determinant features for sustained release, but if systemic delivery is envisaged further modification with targeting moieties could be important to improve the nanogel permeability.
Collapse
Affiliation(s)
- Miguel Xavier
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Lorena García-Hevia
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Isabel R Amado
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal.,Department of Food and Analytical Chemistry, Faculty of Sciences, University of Vigo, Ourense 32004, Spain
| | - Lorenzo Pastrana
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Catarina Gonçalves
- Department of Life Sciences, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| |
Collapse
|
28
|
A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models. Biomaterials 2019; 225:119521. [DOI: 10.1016/j.biomaterials.2019.119521] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
|
29
|
Markovic MA, Brubaker PL. The roles of glucagon-like peptide-2 and the intestinal epithelial insulin-like growth factor-1 receptor in regulating microvillus length. Sci Rep 2019; 9:13010. [PMID: 31506583 PMCID: PMC6737075 DOI: 10.1038/s41598-019-49510-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
Microvilli are tiny projections on the apical end of enterocytes, aiding in the digestion and absorption of nutrients. One of their key features is uniform length, but how this is regulated is poorly understood. Glucagon-like peptide-2 (GLP-2) has been shown to increase microvillus length but, the requirement of its downstream mediator, the intestinal epithelial insulin-like growth factor-1 receptor (IE-IGF-1R), and the microvillus proteins acted upon by GLP-2, remain unknown. Using IE-IGF-1R knockout (KO) mice, treated with either long-acting human (h) (GLY2)GLP-2 or vehicle for 11d, it was found that the h(GLY2)GLP-2-induced increase in microvillus length required the IE-IGF-1R. Furthermore, IE-IGF-1R KO alone resulted in a significant decrease in microvillus length. Examination of the brush border membrane proteome as well as of whole jejunal mucosa demonstrated that villin was increased with h(GLY2)GLP-2 treatment in an IE-IGF-1R-dependent manner. Under both basal conditions and with h(GLY2)GLP-2 treatment of the IE-IGF-1R KO mice, changes in villin, IRTKS-1, harmonin, β-actin, and myosin-1a did not explain the decrease in microvillus length, in either the brush border or jejunal mucosa of KO animals. Collectively, these studies define a new role for the IE-IGF-1R within the microvillus, in both the signaling cascade induced by GLP-2, as well as endogenously.
Collapse
Affiliation(s)
- Melanie A Markovic
- Department of Physiology Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Medicine Rm 3366 Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
30
|
Mourao L, Jacquemin G, Huyghe M, Nawrocki WJ, Menssouri N, Servant N, Fre S. Lineage tracing of Notch1-expressing cells in intestinal tumours reveals a distinct population of cancer stem cells. Sci Rep 2019; 9:888. [PMID: 30696875 PMCID: PMC6351556 DOI: 10.1038/s41598-018-37301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Colon tumours are hierarchically organized and contain multipotent self-renewing cells, called Cancer Stem Cells (CSCs). We have previously shown that the Notch1 receptor is expressed in Intestinal Stem Cells (ISCs); given the critical role played by Notch signalling in promoting intestinal tumourigenesis, we explored Notch1 expression in tumours. Combining lineage tracing in two tumour models with transcriptomic analyses, we found that Notch1+ tumour cells are undifferentiated, proliferative and capable of indefinite self-renewal and of generating a heterogeneous clonal progeny. Molecularly, the transcriptional signature of Notch1+ tumour cells highly correlates with ISCs, suggestive of their origin from normal crypt cells. Surprisingly, Notch1+ expression labels a subset of CSCs that shows reduced levels of Lgr5, a reported CSCs marker. The existence of distinct stem cell populations within intestinal tumours highlights the necessity of better understanding their hierarchy and behaviour, to identify the correct cellular targets for therapy.
Collapse
Affiliation(s)
- Larissa Mourao
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.,Sorbonne University, UPMC University of Paris VI, F-75005, Paris, France.,Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Guillaume Jacquemin
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.,Sorbonne University, UPMC University of Paris VI, F-75005, Paris, France
| | - Mathilde Huyghe
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France
| | - Wojciech J Nawrocki
- Vrije Universiteit Amsterdam, Department of Physics and Astronomy, De Boelelaan 1081, 1081HV, Amsterdam, The Netherlands
| | - Naoual Menssouri
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.,Institut Curie, PSL Research University, INSERM U900, 75005, Paris, France
| | - Nicolas Servant
- Institut Curie, PSL Research University, INSERM U900, 75005, Paris, France.,Mines ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006, Paris, France
| | - Silvia Fre
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, F-75248, Paris, Cedex 05, France.
| |
Collapse
|
31
|
Gunasekara DB, Speer J, Wang Y, Nguyen DL, Reed MI, Smiddy NM, Parker JS, Fallon JK, Smith PC, Sims CE, Magness ST, Allbritton NL. A Monolayer of Primary Colonic Epithelium Generated on a Scaffold with a Gradient of Stiffness for Drug Transport Studies. Anal Chem 2018; 90:13331-13340. [PMID: 30350627 PMCID: PMC6339567 DOI: 10.1021/acs.analchem.8b02845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Animal models are frequently used for in vitro physiologic and drug transport studies of the colon, but there exists significant pressure to improve assay throughput as well as to achieve tighter control of experimental variables than can be achieved with animals. Thus, development of a primary in vitro colonic epithelium cultured as high resistance with transport protein expression and functional behavior similar to that of a native colonic would be of enormous value for pharmaceutical research. A collagen scaffold, in which the degree of collagen cross-linking was present as a gradient, was developed to support the proliferation of primary colonic cells. The gradient of cross-linking created a gradient in stiffness across the scaffold, enabling the scaffold to resist deformation by cells. mRNA expression and quantitative proteomic mass spectrometry of cells growing on these surfaces as a monolayer suggested that the transporters present were similar to those in vivo. Confluent monolayers acted as a barrier to small molecules so that drug transport studies were readily performed. Transport function was evaluated using atenolol (a substrate for passive paracellular transport), propranolol (a substrate for passive transcellular transport), rhodamine 123 (Rh123, a substrate for P-glycoprotein), and riboflavin (a substrate for solute carrier transporters). Atenolol was poorly transported with an apparent permeability ( Papp) of <5 × 10-7 cm s-1, while propranolol demonstrated a Papp of 9.69 × 10-6 cm s-1. Rh123 was transported in a luminal direction ( Papp,efflux/ Papp,influx = 7) and was blocked by verapamil, a known inhibitor of P-glycoprotein. Riboflavin was transported in a basal direction, and saturation of the transporter was observed at high riboflavin concentrations as occurs in vivo. It is anticipated that this platform of primary colonic epithelium will find utility in drug development and physiological studies, since the tissue possesses high integrity and active transporters and metabolism similar to that in vivo.
Collapse
Affiliation(s)
- Dulan B. Gunasekara
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| | - Jennifer Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel L. Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mark I. Reed
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Nicole M. Smiddy
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Joel S. Parker
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27514, USA
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
32
|
Pelaseyed T, Bretscher A. Regulation of actin-based apical structures on epithelial cells. J Cell Sci 2018; 131:131/20/jcs221853. [PMID: 30333133 DOI: 10.1242/jcs.221853] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells of transporting epithelia are characterized by the presence of abundant F-actin-based microvilli on their apical surfaces. Likewise, auditory hair cells have highly reproducible rows of apical stereocilia (giant microvilli) that convert mechanical sound into an electrical signal. Analysis of mutations in deaf patients has highlighted the critical components of tip links between stereocilia, and related structures that contribute to the organization of microvilli on epithelial cells have been found. Ezrin/radixin/moesin (ERM) proteins, which are activated by phosphorylation, provide a critical link between the plasma membrane and underlying actin cytoskeleton in surface structures. Here, we outline recent insights into how microvilli and stereocilia are built, and the roles of tip links. Furthermore, we highlight how ezrin is locally regulated by phosphorylation, and that this is necessary to maintain polarity. Localized phosphorylation is achieved through an intricate coincidence detection mechanism that requires the membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the apically localized ezrin kinase, lymphocyte-oriented kinase (LOK, also known as STK10) or Ste20-like kinase (SLK). We also discuss how ezrin-binding scaffolding proteins regulate microvilli and how, despite these significant advances, it remains to be discovered how the cell polarity program ultimately interfaces with these processes.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anthony Bretscher
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
McAlpine W, Wang KW, Choi JH, San Miguel M, McAlpine SG, Russell J, Ludwig S, Li X, Tang M, Zhan X, Choi M, Wang T, Bu CH, Murray AR, Moresco EMY, Turer EE, Beutler B. The class I myosin MYO1D binds to lipid and protects against colitis. Dis Model Mech 2018; 11:11/9/dmm035923. [PMID: 30279225 PMCID: PMC6176994 DOI: 10.1242/dmm.035923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Myosin ID (MYO1D) is a member of the class I myosin family. We screened 48,649 third generation (G3) germline mutant mice derived from N-ethyl-N-nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). We found and validated mutations in Myo1d as a cause of increased susceptibility to DSS-induced colitis. MYO1D is produced in the intestinal epithelium, and the colitis phenotype is dependent on the nonhematopoietic compartment of the mouse. Moreover, MYO1D appears to couple cytoskeletal elements to lipid in an ATP-dependent manner. These findings demonstrate that MYO1D is needed to maintain epithelial integrity and protect against DSS-induced colitis. Summary: Using random germline mutagenesis and screening of mice, we determined that loss of MYO1D function in nonhematopoietic tissues renders mice susceptible to colitis induced by dextran sodium sulfate challenge.
Collapse
Affiliation(s)
- William McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Kuan-Wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Miguel San Miguel
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505 USA
| | - Sarah Grace McAlpine
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Tao Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA.,Quantitative Biomedical Research Center, Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Anne R Murray
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| | - Emre E Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505 USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390-8505, USA
| |
Collapse
|
34
|
Pumputis PG, Dayeh VR, Lee LEJ, Pham PH, Liu Z, Viththiyapaskaran S, Bols NC. Responses of rainbow trout intestinal epithelial cells to different kinds of nutritional deprivation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1197-1214. [PMID: 29754319 DOI: 10.1007/s10695-018-0511-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
In order to develop an in vitro system to study the cell biology of starvation in the fish intestine, rainbow trout intestinal epithelial cells were subjected to three kinds of nutrient deprivation and evaluated for 7 days. The RTgutGC cell line was grown into monolayers in Leibovitz's basal medium supplemented with fetal bovine serum (L15/FBS) and then subjected to deprivation of serum (L15); of serum, amino acids, and vitamin (L15/ex); and of all nutrients (L15/salts). After 7 days of nutrient deprivation, the cells remained attached to the plastic surface as monolayers but changes were seen in shape, with the cells becoming more polygonal, actin and α-tubulin cytoskeleton organization, and in tight junction protein-1 (ZO-1) localization. Two barrier functions, transepithelial electrical resistance (TEER) and Lucifer Yellow (LY) retention, were impaired by nutrient deprivation. In L15/FBS, cells rapidly healed a gap or wound in the monolayer. In L15 and L15/ex, some cells moved into the gap, but after 7 days, the wound remained unhealed, whereas in L15/salts, cells did not even migrate into the gap. Upon nutrient replenishment (L15/FBS) after 7 days in L15, L15/ex, or L15/salts, cells proliferated again and healed a wound. After 7 days of nutrient deprivation, monolayers were successfully passaged with trypsin and cells in L15/FBS grew to again form monolayers. Therefore, rainbow trout intestinal epithelial cells survived starvation, but barrier and wound healing functions were impaired.
Collapse
Affiliation(s)
- Patrick G Pumputis
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Vivian R Dayeh
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhenzhen Liu
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
35
|
Gunasekara DB, DiSalvo M, Wang Y, Nguyen DL, Reed MI, Speer J, Sims CE, Magness ST, Allbritton NL. Development of Arrayed Colonic Organoids for Screening of Secretagogues Associated with Enterotoxins. Anal Chem 2018; 90:1941-1950. [PMID: 29281259 PMCID: PMC6028038 DOI: 10.1021/acs.analchem.7b04032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enterotoxins increase intestinal fluid secretion through modulation of ion channels as well as activation of the enteric nervous and immune systems. Colonic organoids, also known as colonoids, are functionally and phenotypically similar to in vivo colonic epithelium and have been used to study intestinal ion transport and subsequent water flux in physiology and disease models. In conventional cultures, organoids exist as spheroids embedded within a hydrogel patty of extracellular matrix, and they form at multiple depths, impairing efficient imaging necessary to capture data from statistically relevant sample sizes. To overcome these limitations, an analytical platform with colonic organoids localized to the planar surface of a hydrogel layer was developed. The arrays of densely packed colonoids (140 μm average diameter, 4 colonoids/mm2) were generated in a 96-well plate, enabling assay of the response of hundreds of organoids so that organoid subpopulations with distinct behaviors were identifiable. Organoid cell types, monolayer polarity, and growth were similar to those embedded in hydrogel. An automated imaging and analysis platform efficiently tracked over time swelling due to forskolin and fluid movement across the cell monolayer stimulated by cholera toxin. The platform was used to screen compounds associated with the enteric nervous and immune systems for their effect on fluid movement across epithelial cells. Prostaglandin E2 promoted increased water flux in a subset of organoids that resulted in organoid swelling, confirming a role for this inflammatory mediator in diarrheal conditions but also illustrating organoid differences in response to an identical stimulus. By allowing sampling of a large number of organoids, the arrayed organoid platform permits identification of organoid subpopulations intermixed within a larger group of nonresponding organoids. This technique will enable automated, large-scale screening of the impact of drugs, toxins, and other compounds on colonic physiology.
Collapse
Affiliation(s)
- Dulan B. Gunasekara
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Matthew DiSalvo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel L. Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mark I. Reed
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jennifer Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
36
|
Engevik AC, Goldenring JR. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027979. [PMID: 28264818 DOI: 10.1101/cshperspect.a027979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function.
Collapse
Affiliation(s)
- Amy Christine Engevik
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232.,Nashville VA Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
37
|
Bazellières E, Aksenova V, Barthélémy-Requin M, Massey-Harroche D, Le Bivic A. Role of the Crumbs proteins in ciliogenesis, cell migration and actin organization. Semin Cell Dev Biol 2017; 81:13-20. [PMID: 29056580 DOI: 10.1016/j.semcdb.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Epithelial cell organization relies on a set of proteins that interact in an intricate way and which are called polarity complexes. These complexes are involved in the determination of the apico-basal axis and in the positioning and stability of the cell-cell junctions called adherens junctions at the apico-lateral border in invertebrates. Among the polarity complexes, two are present at the apical side of epithelial cells. These are the Par complex including aPKC, PAR3 and PAR6 and the Crumbs complex including, CRUMBS, PALS1 and PATJ/MUPP1. These two complexes interact directly and in addition to their already well described functions, they play a role in other cellular processes such as ciliogenesis and polarized cell migration. In this review, we will focus on these aspects that involve the apical Crumbs polarity complex and its relation with the cortical actin cytoskeleton which might provide a more comprehensive hypothesis to explain the many facets of Crumbs cell and tissue properties.
Collapse
Affiliation(s)
- Elsa Bazellières
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | - Veronika Aksenova
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France
| | | | | | - André Le Bivic
- Aix-Marseille University, CNRS, IBDM, Case 907, 13288 Marseille, Cedex 09, France.
| |
Collapse
|
38
|
Patterson AM, Watson AJM. Deciphering the Complex Signaling Systems That Regulate Intestinal Epithelial Cell Death Processes and Shedding. Front Immunol 2017; 8:841. [PMID: 28769935 PMCID: PMC5513916 DOI: 10.3389/fimmu.2017.00841] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/04/2017] [Indexed: 01/16/2023] Open
Abstract
Intestinal epithelial cells play a fundamental role in maintaining homeostasis. Shedding of intestinal cells in a controlled manner is critical to maintenance of barrier function. Barrier function is maintained during this shedding process by a redistribution of tight junctional proteins to facilitate closure of the gap left by the shedding cell. However, despite the obvious importance of epithelial cell shedding to gut health, a central question is how the extrusion of epithelial cells is achieved, enabling barrier integrity to be maintained in the healthy gut and restored during inflammation remains largely unanswered. Recent studies have provided evidence that excessive epithelial cell shedding and loss of epithelial barrier integrity is triggered by exposure to lipopolysaccharide or tumor necrosis factor alpha. Subsequent studies have provided evidence of the involvement of specific cellular components and signaling mechanisms as well as the functionality of microbiota that can be either detrimental or beneficial for intestinal barrier integrity. This review will focus on the evidence and decipher how the signaling systems through which the mucosal immune system and microbiota can regulate epithelial cell shedding and how these mechanisms interact to preserve the viability of the epithelium.
Collapse
Affiliation(s)
- Angela M Patterson
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Alastair J M Watson
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
39
|
Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027888. [PMID: 28213466 DOI: 10.1101/cshperspect.a027888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we highlight recent advances with regard to the molecular mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the human intestine.
Collapse
Affiliation(s)
- Leon J Klunder
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
40
|
Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors. PLoS One 2017; 12:e0173979. [PMID: 28346473 PMCID: PMC5367788 DOI: 10.1371/journal.pone.0173979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered BBG9-1. Thus, the present study showed that oral administration of BBG9-1 palliated diarrhea partly through protection against RV-induced lesions by inducing mucosal protective factors. Oral administration of BBG9-1 is thought to be an efficient method for management of an RV epidemic for both prophylactic and therapeutic purposes.
Collapse
|
41
|
Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ 2017; 24:819-831. [PMID: 28234358 PMCID: PMC5423107 DOI: 10.1038/cdd.2017.14] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022] Open
Abstract
Impairment in gut epithelial integrity and barrier function is associated with many diseases. The homeostasis of intestinal barrier is based on a delicate regulation of epithelial proliferation and differentiation. AMP-activated protein kinase (AMPK) is a master regulator of energy metabolism, and cellular metabolites are intrinsically involved in epigenetic modifications governing cell differentiation. We aimed to evaluate the regulatory role of AMPK on intestinal epithelial development and barrier function. In this study, AMPK activator (AICAR) improved the barrier function of Caco-2 cells as indicated by increased transepithelial electrical resistance and reduced paracellular FITC-dextran permeability; consistently, AICAR enhanced epithelial differentiation and tight junction formation. Transfection of Caco-2 cells with AMPK WT plasmid, which enhances AMPK activity, improved epithelial barrier function and epithelial differentiation, while K45R (AMPK dominant negative mutant) impaired; these changes were correlated with the expression of caudal type homeobox 2 (CDX2), the key transcription factor committing cells to intestinal epithelial lineage. CDX2 deficiency abolished intestinal differentiation promoted by AMPK activation. Mechanistically, AMPK inactivation was associated with polycomb repressive complex 2 regulated enrichment of H3K27me3, the inhibitory histone modification, and lysine-specific histone demethylase-1-mediated reduction of H3K4me3, a permissive histone modification. Those histone modifications provide a mechanistic link between AMPK and CDX2 expression. Consistently, epithelial AMPK knockout in vivo reduced CDX2 expression, impaired intestinal barrier function, integrity and ultrastructure of tight junction, and epithelial cell migration, promoted intestinal proliferation and exaggerated dextran sulfate sodium-induced colitis. In summary, AMPK enhances intestinal barrier function and epithelial differentiation via promoting CDX2 expression, which is partially mediated by altered histone modifications in the Cdx2 promoter.
Collapse
Affiliation(s)
- Xiaofei Sun
- School of Food Science, Washington State University, Pullman 99164, WA, USA.,School of Food Science, University of Idaho, Moscow 83844, ID, USA
| | - Qiyuan Yang
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Carl J Rogers
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman 99164, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman 99164, WA, USA.,School of Food Science, University of Idaho, Moscow 83844, ID, USA
| |
Collapse
|
42
|
Simsek M, Quezada-Calvillo R, Nichols BL, Hamaker BR. Phenolic compounds increase the transcription of mouse intestinal maltase-glucoamylase and sucrase-isomaltase. Food Funct 2017; 8:1915-1924. [DOI: 10.1039/c7fo00015d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ascione F, Vasaturo A, Caserta S, D'Esposito V, Formisano P, Guido S. Comparison between fibroblast wound healing and cell random migration assays in vitro. Exp Cell Res 2016; 347:123-132. [PMID: 27475838 DOI: 10.1016/j.yexcr.2016.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
Cell migration plays a key role in many biological processes, including cancer growth and invasion, embryogenesis, angiogenesis, inflammatory response, and tissue repair. In this work, we compare two well-established experimental approaches for the investigation of cell motility in vitro: the cell random migration (CRM) and the wound healing (WH) assay. In the former, extensive tracking of individual live cells trajectories by time-lapse microscopy and elaborate data processing are used to calculate two intrinsic motility parameters of the cell population under investigation, i.e. the diffusion coefficient and the persistence time. In the WH assay, a scratch is made in a confluent cell monolayer and the closure time of the exposed area is taken as an easy-to-measure, empirical estimate of cell migration. To compare WH and CRM we applied the two assays to investigate the motility of skin fibroblasts isolated from wild type and transgenic mice (TgPED) overexpressing the protein PED/PEA-15, which is highly expressed in patients with type 2 diabetes. Our main result is that the cell motility parameters derived from CRM can be also estimated from a time-resolved analysis of the WH assay, thus showing that the latter is also amenable to a quantitative analysis for the characterization of cell migration. To our knowledge this is the first quantitative comparison of these two widely used techniques.
Collapse
Affiliation(s)
- Flora Ascione
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy
| | - Angela Vasaturo
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy; CEINGE Biotecnologie Avanzate, Via Sergio Pansini, 5, 80131 Naples, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy.
| | - Vittoria D'Esposito
- Dipartimento di Scienze Mediche Traslazionali (DISMET), Università di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Pietro Formisano
- Dipartimento di Scienze Mediche Traslazionali (DISMET), Università di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Via Pansini 5, 80131 Napoli, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy; CEINGE Biotecnologie Avanzate, Via Sergio Pansini, 5, 80131 Naples, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy
| |
Collapse
|
44
|
Connor EE, Evock-Clover CM, Wall EH, Baldwin RL, Santin-Duran M, Elsasser TH, Bravo DM. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals. Domest Anim Endocrinol 2016; 56 Suppl:S56-65. [PMID: 27345324 DOI: 10.1016/j.domaniend.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of these enteric peptides are only beginning to be uncovered. One peptide in particular, glucagon-like peptide 2 (GLP-2) produced by enteroendocrine L cells, has been fairly well characterized in rodent and swine models in terms of its ability to improve nutrient absorption and healing of the gut after injury. In fact, a long-acting form of GLP-2 recently has been approved for the management and treatment of human conditions like inflammatory bowel disease and short bowel syndrome. However, novel functions of GLP-2 within the gut continue to be demonstrated, including its beneficial effects on intestinal barrier function and reducing intestinal inflammation. As knowledge continues to grow about GLP-2's effects on the gut and its mechanisms of release, the potential to use GLP-2 to improve gut function and health of food animals becomes increasingly more apparent. Thus, the purpose of this review is to summarize: (1) the current understanding of GLP-2's functions and mechanisms of action within the gut; (2) novel applications of GLP-2 (or stimulators of its release) to improve general health and production performance of food animals; and (3) recent findings, using dairy calves as a model, that suggest the therapeutic potential of GLP-2 to reduce the pathogenesis of intestinal protozoan infections.
Collapse
Affiliation(s)
- E E Connor
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA.
| | - C M Evock-Clover
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - E H Wall
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - R L Baldwin
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - M Santin-Duran
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - T H Elsasser
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705 USA
| | - D M Bravo
- Pancosma S.A., CH-1218 Geneva, Switzerland
| |
Collapse
|
45
|
Mziaut H, Mulligan B, Hoboth P, Otto O, Ivanova A, Herbig M, Schumann D, Hildebrandt T, Dehghany J, Sönmez A, Münster C, Meyer-Hermann M, Guck J, Kalaidzidis Y, Solimena M. The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512. Mol Metab 2016; 5:656-668. [PMID: 27656403 PMCID: PMC5021679 DOI: 10.1016/j.molmet.2016.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 01/02/2023] Open
Abstract
Objective Insulin release from pancreatic islet β cells should be tightly controlled to avoid hypoglycemia and insulin resistance. The cortical actin cytoskeleton is a gate for regulated exocytosis of insulin secretory granules (SGs) by restricting their mobility and access to the plasma membrane. Prior studies suggest that SGs interact with F-actin through their transmembrane cargo islet cell autoantigen 512 (Ica512) (also known as islet antigen 2/Ptprn). Here we investigated how Ica512 modulates SG trafficking and exocytosis. Methods Transcriptomic changes in Ica512−/− mouse islets were analyzed. Imaging as well as biophysical and biochemical methods were used to validate if and how the Ica512-regulated gene villin modulates insulin secretion in mouse islets and insulinoma cells. Results The F-actin modifier villin was consistently downregulated in Ica512−/− mouse islets and in Ica512-depleted insulinoma cells. Villin was enriched at the cell cortex of β cells and dispersed villin−/− islet cells were less round and less deformable. Basal mobility of SGs in villin-depleted cells was enhanced. Moreover, in cells depleted either of villin or Ica512 F-actin cages restraining cortical SGs were enlarged, basal secretion was increased while glucose-stimulated insulin release was blunted. The latter changes were reverted by overexpressing villin in Ica512-depleted cells, but not vice versa. Conclusion Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion. Ica512-depletion reduces the genetic expression of the F-actin modifier villin. Villin-depletion enhances basal insulin granule mobility and exocytosis. Villin regulates the size of actin cages restraining insulin granules. Villin acts downstream of insulin granule cargo Ica512. The Ica512-villin genetic link enables granules to control cytoskeleton plasticity.
Collapse
Key Words
- D, diffusion coefficient
- EGFP, enhanced green fluorescent protein
- F-actin
- Granules
- IPGTT, intraperitoneal glucose tolerance test
- IVGTT, intravenous glucose tolerance test
- Ica512
- Ica512, islet cell autoantigen
- Insulin
- OGTT, oral glucose tolerance test
- RT-DC, real-time deformability cytometry
- SE, standard error
- SG, secretory granules
- Secretion
- TIRFM, total internal reflection fluorescence microscopy
- Villin
Collapse
Affiliation(s)
- Hassan Mziaut
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Bernard Mulligan
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Peter Hoboth
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Oliver Otto
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Anna Ivanova
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Maik Herbig
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Desiree Schumann
- Boehringer Ingelheim Pharma GmbH & Co. KG. Cardiometabolic Research, 88397 Biberach, Germany
| | - Tobias Hildebrandt
- Boehringer Ingelheim Pharma GmbH & Co. KG. Cardiometabolic Research, 88397 Biberach, Germany
| | - Jaber Dehghany
- Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre for Systems Biology (BRICS), 38124 Braunschweig, Germany
| | - Anke Sönmez
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Carla Münster
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany
| | - Michael Meyer-Hermann
- Helmholtz Centre for Infection Research (HZI), Braunschweig Integrated Centre for Systems Biology (BRICS), 38124 Braunschweig, Germany
| | - Jochen Guck
- Biotechnology Center Dresden, 01307 Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Michele Solimena
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the Univ. Hospital, Faculty of Medicine Carl Gustav Carus, Technische Univ. Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD e.V.), 85674 Neuherberg, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
46
|
Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. Proc Natl Acad Sci U S A 2016; 113:6035-40. [PMID: 27162343 DOI: 10.1073/pnas.1520843113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K(+) (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal "brush border" disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.
Collapse
|
47
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|
48
|
Nichols BL, Diaz-Sotomayor M, Avery SE, Chacko SK, Hadsell DL, Baker SS, Hamaker BR, Yan LK, Lin HM, Quezada-Calvillo R. Milk glucosidase activity enables suckled pup starch digestion. Mol Cell Pediatr 2016; 3:4. [PMID: 26830109 PMCID: PMC4735098 DOI: 10.1186/s40348-016-0032-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/08/2016] [Indexed: 11/10/2022] Open
Abstract
ᅟ Starch requires six enzymes for digestion to free glucose: two amylases (salivary and pancreatic) and four mucosal maltase activities; sucrase-isomaltase and maltase-glucoamylase. All are deficient in suckling rodents. Objective The objective of this study is to test 13C-starch digestion before weaning by measuring enrichment of blood 13C-glucose in maltase-glucoamylase-null and wild-type mice. Methods Maltase-glucoamylase gene was ablated at the N-terminal. Dams were fed low 13C-diet and litters kept on low 13C-diet. Pups were weaned at 21 days. Digestion was tested at 13 and 25 days by intragastric feeding of amylase predigested 13C-α-limit dextrins. Blood 13C-glucose enrichment was measured by gas chromatography combustion isotope ratio mass spectrometry (GCRMS) using penta-acetate derivatives. Results Four hours after feeding, blood 13C-glucose was enriched by 26 × 103 in null and 18 × 103 in wild-type mice at 13 days and 0.3 × 103 and 0.2 × 103 at 25 days (vs. fasting p = 0.045 and p = 0.045). By jejunal enzyme assay, immunohistochemistry, or Western blots, there was no maltase activity or brush border staining with maltase-glucoamylase antibodies at 13 days, but these were fully developed in the wild-type mice by 25 days. In 13-day null mice, luminal contents were stained by maltase-glucoamylase antibodies. Lactating the mammary gland revealed maltase-glucoamylase antibody staining of alveolar cells. Reverse transcription/polymerase chain reaction (RT/PCR) of lactating glands revealed a secreted form of maltase-glucoamylase. Conclusions (1) 13C-α-limit dextrins were rapidly digested to 13C-glucose in 13-day mice independent of maltase-glucoamylase genotype or mucosal maltase activity. (2) This experiment demonstrates that a soluble maltase activity is secreted in mouse mother’s milk which enables suckling pup starch digestion well before brush border enzyme development. (3) This experiment with 13C-α-limit dextrins needs to be repeated in human breast fed infants.
Collapse
Affiliation(s)
- B L Nichols
- Children's Nutrition Research Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - M Diaz-Sotomayor
- Children's Nutrition Research Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - S E Avery
- Children's Nutrition Research Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - S K Chacko
- Children's Nutrition Research Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - D L Hadsell
- Children's Nutrition Research Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - S S Baker
- Department of Pediatrics, State University of New York, Buffalo, NY, USA.
| | - B R Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA.
| | - L K Yan
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA.
| | - H M Lin
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA. .,University of Idaho, Moscow, ID, USA.
| | - R Quezada-Calvillo
- Children's Nutrition Research Center, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA. .,Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
49
|
Protection by enteral glutamine is mediated by intestinal epithelial cell peroxisome proliferator-activated receptor-γ during intestinal ischemia/reperfusion. Shock 2016; 43:327-33. [PMID: 25394240 DOI: 10.1097/shk.0000000000000297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have demonstrated that enteral glutamine provides protection to the postischemic gut, and that peroxisome proliferator-activated receptor-γ (PPARγ) plays a role in this protection. Using Cre/lox technology to generate an intestinal epithelial cell (IEC)-specific PPARγ null mouse model, we now investigated the contribution of IEC PPARγ to glutamine's local and distant organ-protective effects. These mice exhibited absence of expression of PPARγ in the intestine but normal PPARγ expression in other tissues. After 1 h of intestinal ischemia under isoflurane anesthesia, wild-type and null mice received enteral glutamine (60 mM) or vehicle followed by 6 h of reperfusion or 7 days in survival experiments and compared with shams. Small intestine, liver, and lungs were analyzed for injury and inflammatory parameters. Glutamine provided significant protection against gut injury and inflammation, with similar protection in the lung and liver. Changes in systemic tumor necrosis factor-α reflected those seen in the injured organs. Importantly, mice lacking IEC PPARγ had worsened injury and inflammation, and glutamine lost its protective effects in the gut and lung. The survival benefit found in glutamine-treated wild-type mice was not observed in null mice. Using an IEC-targeted loss-of-function approach, these studies provide the first in vivo confirmation in native small intestine and lung that PPARγ is responsible for the protective effects of enteral glutamine in reducing intestinal and lung injury and inflammation and improving survival. These data suggest that early enteral glutamine may be a potential therapeutic modality to reduce shock-induced gut dysfunction and subsequent distant organ injury.
Collapse
|
50
|
Vitetta L, Hall S, Coulson S. Metabolic Interactions in the Gastrointestinal Tract (GIT): Host, Commensal, Probiotics, and Bacteriophage Influences. Microorganisms 2015; 3:913-32. [PMID: 27682125 PMCID: PMC5023274 DOI: 10.3390/microorganisms3040913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Life on this planet has been intricately associated with bacterial activity at all levels of evolution and bacteria represent the earliest form of autonomous existence. Plants such as those from the Leguminosae family that form root nodules while harboring nitrogen-fixing soil bacteria are a primordial example of symbiotic existence. Similarly, cooperative activities between bacteria and animals can also be observed in multiple domains, including the most inhospitable geographical regions of the planet such as Antarctica and the Lower Geyser Basin of Yellowstone National Park. In humans bacteria are often classified as either beneficial or pathogenic and in this regard we posit that this artificial nomenclature is overly simplistic and as such almost misinterprets the complex activities and inter-relationships that bacteria have with the environment as well as the human host and the plethora of biochemical activities that continue to be identified. We further suggest that in humans there are neither pathogenic nor beneficial bacteria, just bacteria embraced by those that tolerate the host and those that do not. The densest and most complex association exists in the human gastrointestinal tract, followed by the oral cavity, respiratory tract, and skin, where bacteria—pre- and post-birth—instruct the human cell in the fundamental language of molecular biology that normally leads to immunological tolerance over a lifetime. The overall effect of this complex output is the elaboration of a beneficial milieu, an environment that is of equal or greater importance than the bacterium in maintaining homeostasis.
Collapse
Affiliation(s)
- Luis Vitetta
- Medlab Clinical Ltd., Sydney 2015 Australia.
- Sydney Medical School, University of Sydney, Sydney 2006, Australia.
| | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015 Australia.
| | - Samantha Coulson
- Medlab Clinical Ltd., Sydney 2015 Australia.
- Sydney Medical School, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|