1
|
Vangoor VR, Giuliani G, de Wit M, Rangel CK, Venø MT, Schulte JT, Gomes-Duarte A, Senthilkumar K, Puhakka N, Kjems J, de Graan PNE, Pasterkamp RJ. Compartment-specific small non-coding RNA changes and nucleolar defects in human mesial temporal lobe epilepsy. Acta Neuropathol 2024; 148:61. [PMID: 39509000 PMCID: PMC11543739 DOI: 10.1007/s00401-024-02817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a debilitating disease characterized by recurrent seizures originating from temporal lobe structures such as the hippocampus. The pathogenic mechanisms underlying mTLE are incompletely understood but include changes in the expression of non-coding RNAs in affected brain regions. Previous work indicates that some of these changes may be selective to specific sub-cellular compartments, but the full extent of these changes and how these sub-cellular compartments themselves are affected remains largely unknown. Here, we performed small RNA sequencing (RNA-seq) of sub-cellular fractions of hippocampal tissue from mTLE patients and controls to determine nuclear and cytoplasmic expression levels of microRNAs (miRNAs). This showed differential expression of miRNAs and isomiRs, several of which displayed enriched nuclear expression in mTLE. Subsequent analysis of miR-92b, the most strongly deregulated miRNA in the nucleus, showed accumulation of this miRNA in the nucleolus in mTLE and association with snoRNAs. This prompted us to further study the nucleolus in human mTLE which uncovered several defects, such as altered nucleolar size or shape, mis-localization of nucleolar proteins, and deregulation of snoRNAs, indicative of nucleolar stress. In a rat model of epilepsy, nucleolar phenotypes were detected in the latency period before the onset of spontaneous seizures, suggesting that nucleolar changes may contribute to the development of seizures and mTLE. Overall, these data for the first time implicate nucleolar defects in the pathogenesis of mTLE and provide a valuable framework for further defining the functional consequences of altered sub-cellular RNA profiles in this disease.
Collapse
Affiliation(s)
- Vamshidhar R Vangoor
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Giuliano Giuliani
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Carolina K Rangel
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- Omiics ApS, 8200, Aarhus N, Denmark
| | - Joran T Schulte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Ketharini Senthilkumar
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Noora Puhakka
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Pierre N E de Graan
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Qiu X, Danesh Yazdi M, Wang C, Kosheleva A, Wu H, Vokonas PS, Spiro A, Laurent LC, DeHoff P, Kubzansky LD, Weisskopf MG, Baccarelli AA, Schwartz JD. Extracellular microRNAs associated with psychiatric symptoms in the Normative Aging Study. J Psychiatr Res 2024; 178:270-277. [PMID: 39173451 PMCID: PMC11924295 DOI: 10.1016/j.jpsychires.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/15/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Earlier studies have revealed microRNAs (miRNAs) as potential biomarkers for neurological conditions, however, such evidence on psychiatric outcomes is limited. We utilized the Normative Aging Study (NAS) cohort to investigate the associations between extracellular miRNAs (ex-miRNA) and psychiatric symptoms among a group of older male adults, along with the targeted genes and biological pathways. We studied 569 participants with miRNA profile primarily measured in extracellular vesicles isolated from plasma, and psychiatric symptoms reported over 1996-2014 with repeated measures. Global and dimension scales of psychiatric symptoms were measured via the administration of Brief Symptom Inventory (BSI) per visit covering nine aspects of psychiatric health, such as anxiety, depression, hostility, psychoticism, etc. Ex-miRNAs were profiled using small RNA sequencing. Associations of expression of 395 ex-miRNAs (present in >70% samples) with current mental status were assessed using single-miRNA as well as Least Absolute Shrinkage and Selection Operator (LASSO)-based multi-miRNAs linear mixed effects models adjusting for key demographic and behavioral factors. Biological functions were explored using pathway analyses. We identified ex-miRNAs associated with each BSI scale. In particular, hsa-miR-320d was consistently identified for two global scales. Similar overlapping miRNAs across global and dimension scores included hsa-miR-379-3p, hsa-miR-1976, hsa-miR-151a-5p, hsa-miR-151b, hsa-miR-144-3p, etc. Top KEGG pathways for identified miRNAs included p53 signaling, Hippo signaling, FoxO signaling, protein processing in endoplasmic reticulum and several pathways related with cancer and neurological diseases. This study provided early evidence supporting the associations between extracellular miRNAs and psychiatric conditions. MiRNAs may serve as biomarkers of subclinical psychiatric illness in older adults.
Collapse
Affiliation(s)
- Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Pantel S Vokonas
- Veterans Affairs (VA) Normative Aging Study, VA Boston Healthcare System, Boston, MA, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avron Spiro
- Veterans Affairs (VA) Normative Aging Study, VA Boston Healthcare System, Boston, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Hung YH, Capeling M, Villanueva JW, Kanke M, Shanahan MT, Huang S, Cubitt R, Rinaldi VD, Schimenti JC, Spence JR, Sethupathy P. Integrative genome-scale analyses reveal post-transcriptional signatures of early human small intestinal development in a directed differentiation organoid model. BMC Genomics 2023; 24:641. [PMID: 37884859 PMCID: PMC10601309 DOI: 10.1186/s12864-023-09743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Meghan Capeling
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael T Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Cubitt
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vera D Rinaldi
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Piscopo P, Grasso M, Manzini V, Zeni A, Castelluzzo M, Fontana F, Talarico G, Castellano AE, Rivabene R, Crestini A, Bruno G, Ricci L, Denti MA. Identification of miRNAs regulating MAPT expression and their analysis in plasma of patients with dementia. Front Mol Neurosci 2023; 16:1127163. [PMID: 37324585 PMCID: PMC10266489 DOI: 10.3389/fnmol.2023.1127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Background Dementia is one of the most common diseases in elderly people and hundreds of thousand new cases per year of Alzheimer's disease (AD) are estimated. While the recent decade has seen significant advances in the development of novel biomarkers to identify dementias at their early stage, a great effort has been recently made to identify biomarkers able to improve differential diagnosis. However, only few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been described so far. Methods We searched for miRNAs regulating MAPT translation. We employed a capture technology able to find the miRNAs directly bound to the MAPT transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls (HCs) (n = 42) by using qRT-PCR. Results Firstly, we found all miRNAs that interact with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau levels increasing or reducing miRNA levels by using cell transfections with plasmids expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex. Respect to HC, the only difference is showed in men with AD who have reduced levels of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients with FTD maintain this trend in both genders. Conclusions Our results seem to identify miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC, while miR-320b to discriminate FTD from HC, particularly in males. Combining three miRNAs improves the accuracy only in females, particularly for differential diagnosis (FTD vs. AD) and to distinguish FTD from HC.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome “Sapienza”, Rome, Italy
| | - Andrea Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Francesca Fontana
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | | | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
5
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
6
|
Lafferty MJ, Aygün N, Patel NK, Krupa O, Liang D, Wolter JM, Geschwind DH, de la Torre-Ubieta L, Stein JL. MicroRNA-eQTLs in the developing human neocortex link miR-4707-3p expression to brain size. eLife 2023; 12:e79488. [PMID: 36629315 PMCID: PMC9859047 DOI: 10.7554/elife.79488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Expression quantitative trait loci (eQTL) data have proven important for linking non-coding loci to protein-coding genes. But eQTL studies rarely measure microRNAs (miRNAs), small non-coding RNAs known to play a role in human brain development and neurogenesis. Here, we performed small-RNA sequencing across 212 mid-gestation human neocortical tissue samples, measured 907 expressed miRNAs, discovering 111 of which were novel, and identified 85 local-miRNA-eQTLs. Colocalization of miRNA-eQTLs with GWAS summary statistics yielded one robust colocalization of miR-4707-3p expression with educational attainment and brain size phenotypes, where the miRNA expression increasing allele was associated with decreased brain size. Exogenous expression of miR-4707-3p in primary human neural progenitor cells decreased expression of predicted targets and increased cell proliferation, indicating miR-4707-3p modulates progenitor gene regulation and cell fate decisions. Integrating miRNA-eQTLs with existing GWAS yielded evidence of a miRNA that may influence human brain size and function via modulation of neocortical brain development.
Collapse
Affiliation(s)
- Michael J Lafferty
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Niyanta K Patel
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Luis de la Torre-Ubieta
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel HillChapel HillUnited States
- UNC Neuroscience Center, University of North Carolina at Chapel HillChapel HillUnited States
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
7
|
Cremisi F, Vignali R. Translational control in cortical development. Front Neuroanat 2023; 16:1087949. [PMID: 36699134 PMCID: PMC9868627 DOI: 10.3389/fnana.2022.1087949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Differentiation of specific neuronal types in the nervous system is worked out through a complex series of gene regulation events. Within the mammalian neocortex, the appropriate expression of key transcription factors allocates neurons to different cortical layers according to an inside-out model and endows them with specific properties. Precise timing is required to ensure the proper sequential appearance of key transcription factors that dictate the identity of neurons within the different cortical layers. Recent evidence suggests that aspects of this time-controlled regulation of gene products rely on post-transcriptional control, and point at micro-RNAs (miRs) and RNA-binding proteins as important players in cortical development. Being able to simultaneously target many different mRNAs, these players may be involved in controlling the global expression of gene products in progenitors and post-mitotic cells, in a gene expression framework where parallel to transcriptional gene regulation, a further level of control is provided to refine and coordinate the appearance of the final protein products. miRs and RNA-binding proteins (RBPs), by delaying protein appearance, may play heterochronic effects that have recently been shown to be relevant for the full differentiation of cortical neurons and for their projection abilities. Such heterochronies may be the base for evolutionary novelties that have enriched the spectrum of cortical cell types within the mammalian clade.
Collapse
Affiliation(s)
- Federico Cremisi
- Laboratory of Biology, Department of Sciences, Scuola Normale Superiore, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| |
Collapse
|
8
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
9
|
Wagner NR, Sinha A, Siththanandan V, Kowalchuk AM, MacDonald JL, Tharin S. miR-409-3p represses Cited2 to refine neocortical layer V projection neuron identity. Front Neurosci 2022; 16:931333. [PMID: 36248641 PMCID: PMC9558290 DOI: 10.3389/fnins.2022.931333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary emergence of the corticospinal tract and corpus callosum are thought to underpin the expansion of complex motor and cognitive abilities in mammals. Molecular mechanisms regulating development of the neurons whose axons comprise these tracts, the corticospinal and callosal projection neurons, remain incompletely understood. Our previous work identified a genomic cluster of microRNAs (miRNAs), Mirg/12qF1, that is unique to placental mammals and specifically expressed by corticospinal neurons, and excluded from callosal projection neurons, during development. We found that one of these, miR-409-3p, can convert layer V callosal into corticospinal projection neurons, acting in part through repression of the transcriptional regulator Lmo4. Here we show that miR-409-3p also directly represses the transcriptional co-regulator Cited2, which is highly expressed by callosal projection neurons from the earliest stages of neurogenesis. Cited2 is highly expressed by intermediate progenitor cells (IPCs) in the embryonic neocortex while Mirg, which encodes miR-409-3p, is excluded from these progenitors. miR-409-3p gain-of-function (GOF) in IPCs results in a phenocopy of established Cited2 loss-of-function (LOF). At later developmental stages, both miR-409-3p GOF and Cited2 LOF promote the expression of corticospinal at the expense of callosal projection neuron markers in layer V. Taken together, this work identifies previously undescribed roles for miR-409-3p in controlling IPC numbers and for Cited2 in controlling callosal fate. Thus, miR-409-3p, possibly in cooperation with other Mirg/12qF1 miRNAs, represses Cited2 as part of the multifaceted regulation of the refinement of neuronal cell fate within layer V, combining molecular regulation at multiple levels in both progenitors and post-mitotic neurons.
Collapse
Affiliation(s)
- Nikolaus R. Wagner
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Ashis Sinha
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Verl Siththanandan
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States
| | - Angelica M. Kowalchuk
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L. MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States,*Correspondence: Jessica L. MacDonald,
| | - Suzanne Tharin
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States,Division of Neurosurgery, Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, United States,Suzanne Tharin,
| |
Collapse
|
10
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|
11
|
MicroRNA Sequencing Analysis in Obstructive Sleep Apnea and Depression: Anti-Oxidant and MAOA-Inhibiting Effects of miR-15b-5p and miR-92b-3p through Targeting PTGS1-NF-κB-SP1 Signaling. Antioxidants (Basel) 2021; 10:antiox10111854. [PMID: 34829725 PMCID: PMC8614792 DOI: 10.3390/antiox10111854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to identify novel microRNAs related to obstructive sleep apnea (OSA) characterized by intermittent hypoxia with re-oxygenation (IHR) injury. Illumina MiSeq was used to identify OSA-associated microRNAs, which were validated in an independent cohort. The interaction between candidate microRNA and target genes was detected in the human THP-1, HUVEC, and SH-SY5Y cell lines. Next-generation sequencing analysis identified 22 differentially expressed miRs (12 up-regulated and 10 down-regulated) in OSA patients. Enriched predicted target pathways included senescence, adherens junction, and AGE-RAGE/TNF-α/HIF-1α signaling. In the validation cohort, miR-92b-3p and miR-15b-5p gene expressions were decreased in OSA patients, and negatively correlated with an apnea hypopnea index. PTGS1 (COX1) gene expression was increased in OSA patients, especially in those with depression. Transfection with miR-15b-5p/miR-92b-3p mimic in vitro reversed IHR-induced early apoptosis, reactive oxygen species production, MAOA hyperactivity, and up-regulations of their predicted target genes, including PTGS1, ADRB1, GABRB2, GARG1, LEP, TNFSF13B, VEGFA, and CXCL5. The luciferase assay revealed the suppressed PTGS1 expression by miR-92b-3p. Down-regulated miR-15b-5p/miR-92b-3p in OSA patients could contribute to IHR-induced oxidative stress and MAOA hyperactivity through the eicosanoid inflammatory pathway via directly targeting PTGS1-NF-κB-SP1 signaling. Over-expression of the miR-15b-5p/miR-92b-3p may be a new therapeutic strategy for OSA-related depression.
Collapse
|
12
|
Knowles R, Dehorter N, Ellender T. From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. J Neurosci 2021; 41:9483-9502. [PMID: 34789560 PMCID: PMC8612473 DOI: 10.1523/jneurosci.0620-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is essential to provide insight into striatal function in health and disease. In this review, we summarize our current understanding of the development of striatal neurons and associated circuits with a focus on their embryonic origin. Specifically, we address the role of distinct types of embryonic progenitors, found in the proliferative zones of the ganglionic eminences in the ventral telencephalon, in the generation of diverse striatal interneurons and projection neurons. Indeed, recent evidence would suggest that embryonic progenitor origin dictates key characteristics of postnatal cells, including their neurochemical content, their location within striatum, and their long-range synaptic inputs. We also integrate recent observations regarding embryonic progenitors in cortical and other regions and discuss how this might inform future research on the ganglionic eminences. Last, we examine how embryonic progenitor dysfunction can alter striatal formation, as exemplified in Huntington's disease and autism spectrum disorder, and how increased understanding of embryonic progenitors can have significant implications for future research directions and the development of improved therapeutic options.SIGNIFICANCE STATEMENT This review highlights recently defined novel roles for embryonic progenitor cells in shaping the functional properties of both projection neurons and interneurons of the striatum. It outlines the developmental mechanisms that guide neuronal development from progenitors in the embryonic ganglionic eminences to progeny in the striatum. Where questions remain open, we integrate observations from cortex and other regions to present possible avenues for future research. Last, we provide a progenitor-centric perspective onto both Huntington's disease and autism spectrum disorder. We suggest that future investigations and manipulations of embryonic progenitor cells in both research and clinical settings will likely require careful consideration of their great intrinsic diversity and neurogenic potential.
Collapse
Affiliation(s)
- Rhys Knowles
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
13
|
Abstract
Tom Nowakowski is an Assistant Professor at University of California San Francisco (UCSF), where he uses single-cell sequencing technologies to study neurodevelopment. He is also a Chan Zuckerberg Biohub Investigator and a Next Generation Leader at the Allen Institute for Brain Science. We met with Tom over Zoom to hear more about his career, his transition to becoming a group leader and his plans for the future.
Collapse
|
14
|
Martins M, Galfrè S, Terrigno M, Pandolfini L, Appolloni I, Dunville K, Marranci A, Rizzo M, Mercatanti A, Poliseno L, Morandin F, Pietrosanto M, Helmer-Citterich M, Malatesta P, Vignali R, Cremisi F. A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation. Stem Cell Reports 2021; 16:1496-1509. [PMID: 34019815 PMCID: PMC8190598 DOI: 10.1016/j.stemcr.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 10/25/2022] Open
Abstract
Cerebral cortical development is controlled by key transcription factors that specify the neuronal identities in the different layers. The mechanisms controlling their expression in distinct cells are only partially known. We investigated the expression and stability of Tbr1, Bcl11b, Fezf2, Satb2, and Cux1 mRNAs in single developing mouse cortical cells. We observe that Satb2 mRNA appears much earlier than its protein and in a set of cells broader than expected, suggesting an initial inhibition of its translation, subsequently released during development. Mechanistically, Satb2 3'UTR modulates protein translation of GFP reporters during mouse corticogenesis. We select miR-541, a eutherian-specific miRNA, and miR-92a/b as the best candidates responsible for SATB2 inhibition, being strongly expressed in early and reduced in late progenitor cells. Their inactivation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our findings indicate RNA interference as a major mechanism in timing cortical cell identities.
Collapse
Affiliation(s)
- Manuella Martins
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | - Silvia Galfrè
- Scuola Normale, Pisa, Italy; Dipartimento di Biologia, Università Roma Tor Vergata, Roma, Italy
| | - Marco Terrigno
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | | | - Irene Appolloni
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Keagan Dunville
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | - Andrea Marranci
- Istituto di Fisiologia Clinica CNR, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
| | | | | | - Laura Poliseno
- Istituto di Fisiologia Clinica CNR, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
| | - Francesco Morandin
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | | | | | - Paolo Malatesta
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Robert Vignali
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Federico Cremisi
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy.
| |
Collapse
|
15
|
Shen J, Li G, Zhu Y, Xu Q, Zhou H, Xu K, Huang K, Zhan R, Pan J. Foxo1-induced miR-92b down-regulation promotes blood-brain barrier damage after ischaemic stroke by targeting NOX4. J Cell Mol Med 2021; 25:5269-5282. [PMID: 33955666 PMCID: PMC8178288 DOI: 10.1111/jcmm.16537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
The blood‐brain barrier (BBB) damage is a momentous pathological process of ischaemic stroke. NADPH oxidases 4 (NOX4) boosts BBB damage after ischaemic stroke and its expression can be influenced by microRNAs. This study aimed to probe into whether miR‐92b influenced the BBB damage after ischaemic stroke by regulating NOX4 expression. Here, miR‐92b expression was lessened in the ischaemic brains of rats and oxygen‐glucose deprivation (OGD)‐induced brain microvascular endothelial cells (BMECs). In middle cerebral artery occlusion (MCAo) rats, miR‐92b overexpression relieved the ameliorated neurological function and protected the BBB integrity. In vitro model, miR‐92b overexpression raised the viability and lessened the permeability of OGD‐induced BMECs. miR‐92b targeted NOX4 and regulated the viability and permeability of OGD‐induced BMECs by negatively modulating NOX4 expression. The transcription factor Foxo1 bound to the miR‐92b promoter and restrained its expression. Foxo1 expression was induced by OGD‐induction and its knockdown abolished the effects of OGD on miR‐92b and NOX4 expressions, cell viability and permeability of BMECs. In general, our findings expounded that Foxo1‐induced lessening miR‐92b boosted BBB damage after ischaemic stroke by raising NOX4 expression.
Collapse
Affiliation(s)
- Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qingsheng Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
17
|
Cave JW, Willis DE. G-quadruplex regulation of neural gene expression. FEBS J 2021; 289:3284-3303. [PMID: 33905176 DOI: 10.1111/febs.15900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures characterized by stacked tetrads of guanosine bases. These structures are widespread throughout mammalian genomic DNA and RNA transcriptomes, and prevalent across all tissues. The role of G-quadruplexes in cancer is well-established, but there has been a growing exploration of these structures in the development and homeostasis of normal tissue. In this review, we focus on the roles of G-quadruplexes in directing gene expression in the nervous system, including the regulation of gene transcription, mRNA processing, and trafficking, as well as protein translation. The role of G-quadruplexes and their molecular interactions in the pathology of neurological diseases is also examined. Outside of cancer, there has been only limited exploration of G-quadruplexes as potential intervention targets to treat disease or injury. We discuss studies that have used small-molecule ligands to manipulate G-quadruplex stability in order to treat disease or direct neural stem/progenitor cell proliferation and differentiation into therapeutically relevant cell types. Understanding the many roles that G-quadruplexes have in the nervous system not only provides critical insight into fundamental molecular mechanisms that control neurological function, but also provides opportunities to identify novel therapeutic targets to treat injury and disease.
Collapse
Affiliation(s)
- John W Cave
- InVitro Cell Research LLC, Englewood, NJ, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Fishman ES, Louie M, Miltner AM, Cheema SK, Wong J, Schlaeger NM, Moshiri A, Simó S, Tarantal AF, La Torre A. MicroRNA Signatures of the Developing Primate Fovea. Front Cell Dev Biol 2021; 9:654385. [PMID: 33898453 PMCID: PMC8060505 DOI: 10.3389/fcell.2021.654385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
Rod and cone photoreceptors differ in their shape, photopigment expression, synaptic connection patterns, light sensitivity, and distribution across the retina. Although rods greatly outnumber cones, human vision is mostly dependent on cone photoreceptors since cones are essential for our sharp visual acuity and color discrimination. In humans and other primates, the fovea centralis (fovea), a specialized region of the central retina, contains the highest density of cones. Despite the vast importance of the fovea for human vision, the molecular mechanisms guiding the development of this region are largely unknown. MicroRNAs (miRNAs) are small post-transcriptional regulators known to orchestrate developmental transitions and cell fate specification in the retina. Here, we have characterized the transcriptional landscape of the developing rhesus monkey retina. Our data indicates that non-human primate fovea development is significantly accelerated compared to the equivalent retinal region at the other side of the optic nerve head, as described previously. Notably, we also identify several miRNAs differentially expressed in the presumptive fovea, including miR-15b-5p, miR-342-5p, miR-30b-5p, miR-103-3p, miR-93-5p as well as the miRNA cluster miR-183/-96/-182. Interestingly, miR-342-5p is enriched in the nasal primate retina and in the peripheral developing mouse retina, while miR-15b is enriched in the temporal primate retina and increases over time in the mouse retina in a central-to-periphery gradient. Together our data constitutes the first characterization of the developing rhesus monkey retinal miRNome and provides novel datasets to attain a more comprehensive understanding of foveal development.
Collapse
Affiliation(s)
- Elizabeth S Fishman
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Mikaela Louie
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Adam M Miltner
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Nicholas M Schlaeger
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Ala Moshiri
- Department of Ophthalmology, University of California, Davis, Davis, CA, United States
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Alice F Tarantal
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proc Natl Acad Sci U S A 2020; 117:29113-29122. [PMID: 33139574 PMCID: PMC7682328 DOI: 10.1073/pnas.2006700117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mammalian central nervous system contains unique projections from the cerebral cortex thought to underpin complex motor and cognitive skills, including the corticospinal tract and corpus callosum. The neurons giving rise to these projections—corticospinal and callosal projection neurons—develop from the same progenitors, but acquire strikingly different fates. The broad evolutionary conservation of known genes controlling cortical projection neuron fates raises the question of how the more narrowly conserved corticospinal and callosal projections evolved. We identify a microRNA cluster selectively expressed by corticospinal projection neurons and exclusive to placental mammals. One of these microRNAs promotes corticospinal fate via regulation of the callosal gene LMO4, suggesting a mechanism whereby microRNA regulation during development promotes evolution of neuronal diversity. The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
Collapse
|
20
|
Li Z, Tyler WA, Zeldich E, Santpere Baró G, Okamoto M, Gao T, Li M, Sestan N, Haydar TF. Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex. SCIENCE ADVANCES 2020; 6:6/45/eabd2068. [PMID: 33158872 PMCID: PMC7673705 DOI: 10.1126/sciadv.abd2068] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/23/2020] [Indexed: 05/23/2023]
Abstract
How the rich variety of neurons in the nervous system arises from neural stem cells is not well understood. Using single-cell RNA-sequencing and in vivo confirmation, we uncover previously unrecognized neural stem and progenitor cell diversity within the fetal mouse and human neocortex, including multiple types of radial glia and intermediate progenitors. We also observed that transcriptional priming underlies the diversification of a subset of ventricular radial glial cells in both species; genetic fate mapping confirms that the primed radial glial cells generate specific types of basal progenitors and neurons. The different precursor lineages therefore diversify streams of cell production in the developing murine and human neocortex. These data show that transcriptional priming is likely a conserved mechanism of mammalian neural precursor lineage specialization.
Collapse
Affiliation(s)
- Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - William A Tyler
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Gabriel Santpere Baró
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mayumi Okamoto
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan
| | - Tianliuyun Gao
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Departments of Genetics, of Psychiatry and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Tarik F Haydar
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Ye Z, Shi J, Ning Z, Hou L, Hu CY, Wang C. MiR-92b-3p inhibits proliferation and migration of C2C12 cells. Cell Cycle 2020; 19:2906-2917. [PMID: 33043788 DOI: 10.1080/15384101.2020.1827511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Skeletal muscle, a critical component of the mammalian body, is essential for normal body movement. miRNAs are well documented in gene post-transcription regulation in many biological processes, including muscle development and maintenance. miR-92b-3p, which is often associated with tumorigenesis, has never been explored in myoblast development. Here, we used murine-derived C2C12 myoblasts to explore the potential functions of miR-92b-3p in skeletal muscle development. Our results demonstrated that miR-92b-3p mimics inhibited C2C12 cell proliferation and migration, whereas miR-92b-3p inhibitor promoted C2C12 cell proliferation and migration. C2C12 cell differentiation was not affected by miR-92b-3p mimics, according to immunofluorescence and qPCR results. Serum- and glucocorticoid-induced kinase 3 (SGK3) was predicted and validated as a target of miR-92b-3p. Overexpression of SGK3 promoted C2C12 cell proliferation. SGK3 and miR-92b-3p formed a regulatory pathway to modulate C2C12 cell proliferation. In conclusion, miR-92b-3p inhibited C2C12 cell proliferation by targeting SGK3 and impeded C2C12 cell migration.
Collapse
Affiliation(s)
- Zijian Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University , Guangzhou, Guangdong, China
| | - Jia Shi
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University , Guangzhou, Guangdong, China
| | - Zuocheng Ning
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University , Guangzhou, Guangdong, China
| | - Lianjie Hou
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University , Guangzhou, Guangdong, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa , Honolulu, HI, USA
| | - Chong Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University , Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Prodromidou K, Matsas R. Species-Specific miRNAs in Human Brain Development and Disease. Front Cell Neurosci 2019; 13:559. [PMID: 31920559 PMCID: PMC6930153 DOI: 10.3389/fncel.2019.00559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Identification of the unique features of human brain development and function can be critical towards the elucidation of intricate processes such as higher cognitive functions and human-specific pathologies like neuropsychiatric and behavioral disorders. The developing primate and human central nervous system (CNS) are distinguished by expanded progenitor zones and a protracted time course of neurogenesis, leading to the expansion in brain size, prominent gyral anatomy, distinctive synaptic properties, and complex neural circuits. Comparative genomic studies have revealed that adaptations of brain capacities may be partly explained by human-specific genetic changes that impact the function of proteins associated with neocortical expansion, synaptic function, and language development. However, the formation of complex gene networks may be most relevant for brain evolution. Indeed, recent studies identified distinct human-specific gene expression patterns across developmental time occurring in brain regions linked to cognition. Interestingly, such modules show species-specific divergence and are enriched in genes associated with neuronal development and synapse formation whilst also being implicated in neuropsychiatric diseases. microRNAs represent a powerful component of gene-regulatory networks by promoting spatiotemporal post-transcriptional control of gene expression in the human and primate brain. It has also been suggested that the divergence in miRNA expression plays an important role in shaping gene expression divergence among species. Primate-specific and human-specific miRNAs are principally involved in progenitor proliferation and neurogenic processes but also associate with human cognition, and neurological disorders. Human embryonic or induced pluripotent stem cells and brain organoids, permitting experimental access to neural cells and differentiation stages that are otherwise difficult or impossible to reach in humans, are an essential means for studying species-specific brain miRNAs. Single-cell sequencing approaches can further decode refined miRNA-mRNA interactions during developmental transitions. Elucidating species-specific miRNA regulation will shed new light into the mechanisms that control spatiotemporal events during human brain development and disease, an important step towards fostering novel, holistic and effective therapeutic approaches for neural disorders. In this review, we discuss species-specific regulation of miRNA function, its contribution to the evolving features of the human brain and in neurological disease, with respect also to future therapeutic approaches.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
23
|
Early dorsomedial tissue interactions regulate gyrification of distal neocortex. Nat Commun 2019; 10:5192. [PMID: 31729356 PMCID: PMC6858446 DOI: 10.1038/s41467-019-12913-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
The extent of neocortical gyrification is an important determinant of a species’ cognitive abilities, yet the mechanisms regulating cortical gyrification are poorly understood. We uncover long-range regulation of this process originating at the telencephalic dorsal midline, where levels of secreted Bmps are maintained by factors in both the neuroepithelium and the overlying mesenchyme. In the mouse, the combined loss of transcription factors Lmx1a and Lmx1b, selectively expressed in the midline neuroepithelium and the mesenchyme respectively, causes dorsal midline Bmp signaling to drop at early neural tube stages. This alters the spatial and temporal Wnt signaling profile of the dorsal midline cortical hem, which in turn causes gyrification of the distal neocortex. Our study uncovers early mesenchymal-neuroepithelial interactions that have long-range effects on neocortical gyrification and shows that lissencephaly in mice is actively maintained via redundant genetic regulation of dorsal midline development and signaling. The contribution of long-range signaling to cortical gyrification remains poorly understood. In this study, authors demonstrate that the combined genetic loss of transcription factors Lmx1a and Lmx1b, expressed in the telencephalic dorsal midline neuroepithelium and head mesenchyme, respectively, induces gyrification in the mouse neocortex
Collapse
|
24
|
Sunohara T, Morizane A, Matsuura S, Miyamoto S, Saito H, Takahashi J. MicroRNA-Based Separation of Cortico-Fugal Projection Neuron-Like Cells Derived From Embryonic Stem Cells. Front Neurosci 2019; 13:1141. [PMID: 31708734 PMCID: PMC6819314 DOI: 10.3389/fnins.2019.01141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
The purification of pluripotent stem cell-derived cortico-fugal projection neurons (PSC-CFuPNs) is useful for disease modeling and cell therapies related to the dysfunction of cortical motor neurons, such as amyotrophic lateral sclerosis (ALS) or stroke. However, no CFuPN-specific surface markers for the purification are known. Recently, microRNAs (miRNAs) have been reported as alternatives to surface markers. Here, we investigated this possibility by applying the miRNA switch, an mRNA technology, to enrich PSC-CFuPNs. An array study of miRNAs in mouse fetal brain tissue revealed that CFuPNs highly express miRNA-124-3p at E14.5 and E16.5. In response, we designed a miRNA switched that responds to miRNA-124-3p and applied it to mouse embryonic stem cell (ESC)-derived cortical neurons. Flow cytometry and quantitative polymerase chain reaction (qPCR) analyses showed the miRNA-124-3p switch enriched CFuPN-like cells from this population. Immunocytechemical analysis confirmed vGlut1/Emx1/Bcl11b triple positive CFuPN-like cells were increased from 6.5 to 42%. Thus, our miRNA-124-3p switch can uniquely enrich live CFuPN-like cells from mouse ESC-derived cortical neurons.
Collapse
Affiliation(s)
- Tadashi Sunohara
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Satoshi Matsuura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Galardi A, Colletti M, Di Paolo V, Vitullo P, Antonetti L, Russo I, Di Giannatale A. Exosomal MiRNAs in Pediatric Cancers. Int J Mol Sci 2019; 20:ijms20184600. [PMID: 31533332 PMCID: PMC6770697 DOI: 10.3390/ijms20184600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have generated great attention in oncology as they play a fundamental role in the regulation of gene expression and their aberrant expression is present in almost all types of tumors including pediatric ones. The discovery that miRNAs can be transported by exosomes, which are vesicles of 40–120 nm involved in cellular communication, that are produced by different cell types, and that are present in different biological fluids, has opened the possibility of using exosomal miRNAs as biomarkers. The possibility to diagnose and monitor the progression and response to drugs through molecules that can be easily isolated from biological fluids represents a particularly important aspect in the pediatric context where invasive techniques are often used. In recent years, the idea of liquid biopsy as well as studies on the possible role of exosomal miRNAs as biomarkers have developed greatly. In this review, we report an overview of all the evidences acquired in recent years on the identification of exosomal microRNAs with biomarker potential in pediatric cancers. We discuss the following herein: neuroblastoma, hepatoblastoma, sarcomas (osteosarcoma, Ewing’s sarcoma and rhabdoid tumors, and non-rhabdomyosarcoma soft tissue sarcoma), brain tumors, lymphomas, and leukemias.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Patrizia Vitullo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Loretta Antonetti
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Ida Russo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
26
|
Anti-microRNA screen uncovers miR-17 family within miR-17~92 cluster as the primary driver of kidney cyst growth. Sci Rep 2019; 9:1920. [PMID: 30760828 PMCID: PMC6374450 DOI: 10.1038/s41598-019-38566-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the leading genetic cause of renal failure. We have recently shown that inhibiting miR-17~92 is a potential novel therapeutic approach for ADPKD. However, miR-17~92 is a polycistronic cluster that encodes microRNAs (miRNAs) belonging to the miR-17, miR-18, miR-19 and miR-25 families, and the relative pathogenic contribution of these miRNA families to ADPKD progression is unknown. Here we performed an in vivo anti-miR screen to identify the miRNA drug targets within the miR-17~92 miRNA cluster. We designed anti-miRs to individually inhibit miR-17, miR-18, miR-19 or miR-25 families in an orthologous ADPKD model. Treatment with anti-miRs against the miR-17 family reduced cyst proliferation, kidney-weight-to-body-weight ratio and cyst index. In contrast, treatment with anti-miRs against the miR-18, 19, or 25 families did not affect cyst growth. Anti-miR-17 treatment recapitulated the gene expression pattern observed after miR-17~92 genetic deletion and was associated with upregulation of mitochondrial metabolism, suppression of the mTOR pathway, and inhibition of cyst-associated inflammation. Our results argue against functional cooperation between the various miR-17~92 cluster families in promoting cyst growth, and instead point to miR-17 family as the primary therapeutic target for ADPKD.
Collapse
|
27
|
Nowakowski TJ, Rani N, Golkaram M, Zhou HR, Alvarado B, Huch K, West JA, Leyrat A, Pollen AA, Kriegstein AR, Petzold LR, Kosik KS. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat Neurosci 2018; 21:1784-1792. [PMID: 30455455 PMCID: PMC6312854 DOI: 10.1038/s41593-018-0265-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/02/2018] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) regulate many cellular events during brain development by interacting with hundreds of mRNA transcripts. However, miRNAs operate nonuniformly upon the transcriptional profile with an as yet unknown logic. Shortcomings in defining miRNA-mRNA networks include limited knowledge of in vivo miRNA targets and their abundance in single cells. By combining multiple complementary approaches, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation with an antibody to AGO2 (AGO2-HITS-CLIP), single-cell profiling and computational analyses using bipartite and coexpression networks, we show that miRNA-mRNA interactions operate as functional modules that often correspond to cell-type identities and undergo dynamic transitions during brain development. These networks are highly dynamic during development and over the course of evolution. One such interaction is between radial-glia-enriched ORC4 and miR-2115, a great-ape-specific miRNA, which appears to control radial glia proliferation rates during human brain development.
Collapse
Affiliation(s)
- Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.
| | - Neha Rani
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Hongjun R Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Beatriz Alvarado
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kylie Huch
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jay A West
- New Technologies, Fluidigm Corporation, South San Francisco, CA, USA
| | - Anne Leyrat
- New Technologies, Fluidigm Corporation, South San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Linda R Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
28
|
Cassé F, Richetin K, Toni N. Astrocytes' Contribution to Adult Neurogenesis in Physiology and Alzheimer's Disease. Front Cell Neurosci 2018; 12:432. [PMID: 30538622 PMCID: PMC6277517 DOI: 10.3389/fncel.2018.00432] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis is one of the most drastic forms of brain plasticity in adulthood and there is a growing body of evidence showing that, in the hippocampus, this process contributes to mechanisms of memory as well as depression. Interestingly, adult neurogenesis is tightly regulated by the neurogenic niche, which provides a structural and molecular scaffold for stem cell proliferation and the differentiation and functional integration of new neurons. In this review, we highlight the role of astrocytes in the regulation of adult neurogenesis in the context of cognitive function. We also discuss how the changes in astrocytes function may dysregulate adult neurogenesis and contribute to cognitive impairment in the context of Alzheimer's disease.
Collapse
Affiliation(s)
- Frédéric Cassé
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Kevin Richetin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
29
|
Liang CL, Zhang PC, Wu JB, Liu BH, Yu-He, Lu RR, Jie-Zhou, Zhou JY. Zhen-wu-tang attenuates Adriamycin-induced nephropathy via regulating AQP2 and miR-92b. Biomed Pharmacother 2018; 109:1296-1305. [PMID: 30551379 DOI: 10.1016/j.biopha.2018.10.146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Nephrotic syndrome (NS) is characterized by proteinuria, hypoalbuminemia and edema. The disorder of sodium and water metabolism is a critical mechanism regulating the origination and progression of NS. Zhen-wu-tang (ZWT) has been traditionally used to treat edema disease in China and Japan. The present study was carried out to assess the protective effect of ZWT in Adriamycin-induced (ADR) NS rats and investigate the potential anti-NS mechanisms of ZWT. We found that ZWT treatment ameliorate impaired kidney function and regulate water balance of kidney. Importantly, ZWT increased the expression of Aquaporin-2 (AQP2) which play key roles in maintaining body water homeostasis. Additionally, we determined miRNAs expression patterns in NS rats. Using bioinformatics prediction and miR-92b mimic or inhibitor in vitro, we identified miR-92b as a possible modulator of AQP2. Also we found that ZWT can decrease the expression of miR-92b and reverse the effect of miR-92b on AQP2 in vitro. We further demonstrated that miR-92b directly regulated AQP2 expression by targeting 3'-UTR of AQP2. These finding suggest that ZWT may reduce renal edema in Adriamycin-induced nephropathy via regulating AQP2 and miR-92b.
Collapse
Affiliation(s)
- Chun-Ling Liang
- Section of Immunology and Joint Immunology Program, the Second Affiliated Hospital, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Pei-Chun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jun-Biao Wu
- Section of Immunology and Joint Immunology Program, the Second Affiliated Hospital, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bi-Hao Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu-He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rui-Rui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie-Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiu-Yao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF. The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Front Neurosci 2018; 12:571. [PMID: 30186101 PMCID: PMC6113890 DOI: 10.3389/fnins.2018.00571] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.
Collapse
Affiliation(s)
- Gina E. Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Francesco Bedogni
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Rebecca D. Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Liu F, Sang M, Meng L, Gu L, Liu S, Li J, Geng C. miR‑92b promotes autophagy and suppresses viability and invasion in breast cancer by targeting EZH2. Int J Oncol 2018; 53:1505-1515. [PMID: 30066891 PMCID: PMC6086627 DOI: 10.3892/ijo.2018.4486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/30/2018] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRs) are a small non-coding RNA family with a length of 18–22 nucleotides. They are able to regulate gene expression by either triggering target messenger RNA degradation or by inhibiting mRNA translation. Enhancer of zeste homolog 2 (EZH2) is the core enzymatic subunit of polycomb repressor complex 2 and is responsible for the trimethylation of histone 3 on lysine 27 (H3K27me3); it is also able to silence a bundle of tumor suppressor genes through promoter binding. However, little is known regarding the effect of miR-92b on cell autophagy, viability and invasion as well as how it interacts with EZH2. The present study investigated the major role of miR-92b in the autophagy, viability and invasion of breast cancer. It was revealed that in MCF-7 and MDA-MB-453 cells, the expression of miR-92b promoted autophagy induced by starvation and rapamycin treatment. The results of in vitro experiments results demonstrated that miR-92b inhibited breast cancer cell viability, invasion and migration. To further elucidate the regulatory mechanisms of miR-92b in autophagy, a dual luciferase reporter assay was performed to determine whether miR-92b targeted the EZH2 gene. The expression of miR-92b was negatively correlated to EZH2 mRNA expression in breast cancer. Depletion of EZH2 induced phenocopied effects on miR-92b overexpression, thereby demonstrating its importance in autophagy. These results indicated that miR-92b may serve an important role in breast cancer in controlling autophagy, viability and invasion. The present study indicated that miR-92b and EZH2 may serve as potential biomarkers for cancer detection and highlighted their possible therapeutic implications.
Collapse
Affiliation(s)
- Fei Liu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Meixiang Sang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lingjiao Meng
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lina Gu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Shina Liu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Juan Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Cuizhi Geng
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
32
|
Albert M, Huttner WB. Epigenetic and Transcriptional Pre-patterning-An Emerging Theme in Cortical Neurogenesis. Front Neurosci 2018; 12:359. [PMID: 29896084 PMCID: PMC5986960 DOI: 10.3389/fnins.2018.00359] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Neurogenesis is the process through which neural stem and progenitor cells generate neurons. During the development of the mouse neocortex, stem and progenitor cells sequentially give rise to neurons destined to different cortical layers and then switch to gliogenesis resulting in the generation of astrocytes and oligodendrocytes. Precise spatial and temporal regulation of neural progenitor differentiation is key for the proper formation of the complex structure of the neocortex. Dynamic changes in gene expression underlie the coordinated differentiation program, which enables the cells to generate the RNAs and proteins required at different stages of neurogenesis and across different cell types. Here, we review the contribution of epigenetic mechanisms, with a focus on Polycomb proteins, to the regulation of gene expression programs during mouse neocortical development. Moreover, we discuss the recent emerging concept of epigenetic and transcriptional pre-patterning in neocortical progenitor cells as well as post-transcriptional mechanisms for the fine-tuning of mRNA abundance.
Collapse
Affiliation(s)
- Mareike Albert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
33
|
Abstract
The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Tomasz Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA.,Department of Anatomy, University of California, San Francisco, California 94158, USA
| |
Collapse
|
34
|
Ma G, Jing C, Li L, Huang F, Ding F, Wang B, Lin D, Luo A, Liu Z. MicroRNA-92b represses invasion-metastasis cascade of esophageal squamous cell carcinoma. Oncotarget 2018; 7:20209-22. [PMID: 26934001 PMCID: PMC4991448 DOI: 10.18632/oncotarget.7747] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Invasion and metastasis are major contributors to cancer-caused death in patients suffered from esophageal squamous cell carcinoma (ESCC). To explore the microRNAs involved in regulating invasion-metastasis cascade of ESCC, we established two pairs of sublines (30-U/D and 180-U/D) with distinct motility capacity from two ESCC cell lines (KYSE30 and KYSE180). Screening of the differentially expressed microRNAs identified that microRNA-92b-3p (miR-92b) could dramatically inhibit invasion and metastasis of ESCC cells in vitro and in vivo. Subsequent studies showed that miR-92b exerted its inhibitory function through suppressing the expression of integrin αV (ITGAV), which further reduced phosphrylated FAK and impaired Rac1 activation. Moreover, higher expression of miR-92b in ESCC tissues correlated inversely with lymph node metastasis and indicated better prognosis. Together, these results for the first time describe how miR-92b suppresses the motility of ESCC cells and provide a promise for diagnosis or therapy of ESCC invasion and metastasis.
Collapse
Affiliation(s)
- Gang Ma
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Chao Jing
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Lin Li
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Furong Huang
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Fang Ding
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Baona Wang
- Department of Anesthesiology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Dongmei Lin
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Aiping Luo
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| |
Collapse
|
35
|
Langfelder P, Gao F, Wang N, Howland D, Kwak S, Vogt TF, Aaronson JS, Rosinski J, Coppola G, Horvath S, Yang XW. MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice. PLoS One 2018; 13:e0190550. [PMID: 29324753 PMCID: PMC5764268 DOI: 10.1371/journal.pone.0190550] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
In Huntington's disease (HD) patients and in model organisms, messenger RNA transcriptome has been extensively studied; in contrast, comparatively little is known about expression and potential role of microRNAs. Using RNA-sequencing, we have quantified microRNA expression in four brain regions and liver, at three different ages, from an allelic series of HD model mice with increasing CAG length in the endogenous Huntingtin gene. Our analyses reveal CAG length-dependent microRNA expression changes in brain, with 159 microRNAs selectively altered in striatum, 102 in cerebellum, 51 in hippocampus, and 45 in cortex. In contrast, a progressive CAG length-dependent microRNA dysregulation was not observed in liver. We further identify microRNAs whose transcriptomic response to CAG length expansion differs significantly among the brain regions and validate our findings in data from a second, independent cohort of mice. Using existing mRNA expression data from the same animals, we assess the possible relationships between microRNA and mRNA expression and highlight candidate microRNAs that are negatively correlated with, and whose predicted targets are enriched in, CAG-length dependent mRNA modules. Several of our top microRNAs (Mir212/Mir132, Mir218, Mir128 and others) have been previously associated with aspects of neuronal development and survival. This study provides an extensive resource for CAG length-dependent changes in microRNA expression in disease-vulnerable and -resistant brain regions in HD mice, and provides new insights for further investigation of microRNAs in HD pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
| | - Fuying Gao
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- UCLA Brain Research Institute, Los Angeles, CA, United States of America
| | - David Howland
- CHDI Foundation/CHDI Management Inc., Princeton, NJ, United States of America
| | - Seung Kwak
- CHDI Foundation/CHDI Management Inc., Princeton, NJ, United States of America
| | - Thomas F. Vogt
- CHDI Foundation/CHDI Management Inc., Princeton, NJ, United States of America
| | - Jeffrey S. Aaronson
- CHDI Foundation/CHDI Management Inc., Princeton, NJ, United States of America
| | - Jim Rosinski
- CHDI Foundation/CHDI Management Inc., Princeton, NJ, United States of America
| | - Giovanni Coppola
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- UCLA Brain Research Institute, Los Angeles, CA, United States of America
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- Department of Biostatistics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - X. William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, United States of America
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
- UCLA Brain Research Institute, Los Angeles, CA, United States of America
| |
Collapse
|
36
|
Heide M, Long KR, Huttner WB. Novel gene function and regulation in neocortex expansion. Curr Opin Cell Biol 2017; 49:22-30. [PMID: 29227861 DOI: 10.1016/j.ceb.2017.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 01/01/2023]
Abstract
The expansion of the neocortex during human evolution is due to changes in our genome that result in increased and prolonged proliferation of neural stem and progenitor cells during neocortex development. Three principal types of such genomic changes can be distinguished, first, novel gene regulation in human, second, novel function in human of genes existing in both human and non-human species, and third, novel, human-specific genes. The latter comprise both, increases in the copy number of genes existing also in non-human species, and the emergence of genes giving rise to unique, human-specific gene products. Examples of all these types of changes in the human genome have been identified, with ARHGAP11B constituting a paradigmatic example of a unique, human-specific protein.
Collapse
Affiliation(s)
- Michael Heide
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany.
| |
Collapse
|
37
|
Abdullah AI, Zhang H, Nie Y, Tang W, Sun T. CDK7 and miR-210 Co-regulate Cell-Cycle Progression of Neural Progenitors in the Developing Neocortex. Stem Cell Reports 2017; 7:69-79. [PMID: 27411104 PMCID: PMC4944761 DOI: 10.1016/j.stemcr.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms regulating neural progenitor (NP) proliferation are fundamental in establishing the cytoarchitecture of the mammalian neocortex. The rate of cell-cycle progression and a fine-tuned balance between cell-cycle re-entry and exit determine the numbers of both NPs and neurons as well as postmitotic neuronal laminar distribution in the cortical wall. Here, we demonstrate that the microRNA (miRNA) miR-210 is required for normal mouse NP cell-cycle progression. Overexpression of miR-210 promotes premature cell-cycle exit and terminal differentiation in NPs, resulting in an increase in early-born postmitotic neurons. Conversely, miR-210 knockdown promotes an increase in the radial glial cell population and delayed differentiation, resulting in an increase in late-born postmitotic neurons. Moreover, the cyclin-dependent kinase CDK7 is regulated by miR-210 and is necessary for normal NP cell-cycle progression. Our findings demonstrate that miRNAs are essential for normal NP proliferation and cell-cycle progress during neocortical development. miR-210 level is essential for cell-cycle progression in cortical neural progenitors Cdk7 and miR-210 control neural progenitor proliferation miR-210 promotes premature cell-cycle exit and differentiation in neural progenitors miR-210 expression induces a deep-layer neuronal fate in the neocortex
Collapse
Affiliation(s)
- Aisha I Abdullah
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | - Haijun Zhang
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA; Department of Genetic Medicine, Cornell University Weill Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Yanzhen Nie
- Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Tang
- Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 2nd Ruijin Road, Shanghai 200025, China.
| | - Tao Sun
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY 10065, USA.
| |
Collapse
|
38
|
Popovitchenko T, Rasin MR. Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortical Lamination. Front Neuroanat 2017; 11:102. [PMID: 29170632 PMCID: PMC5684109 DOI: 10.3389/fnana.2017.00102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
The neocortex is a laminated brain structure that is the seat of higher cognitive capacity and responses, long-term memory, sensory and emotional functions, and voluntary motor behavior. Proper lamination requires that progenitor cells give rise to a neuron, that the immature neuron can migrate away from its mother cell and past other cells, and finally that the immature neuron can take its place and adopt a mature identity characterized by connectivity and gene expression; thus lamination proceeds through three steps: genesis, migration, and maturation. Each neocortical layer contains pyramidal neurons that share specific morphological and molecular characteristics that stem from their prenatal birth date. Transcription factors are dynamic proteins because of the cohort of downstream factors that they regulate. RNA-binding proteins are no less dynamic, and play important roles in every step of mRNA processing. Indeed, recent screens have uncovered post-transcriptional mechanisms as being integral regulatory mechanisms to neocortical development. Here, we summarize major aspects of neocortical laminar development, emphasizing transcriptional and post-transcriptional mechanisms, with the aim of spurring increased understanding and study of its intricacies.
Collapse
Affiliation(s)
- Tatiana Popovitchenko
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mladen-Roko Rasin
- Neuroscience and Cell Biology, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
39
|
Circulating MicroRNA-92b-3p as a Novel Biomarker for Monitoring of Synovial Sarcoma. Sci Rep 2017; 7:14634. [PMID: 29116117 PMCID: PMC5676745 DOI: 10.1038/s41598-017-12660-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The lack of useful biomarkers is a crucial problem for patients with soft tissue sarcomas (STSs). Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel impact as biomarkers for patients with malignant diseases, but their significance in synovial sarcoma (SS) patients remains unknown. Initial global miRNA screening using SS patient serum and SS cell culture media identified a signature of four upregulated miRNAs. Among these candidates, miR-92b-3p secretion from SS cells was confirmed, which was embedded within tumour-derived exosomes rather than argonaute-2. Animal experiments revealed a close correlation between serum miR-92b-3p levels and tumour dynamics. Clinical relevance was validated in two independent clinical cohorts, and we subsequently identified that serum miR-92b-3p levels were significantly higher in SS patients in comparison to that in healthy individuals. Moreover, serum miR-92b-3p was robust in discriminating patients with SS from the other STS patients and reflected tumour burden in SS patients. Overall, liquid biopsy using serum miR-92b-3p expression levels may represent a novel approach for monitoring tumour dynamics of SS.
Collapse
|
40
|
Govindan S, Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 2017; 591:3960-3977. [PMID: 28895133 DOI: 10.1002/1873-3468.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The adult neocortex is composed of several types of glutamatergic neurons, which are sequentially born from progenitors during development. The extent and nature of progenitor diversity, and how it relates to neuronal diversity, is still poorly understood. In this review, we discuss key features of neocortical progenitors across several species, including their morphological properties, cell cycling behaviour and molecular signatures, and how these features relate to the competence of these cells to generate distinct types of progenies.
Collapse
Affiliation(s)
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
41
|
Tian Z, Zhang J, He H, Li J, Wu Y, Shen Z. MiR-525-3p mediates antiviral defense to rotavirus infection by targeting nonstructural protein 1. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3212-3225. [PMID: 28890396 DOI: 10.1016/j.bbadis.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are short RNAs of approximately 22 nucleotides that post-transcriptionally regulate gene expression by controlling mRNA stability or translation. They play critical roles in intricate networks of host-pathogen interactions and innate immunity. Rotaviruses (RVs) are the leading cause of severe diarrhea among infants and young children worldwide. This study was undertaken to demonstrate the importance of cellular miRNAs during RV (human Wa RV or Rhesus RV) strains infection. Twenty-nine differentially regulated miRNAs were identified during RV infection, and miR-525-3p was downregulated and validated by quantitative real-time polymerase chain reaction (qRT-PCR). MiR-525-3p mimic inhibited RV replication in dose-dependent manner. Correspondingly, the miR-525-3p inhibitors enhanced RV replication. We confirmed that miR-525-3p was complementary to the 3' untranslated region (UTR) of nonstructural protein 1(NSP1) of RV (Wa or Rhesus) strains. Interestingly, miR-525-3p induced type I interferon (IFN) expression and proinflammatory cytokines during RV infection through IFN regulatory factor (IRF) 3/IRF7 and NF-κB activation, which can induce an antiviral state to further suppress RV infection. In addition, RV suppressed miR-525-3p expression to evade host innate immunity through the action of the RV protein NSP1. These results suggest that miR-525-3p has the potential to be used as an antiviral therapeutic against RV infection.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Ji Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Haiyang He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Jintao Li
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| | - Zigang Shen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| |
Collapse
|
42
|
Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, Henzi R. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes. Stem Cells Int 2017; 2017:1719050. [PMID: 29081809 PMCID: PMC5610870 DOI: 10.1155/2017/1719050] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023] Open
Abstract
Repetitive stress negatively affects several brain functions and neuronal networks. Moreover, adult neurogenesis is consistently impaired in chronic stress models and in associated human diseases such as unipolar depression and bipolar disorder, while it is restored by effective antidepressant treatments. The adult neurogenic niche contains neural progenitor cells in addition to amplifying progenitors, neuroblasts, immature and mature neurons, pericytes, astrocytes, and microglial cells. Because of their particular and crucial position, with their end feet enwrapping endothelial cells and their close communication with the cells of the niche, astrocytes might constitute a nodal point to bridge or transduce systemic stress signals from peripheral blood, such as glucocorticoids, to the cells involved in the neurogenic process. It has been proposed that communication between astrocytes and niche cells depends on direct cell-cell contacts and soluble mediators. In addition, new evidence suggests that this communication might be mediated by extracellular vesicles such as exosomes, and in particular, by their miRNA cargo. Here, we address some of the latest findings regarding the impact of stress in the biology of the neurogenic niche, and postulate how astrocytic exosomes (and miRNAs) may play a fundamental role in such phenomenon.
Collapse
Affiliation(s)
- Alejandro Luarte
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Pablo Cisternas
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Ariel Caviedes
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Federico Batiz
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carlos Lafourcade
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Roberto Henzi
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
43
|
Lennox AL, Mao H, Silver DL. RNA on the brain: emerging layers of post-transcriptional regulation in cerebral cortex development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28837264 DOI: 10.1002/wdev.290] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Embryonic development is a critical period during which neurons of the brain are generated and organized. In the developing cerebral cortex, this requires complex processes of neural progenitor proliferation, neuronal differentiation, and migration. Each step relies upon highly regulated control of gene expression. In particular, RNA splicing, stability, localization, and translation have emerged as key post-transcriptional regulatory nodes of mouse corticogenesis. Trans-regulators of RNA metabolism, including microRNAs (miRs) and RNA-binding proteins (RBPs), orchestrate diverse steps of cortical development. These trans-factors function either individually or cooperatively to influence RNAs, often of similar classes, termed RNA regulons. New technological advances raise the potential for an increasingly sophisticated understanding of post-transcriptional control in the developing neocortex. Many RNA-binding factors are also implicated in neurodevelopmental diseases of the cortex. Therefore, elucidating how RBPs and miRs converge to influence mRNA expression in progenitors and neurons will give valuable insights into mechanisms of cortical development and disease. WIREs Dev Biol 2018, 7:e290. doi: 10.1002/wdev.290 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory RNA Nervous System Development > Vertebrates: Regional Development Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
- Ashley L Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Hanqian Mao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab 2016; 36:2034-2043. [PMID: 27742890 PMCID: PMC5363673 DOI: 10.1177/0271678x16674487] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Hypoxic/ischemic injury is the single most important cause of disabilities in infants, while stroke remains a leading cause of morbidity in children and adults around the world. The injured brain has limited repair capacity, and thereby only modest improvement of neurological function is evident post injury. In rodents, embryonic neural stem cells in the ventricular zone generate cortical neurons, and adult neural stem cells in the ventricular-subventricular zone of the lateral ventricle produce new neurons through animal life. In addition to generation of new neurons, neural stem cells contribute to oligodendrogenesis. Neurogenesis and oligodendrogenesis are essential for repair of injured brain. Much progress has been made in preclinical studies on elucidating the cellular and molecular mechanisms that control and coordinate neurogenesis and oligodendrogenesis in perinatal hypoxic/ischemic injury and the adult ischemic brain. This article will review these findings with a focus on the ventricular-subventricular zone neurogenic niche and discuss potential applications to facilitate endogenous neurogenesis and thereby to improve neurological function post perinatal hypoxic/ischemic injury and stroke.
Collapse
Affiliation(s)
- Ruilan Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, USA
- Department of Physics, Oakland University, Rochester, USA
| |
Collapse
|
45
|
Florio M, Borrell V, Huttner WB. Human-specific genomic signatures of neocortical expansion. Curr Opin Neurobiol 2016; 42:33-44. [PMID: 27912138 DOI: 10.1016/j.conb.2016.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022]
Abstract
Neocortex evolutionary expansion is primarily due to increased proliferative capacity of neural progenitor cells during cortical development. Exploiting insights into the cell biology of cortical progenitors gained during the past two decades, recent studies uncovered a variety of gene expression differences that underlie differential cortical progenitor behavior. These comprise both, differences between cortical areas that likely provide a molecular basis for cortical folding, and differences across species thought to be responsible for increases in neocortex size. Human-specific signatures have been identified for gene regulatory elements, non-coding gene products, and protein-encoding genes, and have been functionally examined in in vivo as well as novel in vitro model systems.
Collapse
Affiliation(s)
- Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.
| |
Collapse
|
46
|
Fededa JP, Esk C, Mierzwa B, Stanyte R, Yuan S, Zheng H, Ebnet K, Yan W, Knoblich JA, Gerlich DW. MicroRNA-34/449 controls mitotic spindle orientation during mammalian cortex development. EMBO J 2016; 35:2386-2398. [PMID: 27707753 PMCID: PMC5109238 DOI: 10.15252/embj.201694056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 01/07/2023] Open
Abstract
Correct orientation of the mitotic spindle determines the plane of cellular cleavage and is crucial for organ development. In the developing cerebral cortex, spindle orientation defects result in severe neurodevelopmental disorders, but the precise mechanisms that control this important event are not fully understood. Here, we use a combination of high-content screening and mouse genetics to identify the miR-34/449 family as key regulators of mitotic spindle orientation in the developing cerebral cortex. By screening through all cortically expressed miRNAs in HeLa cells, we show that several members of the miR-34/449 family control mitotic duration and spindle rotation. Analysis of miR-34/449 knockout (KO) mouse embryos demonstrates significant spindle misorientation phenotypes in cortical progenitors, resulting in an excess of radial glia cells at the expense of intermediate progenitors and a significant delay in neurogenesis. We identify the junction adhesion molecule-A (JAM-A) as a key target for miR-34/449 in the developing cortex that might be responsible for those defects. Our data indicate that miRNA-dependent regulation of mitotic spindle orientation is crucial for cell fate specification during mammalian neurogenesis.
Collapse
Affiliation(s)
- Juan Pablo Fededa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Christopher Esk
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Beata Mierzwa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Rugile Stanyte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Klaus Ebnet
- Institute-associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, Münster, Germany
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
47
|
Abstract
T-box transcription factors play key roles in the regulation of developmental processes such as cell differentiation and migration. Mammals have 17 T-box genes, of which several regulate brain development. The Tbr1 subfamily of T-box genes is particularly important in development of the cerebral cortex, olfactory bulbs (OBs), and cerebellum. This subfamily is comprised of Tbr1, Tbr2 (also known as Eomes), and Tbx21. In developing cerebral cortex, Tbr2 and Tbr1 are expressed during successive stages of differentiation in the pyramidal neuron lineage, from Tbr2+ intermediate progenitors to Tbr1+ postmitotic glutamatergic neurons. At each stage, Tbr2 and Tbr1 regulate laminar and regional identity of cortical projection neurons, cell migration, and axon guidance. In the OB, Tbr1 subfamily genes regulate neurogenesis of mitral and tufted cells, and glutamatergic juxtaglomerular interneurons. Tbr2 is also prominent in the development of retinal ganglion cells in nonimage-forming pathways. Other regions that require Tbr2 or Tbr1 in development or adulthood include the cerebellum and adult dentate gyrus. In humans, de novo mutations in TBR1 are important causes of sporadic autism and intellectual disability. Further studies of T-box transcription factors will enhance our understanding of neurodevelopmental disorders and inform approaches to new therapies.
Collapse
|
48
|
Wang R, Kang Y, Löhr CV, Fischer KA, Bradford CS, Johnson G, Dashwood WM, Williams DE, Ho E, Dashwood RH. Reciprocal regulation of BMF and BIRC5 (Survivin) linked to Eomes overexpression in colorectal cancer. Cancer Lett 2016; 381:341-8. [PMID: 27539959 DOI: 10.1016/j.canlet.2016.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Eomesodermin (Eomes) is a T-box transcription factor that has been implicated in the etiology of colorectal cancer and other human malignancies. We screened a panel of human primary colon cancers and patient-matched controls (n = 30) and detected Eomes overexpression at the mRNA and protein level. Similar results were obtained in a panel of rat colon tumors and adjacent normal-looking colonic mucosa (n = 24). In human colon cancer cells, forced overexpression of Eomes enhanced cell viability and protected against staurosporine-induced apoptosis. On the other hand, knocking down Eomes resulted in reduced cell viability, G2/M cell cycle arrest, and apoptosis induction. The apoptotic mechanism centered on the reciprocal downregulation of anti-apoptotic BIRC5 (Survivin) and upregulation of proapoptotic Bcl-2 modifying factor (BMF). In patients with colorectal cancer, high EOMES expression (n = 95) was associated with poor overall survival compared with individuals exhibiting low EOMES levels (n = 80). We conclude from the current investigation, and prior literature, that Eomes has a divergent role in cancer development, with evidence for tumor suppressor and oncogenic functions, depending on stage and tissue context. Further studies are warranted on the apoptotic mechanisms linked to the reciprocal regulation of BMF and BIRC5 in human colorectal cancers characterized by Eomes overexpression.
Collapse
Affiliation(s)
- Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Yuki Kang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Kay A Fischer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - C Samuel Bradford
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Gavin Johnson
- Center for Epigenetics & Disease Prevention, Texas A&M University Health Science Center, Houston, TX, USA
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M University Health Science Center, Houston, TX, USA
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Roderick H Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M University Health Science Center, Houston, TX, USA; Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, USA; Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
49
|
Mechanisms of Plasticity, Remodeling and Recovery. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Cacchiarelli D, Trapnell C, Ziller MJ, Soumillon M, Cesana M, Karnik R, Donaghey J, Smith ZD, Ratanasirintrawoot S, Zhang X, Ho Sui SJ, Wu Z, Akopian V, Gifford CA, Doench J, Rinn JL, Daley GQ, Meissner A, Lander ES, Mikkelsen TS. Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell 2015; 162:412-424. [PMID: 26186193 DOI: 10.1016/j.cell.2015.06.016] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/18/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
Abstract
Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here, we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered re-activation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PAPERCLIP.
Collapse
Affiliation(s)
- Davide Cacchiarelli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J Ziller
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Magali Soumillon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcella Cesana
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Boston Children's Hospital and Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Julie Donaghey
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Zachary D Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sutheera Ratanasirintrawoot
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Boston Children's Hospital and Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | - Shannan J Ho Sui
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhaoting Wu
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Boston Children's Hospital and Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Veronika Akopian
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Casey A Gifford
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - George Q Daley
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Boston Children's Hospital and Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Tarjei S Mikkelsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|