1
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
2
|
Wu L, Wang M, Cheng A, Tian B, Huang J, Wu Y, Yang Q, Ou X, Sun D, Zhang S, Zhao X, Gao Q, He Y, Zhu D, Chen S, Liu M, Jia R. Duck plague virus tegument protein vp22 plays a key role in the secondary envelopment and cell-to-cell spread. Vet Res 2023; 54:60. [PMID: 37461115 DOI: 10.1186/s13567-023-01191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Duck plague virus (DPV) is one of the major infectious and fatal diseases of geese, ducks, and other wild waterfowl. The DPV UL49 gene product VP22 is one of the most abundant tegument proteins. However, the role of the DPV VP22 is enigmatic to be clarified. In this study, we found deletion of the UL49 gene resulted in reduced viral growth curve and smaller plaque size in duck embryo fibroblast (DEF) cells, confirming that DPV VP22 is required for efficient viral growth in vitro. In addition, deletion of the UL49 gene inhibited the secondary envelopment of the virus, the release of viral particles, and the spread of viruses between cells. Our study signified the importance of VP22 for DPV secondary envelopment, release, cell-to-cell spread, and accumulation of viral RNA. These findings provide a basis for further study of the function of VP22 in DPV or other herpesviruses.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
| | - Bin Tian
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Juan Huang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ying Wu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xumin Ou
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Di Sun
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qun Gao
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yu He
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shun Chen
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| |
Collapse
|
3
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Zhou T, Wang M, Cheng A, Yang Q, Tian B, Wu Y, Jia R, Chen S, Liu M, Zhao XX, Ou X, Mao S, Sun D, Zhang S, Zhu D, Huang J, Gao Q, Yu Y, Zhang L. Regulation of alphaherpesvirus protein via post-translational phosphorylation. Vet Res 2022; 53:93. [PMID: 36397147 PMCID: PMC9670612 DOI: 10.1186/s13567-022-01115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
An alphaherpesvirus carries dozens of viral proteins in the envelope, tegument and capsid structure, and each protein plays an indispensable role in virus adsorption, invasion, uncoating and release. After infecting the host, a virus eliminates unfavourable factors via multiple mechanisms to escape or suppress the attack of the host immune system. Post-translational modification of proteins, especially phosphorylation, regulates changes in protein conformation and biological activity through a series of complex mechanisms. Many viruses have evolved mechanisms to leverage host phosphorylation systems to regulate viral protein activity and establish a suitable cellular environment for efficient viral replication and virulence. In this paper, viral protein kinases and the regulation of viral protein function mediated via the phosphorylation of alphaherpesvirus proteins are described. In addition, this paper provides new ideas for further research into the role played by the post-translational modification of viral proteins in the virus life cycle, which will be helpful for understanding the mechanisms of viral infection of a host and may lead to new directions of antiviral treatment.
Collapse
Affiliation(s)
- Tong Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| |
Collapse
|
5
|
Musarra-Pizzo M, Pennisi R, Lombardo D, Velletri T, Sciortino MT. Direct cleavage of caspase-8 by herpes simplex virus 1 tegument protein US11. Sci Rep 2022; 12:12317. [PMID: 35853963 PMCID: PMC9296525 DOI: 10.1038/s41598-022-15942-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The HSV-1 tegument protein Us11 counteracts the antiviral defense mechanisms by precluding the host protein shutoff. Previous works demonstrated that Us11 prevents heat-and staurosporine-induced apoptosis and inhibits autophagy. Therefore, in the present study, we investigated the hypothesis that HSV-1, through Us11, could recruit caspase-8, a key enzyme regulating programmed cell death. We first show that HSV-1 promotes the accumulation of caspase-8-p18 active fragments in both semi permissive THP-1 cells and fully permissive HEp-2 cells to HSV-1 replication. Using a recombinant virus R3630 (ΔUs11/ΔUs12) and a plasmid encoding Us11-recombinant protein we have proven that Us11 promotes p18 accumulation, which does not trigger the apoptotic signaling. Additional, in an in vitro model, we demonstrated that Us11-recombinant protein induces caspase-8-p18 cleavage by physically interacting with the caspase-8 recombinant protein. Finally, we found that, during HSV-1 replication, activated-caspase-8 cleaves Atg3 protein to potentially block autophagy and support its replication.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Daniele Lombardo
- Division of Clinical and Molecular Hepatology, University Hospital 'G. Martino' of Messina, 98124, Messina, Italy
| | - Tania Velletri
- IFOM-Cogentech Società Benefit Srl, via Adamello 16, 20139, Milan, Italy. Local Unit: Scientific and Technological Park of Sicily, 95121 Catania, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.
| |
Collapse
|
6
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
7
|
The Tegument Protein pUL47 of Marek's Disease Virus Is Necessary for Horizontal Transmission and Is Important for Expression of Glycoprotein gC. J Virol 2020; 95:JVI.01645-20. [PMID: 32999032 DOI: 10.1128/jvi.01645-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Viral tropism and transmission of herpesviruses are best studied in their natural host for maximal biological relevance. In the case of alphaherpesviruses, few reports have focused on those aspects, primarily because of the few animal models available as natural hosts that are compatible with such studies. Here, using Marek's disease virus (MDV), a highly contagious and deadly alphaherpesvirus of chickens, we analyze the role of tegument proteins pUL47 and pUL48 in the whole life cycle of the virus. We report that a virus lacking the UL48 gene (vΔUL48) is impaired in growth in cell culture and has diminished virulence in vivo In contrast, a virus lacking UL47 (vΔUL47) is unaffected in its growth in vitro and is as virulent in vivo as the wild-type (WT) virus. Surprisingly, we observed that vΔUL47 was unable to be horizontally transmitted to naive chickens, in contrast to the WT virus. In addition, we show that pUL47 is important for the splicing of UL44 transcripts encoding glycoprotein gC, a protein known as being essential for horizontal transmission of MDV. Importantly, we observed that the levels of gC are lower in the absence of pUL47. Notably, this phenotype is similar to that of another transmission-incompetent mutant ΔUL54, which also affects the splicing of UL44 transcripts. This is the first study describing the role of pUL47 in both viral transmission and the splicing and expression of gC.IMPORTANCE Host-to-host transmission of viruses is ideally studied in vivo in the natural host. Veterinary viruses such as Marek's disease virus (MDV) are, therefore, models of choice to explore these aspects. The natural host of MDV, the chicken, is small, inexpensive, and economically important. MDV is a deadly and contagious herpesvirus that can kill infected animals in less than 4 weeks. The virus naturally infects epithelial cells of the feather follicle epithelium from where it is shed into the environment. In this study, we demonstrate that the viral protein pUL47 is an essential factor for bird-to-bird transmission of the virus. We provide some molecular basis to this function by showing that pUL47 enhances the splicing and the expression of another viral gene, UL44, which is essential for viral transmission. pUL47 may have a similar function in human herpesviruses such as varicella-zoster virus or herpes simplex viruses.
Collapse
|
8
|
Purification Methods and the Presence of RNA in Virus Particles and Extracellular Vesicles. Viruses 2020; 12:v12090917. [PMID: 32825599 PMCID: PMC7552034 DOI: 10.3390/v12090917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
The fields of extracellular vesicles (EV) and virus infections are marred in a debate on whether a particular mRNA or non-coding RNA (i.e., miRNA) is packaged into a virus particle or copurifying EV and similarly, whether a particular mRNA or non-coding RNA is contained in meaningful numbers within an EV. Key in settling this debate, is whether the purification methods are adequate to separate virus particles, EV and contaminant soluble RNA and RNA:protein complexes. Differential centrifugation/ultracentrifugation and precipitating agents like polyethylene glycol are widely utilized for both EV and virus purifications. EV are known to co-sediment with virions and other particulates, such as defective interfering particles and protein aggregates. Here, we discuss how encased RNAs from a heterogeneous mixture of particles can be distinguished by different purification methods. This is particularly important for subsequent interpretation of whether the RNA associated phenotype is contributed solely by virus or EV particles or a mixture of both. We also discuss the discrepancy of miRNA abundance in EV from different input material.
Collapse
|
9
|
Wu L, Cheng A, Wang M, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Front Microbiol 2020; 11:1908. [PMID: 32849477 PMCID: PMC7427429 DOI: 10.3389/fmicb.2020.01908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Alphaherpesviruses are zoonotic pathogens that can cause a variety of diseases in humans and animals and severely damage health. Alphaherpesvirus infection is a slow and orderly process that can lie dormant for the lifetime of the host but may be reactivated when the immune system is compromised. All alphaherpesviruses feature a protein layer called the tegument that lies between the capsid and the envelope. Virus protein (VP) 22 is one of the most highly expressed tegument proteins; there are more than 2,000 copies of this protein in each viral particle. VP22 can interact with viral proteins, cellular proteins, and chromatin, and these interactions play important roles. This review summarizes the latest literature and discusses the roles of VP22 in viral gene transcription, protein synthesis, virion assembly, and viral cell-to-cell spread with the purpose of enhancing understanding of the life cycle of herpesviruses and other pathogens in host cells. The molecular interaction information herein provides important reference data.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
VHS, US3 and UL13 viral tegument proteins are required for Herpes Simplex Virus-Induced modification of protein kinase R. Sci Rep 2020; 10:5580. [PMID: 32221365 PMCID: PMC7101438 DOI: 10.1038/s41598-020-62619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
To replicate, spread and persist in the host environment, viruses have evolved several immunological escape mechanisms via the action of specific viral proteins. The model "host shut off" adopted by virion host shut off (VHS) protein of Herpes simplex type 1 (HSV-1) represents an immune evasion mechanism which affects the best-characterized component of the innate immunological response, protein kinase R (PKR). However, up to now, the real mechanism employed by VHS to control PKR is still unknown. In this paper, we implement and extend our previous findings reporting that wild-type HSV-1 is able to control PKR, whereas a VHS mutant virus (R2621) clearly induces an accumulation of phosphorylated PKR in several cell types in a VHS-RNase activity-dependent manner. Furthermore, we demonstrate for the first time a new PKR-regulatory mechanism based on the involvement of Us3 and UL13 tegument viral proteins. The combined approach of transfection and infection assay was useful to discover the new role of both viral proteins in the immunological escape and demonstrate that Us3 and UL13 control the accumulation of the phosphorylated form (ph-PKR). Lastly, since protein kinases are tightly regulated by phosphorylation events and, at the same time, phosphorylate other proteins by inducing post-translational modifications, the interplay between Us3 and VHS during HSV-1 infection has been investigated. Interestingly, we found that VHS protein accumulates at higher molecular weight following Us3 transfection, suggesting an Us3-mediated phosphorylation of VHS. These findings reveal a new intriguing interplay between viral proteins during HSV-1 infection involved in the regulation of the PKR-mediated immune response.
Collapse
|
11
|
Comparison of two automated methods for detection and differentiation of herpes simplex virus in clinical specimens. J Clin Virol 2019; 117:85-88. [PMID: 31255793 DOI: 10.1016/j.jcv.2019.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 04/26/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Aptima Herpes Simplex Virus (HSV) 1&2 Assay recently received Health Canada approved for detection and differentiation of HSV-1 and HSV-2 from anogenital sites. This assay uses target capture, transcription mediated amplification, and real-time detection of messenger RNA (mRNA) produced in host cells during active HSV infection. To evaluate its performance, the Aptima assay was compared to another Health Canada approved assay, the BD ProbeTec Herpes Simplex Viruses HSV 1&2 Qx Amplified DNA Assay, which uses strand displacement amplification technology. METHODS As recommended by the manufacturers, the Aptima and ProbeTec assays were performed on the Panther and Viper instruments, respectively. Analytical sensitivity and specificity were assessed using 10-fold serial dilution of viruses in viral universal transport media (UTM), and nucleic acids extracted and concentrated from other viruses including all members of the Herpesviridae family. The clinical sensitivity and specificity were assessed retrospectively using 60 archived specimens, and prospectively using 158 swabs in UTM. Discrepant results were resolved with real-time PCR using the Altona Diagnostics RealStar alpha Herpes assay. RESULTS Both the Aptima and ProbeTec assays showed excellent analytical and clinical specificity. However, the Aptima HSV assay failed to detect HSV in specimens with low viral loads, resulting in reduced sensitivity for HSV-2 during the retrospective evaluation at 85.0%, and for HSV-1 at 85.0% during the prospective evaluation. CONCLUSIONS This study compared the Aptima and ProbeTec HSV assays and demonstrated that detection of HSV mRNA using the Aptima HSV assay was less sensitive in both retrospective and prospective analyses.
Collapse
|
12
|
Pheasant K, Möller-Levet CS, Jones J, Depledge D, Breuer J, Elliott G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog 2018; 14:e1007331. [PMID: 30475899 PMCID: PMC6283614 DOI: 10.1371/journal.ppat.1007331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/06/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022] Open
Abstract
HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins-VP22 and VP16 -are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus by a vhs-dependent mechanism, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production.
Collapse
Affiliation(s)
- Kathleen Pheasant
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carla Sofia Möller-Levet
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Juliet Jones
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Depledge
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Judith Breuer
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
13
|
Varicella-Zoster Virus ORF9p Binding to Cellular Adaptor Protein Complex 1 Is Important for Viral Infectivity. J Virol 2018; 92:JVI.00295-18. [PMID: 29793951 DOI: 10.1128/jvi.00295-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022] Open
Abstract
ORF9p (homologous to herpes simplex virus 1 [HSV-1] VP22) is a varicella-zoster virus (VZV) tegument protein essential for viral replication. Even though its precise functions are far from being fully described, a role in the secondary envelopment of the virus has long been suggested. We performed a yeast two-hybrid screen to identify cellular proteins interacting with ORF9p that might be important for this function. We found 31 ORF9p interaction partners, among which was AP1M1, the μ subunit of the adaptor protein complex 1 (AP-1). AP-1 is a heterotetramer involved in intracellular vesicle-mediated transport and regulates the shuttling of cargo proteins between endosomes and the trans-Golgi network via clathrin-coated vesicles. We confirmed that AP-1 interacts with ORF9p in infected cells and mapped potential interaction motifs within ORF9p. We generated VZV mutants in which each of these motifs was individually impaired and identified leucine 231 in ORF9p to be critical for the interaction with AP-1. Disrupting ORF9p binding to AP-1 by mutating leucine 231 to alanine in ORF9p strongly impaired viral growth, most likely by preventing efficient secondary envelopment of the virus. Leucine 231 is part of a dileucine motif conserved among alphaherpesviruses, and we showed that VP22 of Marek's disease virus and HSV-2 also interacts with AP-1. This indicates that the function of this interaction in secondary envelopment might be conserved as well.IMPORTANCE Herpesviruses are responsible for infections that, especially in immunocompromised patients, can lead to severe complications, including neurological symptoms and strokes. The constant emergence of viral strains resistant to classical antivirals (mainly acyclovir and its derivatives) pleads for the identification of new targets for future antiviral treatments. Cellular adaptor protein (AP) complexes have been implicated in the correct addressing of herpesvirus glycoproteins in infected cells, and the discovery that a major constituent of the varicella-zoster virus tegument interacts with AP-1 reveals a previously unsuspected role of this tegument protein. Unraveling the complex mechanisms leading to virion production will certainly be an important step in the discovery of future therapeutic targets.
Collapse
|
14
|
Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA. J Virol 2018; 92:JVI.00220-18. [PMID: 29643239 DOI: 10.1128/jvi.00220-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments.IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus.
Collapse
|
15
|
Okada A, Suganuma S, Badr Y, Omatsu T, Mizutani T, Ohya K, Fukushi H. Decreased expression of the immediate early protein, ICP4, by deletion of the tegument protein VP22 of equine herpesvirus type 1. J Vet Med Sci 2017; 80:311-315. [PMID: 29279464 PMCID: PMC5836769 DOI: 10.1292/jvms.17-0380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
VP22 is a major tegument protein of equine herpesvirus type 1 (EHV-1). In the present
study, we examined functions of VP22 in EHV-1 replication by viral protein expression
analyses in cells infected with the VP22-deficient virus. The expressions of several viral
proteins in the cells infected with the VP22-deficient virus were lower than those in the
cells infected with the parent virus. One of the weakly expressed proteins was identified
as ICP4, which is a major regulatory protein encoded by an immediate early gene of EHV-1.
A real-time PCR analysis showed that the mRNA expression of ICP4 was the same in cells
infected with the parent and VP22-deficient viruses. Hence, VP22 appears to promote
synthesis of ICP4 post-transcriptionally.
Collapse
Affiliation(s)
- Ayaka Okada
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shota Suganuma
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yassien Badr
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kenji Ohya
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideto Fukushi
- Department of Applied Veterinary Sciences, United Graduated School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.,Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
16
|
A Next-Generation Sequencing Approach Uncovers Viral Transcripts Incorporated in Poxvirus Virions. Viruses 2017; 9:v9100296. [PMID: 29027916 PMCID: PMC5691647 DOI: 10.3390/v9100296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/04/2022] Open
Abstract
Transcripts are known to be incorporated in particles of DNA viruses belonging to the families of Herpesviridae and Mimiviridae, but the presence of transcripts in other DNA viruses, such as poxviruses, has not been analyzed yet. Therefore, we first established a next-generation-sequencing (NGS)-based protocol, enabling the unbiased identification of transcripts in virus particles. Subsequently, we applied our protocol to analyze RNA in an emerging zoonotic member of the Poxviridae family, namely Cowpox virus. Our results revealed the incorporation of 19 viral transcripts, while host identifications were restricted to ribosomal and mitochondrial RNA. Most viral transcripts had an unknown and immunomodulatory function, suggesting that transcript incorporation may be beneficial for poxvirus immune evasion. Notably, the most abundant transcript originated from the D5L/I1R gene that encodes a viral inhibitor of the host cytoplasmic DNA sensing machinery.
Collapse
|
17
|
Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol 2017; 67:91-100. [PMID: 28456604 DOI: 10.1016/j.semcdb.2017.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023]
Abstract
Herpesviruses are remarkable pathogens possessing elaborate mechanisms to seize various host cellular components for immune evasion, replication, and virion egress. As viruses are dependent upon their hosts, investigating this intricate interplay has revealed that the exosome pathway is utilised by alpha (Herpes Simplex Virus 1), beta (Human Cytomegalovirus, and Human Herpesvirus 6) and gamma (Epstein-Barr Virus, and Kaposi Sarcoma-associated Herpesvirus) herpesviruses. Virions and exosomes share similar properties and functions. For example, exosomes are small membranous nanovesicles (30-150nm) released from cells that contain proteins, DNA, and various coding and non-coding RNA species. Given exosomes can shuttle various molecular cargo from a donor to recipient cell, they serve as important vehicles facilitating cell-cell communication. Therefore, exploitation by herpesviruses impacts several aspects of infection including: i) acquisition of molecular machinery for secondary envelopment and viral assembly, ii) export of immune-related host proteins from infected cells, iii) enhancing infection in surrounding cells via transfer of viral proteins, mRNA and miRNA, and iv) regulation of viral protein expression to promote persistence. Studying the dichotomy that exists between host exosomes and herpesviruses has two benefits. Firstly, it will reveal the precise pathogenic mechanisms viruses have evolved, generating knowledge for antiviral development. Secondly, it will shed light upon fundamental exosome characteristics that remain unknown, including cargo selection, protein trafficking, and non-canonical biogenesis.
Collapse
|
18
|
Metrick CM, Heldwein EE. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21. J Virol 2016; 90:5759-69. [PMID: 27053559 PMCID: PMC4886797 DOI: 10.1128/jvi.00475-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/01/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed four regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function. IMPORTANCE Due to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire. The structure of UL21C and the observation of its RNA-binding ability are the latest additions to the navigational chart that can guide the exploration of the multiple functions of UL21.
Collapse
Affiliation(s)
- Claire M Metrick
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USAUniversity of California, Irvine
| | - Ekaterina E Heldwein
- Department of Molecular Biology and Microbiology and Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USAUniversity of California, Irvine
| |
Collapse
|
19
|
Swenson PD, El-Sabaeny A, Thomas-Moricz V, Allen M, Groskopf A, Jiang A, Getman D. Evaluation of a transcription mediated amplification assay for detection of herpes simplex virus types 1 and 2 mRNA in clinical specimens. J Clin Virol 2016; 80:62-7. [PMID: 27175478 DOI: 10.1016/j.jcv.2016.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 04/29/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Herpes simplex viruses (HSV) are double-stranded DNA human herpesviruses (HHVs) that have the capacity to cause significant morbidity and mortality in humans. Like HHV5 (Cytomegalovirus) and HHV8 (Kaposi's sarcoma virus), HSV type 1 (HSV-1), and HSV type 2 (HSV-2) (HHV1, HHV2) selectively package certain viral messenger RNAs inside mature virions, as well as expressing those mRNAs in infected cells. OBJECTIVES To evaluate the clinical and analytical performance of Aptima HSV 1&2 assay (AHSV), a newly developed automated real time transcription-mediated amplification (TMA) nucleic acid amplification test (NAAT) for HSV-1 and 2 UL42 mRNAs, compared to viral culture and HSV DNA NAAT. STUDY DESIGN Cutaneous and mucocutaneous lesion swab specimens from a population of symptomatic female and male subjects attending a U.S. public health clinic (n=758) were evaluated by shell vial culture with fluorescent antibody staining for HSV-1 and 2. Specimens were then tested with AHSV for HSV-1 and 2 on the Panther instrument. Specimens from subjects with discordant culture-TMA paired results were tested using an FDA-cleared test for HSV-1 and 2 viral DNA. Analytical performance of AHSV was evaluated using test panels consisting of laboratory strains of HSV-1 and 2 and a variety of non-target human DNA viruses. RESULTS Compared to culture, AHSV was sensitive and specific for detection of HSV-1 and 2 in patient lesion swab specimens, exhibiting clinical sensitivities of 98.2% (95% CI: 92.9-99.7) and 99.4% (95% CI: 96.0-99.9), respectively. Addition of HSV DNA NAAT discordant resolution testing results to culture results improved AHSV sensitivity for HSV-1 and 2-99.2% (95% CI: 94.7-99.9) and 100% (95% CI: 97.5-100), respectively. Clinical specificity of AHSV for HSV-1 and 2 detection was 97.8% (95% CI: 96.3-98.8) and 94.5% (95% CI: 92.2-96.1), respectively, compared to culture; and 99.5% (95% CI: 98.5-99.9) and 99.5% (95% CI: 98.3-99.7), respectively, compared to culture with discordant resolution. Analytical sensitivity (95% limit of detection) of AHSV for HSV-1 (McIntyre strain) was 28.9 TCID50/mL (95% FL: 23.4-37.9), and 0.54 TCID50/mL (95% FL: 0.42-0.75) for HSV-2 (MS strain). AHSV did not cross-react with laboratory strains of HHV-3, HHV-4, HHV-5, HHV-6, and four other non-HHV human DNA viruses. CONCLUSIONS Real time transcription-mediated amplification NAAT for HSV viral mRNA is a sensitive and specific method for detection of herpes simplex virus infection in symptomatic patients.
Collapse
|
20
|
Falanga A, Galdiero M, Galdiero S. Membranotropic Cell Penetrating Peptides: The Outstanding Journey. Int J Mol Sci 2015; 16:25323-37. [PMID: 26512649 PMCID: PMC4632803 DOI: 10.3390/ijms161025323] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] Open
Abstract
The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery tools that should take the drug to target cells selectively and efficiently with only minimal toxicity. Cell-penetrating peptides are short and basic peptides are widely used due to their ability to deliver a cargo across the membrane both in vitro and in vivo. It is widely accepted that their uptake mechanism involves mainly the endocytic pathway, the drug is catched inside endosomes and lysosomes, and only a small quantity is able to reach the intracellular target. In this wide-ranging scenario, a fascinating novel hypothesis is that membranotropic peptides that efficiently cross biological membranes, promote lipid-membrane reorganizing processes and cause a local and temporary destabilization and reorganization of the membrane bilayer, may also be able to enter cells circumventing the endosomal entrapment; in particular, by either favoring the escape from the endosome or by direct translocation. This review summarizes current data on membranotropic peptides for drug delivery.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Massimiliano Galdiero
- CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
- CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
21
|
Hew K, Dahlroth SL, Pan LX, Cornvik T, Nordlund P. VP22 core domain from Herpes simplex virus 1 reveals a surprising structural conservation in both the Alpha- and Gammaherpesvirinae subfamilies. J Gen Virol 2015; 96:1436-1445. [PMID: 26068188 PMCID: PMC4635490 DOI: 10.1099/vir.0.000078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/01/2015] [Indexed: 12/11/2022] Open
Abstract
The viral tegument is a layer of proteins between the herpesvirus capsid and its outer envelope. According to phylogenetic studies, only a third of these proteins are conserved amongst the three subfamilies (Alpha-, Beta- and Gammaherpesvirinae) of the family Herpesviridae. Although some of these tegument proteins have been studied in more detail, the structure and function of the majority of them are still poorly characterized. VP22 from Herpes simplex virus 1 (subfamily Alphaherpesvirinae) is a highly interacting tegument protein that has been associated with tegument assembly. We have determined the crystal structure of the conserved core domain of VP22, which reveals an elongated dimer with several potential protein-protein interaction regions and a peptide-binding site. The structure provides us with the structural basics to understand the numerous functional mutagenesis studies of VP22 found in the literature. It also establishes an unexpected structural homology to the tegument protein ORF52 from Murid herpesvirus 68 (subfamily Gammaherpesvirinae). Homologues for both VP22 and ORF52 have been identified in their respective subfamilies. Although there is no obvious sequence overlap in the two subfamilies, this structural conservation provides compelling structural evidence for shared ancestry and functional conservation.
Collapse
Affiliation(s)
- Kelly Hew
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Sue-Li Dahlroth
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Lucy Xin Pan
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Tobias Cornvik
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| | - Pär Nordlund
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 11, Sweden.,Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 138673, Singapore
| |
Collapse
|
22
|
Islam A, Schulz S, Afroz S, Babiuk LA, van Drunen Littel-van den Hurk S. Interaction of VP8 with mRNAs of bovine herpesvirus-1. Virus Res 2015; 197:116-26. [DOI: 10.1016/j.virusres.2014.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
23
|
The nuclear-cytoplasmic shuttling of virion host shutoff RNase is enabled by pUL47 and an embedded nuclear export signal and defines the sites of degradation of AU-rich and stable cellular mRNAs. J Virol 2013; 87:13569-78. [PMID: 24109211 DOI: 10.1128/jvi.02603-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The herpes simplex virus host shutoff RNase (VHS-RNase) is the major early block of host responses to infection. VHS-RNase is introduced into cells during infection and selectively degrades stable mRNAs made before infection and the normally short-lived AU-rich stress response mRNAs induced by sensors of innate immunity. Through its interactions with pUL47, another tegument protein, it spares from degradation viral mRNAs. Analyses of embedded motifs revealed that VHS-RNase contains a nuclear export signal (NES) but not a nuclear localization signal. To reconcile the potential nuclear localization with earlier studies showing that VHS-RNase degrades mRNAs in polyribosomes, we constructed a mutant in which NES was ablated. Comparison of the mutant and wild-type VHS-RNases revealed the following. (i) On infection, VHS-RNase is transported to the nucleus, but only the wild-type protein shuttles between the nucleus and cytoplasm. (ii) Both VHS-RNases localized in the cytoplasm following transfection. On cotransfection with pUL47, a fraction of VHS-RNase was translocated to the nucleus, suggesting that pUL47 may enable nuclear localization of VHS-RNase. (iii) In infected cells, VHS-RNase lacking NES degraded the short-lived AU-rich mRNAs but not the stable mRNAs. In transfected cells, both wild-type and NES mutant VHS-RNases effectively degraded cellular mRNAs. Our results suggest that the stable mRNAs are degraded in the cytoplasm, whereas the AU-rich mRNAs may be degraded in both cellular compartments. The selective sparing of viral mRNAs may take place during the nuclear phase in the course of interaction of pUL47, VHS-RNase, and nascent viral mRNAs.
Collapse
|
24
|
Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein. Proc Natl Acad Sci U S A 2013; 110:E1669-75. [PMID: 23589852 DOI: 10.1073/pnas.1305475110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) encodes an endoribonuclease that is responsible for the shutoff of host protein synthesis [virion host shutoff (VHS)-RNase]. The VHS-RNase released into cells during infection targets differentially four classes of mRNAs. Thus, (a) VHS-RNase degrades stable cellular mRNAs and α (immediate early) viral mRNAs; (b) it stabilizes host stress response mRNAs after deadenylation and subsequent cleavage near the adenylate-uridylate (AU)-rich elements; (c) it does not effectively degrade viral β or γ mRNAs; and (d) it selectively spares from degradation a small number of cellular mRNAs. Current evidence suggests that several viral and at least one host protein (tristetraprolin) regulate its activity. Thus, virion protein (VP) 16 and VP22 neutralize the RNase activity at late times after infection. By binding to AU-rich elements via its interaction with tristetraprolin, the RNase deadenylates and cleaves the mRNAs in proximity to the AU-rich elements. In this report we show that another virion protein, UL47, brought into the cell during infection, attenuates the VHS-RNase activity with respect to stable host and viral α mRNAs and effectively blocks the degradation of β and γ mRNAs, but it has no effect on the processing of AU-rich mRNAs. The properties of UL47 suggest that it, along with the α protein infected cell protein 27, attenuates degradation of mRNAs by the VHS-RNase through interaction with the enzyme in polyribosomes. Mutants lacking both VHS-RNase and UL47 overexpress α genes and delay the expression of β and γ genes, suggesting that overexpression of α genes inhibits the downstream expression of early and late genes.
Collapse
|
25
|
The virion host shutoff RNase plays a key role in blocking the activation of protein kinase R in cells infected with herpes simplex virus 1. J Virol 2013; 87:3271-6. [PMID: 23302873 DOI: 10.1128/jvi.03049-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Earlier studies have shown that active MEK blocks the activation of protein kinase R (PKR), a component of antiviral innate immune responses. In this report we show that the herpes simplex virus 1 virion host shutoff (VHS) RNase protein and MEK (mitogen-activated protein kinase kinase) act cooperatively in blocking the activation of PKR. This conclusion is based on the following. (i) In contrast to viral gene expression in the parental cell line or a cell line expressing a constitutively active MEK, the replication of a VHS mutant is particularly impaired in cells expressing dominant negative MEK. In this cell line PKR is activated by phosphorylation, and the accumulation of several viral proteins is delayed. (ii) In transfected cells, wild-type VHS blocked the activation of PKR, whereas PKR was activated in cells transfected with a mutant VHS or with plasmids encoding the VHS RNase and VP16 and VP22, the two viral proteins that neutralize the RNase activity of VHS. The results suggest that early in infection the VHS RNase degrades RNAs that activate PKR. Coupled with published data, the results suggest that inhibition of activation of PKR or its effect on viral replication is staged early in infection by VHS, postsynthesis of VP16 and VP22 by the γ(1)34.5 protein, and very late in infection by the U(S)11 protein.
Collapse
|
26
|
MicroRNAs and unusual small RNAs discovered in Kaposi's sarcoma-associated herpesvirus virions. J Virol 2012; 86:12717-30. [PMID: 22973026 DOI: 10.1128/jvi.01473-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is widely held that any given virus uses only one type of nucleic acid for genetic information storage. However, this consensus has been challenged slightly by several recent studies showing that many RNA species are present within a range of DNA viruses that include Kaposi's sarcoma-associated herpesvirus (KSHV). RNAs extracted from purified DNA virus particles exhibit great diversity in terms of length, abundance, temporal expression, cellular localization, and coding capacity during viral infection. In addition to known RNA species, the current study showed that small regulatory RNAs were present in KSHV virions. A large number of viral and cellular microRNAs (miRNAs), as well as unusual small RNAs (usRNAs), were detected in KSHV virions by using deep sequencing. Both viral and host miRNAs detected in small RNAs extracted from KSHV virions were further shown to colocalize with KSHV virions directly by in situ hybridization (ISH)-electron microscopy (EM) (ISH-EM). Some of these miRNAs were differentially present in the host cells and KSHV virions, suggesting that they are not randomly present in KSHV virions. The virional miRNAs could be transported into host cells, and they are biologically functional during de novo viral infection. Our study revealed miRNAs and usRNAs as a novel group of components in KSHV virions.
Collapse
|
27
|
Deletion of the herpes simplex virus 1 UL49 gene results in mRNA and protein translation defects that are complemented by secondary mutations in UL41. J Virol 2012; 86:12351-61. [PMID: 22951838 DOI: 10.1128/jvi.01975-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) virions, like those of all herpesviruses, contain a protein layer termed the tegument localized between the capsid and the envelope. VP22, encoded by the U(L)49 gene, is one of the most abundant tegument proteins in HSV-1 virions. Studies with a U(L)49-null mutant showed that the absence of VP22 resulted in decreased protein synthesis at late times in infection. VP22 is known to form a tripartite complex with VP16 and vhs through direct interactions with VP16. Given that U(L)49-null mutants have been shown to acquire spontaneous secondary mutations in the U(L)41 gene, which encodes vhs, we hypothesized that VP22 and vhs may play antagonistic roles during HSV-1 infections. In the present study, we show that the protein synthesis defect observed in U(L)49-null virus infections was rescued by a secondary, compensatory frameshift mutation in U(L)41. A double mutant bearing a deletion of U(L)49 and a point mutation in vhs previously shown to specifically abrogate vhs's RNase activity also resulted in a rescue of protein synthesis. To determine whether the U(L)49(-) protein synthesis defect, and the rescue by secondary mutations in vhs, occurred at the mRNA and/or translational levels, quantitative reverse transcriptase PCR (qRT-PCR) and polysome analyses were performed. We found that the absence of VP22 caused a small decrease in mRNA levels as well as a defect in polysome assembly that was independent of mRNA abundance. Both defects were complemented by the secondary mutations in vhs, indicating functional interplay between VP22 and vhs in both accumulation and translation of viral mRNAs.
Collapse
|
28
|
Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence. J Virol 2012; 86:5264-77. [PMID: 22357273 DOI: 10.1128/jvi.06913-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein VP22, encoded by the UL49 gene, is a major virion tegument protein. In the present study, we showed that VP22 was required for efficient redistribution of viral proteins VP16, VP26, ICP0, ICP4, and ICP27 and of cellular protein Hsc-70 to the cytoplasm of infected cells. We found that two dileucine motifs in VP22, at amino acids 235 and 236 and amino acids 251 and 252, were necessary for VP22 regulation of the proper cytoplasmic localization of these viral and cellular proteins. The dileucine motifs were also required for proper cytoplasmic localization of VP22 itself and for optimal expression of viral proteins VP16, VP22, ICP0, UL41, and glycoprotein B. Interestingly, a recombinant mutant virus with alanines substituted for the dileucines at amino acids 251 and 252 had a 50% lethal dose (LD(50)) for neurovirulence in mice following intracerebral inoculation about 10(3)-fold lower than the LD(50) of the repaired virus. Furthermore, the replication and spread of this mutant virus in the brains of mice following intracerebral inoculation were significantly impaired relative to those of the repaired virus. The ability of VP22 to regulate the localization and expression of various viral and cellular proteins, as shown in this study, was correlated with an increase in viral replication and neurovirulence in the experimental murine model. Thus, HSV-1 VP22 is a significant neurovirulence factor in vivo.
Collapse
|
29
|
Amen MA, Griffiths A. Packaging of Non-Coding RNAs into Herpesvirus Virions: Comparisons to Coding RNAs. Front Genet 2011; 2:81. [PMID: 22303375 PMCID: PMC3268634 DOI: 10.3389/fgene.2011.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/29/2011] [Indexed: 12/02/2022] Open
Abstract
The herpesviruses are a family of large DNA viruses capable of establishing lifelong infections. Recent reports have shown that herpesviruses package non-coding RNA into virions; this follows earlier observations showing that coding RNAs are detected in virions. Packaging RNAs allows for their function immediately after virus entry and in the absence of de novo transcription. Despite the collective understanding that RNAs are packaged into herpesvirus virions, many questions remain. This review will highlight what is known regarding packaged coding and non-coding RNAs and discuss their potential impact to virus biology.
Collapse
Affiliation(s)
- Melanie A Amen
- Department of Virology and Immunology, Texas Biomedical Research Institute San Antonio, TX, USA
| | | |
Collapse
|
30
|
Jin GS, Zhu GD, Zhao ZG, Liu FS. VP22 enhances the expression of glucocerebrosidase in human Gaucher II fibroblast cells mediated by lentiviral vectors. Clin Exp Med 2011; 12:135-43. [DOI: 10.1007/s10238-011-0152-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/29/2011] [Indexed: 01/17/2023]
|
31
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
32
|
The herpes simplex virus 1 vhs protein enhances translation of viral true late mRNAs and virus production in a cell type-dependent manner. J Virol 2011; 85:5363-73. [PMID: 21430045 DOI: 10.1128/jvi.00115-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shutoff protein (vhs) degrades viral and cellular mRNAs. Here, we demonstrate for the first time that vhs also boosts translation of viral true late mRNAs in a cell type-dependent manner and that this effect determines the viral growth phenotype in the respective cell type. Our study was prompted by the detection of stress granules, indicators of stalled translation initiation, in cells infected with vhs mutants but not in wild-type-virus-infected cells. Accumulation of true late-gene products gC and US11 was strongly reduced in the absence of vhs in HeLa cells and several other restrictive cell lines but not in Vero and other permissive cells and was independent of phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Polysome analysis showed that gC and US11 transcripts were poorly translated in vhs-null-virus-infected HeLa cells, while translation of a cellular mRNA was not affected. Interestingly, hippuristanol, an eIF4A inhibitor, produced a similar phenotype in HeLa cells infected with wild-type HSV-1, while Vero cells were much more resistant to the inhibitor. These results suggest that translation of true late-gene transcripts is particularly sensitive to conditions of limited access to translation factors and that vhs is able either to prevent the limiting conditions or to facilitate translation initiation under these conditions. The varied permissivity of cell lines to vhs-null infection may stem from differences in the resilience of the translation machinery or the ability to control the accumulation of mRNAs.
Collapse
|
33
|
Che X, Oliver SL, Sommer MH, Rajamani J, Reichelt M, Arvin AM. Identification and functional characterization of the Varicella zoster virus ORF11 gene product. Virology 2011; 412:156-66. [PMID: 21276599 DOI: 10.1016/j.virol.2010.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/17/2010] [Accepted: 12/27/2010] [Indexed: 11/18/2022]
Abstract
The deletion of ORF11 severely impaired VZV infection of human skin xenografts. Here, we investigate the characteristics and functions of the ORF11 gene product. ORF11 is expressed as a 118kDa polypeptide in VZV-infected cells; the protein is present in the nucleus and cytoplasm and is incorporated into VZ virions. Although ORF11 had little effect in transactivating VZV gene promoters in transfection assays, deleting ORF11 from the virus was associated with reduced expression of immediate early proteins IE4, IE62 and IE63, and the major glycoprotein, gE. ORF11 was identified as an RNA binding protein and its RNA binding domain was defined. However, disrupting the ORF11 RNA binding domain did not affect skin infection, indicating that RNA binding capacity, conserved among the alphaherpesviruses homologues, is not essential while the contribution of ORF11 to the expression of the IE proteins and gE may be required for VZV pathogenesis in skin in vivo.
Collapse
Affiliation(s)
- Xibing Che
- Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Herpes simplex virus type 1 tegument protein VP22 is capable of modulating the transcription of viral TK and gC genes via interaction with viral ICP0. Biochimie 2010; 92:1024-30. [PMID: 20457214 DOI: 10.1016/j.biochi.2010.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 04/29/2010] [Indexed: 11/23/2022]
Abstract
VP22, a tegument protein of herpes simplex virus type 1 (HSV-1), is present in many copies in one virion and undergoes different types of post-translational modification. VP22 is believed to have certain functions in viral infection apart from virus assembly. Here we show that VP22 physically interacted with infected cell polypeptide 0 (ICP0) and colocalized in the nucleus, indicating that VP22 could be functionally involved in the modulation of viral transcription through interaction with ICP0. In the HSV-1 infection system and chloramphenicol acetyltransferase (CAT) transcriptional system, VP22-ICP0 interaction was confirmed to play a role in modulating the transcription of some viral genes and could be a factor in viral transcription, which is probably required in the transcriptional control of latent infection.
Collapse
|
35
|
Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. J Virol 2010; 84:270-9. [PMID: 19864386 DOI: 10.1128/jvi.01740-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human pathogenic viruses manipulate host cell translation machinery to ensure efficient expression of viral genes and to thwart host cell protein synthesis. Viral strategies include cleaving translation factors, manipulating translation factor abundance and recruitment into translation initiation complexes, or expressing viral translation factor analogs. Analyzing translation factors in herpes simplex virus type 1 (HSV-1)-infected HeLa cells, we found diminished association of the polyadenylate-binding protein (PABP) with the cap-binding complex. Although total PABP levels were unchanged, HSV-1 infection prompted accumulation of cytoplasmic PABPC1, but not its physiologic binding partner PABP-interacting protein 2 (Paip2), in the nucleus. Using glutathione S-transferase-PABP pull-down and proteomic analyses, we identified several viral proteins interacting with PABPC1 including tegument protein UL47 and infected-cell protein ICP27. Transient expression of ICP27 and UL47 in HeLa cells suggested that ICP27 and UL47 jointly displace Paip2 from PABP. ICP27 expression alone was sufficient to cause PABPC1 redistribution to the nucleus. ICP27 and UL47 did not alter translation efficiency of transfected reporter RNAs but modulated transcript abundance and expression of reporter cDNAs in transfected cells. This indicates that redistribution of PABPC1 may be involved in co- and posttranscriptional regulation of mRNA processing and/or nuclear export by HSV-1 gene regulatory proteins.
Collapse
|
36
|
Abstract
Human papillomavirus (HPV) has been associated with several human cancers, including cervical cancer, vulvar cancer, vaginal and anal cancer, and a subset of head and neck cancers. The identification of HPV as an etiological factor for HPV-associated malignancies creates the opportunity for the control of these cancers through vaccination. Currently, the preventive HPV vaccine using HPV virus-like particles has been proven to be safe and highly effective. However, this preventive vaccine does not have therapeutic effects, and a significant number of people have established HPV infection and HPV-associated lesions. Therefore, it is necessary to develop therapeutic HPV vaccines to facilitate the control of HPV-associated malignancies and their precursor lesions. Among the various forms of therapeutic HPV vaccines, DNA vaccines have emerged as a potentially promising approach for vaccine development due to their safety profile, ease of preparation and stability. However, since DNA does not have the intrinsic ability to amplify or spread in transfected cells like viral vectors, DNA vaccines can have limited immunogenicity. Therefore, it is important to develop innovative strategies to improve DNA vaccine potency. Since dendritic cells (DCs) are key players in the generation of antigen-specific immune responses, it is important to develop innovative strategies to modify the properties of the DNA-transfected DCs. These strategies include increasing the number of antigen-expressing/antigen-loaded DCs, improving antigen processing and presentation in DCs, and enhancing the interaction between DCs and T cells. Many of the studies on DNA vaccines have been performed on preclinical models. Encouraging results from impressive preclinical studies have led to several clinical trials.
Collapse
Affiliation(s)
- Archana Monie
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
37
|
Kelly BJ, Fraefel C, Cunningham AL, Diefenbach RJ. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res 2009; 145:173-86. [PMID: 19615419 DOI: 10.1016/j.virusres.2009.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Herpes virions consist of four morphologically distinct structures, a DNA core, capsid, tegument, and envelope. Tegument occupies the space between the nucleocapsid (capsid containing DNA core) and the envelope. A combination of genetic, biochemical and proteomic analysis of alphaherpes virions suggest the tegument contains in the order of 20 viral proteins. Historically the tegument has been described as amorphous but increasing evidence suggests there is an ordered addition of tegument during assembly. This review highlights the diverse roles, in addition to structural, that tegument plays during herpes viral replication using as an example herpes simplex virus type 1. Such diverse roles include: capsid transport during entry and egress; targeting of the capsid to the nucleus; regulation of transcription, translation and apoptosis; DNA replication; immune modulation; cytoskeletal assembly; nuclear egress of capsid; and viral assembly and final egress.
Collapse
Affiliation(s)
- Barbara J Kelly
- Centre for Virus Research, The Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
38
|
Schlegel EFM, Blaho JA. A conserved carboxy-terminal domain in the major tegument structural protein VP22 facilitates virion packaging of a chimeric protein during productive herpes simplex virus 1 infection. Virology 2009; 387:449-58. [PMID: 19307008 DOI: 10.1016/j.virol.2009.02.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/11/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Recombinant virus HSV-1(RF177) was previously generated to examine tegument protein VP22 function by inserting the GFP gene into the gene encoding VP22. During a detailed analysis of this virus, we discovered that RF177 produces a novel fusion protein between the last 15 amino acids of VP22 and GFP, termed GCT-VP22. Thus, the VP22 carboxy-terminal specific antibody 22-3 and two anti-GFP antibodies reacted with an approximately 28 kDa protein from RF177-infected Vero cells. GCT-VP22 was detected at 1 and 3 hpi. Examination of purified virions indicated that GCT-VP22 was incorporated into RF177 virus particles. These observations imply that at least a portion of the information required for virion targeting is located in this domain of VP22. Indirect immunofluorescence analyses showed that GCT-VP22 also localized to areas of marginalized chromatin during RF177 infection. These results indicate that the last fifteen amino acids of VP22 participate in virion targeting during HSV-1 infection.
Collapse
Affiliation(s)
- Elisabeth F M Schlegel
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | |
Collapse
|
39
|
|
40
|
Packaging of viral RNAs in virions of adenoviruses. Virol J 2009; 6:16. [PMID: 19196470 PMCID: PMC2647528 DOI: 10.1186/1743-422x-6-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 02/05/2009] [Indexed: 11/10/2022] Open
Abstract
Earlier, we detected viral RNAs packaged in the porcine adenovirus (PAdV) -3 virions. Using Southern blot analysis, we further demonstrated that the viral RNAs were predominantly packaged in CsCl purified mature capsids (containing viral genome) than empty/intermediate capsids. Some of the packaged viral RNAs appear to be polyadenylated. Real-time reverse transcription (RT)-PCR analysis indicated that the copy number of the tested viral mRNAs encoding E1Bsmall and fiber proteins was less than one per full capsid. Moreover, detection of viral RNA packaged in CsCl purified human adenovirus (HAdV) -5 virions indicates that the viral RNA packaging might be a common phenomenon in members of Adenoviridae family. Further quantitative analysis of viral protein, DNA, and RNA in CsCl purified mature and empty/intermediate capsids of recombinant HAdV-5 expressing enhanced green fluorescent protein indicated that the traceable viral RNA detected in empty/intermediate capsids seems associated with the presence of traceable viral genomic DNA. Taken together, our data suggest that the viral RNAs may be passively packaged in adenovirus virion during encapsidation of viral genomic DNA in cell nuclei. Thus, viral RNA packaging may be a characteristic feature of adenoviral genomic DNA encapsidation.
Collapse
|
41
|
Posnett DN, Engelhorn ME, Lin Y, Merghoub T, Duan F, Wolchok JD, Houghton AN. Development of effective vaccines for old mice in a tumor model. Vaccine 2008; 27:1093-100. [PMID: 19103244 DOI: 10.1016/j.vaccine.2008.11.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
Vaccines are often inefficient in old people and old mice. Few studies have focused on testing vaccines in old populations. Here we used DNA tumor antigen vaccines against melanoma and showed that old mice were not protected. Vaccines incorporating fusions of the tumor antigen with microbial adjuvant proteins OmpA (E. Coli) or Vp22 (Herpes simplex virus-1) dramatically improved protection of old mice. The mechanisms by which these adjuvant proteins act are distinct. TLR2 was not required for either OmpA or Vp22. Antigen processing and presentation were not boosted by these fusion constructs. However, fusion constructs with Vp22 gave a strong CD4 response to B16 melanoma and the OmpA response is MHC-II dependent. Both adjuvant fusion constructs stimulated CD4 and CD8 responses otherwise diminished in old mice.
Collapse
Affiliation(s)
- David N Posnett
- Dep. of Medicine, Weill Medical College of Cornell University, New York, NY 10021, United States.
| | | | | | | | | | | | | |
Collapse
|
42
|
VP22 of herpes simplex virus 1 promotes protein synthesis at late times in infection and accumulation of a subset of viral mRNAs at early times in infection. J Virol 2008; 83:1009-17. [PMID: 18987147 DOI: 10.1128/jvi.02245-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP22, encoded by the U(L)49 gene, is one of the most abundant proteins of the herpes simplex virus 1 (HSV-1) tegument. In the present study we show VP22 is required for optimal protein synthesis at late times in infection. Specifically, in the absence of VP22, viral proteins accumulated to wild-type levels until approximately 6 h postinfection. At that time, ongoing synthesis of most viral proteins dramatically decreased in the absence of VP22, whereas protein stability was not affected. Of the individual proteins we assayed, VP22 was required for optimal synthesis of the late viral proteins gE and gD and the immediate-early protein ICP0 but did not have discernible effects on accumulation of the immediate-early proteins ICP4 or ICP27. In addition, we found VP22 is required for the accumulation of a subset of mRNAs to wild-type levels at early, but not late, times in infection. Specifically, the presence of VP22 enhanced the accumulation of gE and gD mRNAs until approximately 9 h postinfection, but it had no discernible effect at later times in infection. Also, VP22 did not significantly affect ICP0 mRNA at any time in infection. Thus, the protein synthesis and mRNA phenotypes observed with the U(L)49-null virus are separable with regard to both timing during infection and the genes affected and suggest separate roles for VP22 in enhancing the accumulation of viral proteins and mRNAs. Finally, we show that VP22's effects on protein synthesis and mRNA accumulation occur independently of mutations in genes encoding the VP22-interacting partners VP16 and vhs.
Collapse
|
43
|
Efficient secretion of the herpes simplex virus tegument protein VP22 from living mammalian cells. Arch Virol 2008; 153:1191-5. [DOI: 10.1007/s00705-008-0094-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 03/17/2008] [Indexed: 11/25/2022]
|
44
|
Abstract
More than 99% of cervical cancers have been associated with human papillomaviruses (HPVs), particularly HPV type 16. The clear association between HPV infection and cervical cancer indicates that HPV serves as an ideal target for development of preventive and therapeutic vaccines. Although the recently licensed preventive HPV vaccine, Gardasil, has been shown to be safe and capable of generating significant protection against specific HPV types, it does not have therapeutic effect against established HPV infections and HPV-associated lesions. Two HPV oncogenic proteins, E6 and E7, are consistently co-expressed in HPV-expressing cervical cancers and are important in the induction and maintenance of cellular transformation. Therefore, immunotherapy targeting E6 and/or E7 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. It has been established that T cell-mediated immunity is one of the most crucial components to defend against HPV infections and HPV-associated lesions. Therefore, effective therapeutic HPV vaccines should generate strong E6/E7-specific T cell-mediated immune responses. DNA vaccines have emerged as an attractive approach for antigen-specific T cell-mediated immunotherapy to combat cancers. Intradermal administration of DNA vaccines via a gene gun represents an efficient way to deliver DNA vaccines into professional antigen-presenting cells in vivo. Professional antigen-presenting cells, such as dendritic cells, are the most effective cells for priming antigen-specific T cells. Using the gene gun delivery system, we tested several DNA vaccines that employ intracellular targeting strategies for enhancing MHC class I and class II presentation of encoded model antigen HPV-16 E7. Furthermore, we have developed a strategy to prolong the life of DCs to enhance DNA vaccine potency. More recently, we have developed a strategy to generate antigen-specific CD4(+) T cell immune responses to further enhance DNA vaccine potency. The impressive pre- clinical data generated from our studies have led to several HPV DNA vaccine clinical trials.
Collapse
|
45
|
The interaction of herpes simplex virus 1 regulatory protein ICP22 with the cdc25C phosphatase is enabled in vitro by viral protein kinases US3 and UL13. J Virol 2008; 82:4533-43. [PMID: 18272572 DOI: 10.1128/jvi.02022-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Earlier studies have shown that ICP22 and the U(L)13 protein kinase but not the U(S)3 kinase are required for optimal expression of a subset of late (gamma(2)) genes exemplified by U(L)38, U(L)41, and U(S)11. In primate cells, ICP22 mediates the disappearance of inactive isoforms of cdc2 and degradation of cyclins A and B1. Active cdc2 acquires a new partner, the viral DNA synthesis processivity factor U(L)42. The cdc2-U(L)42 complex recruits and phosphorylates topoisomerase IIalpha for efficient expression of the gamma(2) genes listed above. In uninfected cells, the cdc25C phosphatase activates cdc2 by removing two inhibitory phosphates. The accompanying report shows that in the absence of cdc25C, the rate of degradation of cyclin B1 is similar to that occurring in infected wild-type mouse embryo fibroblast cells but the levels of cdc2 increase, and the accumulation of a subset of late proteins and virus yields are reduced. This report links ICP22 with cdc25C. We show that in infected cells, ICP22 and U(S)3 protein kinase mediate the phosphorylation of cdc25C at its C-terminal domain. In in vitro assays with purified components, both U(L)13 and U(S)3 viral kinases phosphorylate cdc25C and ICP22. cdc25C also interacts with cdc2. However, in infected cells, the ability of cdc25C to activate cdc2 by dephosphorylation of the inactive cdc2 protein is reduced. Coupled with the phosphorylation of cdc25C by the U(S)3 kinase, the results raise the possibility that herpes simplex virus 1 diverts cdc25C to perform functions other than those performed in uninfected cells.
Collapse
|
46
|
Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 2008; 82:3311-9. [PMID: 18216103 DOI: 10.1128/jvi.01919-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we propose a model in which after the herpes simplex virus (HSV) capsid docks at the nuclear pore, the tegument protein attached to the capsid must be cleaved by a serine or a cysteine protease in order for the DNA to be released into the nucleus. In support of the model are the following results. (i) Exposure of cells at the time of or before infection to l-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK), a serine-cysteine protease inhibitor, prevents the release of viral DNA or expression of viral genes. TPCK does not block viral gene expression after entry of viral DNA into the nucleus. (ii) The tegument protein VP1-2, the product of the U(L)36 gene, is cleaved shortly after the entry of the HSV 1 (HSV-1) virion into the cell. (iii) The proteolytic cleavage of VP1-2 does not occur in cells that are infected with HSV-1 under conditions that prevent the release of the viral DNA into the nucleus. (iv) The proteolytic cleavage of VP1-2 occurs only after the capsid is attached to the nuclear pore. Thus, TPCK prevented the release of HSV-1 DNA into the nucleus when added to medium 1 hour after infection with tsB7 at 39.5 degrees C followed by a shift down to the permissive temperature. The ts lesion maps in the U(L)36 gene. At the nonpermissive temperature, the capsids accumulate at the nuclear pore but the DNA is not released into the nucleus.
Collapse
|
47
|
|
48
|
Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2007; 2:35. [PMID: 18053135 PMCID: PMC2219957 DOI: 10.1186/1745-6150-2-35] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/30/2007] [Indexed: 11/10/2022] Open
Abstract
Background Many cell types have been reported to secrete small vesicles called exosomes, that are derived from multivesicular bodies and that can also form from endocytic-like lipid raft domains of the plasma membrane. Secretory exosomes contain a characteristic composition of proteins, and a recent report indicates that mast cell exosomes harbor a variety of mRNAs and microRNAs as well. Exosomes express cell recognition molecules on their surface that facilitate their selective targeting and uptake into recipient cells. Results In this review, I suggest that exosomal secretion of proteins and RNAs may be a fundamental mode of communication within the nervous system, supplementing the known mechanisms of anterograde and retrograde signaling across synapses. In one specific scenario, exosomes are proposed to bud from the lipid raft region of the postsynaptic membrane adjacent to the postsynaptic density, in a manner that is stimulated by stimuli that elicit long-term potentiation. The exosomes would then transfer newly synthesized synaptic proteins (such as CAM kinase II alpha) and synaptic RNAs to the presynaptic terminal, where they would contribute to synaptic plasticity. Conclusion The model is consistent with the known cellular and molecular features of synaptic neurobiology and makes a number of predictions that can be tested in vitro and in vivo. Open peer review Reviewed by Etienne Joly, Gaspar Jekely, Juergen Brosius and Eugene Koonin. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Neil R Smalheiser
- University of Illinois-Chicago, UIC Psychiatric Institute MC912, 1601 W, Taylor Street, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Chen L, Harrison SD. Cell-penetrating peptides in drug development: enabling intracellular targets. Biochem Soc Trans 2007; 35:821-5. [PMID: 17635156 DOI: 10.1042/bst0350821] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A large body of literature has shown that CPPs (cell-penetrating peptides) are capable of carrying macromolecules across the plasma membrane. CPPs can penetrate a wide variety of tissue types and enable modulation of intracellular targets with molecules that, by themselves, are incapable of penetrating cells. As a result, CPPs are recognized for their potential value in validating intracellular targets that could lead to drug discovery programmes [Dietz and Bahr (2004) Mol. Cell Neurosci. 27, 85-131]. The potential for CPP-drug conjugates to be used as human therapeutic agents has not been extensively explored and there is limited knowledge regarding the characteristics of CPPs which are necessary for drug development. A better understanding of the properties of CPPs relating to in vivo pharmacology, pharmacokinetics, pharmacodynamics and safety will continue to inform and encourage novel drug development efforts using CPPs as therapeutics. Here we will discuss areas of interest for drug development of CPP-conjugated compounds.
Collapse
Affiliation(s)
- L Chen
- KAI Pharmaceuticals Inc., 270 Littlefield Avenue, South San Francisco, CA 94080, USA
| | | |
Collapse
|
50
|
Sciortino MT, Taddeo B, Giuffrè-Cuculletto M, Medici MA, Mastino A, Roizman B. Replication-competent herpes simplex virus 1 isolates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the UL49 gene vary with respect to the defect in the UL41 gene encoding host shutoff RNase. J Virol 2007; 81:10924-32. [PMID: 17670820 PMCID: PMC2045545 DOI: 10.1128/jvi.01239-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To generate a null U(L)49 gene mutant of herpes simplex virus 1 (HSV-1), we deleted from the viral DNA, encoded as a bacterial artificial chromosome (BAC), the U(L)49 open reading frame and, in a second step, restored it. Upon transfection into Vero cells, the BAC-DeltaU(L)49 DNA yielded foci of degenerated cells that could not be expanded and a few replication-competent clones. The replication-competent viral clones derived from independent transfections yielded viruses that expressed genes with some delay, produced smaller plaques, and gave lower yields than wild-type virus. A key finding is that the independently derived replication-competent viruses lacked the virion host shutoff (vhs) activity expressed by the RNase encoded by the U(L)41 gene. One mutant virus expressed no vhs protein, whereas two others, derived from independent transfections, produced truncated vhs proteins consistent with the spontaneous in-frame deletion. In contrast, cells infected with the virus recovered upon transfection of the BAC-U(L)49R DNA (R-U(L)49) accumulated a full-length vhs protein, indicating that in the parental BAC-DeltaU(L)49 DNA, the U(L)41 gene was intact. We conclude that expression of the vhs protein in the absence of U(L)49 protein is lethal, a conclusion bolstered by the evidence reported elsewhere that in transfected cells vhs requires both VP16 and VP22, the product of U(L)49, to be neutralized.
Collapse
Affiliation(s)
- Maria Teresa Sciortino
- University of Chicago, Viral Oncology Laboratory, 910 East 58th St., Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|