1
|
Grieble GM, Knapp BI, Bidlack JM. Mu Opioid Receptor Positive Allosteric Modulator BMS-986122 Confers Agonist-Dependent G Protein Subtype Signaling Bias. Biochemistry 2025. [PMID: 40378294 DOI: 10.1021/acs.biochem.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The mu opioid receptor (MOR) is a G protein-coupled receptor (GPCR) and is responsible for the effects of all medically used opioids. Most opioids activate all inhibitory Gαi/o/z proteins through MOR, initiating signaling events that culminate in a variety of physiological effects such as analgesia, euphoria, and respiratory depression. Gaining a better understanding of how the chemical structure of opioids influences the functional activation profiles of G protein subtypes by MOR is critical for disentangling the multitude of opioid effects and the development of safer analgesics. A recent development in opioid pharmacology has been the discovery of positive allosteric modulators (PAMs) for opioid receptors, such as BMS-986122, which act at the MOR to increase the potency of full agonists and the efficacy of partial agonists. Here, we utilized a nanoBRET-based functional assay system in live HEK 293T cells to study how the pharmacological properties of opioids were uniquely affected by BMS-986122 when the MOR signaled through specific inhibitory Gα subunits. We report that BMS-986122 differentially enhanced opioid activity when the MOR signaled through different Gα subunits with the greatest difference observed with partial agonists. Additionally, the binding affinity of BMS-986122 to the MOR was significantly altered by the co-binding Gα subunit. Site-directed mutagenesis experiments revealed key amino acid residue differences on Gαi/o subunits involved in the differential effects observed. This study sheds light on the molecular features of biased signaling for both opioid ligands and G proteins, which may prove useful for the further development of biased agonists or allosteric modulators at the MOR.
Collapse
Affiliation(s)
- Grant M Grieble
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Brian I Knapp
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Jean M Bidlack
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
2
|
Pachenari N, Channell AL, Belilos AJ, Dienel SJ, Moussawi K. Reduced GIRK expression in midbrain dopamine neurons during prolonged abstinence from fentanyl self-administration. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06747-5. [PMID: 39899038 DOI: 10.1007/s00213-025-06747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
RATIONALE Despite decades of research and medical development, relapse to drug seeking continues to be a significant challenge in the treatment of substance use disorders. GABAB receptor (GABAB-R) agonists have been shown preclinically to inhibit relapse by acting on midbrain dopamine (DA) neurons and are sometimes used off-label for the treatment of alcohol use disorder. Studies in rodent models show reduced GABAB-R signaling in DA neurons after exposure to stimulants. Similarly, our recent data demonstrated reduced GABAB-R currents in DA neurons during prolonged abstinence from fentanyl vapor self-administration (SA). However, the mechanism of opioid-induced changes in GABAB-R currents is not well understood. In addition, GABAB-R agonists are plagued with a plethora of side effects limiting their potential clinical use. OBJECTIVES In this study we aimed to answer the following questions: first, can we use GABAB-R positive allosteric modulators (PAMs) to inhibit relapse to opioid seeking? Secondly, how do opioids result in reduced GABAB-R signaling during prolonged abstinence? APPROACH To this end, we tested the effects of a novel GABAB-R PAM (KK-92A) on reinstatement of drug seeking in a rat model of intravenous (IV) fentanyl SA. Using in situ hybridization with RNAscope, we examined the effects of opioids on mRNA levels of various genes involved in GABAB-R signaling, in two rodent models of opioid addiction including a rat model of IV fentanyl SA and a mouse model of fentanyl vapor SA. RESULTS Our results show that KK-92A inhibits relapse to fentanyl but not sucrose-seeking in rats, and fentanyl SA results in reduced mRNA levels of the G protein-coupled inwardly rectifying potassium channel subtypes 2 and 3 (GIRK2/3). CONCLUSION These findings suggest that PAMs like KK-92A are a potential therapeutic strategy for opioid use disorder and their effect is likely due to rectifying GABAB-R mediated inhibition of midbrain DA neurons, which is reduced after opioid SA due to reduced GIRK2/3 expression.
Collapse
Affiliation(s)
- Narges Pachenari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amy L Channell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Belilos
- Intramural Research Program, National Institute On Drug Abuse, Baltimore, MD, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Ramos-Gonzalez N, Varga BR, Majumdar S. Advances in the structural understanding of opioid allostery. Trends Pharmacol Sci 2025; 46:98-101. [PMID: 39827063 PMCID: PMC12001378 DOI: 10.1016/j.tips.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Activation of the μ opioid receptor (MOR) can give analgesia, but also has dangerous side effects. Drugs that target MOR through an allosteric site, meaning they bind outside of the usual pocket, present a novel mode of receptor activation with different pharmacology relative to orthosteric drugs. Recent structural studies give valuable new information on how allosteric modulators interact with MOR.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Balazs R Varga
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA; Center for Clinical Pharmacology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
4
|
Król W, Machelak W, Zielińska M. Positive allosteric modulation of µ-opioid receptor - A new possible approach in the pain management? Biochem Pharmacol 2025; 232:116686. [PMID: 39615602 DOI: 10.1016/j.bcp.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
The antinociceptive effect of the opioid drugs is achieved through activation of the µ-opioid receptor (MOP). The orthosteric and allosteric sites of opioid receptors may be modulated, orthosteric site by endogenous i.e.β-endorphin and exogenous opioids (morphine, oxycodone, fentanyl); whereas BMS-986121, BMS-986122, Comp5, MS1, Ignavine or even oxytocin act on the allosteric site of the MOP. Opioid therapy is associated with numerous side effects, such as: respiratory depression, sedation, constipation, and importantly, prolonged therapy can influence the development of tolerance, overdose, and addiction. Opioid tolerance is a result of MOP internalization and desensitization, preceded by MOP phosphorylation, performed by protein kinases such as: PKA, PKC, GRKs or CaMKII. In vitro and in vivo data suggest that positive allosteric modulators may enhance antinociception triggered by orthosteric ligands and reduce side effects, which would allow the dose of opioids to be reduced and thus provide a more effective therapy. In this review, we present that positive modulation of the allosteric sites of MOP may constitute a new strategy for pain therapy.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
5
|
Li M, Gan X, Liu K, Walajapet R, Stanczyk MA, Stewart HC, Rech JC, White AD, Traynor JR. Structure-Activity Relationships and Molecular Pharmacology of Positive Allosteric Modulators of the Mu-Opioid Receptor. ACS Chem Neurosci 2025; 16:16-29. [PMID: 39661492 DOI: 10.1021/acschemneuro.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Positive allosteric modulation of the mu-opioid receptor is a promising strategy to address the ever-growing problem of acute and chronic pain management. Positive allosteric modulators (PAMs) of the mu-opioid receptor could be employed to enhance the efficacy of endogenous opioid peptides to a degree that provides pain relief without the need for traditional opioid drugs. Alternatively, PAMs might be used to enhance the action of opioid drugs and so provide an opioid-sparing effect, allowing for the use of lower doses of opioid agonists and potentially decreasing associated side effects. BMS-986122 (2-(3-bromo-4-methoxyphenyl)-3-[(4-chlorophenyl)-sulfonyl]-thiazolidine) has been previously identified as a PAM of the mu-opioid receptor. In the present work, we have designed and synthesized 33 analogs of BMS-986122 to explore the structure-activity relationships of this scaffold and confirm its allosteric mechanism of action. Among several newly identified modulators, the most promising compound (14b) had improved activity to increase the in vitro potency of the standard mu-opioid agonist DAMGO and showed in vivo activity in mice to enhance the antinociceptive action of morphine.
Collapse
Affiliation(s)
- Mengchu Li
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinmin Gan
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kun Liu
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rajeswaran Walajapet
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - M Alex Stanczyk
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hannah C Stewart
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason C Rech
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D White
- Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R Traynor
- Edward F Domino Research Center, Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Huang YH, Lin SY, Ou LC, Huang WC, Chao PK, Chang YC, Chang HF, Lee PT, Yeh TK, Kuo YH, Tien YW, Xi JH, Tao PL, Chen PY, Chuang JY, Shih C, Chen CT, Tung CW, Loh HH, Ueng SH, Yeh SH. Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia. Cell Chem Biol 2024; 31:1885-1898.e10. [PMID: 39025070 DOI: 10.1016/j.chembiol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.
Collapse
Affiliation(s)
- Yi-Han Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yung-Chiao Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Tse Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Hsien Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Wen Tien
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jing-Hua Xi
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan
| | - Jian-Ying Chuang
- Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Horace H Loh
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan.
| |
Collapse
|
7
|
Hovah ME, Holzgrabe U. Bivalent and bitopic ligands of the opioid receptors: The prospects of a dual approach. Med Res Rev 2024; 44:2545-2599. [PMID: 38751227 DOI: 10.1002/med.22050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 10/05/2024]
Abstract
Opioid receptors belonging to the class A G-protein coupled receptors (GPCRs) are the targets of choice in the treatment of acute and chronic pain. However, their on-target side effects such as respiratory depression, tolerance and addiction have led to the advent of the 'opioid crisis'. In the search for safer analgesics, bivalent and more recently, bitopic ligands have emerged as valuable tool compounds to probe these receptors. The activity of bivalent and bitopic ligands rely greatly on the allosteric nature of the GPCRs. Bivalent ligands consist of two pharmacophores, each binding to the individual orthosteric binding site (OBS) of the monomers within a dimer. Bitopic or dualsteric ligands bridge the gap between the OBS and the spatially distinct, less conserved allosteric binding site (ABS) through the simultaneous occupation of these two sites. Bivalent and bitopic ligands stabilize distinct conformations of the receptors which ultimately translates into unique signalling and pharmacological profiles. Some of the interesting properties shown by these ligands include improved affinity and/or efficacy, subtype and/or functional selectivity and reduced side effects. This review aims at providing an overview of some of the bivalent and bitopic ligands of the opioid receptors and, their pharmacology in the hope of inspiring the design and discovery of the next generation of opioid analgesics.
Collapse
Affiliation(s)
- Marie Emilie Hovah
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| |
Collapse
|
8
|
Gomes I, Gupta A, Margolis EB, Fricker LD, Devi LA. Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors. Mol Pharmacol 2024; 106:240-252. [PMID: 39187388 PMCID: PMC11493337 DOI: 10.1124/molpharm.124.000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.
Collapse
Affiliation(s)
- Ivone Gomes
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Achla Gupta
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Elyssa B Margolis
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lloyd D Fricker
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lakshmi A Devi
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| |
Collapse
|
9
|
Zhao J, Baiula M, Cuna E, Francescato M, Matalińska J, Lipiński PF, Bedini A, Gentilucci L. Identification of c[D-Trp-Phe-β-Ala-β-Ala], the First κ-Opioid Receptor-Specific Negative Allosteric Modulator. ACS Pharmacol Transl Sci 2024; 7:3192-3204. [PMID: 39416958 PMCID: PMC11475277 DOI: 10.1021/acsptsci.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Recently, the fungus secondary metabolite cyclotetrapetide c[Trp-Phe-D-Pro-Phe] (CJ-15,208) and its derivatives deserved some attention for their unusual structure and distinctive in vitro and in vivo activity. These tryptophan-containing noncationic opioid peptides can be truly regarded as versatile picklocks capable of activating all opioid receptors. Intriguingly, minimal modification of the potent κ-opioid receptor (KOR) agonist c[D-Trp-Phe-Gly-β-Ala] (3) yielded c[D-Trp-Phe-β-Ala-β-Ala] (11), the first KOR-specific negative allosteric modulator (NAM) reported to-date. KOR exerts control over numerous functions in the central nervous system, including pain, depression, stress, mood, and reward. Hence, this KOR-selective NAM looks promising for modulating the KOR in addiction and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Junwei Zhao
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Elisabetta Cuna
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Marco Francescato
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Joanna Matalińska
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Piotr F.J. Lipiński
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Andrea Bedini
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Luca Gentilucci
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Ozzano
Emilia 40064, Italy
| |
Collapse
|
10
|
Yuan Y, Xu T, Huang Y, Shi J. Strategies for developing μ opioid receptor agonists with reduced adverse effects. Bioorg Chem 2024; 149:107507. [PMID: 38850778 DOI: 10.1016/j.bioorg.2024.107507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Opioids are currently the most effective and widely used painkillers in the world. Unfortunately, the clinical use of opioid analgesics is limited by serious adverse effects. Many researchers have been working on designing and optimizing structures in search of novel μ opioid receptor(MOR) agonists with improved analgesic activity and reduced incidence of adverse effects. There are many strategies to develop MOR drugs, mainly focusing on new low efficacy agonists (potentially G protein biased agonists), MOR agonists acting on different Gα subtype, targeting opioid receptors in the periphery, acting on multiple opioid receptor, and targeting allosteric sites of opioid receptors, and others. This review summarizes the design methods, clinical applications, and structure-activity relationships of small-molecule agonists for MOR based on these different design strategies, providing ideas for the development of safer novel opioid ligands with therapeutic potential.
Collapse
Affiliation(s)
- Yan Yuan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Ting Xu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yu Huang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
11
|
Fan YZ, Duan YL, Chen CT, Wang Y, Zhu AP. Advances in attenuating opioid-induced respiratory depression: A narrative review. Medicine (Baltimore) 2024; 103:e38837. [PMID: 39029082 PMCID: PMC11398798 DOI: 10.1097/md.0000000000038837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024] Open
Abstract
Opioids exert analgesic effects by agonizing opioid receptors and activating signaling pathways coupled to receptors such as G-protein and/or β-arrestin. Concomitant respiratory depression (RD) is a common clinical problem, and improvement of RD is usually achieved with specific antagonists such as naloxone; however, naloxone antagonizes opioid analgesia and may produce more unknown adverse effects. In recent years, researchers have used various methods to isolate opioid receptor-mediated analgesia and RD, with the aim of preserving opioid analgesia while attenuating RD. At present, the focus is mainly on the development of new opioids with weak respiratory inhibition or the use of non-opioid drugs to stimulate breathing. This review reports recent advances in novel opioid agents, such as mixed opioid receptor agonists, peripheral selective opioid receptor agonists, opioid receptor splice variant agonists, biased opioid receptor agonists, and allosteric modulators of opioid receptors, as well as in non-opioid agents, such as AMPA receptor modulators, 5-hydroxytryptamine receptor agonists, phosphodiesterase-4 inhibitors, and nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Yong-Zheng Fan
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - Yun-Li Duan
- Xiangyang No. 4 Middle School Compulsory Education Department, Xiangyang, China
| | - Chuan-Tao Chen
- Taihe Country People’s Hospital·The Taihe Hospital of Wannan Medical College, Fuyang, China
| | - Yu Wang
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| | - An-Ping Zhu
- The 991st Hospital of Joint Logistic Support Force of People’s Liberation Army, Xiangyang, China
| |
Collapse
|
12
|
Cahill CM. Opioid crisis: compound opens up potential strategy to tackle overdoses. Nature 2024; 631:512-513. [PMID: 38961206 DOI: 10.1038/d41586-024-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
13
|
Li P, Zhang Q, Zheng H, Qiao Y, Snyder GL, Martin T, Yao W, Zhang L, Davis RE. Discovery of ITI-333, a Novel Orally Bioavailable Molecule Targeting Multiple Receptors for the Treatment of Pain and Other Disorders. J Med Chem 2024; 67:9355-9373. [PMID: 38805667 PMCID: PMC11181336 DOI: 10.1021/acs.jmedchem.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Development of more efficacious medications with improved safety profiles to manage and treat multiple forms of pain is a critical element of healthcare. To this end, we have designed and synthesized a novel class of tetracyclic pyridopyrroloquinoxalinone derivatives with analgesic properties. The receptor binding profiles and analgesic properties of these tetracyclic compounds were studied. Systematic optimizations of this novel scaffold culminated in the discovery of the clinical candidate, (6bR,10aS)-8-[3-(4-fluorophenoxy)propyl]-6b,7,8,9,10,10a-hexahydro-1H-pyrido[3',4':4,5]pyrrolo[1,2,3-de]quinoxalin-2(3H)-one (compound 5, ITI-333), which exhibited potent binding affinity to serotonin 5-HT2A (Ki = 8.3 nM) and μ-opioid receptors (MOR, Ki = 11 nM) and moderate affinity to adrenergic α1A (Ki = 28 nM) and dopamine D1 (Ki = 50 nM) receptors. ITI-333 acts as a 5-HT2A receptor antagonist, a MOR partial agonist, and an adrenergic α1A receptor antagonist. ITI-333 exhibited dose-dependent analgesic effects in rodent models of acute pain. Currently, this investigational new drug is in phase I clinical development.
Collapse
Affiliation(s)
- Peng Li
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Qiang Zhang
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Hailin Zheng
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Yupu Qiao
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Gretchen L. Snyder
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Terry Martin
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Wei Yao
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Lei Zhang
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| | - Robert E. Davis
- Intra-Cellular Therapies,
Inc., 430 East 29th Street, Suite 900, New York, New York 10016, United States
| |
Collapse
|
14
|
Wegert A, Monnee M, de Graaf W, van Holst F, Bolcato G, Díaz JL, Dordal A, Portillo-Salido E, Reinoso RF, Yeste S, Torrens A, Almansa C. Towards Multitargeted Ligands as Pain Therapeutics: Dual Ligands of the Ca vα2δ-1 Subunit of Voltage-Gated Calcium Channel and the μ-Opioid Receptor. ChemMedChem 2024; 19:e202300473. [PMID: 38230842 DOI: 10.1002/cmdc.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The synthesis and pharmacological activity of a new series of dual ligands combining activities towards the α2δ-1 subunit of voltage-gated calcium channels (Cavα2δ-1) and the μ-opioid receptor (MOR) as novel pain therapeutics are reported. A careful exploration of the pharmacophores related to both targets, which in principle had few common characteristics, led to the design of novel compounds exhibiting both activities. The construction of the dual ligands started from published Cavα2δ-1 ligands, onto which MOR ligand pharmacophoric elements were added. This exercise led to new amino-acidic substances with good affinities on both targets as well as good metabolic and physicochemical profiles and low potential for drug-drug interactions. A representative compound, (2S,4S)-4-(4-chloro-3-(((cis)-4-(dimethylamino)-4-phenylcyclohexyl)methyl)-5-fluorophenoxy)pyrrolidine-2-carboxylic acid, displayed promising analgesic activities in several in vivo pain models as well as a reduced side-effect profile in relation to morphine.
Collapse
Affiliation(s)
- Anita Wegert
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Menno Monnee
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Wouter de Graaf
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Frank van Holst
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | | | - José Luis Díaz
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Albert Dordal
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | | | - Raquel F Reinoso
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Sandra Yeste
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Antoni Torrens
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Carmen Almansa
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| |
Collapse
|
15
|
Kaneko S, Imai S, Uchikubo-Kamo T, Hisano T, Asao N, Shirouzu M, Shimada I. Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator. Nat Commun 2024; 15:3544. [PMID: 38740791 DOI: 10.1038/s41467-024-47792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the μ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.
Collapse
MESH Headings
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Allosteric Regulation
- Humans
- Cryoelectron Microscopy
- Protein Binding
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- HEK293 Cells
- Ligands
- Models, Molecular
- Protein Conformation
Collapse
Affiliation(s)
- Shun Kaneko
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Imai
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
| | | | - Tamao Hisano
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Nobuaki Asao
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Ichio Shimada
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
16
|
Auvity S, Vodovar D, Goutal S, Cisternino S, Chevillard L, Soyer A, Bottlaender M, Caillé F, Mégarbane B, Tournier N. Brain PET imaging using 11C-flumazenil and 11C-buprenorphine does not support the hypothesis of a mutual interaction between buprenorphine and benzodiazepines at the neuroreceptor level. J Cereb Blood Flow Metab 2024; 44:449-458. [PMID: 38097513 PMCID: PMC10870960 DOI: 10.1177/0271678x231221040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/16/2024]
Abstract
Among opioids, buprenorphine presents a favorable safety profile with a limited risk of respiratory depression. However, fatalities have been reported when buprenorphine is combined to a benzodiazepine. Potentiation of buprenorphine interaction with opioid receptors (ORs) with benzodiazepines, and/or vice versa, is hypothesized to explain this drug-drug interaction (DDI). The mutual DDI between buprenorphine and benzodiazepines was investigated at the neuroreceptor level in nonhuman primates (n = 4 individuals) using brain PET imaging and kinetic modelling. The binding potential (BPND) of benzodiazepine receptor (BzR) was assessed using 11C-flumazenil PET imaging before and after administration of buprenorphine (0.2 mg, i.v.). Moreover, the brain kinetics and receptor binding of buprenorphine were investigated in the same individuals using 11C-buprenorphine PET imaging before and after administration of diazepam (10 mg, i.v.). Outcome parameters were compared using a two-way ANOVA. Buprenorphine did not impact the plasma nor brain kinetics of 11C-flumazenil. 11C-flumazenil BPND was unchanged following buprenorphine exposure, in any brain region (p > 0.05). Similarly, diazepam did not impact the plasma or brain kinetics of 11C-buprenorphine. 11C-buprenorphine volume of distribution (VT) was unchanged following diazepam exposure, in any brain region (p > 0.05). To conclude, our PET imaging findings do not support a neuropharmacokinetic or neuroreceptor-related mechanism of the buprenorphine/benzodiazepine interaction.
Collapse
Affiliation(s)
- Sylvain Auvity
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Dominique Vodovar
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Salvatore Cisternino
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Lucie Chevillard
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Amélie Soyer
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Bruno Mégarbane
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| |
Collapse
|
17
|
Straszak D, Woźniak S, Siwek A, Głuch-Lutwin M, Kołaczkowski M, Pietrzak A, Drop B, Matosiuk D. Novel 1-(1-Arylimiazolin-2-Yl)-3-Arylalkilurea Derivatives with Modulatory Activity on Opioid MOP Receptors. Molecules 2024; 29:571. [PMID: 38338317 PMCID: PMC10856196 DOI: 10.3390/molecules29030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
μ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and β-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited β-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.
Collapse
Affiliation(s)
- Dominik Straszak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Aldona Pietrzak
- Department of Dermatology, Venereology, and Paediatric Dermatology, Faculty of Medicine, Medical University, Staszica 11, 20-080 Lublin, Poland;
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| |
Collapse
|
18
|
Pagare PP, Flammia R, Zhang Y. IUPHAR review: Recent progress in the development of Mu opioid receptor modulators to treat opioid use disorders. Pharmacol Res 2024; 199:107023. [PMID: 38081336 DOI: 10.1016/j.phrs.2023.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Opioid Use Disorder (OUD) can be described as intense preoccupation with using or obtaining opioids despite the negative consequences associated with their use. As the number of OUD cases in the U.S. increase, so do the number of opioid-related overdose deaths. In 2022, opioid-related overdose became the No. 1 cause of death for individuals in the U.S. between the ages of 25 and 64 years of age. Because of the introduction of highly potent synthetic opioids (e.g. fentanyl) to the illicit drug market, there is an urgent need for therapeutics that successfully reduce the number of overdoses and can help OUD patients maintain sobriety. Most abused opioids stimulate the mu-opioid receptor (MOR) and activation of this receptor can lead to positive (e.g., euphoria) consequences. However, the negative side effects of MOR stimulation can be fatal (e.g., sedation, respiratory depression). Therefore, the MOR is an attractive target for developing medications to treat OUD. Current FDA drugs include MOR agonists that aid in detoxification and relapse prevention, and MOR antagonists that also serve as maintenance therapies or reverse overdose. These medications are limited by their abuse potential, adverse effects, or pharmacological profiles which leaves ample room for research into designing new chemical entities with optimal physiological effects. These includes, orthosteric ligands that target the primary binding site of the MOR, allosteric ligands that positively, negatively, or "silently" modulate receptor function, and lastly, bitopic ligands target both the orthosteric and allosteric sites simultaneously.
Collapse
Affiliation(s)
- Piyusha P Pagare
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Rachael Flammia
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, VA 23298, United States.
| |
Collapse
|
19
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Fouillen A, Bous J, Granier S, Mouillac B, Sounier R. Bringing GPCR Structural Biology to Medical Applications: Insights from Both V2 Vasopressin and Mu-Opioid Receptors. MEMBRANES 2023; 13:606. [PMID: 37367810 PMCID: PMC10303988 DOI: 10.3390/membranes13060606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
G-protein coupled receptors (GPCRs) are versatile signaling proteins that regulate key physiological processes in response to a wide variety of extracellular stimuli. The last decade has seen a revolution in the structural biology of clinically important GPCRs. Indeed, the improvement in molecular and biochemical methods to study GPCRs and their transducer complexes, together with advances in cryo-electron microscopy, NMR development, and progress in molecular dynamic simulations, have led to a better understanding of their regulation by ligands of different efficacy and bias. This has also renewed a great interest in GPCR drug discovery, such as finding biased ligands that can either promote or not promote specific regulations. In this review, we focus on two therapeutically relevant GPCR targets, the V2 vasopressin receptor (V2R) and the mu-opioid receptor (µOR), to shed light on the recent structural biology studies and show the impact of this integrative approach on the determination of new potential clinical effective compounds.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
- Centre de Biochimie Structurale (CBS), Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Julien Bous
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Remy Sounier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| |
Collapse
|
21
|
Chan WKB, Carlson HA, Traynor JR. Application of Mixed-Solvent Molecular Dynamics Simulations for Prediction of Allosteric Sites on G Protein-Coupled Receptors. Mol Pharmacol 2023; 103:274-285. [PMID: 36868791 PMCID: PMC10166447 DOI: 10.1124/molpharm.122.000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
The development of small molecule allosteric modulators acting at G protein-coupled receptors (GPCRs) is becoming increasingly attractive. Such compounds have advantages over traditional drugs acting at orthosteric sites on these receptors, in particular target specificity. However, the number and locations of druggable allosteric sites within most clinically relevant GPCRs are unknown. In the present study, we describe the development and application of a mixed-solvent molecular dynamics (MixMD)-based method for the identification of allosteric sites on GPCRs. The method employs small organic probes with druglike qualities to identify druggable hotspots in multiple replicate short-timescale simulations. As proof of principle, we first applied the method retrospectively to a test set of five GPCRs (cannabinoid receptor type 1, C-C chemokine receptor type 2, M2 muscarinic receptor, P2Y purinoceptor 1, and protease-activated receptor 2) with known allosteric sites in diverse locations. This resulted in the identification of the known allosteric sites on these receptors. We then applied the method to the μ-opioid receptor. Several allosteric modulators for this receptor are known, although the binding sites for these modulators are not known. The MixMD-based method revealed several potential allosteric sites on the mu-opioid receptor. Implementation of the MixMD-based method should aid future efforts in the structure-based drug design of drugs targeting allosteric sites on GPCRs. SIGNIFICANCE STATEMENT: Allosteric modulation of G protein-coupled receptors (GPCRs) has the potential to provide more selective drugs. However, there are limited structures of GPCRs bound to allosteric modulators, and obtaining such structures is problematic. Current computational methods utilize static structures and therefore may not identify hidden or cryptic sites. Here we describe the use of small organic probes and molecular dynamics to identify druggable allosteric hotspots on GPCRs. The results reinforce the importance of protein dynamics in allosteric site identification.
Collapse
Affiliation(s)
- Wallace K B Chan
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| | - Heather A Carlson
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Li Z, Liu J, Dong F, Chang N, Huang R, Xia M, Patterson TA, Hong H. Three-Dimensional Structural Insights Have Revealed the Distinct Binding Interactions of Agonists, Partial Agonists, and Antagonists with the µ Opioid Receptor. Int J Mol Sci 2023; 24:ijms24087042. [PMID: 37108204 PMCID: PMC10138646 DOI: 10.3390/ijms24087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The United States is experiencing the most profound and devastating opioid crisis in history, with the number of deaths involving opioids, including prescription and illegal opioids, continuing to climb over the past two decades. This severe public health issue is difficult to combat as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive. Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is primarily responsible for the analgesic cascade. This review describes available 3D structures of the µ opioid receptor in the protein data bank and provides structural insights for the binding of agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding site in these structures was conducted and distinct binding interactions for agonists, partial agonists, and antagonists were observed. The findings in this article deepen our understanding of the ligand binding activity and shed some light on the development of novel opioid analgesics which may improve the risk benefit balance of existing opioids.
Collapse
Affiliation(s)
- Zoe Li
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fan Dong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Nancy Chang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
23
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
24
|
Trimmer C, Arroyave R, Vuilleumier C, Wu L, Dumer A, DeLaura C, Kim J, Pierce GM, Borisovska M, De Nanteuil F, Emberger M, Varganov Y, Margot C, Rogers ME, Pfister P. Allosteric modulation of a human odorant receptor. Curr Biol 2023; 33:1523-1534.e4. [PMID: 36977419 DOI: 10.1016/j.cub.2023.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Odor perception is first determined by how the myriad of environmental volatiles are detected at the periphery of the olfactory system. The combinatorial activation of dedicated odorant receptors generates enough encoding power for the discrimination of tens of thousands of odorants. Recent studies have revealed that odorant receptors undergo widespread inhibitory modulation of their activity when presented with mixtures of odorants, a property likely required to maintain discrimination and ensure sparsity of the code for complex mixtures. Here, we establish the role of human OR5AN1 in the detection of musks and identify distinct odorants capable of enhancing its activity in binary mixtures. Chemical and pharmacological characterization indicate that specific α-β unsaturated aliphatic aldehydes act as positive allosteric modulators. Sensory experiments show decreased odor detection threshold in humans, suggesting that allosteric modulation of odorant receptors is perceptually relevant and likely adds another layer of complexity to how odors are encoded in the peripheral olfactory system.
Collapse
|
25
|
Olson KM, Hillhouse TM, Burgess GE, West JL, Hallahan JE, Dripps IJ, Ladetto AG, Rice KC, Jutkiewicz EM, Traynor JR. Delta Opioid Receptor-Mediated Antidepressant-Like Effects of Diprenorphine in Mice. J Pharmacol Exp Ther 2023; 384:343-352. [PMID: 36456196 PMCID: PMC9976798 DOI: 10.1124/jpet.122.001182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Major depressive disorder is a highly common disorder, with a lifetime prevalence in the United States of approximately 21%. Traditional antidepressant treatments are limited by a delayed onset of action and minimal efficacy in some patients. Ketamine is effective and fast-acting, but there are concerns over its abuse liability. Thus, there is a need for safe, fast-acting antidepressant drugs. The opioid buprenorphine shows promise but also has abuse liability due to its mu-agonist component. Preclinical evidence indicates that the delta-opioid system contributes to mood disorders, and delta-opioid agonists are effective in preclinical models of depression- and anxiety-like states. In this study, we test the hypothesis that the mu-opioid antagonist diprenorphine by virtue of its partial delta opioid agonist activity may offer a beneficial profile for an antidepressant medication without abuse liability. Diprenorphine was confirmed to bind with high affinity to all three opioid receptors, and functional experiments for G protein activation verified diprenorphine to be a partial agonist at delta- and kappa-opioid receptors and a mu-antagonist. Studies in C57BL/6 mice demonstrated that an acute dose of diprenorphine produced antidepressant-like effects in the tail suspension test and the novelty-induced hypophagia test that were inhibited in the presence of the delta-selective antagonist, naltrindole. Diprenorphine did not produce convulsions, a side effect of many delta agonists but rather inhibited convulsions caused by the full delta agonist SNC80; however, diprenorphine did potentiate pentylenetetrazole-induced convulsions. Diprenorphine, and compounds with a similar pharmacological profile, may provide efficient and safe rapidly acting antidepressants. SIGNIFICANCE STATEMENT: The management of major depressive disorder, particularly treatment-resistant depression, is a significant unmet medical need. Here we show that the opioid diprenorphine, a compound with mu-opioid receptor antagonist activity and delta- and kappa-opioid receptor partial agonist activities, has rapid onset antidepressant-like activity in animal models. Diprenorphine and compounds with a similar pharmacological profile to diprenorphine should be explored as novel antidepressant drugs.
Collapse
MESH Headings
- Animals
- Mice
- Analgesics, Opioid/pharmacology
- Antidepressive Agents/pharmacology
- Depressive Disorder, Major
- Diprenorphine/pharmacology
- Mice, Inbred C57BL
- Receptors, Opioid
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Seizures/chemically induced
Collapse
Affiliation(s)
- Keith M Olson
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Todd M Hillhouse
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Gwendolyn E Burgess
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Joshua L West
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - James E Hallahan
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Isaac J Dripps
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Allison G Ladetto
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Emily M Jutkiewicz
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - John R Traynor
- Department of Pharmacology and Edward F Domino Research Center (K.M.O., T.M.H., G.E.B., J.L.W., J.E.H., I.J.D., A.G.L., E.M.J., J.R.T.) and Department of Medicinal Chemistry (J.R.T.), University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H.); and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
26
|
Jiang C, He X, Wang Y, Chen CJ, Othman Y, Hao Y, Yuan J, Xie XQ, Feng Z. Molecular Modeling Study of a Receptor-Orthosteric Ligand-Allosteric Modulator Signaling Complex. ACS Chem Neurosci 2023; 14:418-434. [PMID: 36692197 PMCID: PMC10032570 DOI: 10.1021/acschemneuro.2c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Allosteric modulators (AMs) are considered as a perpetual hotspot in research for their higher selectivity and various effects on orthosteric ligands (OL). They are classified in terms of their functionalities as positive, negative, or silent allosteric modulators (PAM, NAM, or SAM, respectively). In the present work, 11 pairs of three-dimensional (3D) structures of receptor-orthosteric ligand and receptor-orthosteric ligand-allosteric modulator complexes have been collected for the studies, including three different systems: GPCR, enzyme, and ion channel. Molecular dynamics (MD) simulations are applied to quantify the dynamic interactions in both the orthosteric and allosteric binding pockets and the structural fluctuation of the involved proteins. Our results showed that MD simulations of moderately large molecules or peptides undergo insignificant changes compared to crystal structure results. Furthermore, we also studied the conformational changes of receptors that bound with PAM and NAM, as well as the different allosteric binding sites in a receptor. There should be no preference for the position of the allosteric binding pocket after comparing the allosteric binding pockets of these three systems. Finally, we aligned four distinct β2 adrenoceptor structures and three N-methyl-d-aspartate receptor (NMDAR) structures to investigate conformational changes. In the β2 adrenoceptor systems, the aligned results revealed that transmembrane (TM) helices 1, 5, and 6 gradually increased outward movement from an enhanced inactive state to an improved active state. TM6 endured the most significant conformational changes (around 11 Å). For NMDAR, the bottom section of NMDAR's ligand-binding domain (LBD) experienced an upward and outward shift during the gradually activating process. In conclusion, our research provides insight into receptor-orthosteric ligand-allosteric modulator studies and the design and development of allosteric modulator drugs using MD simulation.
Collapse
Affiliation(s)
- Chen Jiang
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Xibing He
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Yuanqiang Wang
- School
of Pharmacy and Bioengineering, Chongqing
University of Technology, Chongqing400054, China
- Chongqing
Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing400054, China
- Chongqing
Key Laboratory of Target Based Drug Screening and Effect Evaluation, Chongqing400054, China
| | - Chih-Jung Chen
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Yasmin Othman
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Yixuan Hao
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Jiayi Yuan
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Xiang-Qun Xie
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Zhiwei Feng
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics,
School of Pharmacy; National Center of Excellence for Computational
Drug Abuse Research; Drug Discovery Institute; Departments of Computational
Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| |
Collapse
|
27
|
Mizuguchi T, Miyano K, Yamauchi R, Yoshida Y, Takahashi H, Yamazaki A, Ono H, Inagaki M, Nonaka M, Uezono Y, Fujii H. The first structure-activity relationship study of oxytocin as a positive allosteric modulator for the µ opioid receptor. Peptides 2023; 159:170901. [PMID: 36347314 DOI: 10.1016/j.peptides.2022.170901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Positive allosteric modulators (PAMs) of G protein-coupled receptors (GPCRs) have drawn attention as novel drug candidates. PAMs can enhance the activities of endogenous agonists which are not only secreted at appropriate times and in parts of the body, but also are immediately metabolized. Therefore, they are expected to show fewer side effects than exogeneous orthosteric ligands. Recently, we have reported that oxytocin (OT) functioned as a PAM of the μ opioid receptor (MOR) which was one of the most potent targets for analgesics. OT is thus thought to be a useful compound for the development of novel analgesics. In this study, several OT analogs were synthesized and evaluated with an intact cell-based assay to investigate the crucial structures of OT for exerting the PAM activity. The assay results indicated that the cyclic structure formed by an intramolecular disulfide bond and the three C-terminal residues containing a small Gly residue of OT were essential for their function as a MOR-PAM. Intriguingly, two analogs having an amide or an ethylene tether instead of the intramolecular disulfide bridge did not have any PAM effects. The results suggested that the disulfide linkage of OT would be a key structure for exerting the PAM activity at the MOR.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Risa Yamauchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Yoshida
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Takahashi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ami Yamazaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruka Ono
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miku Inagaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
28
|
Kamaraj R, Drastik M, Maixnerova J, Pavek P. Allosteric Antagonism of the Pregnane X Receptor (PXR): Current-State-of-the-Art and Prediction of Novel Allosteric Sites. Cells 2022; 11:2974. [PMID: 36230936 PMCID: PMC9563780 DOI: 10.3390/cells11192974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-activated transcription factor with high levels of expression in the liver. It not only plays a key role in drug metabolism and elimination, but also promotes tumor growth, drug resistance, and metabolic diseases. It has been proposed as a therapeutic target for type II diabetes, metabolic syndrome, and inflammatory bowel disease, and PXR antagonists have recently been considered as a therapy for colon cancer. There are currently no PXR antagonists that can be used in a clinical setting. Nevertheless, due to the large and complex ligand-binding pocket (LBP) of the PXR, it is challenging to discover PXR antagonists at the orthosteric site. Alternative ligand binding sites of the PXR have also been proposed and are currently being studied. Recently, the AF-2 allosteric binding site of the PXR has been identified, with several compounds modulating the site discovered. Herein, we aimed to summarize our current knowledge of allosteric modulation of the PXR as well as our attempt to unlock novel allosteric sites. We describe the novel binding function 3 (BF-3) site of PXR, which is also common for other nuclear receptors. In addition, we also mention a novel allosteric site III based on in silico prediction. The identified allosteric sites of the PXR provide new insights into the development of safe and efficient allosteric modulators of the PXR receptor. We therefore propose that novel PXR allosteric sites might be promising targets for treating chronic metabolic diseases and some cancers.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
29
|
Yasunaga M, Takai E, Hattori S, Tatematsu K, Kuroda S. Effects of 3-octen-2-one on human olfactory receptor responses to vanilla flavor. Biosci Biotechnol Biochem 2022; 86:1562-1569. [PMID: 36073350 DOI: 10.1093/bbb/zbac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
Most of the odors that humans perceive daily are complex odors. It is believed that the modulation, enhancement, and suppression of overall complex odors are caused by interactions between odor molecules. In this study, to understand the interaction between odor molecules at the level of human olfactory receptor responses, the effects of 3-octen-2-one, which has been shown to modulate vanilla flavors, were analyzed using a human olfactory receptor sensor that uses all human olfactory receptors (388 types) as sensing molecules. As a result, the response intensity of 1 common receptor (OR1D2) was synergistically enhanced in vanilla flavor with 3-octen-2-one compared with vanilla flavor, and the response of 1 receptor (OR5K1) to vanilla flavor was completely suppressed. These results strongly suggested that the response of human olfactory receptors to complex odors is enhanced or suppressed by relatively few other odor molecules.
Collapse
Affiliation(s)
- Motoki Yasunaga
- Analytical Research Department, Soda Aromatic Co., Ltd., 1573-4 Funakata, Noda, Chiba 270-0233Japan
| | - Eiji Takai
- Analytical Research Department, Soda Aromatic Co., Ltd., 1573-4 Funakata, Noda, Chiba 270-0233Japan
| | - Shoji Hattori
- Analytical Research Department, Soda Aromatic Co., Ltd., 1573-4 Funakata, Noda, Chiba 270-0233Japan
| | - Kenji Tatematsu
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047Japan.,R&D Center, Komi Hakko Co., Technoalliance C Bldg. 3F, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871Japan
| | - Shun'ichi Kuroda
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047Japan.,R&D Center, Komi Hakko Co., Technoalliance C Bldg. 3F, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871Japan
| |
Collapse
|
30
|
Meqbil YJ, van Rijn RM. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals (Basel) 2022; 15:873. [PMID: 35890173 PMCID: PMC9324648 DOI: 10.3390/ph15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression pattern both in the central nervous system and the body. The receptor has been investigated as a potential target for a multitude of significant diseases including migraine, alcohol use disorder, ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be optimized and selected for clinical trials. Here, we highlight recent developments involving the delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area of the GPCR drug discovery research. We focus on the validity and utility of the available delta opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta opioid modulators potentially with unique pharmacological properties, such as biased signaling.
Collapse
Affiliation(s)
- Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, Computational Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue Institute for Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Septerna Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
31
|
Selective and antagonist-dependent μ-opioid receptor activation by the combination of 2-{[2-(6-chloro-3,4-dihydro-1(2H)-quinolinyl)-2-oxoethyl]sulfanyl}-5-phenyl-4,6-(1H,5H)-pyrimidinedione and naloxone/naltrexone. Bioorg Chem 2022; 128:105905. [DOI: 10.1016/j.bioorg.2022.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022]
|
32
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
33
|
Straszak D, Siwek A, Głuch-Lutwin M, Mordyl B, Kołaczkowski M, Pietrzak A, Rahnama-Hezavah M, Drop B, Matosiuk D. Modulation of the MOP Receptor (μ Opioid Receptor) by Imidazo[1,2- a]imidazole-5,6-Diones: In Search of the Elucidation of the Mechanism of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092930. [PMID: 35566280 PMCID: PMC9100072 DOI: 10.3390/molecules27092930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
The μ-opioid receptors belong to the family of G protein-coupled receptors (GPCRs), and their activation triggers a cascade of intracellular relays with the final effect of analgesia. Classical agonists of this receptor, such as morphine, are the main targets in the treatment of both acute and chronic pain. However, the dangerous side effects, such as respiratory depression or addiction, significantly limit their widespread use. The allosteric centers of the receptors exhibit large structural diversity within particular types and even subtypes. Currently, a considerable interest is aroused by the modulation of μ-opioid receptors. The application of such a technique may result in a reduction in the dose or even discontinuation of classical opiates, thus eliminating the side effects typical of this class of drugs. Our aim is to obtain a series of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazole derivatives and provide more information about their activity and selectivity on OP3 (MOP, human mu opioid receptor). The study was based on an observation that some carbonyl derivatives of 1-aryl-2-aminoimidazoline cooperate strongly with morphine or DAMGO in sub-threshold doses, producing similar results to those of normal active doses. To elucidate the possible mechanism of such enhancement, we performed a few in vitro functional tests (involving cAMP and β-arrestin recruitment) and a radioligand binding assay on CHO-K1 cells with the expression of the OP3 receptor. One of the compounds had no orthosteric affinity or intrinsic activity, but inhibited the efficiency of DAMGO. These results allow to conclude that this compound is a negative allosteric modulator (NAM) of the human μ-opioid receptor.
Collapse
Affiliation(s)
- Dominik Straszak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Barbara Mordyl
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Aldona Pietrzak
- Department of Dermatology, Venereology, and Paediatric Dermatology, Faculty of Medicine, Medical University, Staszica 11, 20-080 Lublin, Poland;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University, Chodzki 6, 20-093 Lublin, Poland;
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
34
|
Abstract
SignificanceThe allosteric modulators, which bind to nonorthosteric sites to enhance the signaling activities of G-protein-coupled receptors (GPCRs), are new candidates for GPCR-targeting drugs. Our solution NMR analyses of the μ-opioid receptor (MOR) revealed that the MOR activity was determined by a conformational equilibrium between three conformations. Interestingly, an allosteric modulator shifted the equilibrium toward a conformation with the highest activity to a level that cannot be reached by orthosteric ligands alone, leading to the increased activity of MOR. Our NMR analyses also identified the binding site of the allosteric modulator, including the residues contributing to the regulation of the equilibrium. These findings provide insights into the rational developments of novel allosteric modulators.
Collapse
|
35
|
Castroman P, Quiroga O, Mayoral Rojals V, Gómez M, Moka E, Pergolizzi Jr J, Varrassi G. Reimagining How We Treat Acute Pain: A Narrative Review. Cureus 2022; 14:e23992. [PMID: 35547466 PMCID: PMC9084930 DOI: 10.7759/cureus.23992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Acute pain may be influenced by biopsychosocial factors. Conditioned pain modulation, distraction, peripheral nerve stimulation, and cryoneurolysis may be helpful in its treatment. New developments in opioids, such as opioids with bifunctional targets and oliceridine, may be particularly suited for acute pain care. Allosteric modulators can enhance receptor subtype selectivity, offering analgesia with fewer and/or less severe side effects. Neuroinflammation in acute pain is caused by direct insult to the central nervous system and is distinct from neuroinflammation in degenerative disorders. Pharmacologic agents targeting the neuroinflammatory process are limited at this time. Postoperative pain is a prevalent form of acute pain and must be recognized as a global public health challenge. This type of pain may be severe, impede rehabilitation, and is often under-treated. A subset of surgical patients develops chronic postsurgical pain. Acute pain is not just temporally limited pain that often resolves on its own. It is an important subject for further research as acute pain may transition into more damaging and debilitating chronic pain. Reimagining how we treat acute pain will help us better address this urgent unmet medical need.
Collapse
|
36
|
Root-Bernstein R. Biased, Bitopic, Opioid-Adrenergic Tethered Compounds May Improve Specificity, Lower Dosage and Enhance Agonist or Antagonist Function with Reduced Risk of Tolerance and Addiction. Pharmaceuticals (Basel) 2022; 15:214. [PMID: 35215326 PMCID: PMC8876737 DOI: 10.3390/ph15020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/03/2023] Open
Abstract
This paper proposes the design of combination opioid-adrenergic tethered compounds to enhance efficacy and specificity, lower dosage, increase duration of activity, decrease side effects, and reduce risk of developing tolerance and/or addiction. Combinations of adrenergic and opioid drugs are sometimes used to improve analgesia, decrease opioid doses required to achieve analgesia, and to prolong the duration of analgesia. Recent mechanistic research suggests that these enhanced functions result from an allosteric adrenergic binding site on opioid receptors and, conversely, an allosteric opioid binding site on adrenergic receptors. Dual occupancy of the receptors maintains the receptors in their high affinity, most active states; drops the concentration of ligand required for full activity; and prevents downregulation and internalization of the receptors, thus inhibiting tolerance to the drugs. Activation of both opioid and adrenergic receptors also enhances heterodimerization of the receptors, additionally improving each drug's efficacy. Tethering adrenergic drugs to opioids could produce new drug candidates with highly desirable features. Constraints-such as the locations of the opioid binding sites on adrenergic receptors and adrenergic binding sites on opioid receptors, length of tethers that must govern the design of such novel compounds, and types of tethers-are described and examples of possible structures provided.
Collapse
|
37
|
Identification of a Novel Delta Opioid Receptor Agonist Chemotype with Potential Negative Allosteric Modulator Capabilities. Molecules 2021; 26:molecules26237236. [PMID: 34885825 PMCID: PMC8659279 DOI: 10.3390/molecules26237236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious β-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit β-arrestin, as it has been suggested that compounds that efficaciously recruit β-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a ‘NAM-agonist’ in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.
Collapse
|
38
|
Palmer CB, Meyrath M, Canals M, Kostenis E, Chevigné A, Szpakowska M. Atypical opioid receptors: unconventional biology and therapeutic opportunities. Pharmacol Ther 2021; 233:108014. [PMID: 34624426 DOI: 10.1016/j.pharmthera.2021.108014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.
Collapse
Affiliation(s)
- Christie B Palmer
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
39
|
Oxytocin Is a Positive Allosteric Modulator of κ-Opioid Receptors but Not δ-Opioid Receptors in the G Protein Signaling Pathway. Cells 2021; 10:cells10102651. [PMID: 34685631 PMCID: PMC8534029 DOI: 10.3390/cells10102651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023] Open
Abstract
Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances μ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting β-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR.
Collapse
|
40
|
Pryce KD, Kang HJ, Sakloth F, Liu Y, Khan S, Toth K, Kapoor A, Nicolais A, Che T, Qin L, Bertherat F, Kaniskan HÜ, Jin J, Cameron MD, Roth BL, Zachariou V, Filizola M. A promising chemical series of positive allosteric modulators of the μ-opioid receptor that enhance the antinociceptive efficacy of opioids but not their adverse effects. Neuropharmacology 2021; 195:108673. [PMID: 34153316 PMCID: PMC8410669 DOI: 10.1016/j.neuropharm.2021.108673] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023]
Abstract
Positive allosteric modulators (PAMs) of the μ-opioid receptor (MOR) have been proposed to exhibit therapeutic potential by maximizing the analgesic properties of clinically used opioid drugs while limiting their adverse effects or risk of overdose as a result of using lower drug doses. We herein report in vitro and in vivo characterization of two small molecules from a chemical series of MOR PAMs that exhibit: (i) MOR PAM activity and receptor subtype selectivity in vitro, (ii) a differential potentiation of the antinociceptive effect of oxycodone, morphine, and methadone in mouse models of pain that roughly correlates with in vitro activity, and (iii) a lack of potentiation of adverse effects associated with opioid administration, such as somatic withdrawal, respiratory depression, and analgesic tolerance. This series of MOR PAMs holds promise for the development of adjuncts to opioid therapy to mitigate against overdose and opioid use disorders.
Collapse
Affiliation(s)
- Kerri D Pryce
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Farhana Sakloth
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Katalin Toth
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lihuai Qin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
41
|
Muratspahić E, Tomašević N, Nasrollahi-Shirazi S, Gattringer J, Emser FS, Freissmuth M, Gruber CW. Plant-Derived Cyclotides Modulate κ-Opioid Receptor Signaling. JOURNAL OF NATURAL PRODUCTS 2021; 84:2238-2248. [PMID: 34308635 PMCID: PMC8406418 DOI: 10.1021/acs.jnatprod.1c00301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Cyclotides are plant-derived disulfide-rich peptides comprising a cyclic cystine knot, which confers remarkable stability against thermal, proteolytic, and chemical degradation. They represent an emerging class of G protein-coupled receptor (GPCR) ligands. In this study, utilizing a screening approach of plant extracts and pharmacological analysis we identified cyclotides from Carapichea ipecacuanha to be ligands of the κ-opioid receptor (KOR), an attractive target for developing analgesics with reduced side effects and therapeutics for multiple sclerosis (MS). This prompted us to verify whether [T20K]kalata B1, a cyclotide in clinical development for the treatment of MS, is able to modulate KOR signaling. T20K bound to and fully activated KOR in the low μM range. We then explored the ability of T20K to allosterically modulate KOR. Co-incubation of T20K with KOR ligands resulted in positive allosteric modulation in functional cAMP assays by altering either the efficacy of dynorphin A1-13 or the potency and efficacy of U50,488 (a selective KOR agonist), respectively. In addition, T20K increased the basal response upon cotreatment with U50,488. In the bioluminescence resonance energy transfer assay T20K negatively modulated the efficacy of U50,488. This study identifies cyclotides capable of modulating KOR and highlights the potential of plant-derived peptides as an opportunity to develop cyclotide-based KOR modulators.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shahrooz Nasrollahi-Shirazi
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Jasmin Gattringer
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabiola Susanna Emser
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Freissmuth
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
42
|
Kibaly C, Alderete JA, Liu SH, Nasef HS, Law PY, Evans CJ, Cahill CM. Oxycodone in the Opioid Epidemic: High 'Liking', 'Wanting', and Abuse Liability. Cell Mol Neurobiol 2021; 41:899-926. [PMID: 33245509 PMCID: PMC8155122 DOI: 10.1007/s10571-020-01013-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
It is estimated that nearly a third of people who abuse drugs started with prescription opioid medicines. Approximately, 11.5 million Americans used prescription drugs recreationally in 2016, and in 2018, 46,802 Americans died as the result of an opioid overdose, including prescription opioids, heroin, and illicitly manufactured fentanyl (National Institutes on Drug Abuse (2020) Opioid Overdose Crisis. https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis . Accessed 06 June 2020). Yet physicians will continue to prescribe oral opioids for moderate-to-severe pain in the absence of alternative therapeutics, underscoring the importance in understanding how drug choice can influence detrimental outcomes. One of the opioid prescription medications that led to this crisis is oxycodone, where misuse of this drug has been rampant. Being one of the most highly prescribed opioid medications for treating moderate-to-severe pain as reflected in the skyrocketed increase in retail sales of 866% between 1997 and 2007, oxycodone was initially suggested to be less addictive than morphine. The false-claimed non-addictive formulation of oxycodone, OxyContin, further contributed to the opioid crisis. Abuse was often carried out by crushing the pills for immediate burst release, typically by nasal insufflation, or by liquefying the pills for intravenous injection. Here, we review oxycodone pharmacology and abuse liability as well as present the hypothesis that oxycodone may exhibit a unique pharmacology that contributes to its high likability and abuse susceptibility. We will discuss various mechanisms that likely contribute to the high abuse rate of oxycodone including clinical drug likability, pharmacokinetics, pharmacodynamics, differences in its actions within mesolimbic reward circuity compared to other opioids, and the possibility of differential molecular and cellular receptor interactions that contribute to its selective effects. We will also discuss marketing strategies and drug difference that likely contributes to the oxycodone opioid use disorders and addiction.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Jacob A Alderete
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Steven H Liu
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Hazem S Nasef
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Xiong B, Jin G, Xu Y, You W, Luo Y, Fang M, Chen B, Huang H, Yang J, Lin X, Yu C. Identification of Koumine as a Translocator Protein 18 kDa Positive Allosteric Modulator for the Treatment of Inflammatory and Neuropathic Pain. Front Pharmacol 2021; 12:692917. [PMID: 34248642 PMCID: PMC8264504 DOI: 10.3389/fphar.2021.692917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Koumine is an alkaloid that displays notable activity against inflammatory and neuropathic pain, but its therapeutic target and molecular mechanism still need further study. Translocator protein 18 kDa (TSPO) is a vital therapeutic target for pain treatment, and recent research implies that there may be allostery in TSPO. Our previous competitive binding assay hint that koumine may function as a TSPO positive allosteric modulator (PAM). Here, for the first time, we report the pharmacological characterization of koumine as a TSPO PAM. The results imply that koumine might be a high-affinity ligand of TSPO and that it likely acts as a PAM since it could delay the dissociation of 3H-PK11195 from TSPO. Importantly, the allostery was retained in vivo, as koumine augmented Ro5-4864-mediated analgesic and anti-inflammatory effects in several acute and chronic inflammatory and neuropathic pain models. Moreover, the positive allosteric modulatory effect of koumine on TSPO was further demonstrated in cell proliferation assays in T98G human glioblastoma cells. In summary, we have identified and characterized koumine as a TSPO PAM for the treatment of inflammatory and neuropathic pain. Our data lay a solid foundation for the use of the clinical candidate koumine to treat inflammatory and neuropathic pain, further demonstrate the allostery in TSPO, and provide the first proof of principle that TSPO PAM may be a novel avenue for the discovery of analgesics.
Collapse
Affiliation(s)
- Bojun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guilin Jin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenbing You
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yufei Luo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Menghan Fang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
44
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
45
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
46
|
Marmolejo-Valencia AF, Madariaga-Mazón A, Martinez-Mayorga K. Bias-inducing allosteric binding site in mu-opioid receptor signaling. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
G-protein-biased agonism of the mu-opioid receptor (μ-OR) is emerging as a promising strategy in analgesia. A deep understanding of how biased agonists modulate and differentiate G-protein-coupled receptors (GPCR) signaling pathways and how this is transferred into the cell are open questions. Here, using extensive all-atom molecular dynamics simulations, we analyzed the binding recognition process and signaling effects of three prototype μ-OR agonists. Our suggested structural mechanism of biased signaling in μ-OR involves an allosteric sodium ion site, water networks, conformational rearrangements in conserved motifs and collective motions of loops and transmembrane helices. These analyses led us to highlight the relevance of a bias-inducing allosteric binding site in the understanding of μ-OR’s G-protein-biased signaling. These results also suggest a competitive equilibrium between the agonists and the allosteric sodium ion, where the bias-inducing allosteric binding site can be modulated by this ion or an agonist such as herkinorin. Notably, herkinorin arises as the archetype modulator of μ-OR and its interactive pattern could be used for screening efforts via protein–ligand interaction fingerprint (PLIF) studies.
Article highlights
Agonists and a sodium ion compete for the bias-inducing allosteric binding site that modulates signaling in mu-opioid receptors.
Molecular dynamics simulations of the prototype μ-OR agonist suggest a competitive equilibrium involving the agonist and an allosteric sodium ion.
Analysis of experimental data from the literature and molecular models provides the structural bases of biased agonism on μ-OR.
Collapse
|
47
|
Gottesman-Katz L, Latorre R, Vanner S, Schmidt BL, Bunnett NW. Targeting G protein-coupled receptors for the treatment of chronic pain in the digestive system. Gut 2021; 70:970-981. [PMID: 33272979 PMCID: PMC9716638 DOI: 10.1136/gutjnl-2020-321193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Chronic pain is a hallmark of functional disorders, inflammatory diseases and cancer of the digestive system. The mechanisms that initiate and sustain chronic pain are incompletely understood, and available therapies are inadequate. This review highlights recent advances in the structure and function of pronociceptive and antinociceptive G protein-coupled receptors (GPCRs) that provide insights into the mechanisms and treatment of chronic pain. This knowledge, derived from studies of somatic pain, can guide research into visceral pain. Mediators from injured tissues transiently activate GPCRs at the plasma membrane of neurons, leading to sensitisation of ion channels and acute hyperexcitability and nociception. Sustained agonist release evokes GPCR redistribution to endosomes, where persistent signalling regulates activity of channels and genes that control chronic hyperexcitability and nociception. Endosomally targeted GPCR antagonists provide superior pain relief in preclinical models. Biased agonists stabilise GPCR conformations that favour signalling of beneficial actions at the expense of detrimental side effects. Biased agonists of µ-opioid receptors (MOPrs) can provide analgesia without addiction, respiratory depression and constipation. Opioids that preferentially bind to MOPrs in the acidic microenvironment of diseased tissues produce analgesia without side effects. Allosteric modulators of GPCRs fine-tune actions of endogenous ligands, offering the prospect of refined pain control. GPCR dimers might function as distinct therapeutic targets for nociception. The discovery that GPCRs that control itch also mediate irritant sensation in the colon has revealed new targets. A deeper understanding of GPCR structure and function in different microenvironments offers the potential of developing superior treatments for GI pain.
Collapse
Affiliation(s)
- Lena Gottesman-Katz
- Molecular Pathobiology, New York University, New York, New York, USA,Division of Pediatric Gastroenterology, Columbia University Medical Center/New York Presbyterian, New York, New York, USA
| | - Rocco Latorre
- Molecular Pathobiology, New York University, New York, New York, USA
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queens University, Kingston, Ontario, Canada
| | - Brian L Schmidt
- Bluestone Center, New York University, New York, New York, USA
| | - Nigel W Bunnett
- Molecular Pathobiology, New York University, New York, New York, USA
| |
Collapse
|
48
|
Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proc Natl Acad Sci U S A 2021; 118:2000017118. [PMID: 33846240 DOI: 10.1073/pnas.2000017118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.
Collapse
|
49
|
Jorgačević B, Vučević D, Samardžić J, Mladenović D, Vesković M, Vukićević D, Ješić R, Radosavljević T. The Effect of CB1 Antagonism on Hepatic Oxidative/Nitrosative Stress and Inflammation in Nonalcoholic Fatty Liver Disease. Curr Med Chem 2021; 28:169-180. [PMID: 32124686 DOI: 10.2174/0929867327666200303122734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/17/2019] [Accepted: 01/25/2020] [Indexed: 02/08/2023]
Abstract
Dysfunction of the endocannabinoid system (ES) has been identified in nonalcoholic fatty liver disease (NAFLD) and associated metabolic disorders. Cannabinoid receptor type 1 (CB1) expression is largely dependent on nutritional status. Thus, individuals suffering from NAFLD and metabolic syndrome (MS) have a significant increase in ES activity. Furthermore, oxidative/ nitrosative stress and inflammatory process modulation in the liver are highly influenced by the ES. Numerous experimental studies indicate that oxidative and nitrosative stress in the liver is associated with steatosis and portal inflammation during NAFLD. On the other hand, inflammation itself may also contribute to reactive oxygen species (ROS) production due to Kupffer cell activation and increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The pathways by which endocannabinoids and their lipid-related mediators modulate oxidative stress and lipid peroxidation represent a significant area of research that could yield novel pharmaceutical strategies for the treatment of NAFLD. Cumulative evidence suggested that the ES, particularly CB1 receptors, may also play a role in inflammation and disease progression toward steatohepatitis. Pharmacological inactivation of CB1 receptors in NAFLD exerts multiple beneficial effects, particularly due to the attenuation of hepatic oxidative/nitrosative stress parameters and significant reduction of proinflammatory cytokine production. However, further investigations regarding precise mechanisms by which CB1 blockade influences the reduction of hepatic oxidative/nitrosative stress and inflammation are required before moving toward the clinical phase of the investigation.
Collapse
Affiliation(s)
- Bojan Jorgačević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Vučević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Janko Samardžić
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Vukićević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Ješić
- Institute of Digestive Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Tatjana Radosavljević
- Institute of Pathophysiology ''Ljubodrag Buba Mihailović'', Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
50
|
Gado F, Mohamed KA, Meini S, Ferrisi R, Bertini S, Digiacomo M, D'Andrea F, Stevenson LA, Laprairie RB, Pertwee RG, Manera C. Variously substituted 2-oxopyridine derivatives: Extending the structure-activity relationships for allosteric modulation of the cannabinoid CB2 receptor. Eur J Med Chem 2020; 211:113116. [PMID: 33360803 DOI: 10.1016/j.ejmech.2020.113116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
We previously reported the 2-oxopyridine-3-carboxamide derivative EC21a as the first small synthetic CB2R positive allosteric modulator which displayed antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Herein, we extended the structure-activity relationships of EC21a through structural modifications regarding the p-fluoro benzyl moiety at position 1 and the amide group in position 3 of the central core. The characterization in vitro was assessed through radioligand binding experiments and functional assays (GTPγS, cAMP, βarrestin2). Among the new compounds, the derivatives A1 (SV-10a) and A5 (SB-13a) characterized respectively by fluorine atom or by chlorine atom in ortho position of the benzylic group at position 1 and by a cycloheptane-carboxamide at position 3 of the central core, showed positive allosteric behavior on CB2R. They enhanced the efficacy of CP55,940 in [35S]GTPγS assay, and modulated CP55,940-dependent βarrestin2 recruitment and cAMP inhibition. The obtained results extend our knowledge of the structural requirements for interaction with the allosteric site of CB2R.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Kawthar A Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Serena Meini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Lesley A Stevenson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD, Aberdeen, Scotland, UK
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, AB25 2ZD, Aberdeen, Scotland, UK
| | | |
Collapse
|