1
|
Gamarra MD, Dieterle ME, Ortigosa J, Lannot JO, Blanco Capurro JI, Di Paola M, Radusky L, Duette G, Piuri M, Modenutti CP. Unveiling crucial amino acids in the carbohydrate recognition domain of a viral protein through a structural bioinformatic approach. Glycobiology 2024; 34:cwae068. [PMID: 39214076 DOI: 10.1093/glycob/cwae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Carbohydrate binding modules (CBMs) are protein domains that typically reside near catalytic domains, increasing substrate-protein proximity by constraining the conformational space of carbohydrates. Due to the flexibility and variability of glycans, the molecular details of how these protein regions recognize their target molecules are not always fully understood. Computational methods, including molecular docking and molecular dynamics simulations, have been employed to investigate lectin-carbohydrate interactions. In this study, we introduce a novel approach that integrates multiple computational techniques to identify the critical amino acids involved in the interaction between a CBM located at the tip of bacteriophage J-1's tail and its carbohydrate counterparts. Our results highlight three amino acids that play a significant role in binding, a finding we confirmed through in vitro experiments. By presenting this approach, we offer an intriguing alternative for pinpointing amino acids that contribute to protein-sugar interactions, leading to a more thorough comprehension of the molecular determinants of protein-carbohydrate interactions.
Collapse
Affiliation(s)
- Marcelo D Gamarra
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Maria Eugenia Dieterle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Juan Ortigosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Jorge O Lannot
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Juan I Blanco Capurro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Matias Di Paola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Leandro Radusky
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Gabriel Duette
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| | - Carlos P Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (FCEyN-UBA) e Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Pabellón 2 de Ciudad Universitaria, Ciudad de Buenos Aires C1428EHA, Argentina
| |
Collapse
|
2
|
Bessonne M, Morel J, Nevers Q, Da Costa B, Ballandras-Colas A, Chenavier F, Grange M, Roussel A, Crépin T, Delmas B. Antiviral activity of intracellular nanobodies targeting the influenza virus RNA-polymerase core. PLoS Pathog 2024; 20:e1011642. [PMID: 38875296 PMCID: PMC11210859 DOI: 10.1371/journal.ppat.1011642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/27/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
Influenza viruses transcribe and replicate their genome in the nucleus of the infected cells, two functions that are supported by the viral RNA-dependent RNA-polymerase (FluPol). FluPol displays structural flexibility related to distinct functional states, from an inactive form to conformations competent for replication and transcription. FluPol machinery is constituted by a structurally-invariant core comprising the PB1 subunit stabilized with PA and PB2 domains, whereas the PA endonuclease and PB2 C-domains can pack in different configurations around the core. To get insights into the functioning of FluPol, we selected single-domain nanobodies (VHHs) specific of the influenza A FluPol core. When expressed intracellularly, some of them exhibited inhibitory activity on type A FluPol, but not on the type B one. The most potent VHH (VHH16) binds PA and the PA-PB1 dimer with an affinity below the nanomolar range. Ectopic intracellular expression of VHH16 in virus permissive cells blocks multiplication of different influenza A subtypes, even when induced at late times post-infection. VHH16 was found to interfere with the transport of the PA-PB1 dimer to the nucleus, without affecting its handling by the importin β RanBP5 and subsequent steps in FluPol assembly. Using FluPol mutants selected after passaging in VHH16-expressing cells, we identified the VHH16 binding site at the interface formed by PA residues with the N-terminus of PB1, overlapping or close to binding sites of two host proteins, ANP32A and RNA-polymerase II RPB1 subunit which are critical for virus replication and transcription, respectively. These data suggest that the VHH16 neutralization is likely due to several activities, altering the import of the PA-PB1 dimer into the nucleus as well as inhibiting specifically virus transcription and replication. Thus, the VHH16 binding site represents a new Achilles' heel for FluPol and as such, a potential target for antiviral development.
Collapse
Affiliation(s)
- Mélissa Bessonne
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jessica Morel
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Quentin Nevers
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Da Costa
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Florian Chenavier
- Institut de biologie structurale, CNRS, Université de Grenoble, Grenoble, France
| | - Magali Grange
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), CNRS, Université d’Aix-Marseille, Marseille, France
| | - Alain Roussel
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), CNRS, Université d’Aix-Marseille, Marseille, France
| | - Thibaut Crépin
- Institut de biologie structurale, CNRS, Université de Grenoble, Grenoble, France
| | - Bernard Delmas
- Unité de Virologie et Immunologie moléculaires, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
3
|
Papageorgiou N, Baklouti A, Lichière J, Desmyter A, Canard B, Coutard B, Ferron F. Structural flexibility of Toscana virus nucleoprotein in the presence of a single-chain camelid antibody. Acta Crystallogr D Struct Biol 2024; 80:113-122. [PMID: 38265877 PMCID: PMC10836398 DOI: 10.1107/s2059798324000196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex.
Collapse
Affiliation(s)
- Nicolas Papageorgiou
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS, Case 925, 163 Avenue de Luminy, 13009 Marseille, France
| | - Amal Baklouti
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS, Case 925, 163 Avenue de Luminy, 13009 Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille University–IRD 190–Inserm 1207), Marseille, France
| | - Julie Lichière
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS, Case 925, 163 Avenue de Luminy, 13009 Marseille, France
| | - Aline Desmyter
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS, Case 925, 163 Avenue de Luminy, 13009 Marseille, France
| | - Bruno Canard
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS, Case 925, 163 Avenue de Luminy, 13009 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Bruno Coutard
- Unité des Virus Émergents (UVE: Aix-Marseille University–IRD 190–Inserm 1207), Marseille, France
| | - François Ferron
- Université Aix-Marseille, Architecture et Fonction des Macromolécules Biologiques (AFMB)–UMR7257 CNRS, Case 925, 163 Avenue de Luminy, 13009 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
4
|
Suarez L, Bautista-Castaño I, Peña Romera C, Montoya-Alonso JA, Corbera JA. Is Dog Owner Obesity a Risk Factor for Canine Obesity? A "One-Health" Study on Human-Animal Interaction in a Region with a High Prevalence of Obesity. Vet Sci 2022; 9:243. [PMID: 35622771 PMCID: PMC9147579 DOI: 10.3390/vetsci9050243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity in humans is a growing global problem and is one of the greatest public health challenges we face today. Most researchers agree that, as in humans, the incidence in the companion animal population is also increasing. The aim of this study was to evaluate the risk factors contributing to canine obesity in a region with a high rate of human obesity (Canary Islands, Spain), co-occurrence of obesogenic risk factors, and a canine population with a high percentage of unneutered dogs. We have focused on owner risk factors that promote obesity in humans, such as weight, lifestyle, nutritional habits, and low physical activity, among others. Thus, the human-animal interaction relationship that contributes to human obesity and influences canine obesity has been studied. A multicentre cross-sectional analytical study of 198 pairs of dogs from urban households and their owners was used. A multivariable logistic regression study was completed to analyse owner characteristics variables associated with canine obesity. This transdisciplinary study was conducted with physicians and veterinarians using a "One Health" approach. Our results suggest that, in a region of high obesogenic risk, obese/overweight dogs are primarily female, older than 6 years, and neutered. Being an overweight dog owner was found to be the most important factor in the occurrence of obesity in dogs. Owners of overweight dogs were mainly females, older than 40 years, who did not engage in any physical activity. A strong correlation has been found between dog owners with low levels of education and obesity in their dogs. We suggest that veterinarians should develop and design strategies to encourage pet owners to engage in physical activity with their dogs for the benefit of both.
Collapse
Affiliation(s)
| | | | | | | | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35413 Las Palmas, Spain; (L.S.); (I.B.-C.); (C.P.R.); (J.A.M.-A.)
| |
Collapse
|
5
|
Obeng EM, Dzuvor CKO, Danquah MK. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. NANO TODAY 2022; 42:101350. [PMID: 34840592 PMCID: PMC8608585 DOI: 10.1016/j.nantod.2021.101350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 05/15/2023]
Abstract
In the past two decades, the emergence of coronavirus diseases has been dire distress on both continental and global fronts and has resulted in the search for potent treatment strategies. One crucial challenge in this search is the recurrent mutations in the causative virus spike protein, which lead to viral escape issues. Among the current promising therapeutic discoveries is the use of nanobodies and nanobody-like molecules. While these nanobodies have demonstrated high-affinity interaction with the virus, the unpredictable spike mutations have warranted the need for avidity-inspired therapeutics of potent inhibitors such as nanobodies. This article discusses novel approaches for the design of anti-SARS-CoV-1 and -2 nanobodies to facilitate advanced innovations in treatment technologies. It further discusses molecular interactions and suggests multivalent protein nanotechnology and chemistry approaches to translate mere molecular affinity into avidity.
Collapse
Affiliation(s)
- Eugene M Obeng
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
6
|
Bayat M, Asemani Y, Mohammadi MR, Sanaei M, Namvarpour M, Eftekhari R. An overview of some potential immunotherapeutic options against COVID-19. Int Immunopharmacol 2021; 95:107516. [PMID: 33765610 PMCID: PMC7908848 DOI: 10.1016/j.intimp.2021.107516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
After the advent of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) in the late 2019, the resulting severe and pernicious syndrome (COVID-19) immediately was deployed all around the world. To date, despite relentless efforts to control the disease by drug repurposing, there is no approved specific therapy for COVID-19. Given the role of innate and acquired immune components in the control and elimination of viral infections and inflammatory mutilations during SARS-CoV2 pathogenesis, immunotherapeutic strategies appear to be beneficent. Passive immunotherapies such as convalescent plasma, which has received much attention especially in severe cases, as well as suppressing inflammatory cytokines, interferon administration, inhibition of kinases and complement cascade, virus neutralization with key engineered products, cell-based therapies, immunomodulators and anti-inflammatory drugs are among the key immunotherapeutic approaches to deal with COVID-19, which is discussed in this review. Also, details of leading COVID-19 vaccine candidates as the most potent immunotherapy have been provided. However, despite salient improvements, there is still a lack of completely assured vaccines for universal application. Therefore, adopting proper immunotherapies according to the cytokine pattern and involved immune responses, alongside engineered biologics specially ACE2-Fc to curb SARS-CoV2 infection until achieving a tailored vaccine is probably the best strategy to better manage this pandemic. Therefore, gaining knowledge about the mechanism of action, potential targets, as well as the effectiveness of immune-based approaches to confront COVID-19 in the form of a well-ordered review study is highly momentous.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sanaei
- Department of Environmental, Polymer and Organic Chemistry, School of Chemistry, Damghan University, Damghan, Iran
| | - Mozhdeh Namvarpour
- Department of Immunology, Shahid Sadoughi University of Medical Science and services, Yazd, Iran
| | - Reyhaneh Eftekhari
- Department of Microbiology, Faculty of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
7
|
Valle C, Martin B, Ferron F, Roig-Zamboni V, Desmyter A, Debart F, Vasseur JJ, Canard B, Coutard B, Decroly E. First insights into the structural features of Ebola virus methyltransferase activities. Nucleic Acids Res 2021; 49:1737-1748. [PMID: 33503246 PMCID: PMC7897494 DOI: 10.1093/nar/gkaa1276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
The Ebola virus is a deadly human pathogen responsible for several outbreaks in Africa. Its genome encodes the 'large' L protein, an essential enzyme that has polymerase, capping and methyltransferase activities. The methyltransferase activity leads to RNA co-transcriptional modifications at the N7 position of the cap structure and at the 2'-O position of the first transcribed nucleotide. Unlike other Mononegavirales viruses, the Ebola virus methyltransferase also catalyses 2'-O-methylation of adenosines located within the RNA sequences. Herein, we report the crystal structure at 1.8 Å resolution of the Ebola virus methyltransferase domain bound to a fragment of a camelid single-chain antibody. We identified structural determinants and key amino acids specifically involved in the internal adenosine-2'-O-methylation from cap-related methylations. These results provide the first high resolution structure of an ebolavirus L protein domain, and the framework to investigate the effects of epitranscriptomic modifications and to design possible antiviral drugs against the Filoviridae family.
Collapse
Affiliation(s)
- Coralie Valle
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Baptiste Martin
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - François Ferron
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Véronique Roig-Zamboni
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Aline Desmyter
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Françoise Debart
- IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | | | - Bruno Canard
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Bruno Coutard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm, 1207-IHU Méditerranée Infection) Marseille, France
| | - Etienne Decroly
- AFMB, CNRS, Université Aix-Marseille, UMR 7257, Case 925, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
8
|
Abstract
Bacteria possess a sophisticated arsenal of defense mechanisms that allow them to survive in adverse conditions. Adaptation to acid stress and hypoxia is crucial for the enterobacterial transmission in the gastrointestinal tract of their human host. When subjected to low pH, Escherichia coli and many other enterobacteria activate a proton-consuming resistance system based on the acid stress-inducible lysine decarboxylase LdcI. Here we develop generally applicable tools to uncover the spatial localization of LdcI inside the cell by superresolution fluorescence microscopy and investigate the in vitro supramolecular organization of this enzyme by cryo-EM. We build on these results to propose a mechanistic model for LdcI function and offer tools for further in vivo investigations. Pathogenic and commensal bacteria often have to resist the harsh acidity of the host stomach. The inducible lysine decarboxylase LdcI buffers the cytosol and the local extracellular environment to ensure enterobacterial survival at low pH. Here, we investigate the acid stress-response regulation of Escherichia coli LdcI by combining biochemical and biophysical characterization with negative stain and cryoelectron microscopy (cryo-EM) and wide-field and superresolution fluorescence imaging. Due to deleterious effects of fluorescent protein fusions on native LdcI decamers, we opt for three-dimensional localization of nanobody-labeled endogenous wild-type LdcI in acid-stressed E. coli cells and show that it organizes into distinct patches at the cell periphery. Consistent with recent hypotheses that in vivo clustering of metabolic enzymes often reflects their polymerization as a means of stimulus-induced regulation, we show that LdcI assembles into filaments in vitro at physiologically relevant low pH. We solve the structures of these filaments and of the LdcI decamer formed at neutral pH by cryo-EM and reveal the molecular determinants of LdcI polymerization, confirmed by mutational analysis. Finally, we propose a model for LdcI function inside the enterobacterial cell, providing a structural and mechanistic basis for further investigation of the role of its supramolecular organization in the acid stress response.
Collapse
|
9
|
Mousavi SM, Hashemi SA, Parvin N, Gholami A, Ramakrishna S, Omidifar N, Moghadami M, Chiang WH, Mazraedoost S. Recent biotechnological approaches for treatment of novel COVID-19: from bench to clinical trial. Drug Metab Rev 2020; 53:141-170. [PMID: 33138652 DOI: 10.1080/03602532.2020.1845201] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global spread of the novel coronavirus (SARS-CoV-2) and increasing rate of mortality among different countries has raised the global concern regarding this disease. This illness is able to infect human beings through person-to-person contact at an extremely high rate. World Health Organization proclaimed that COVID-19 disease is known as the sixth public health emergency of international concern (30 January 2020) and also as one pandemic (12 March 2020). Owing to the rapid outbreak of COVID-19 worldwide, health authorities focused on discovery of effective prevention and treatment techniques for this novel virus. To date, an effective drug for reliable treatment of COVID-19 has not been registered or introduced to the international community. This review aims to provide recently presented techniques and protocols for efficient treatment of COVID-19 and investigate its morphology and treatment/prevention approaches, among which usage of antiviral drugs, anti-malarial drugs, corticosteroids, and traditional medicines, biotechnological drugs (e.g. combination of HCQ and azithromycin, remdesivir, interferons, novaferon, interferon-alpha-1b, thymosin, and monoclonal antibodies) can be mentioned.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Najmeh Parvin
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Sargol Mazraedoost
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
10
|
Lundstrom K. Coronavirus pandemic: treatment and future prevention. Future Microbiol 2020; 15:1507-1521. [PMID: 33140657 PMCID: PMC7675013 DOI: 10.2217/fmb-2020-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid spread of SARS-CoV-2 leading to the COVID-19 pandemic with more than 400,000 deaths worldwide and the global economy shut down has substantially accelerated the research and development of novel and efficient COVID-19 antiviral drugs and vaccines. In the short term, antiviral and other drugs have been subjected to repurposing against COVID-19 demonstrating some success, but some excessively hasty conclusions drawn from significantly suboptimal clinical evaluations have provided false hope. On the other hand, more than 300 potential therapies and at least 150 vaccine studies are in progress at various stages of preclinical or clinical research. The aim here is to provide a timely update of the development, which, due to the intense activities, moves forward with unprecedented speed.
Collapse
|
11
|
Spinelli S, Tremblay D, Moineau S, Cambillau C, Goulet A. Structural Insights into Lactococcal Siphophage p2 Baseplate Activation Mechanism. Viruses 2020; 12:v12080878. [PMID: 32796652 PMCID: PMC7472080 DOI: 10.3390/v12080878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Virulent phages infecting L. lactis, an industry-relevant bacterium, pose a significant risk to the quality of the fermented milk products. Phages of the Skunavirus genus are by far the most isolated lactococcal phages in the cheese environments and phage p2 is the model siphophage for this viral genus. The baseplate of phage p2, which is used to recognize its host, was previously shown to display two conformations by X-ray crystallography, a rested state and an activated state ready to bind to the host. The baseplate became only activated and opened in the presence of Ca2+. However, such an activated state was not previously observed in the virion. Here, using nanobodies binding to the baseplate, we report on the negative staining electron microscopy structure of the activated form of the baseplate directly observed in the p2 virion, that is compatible with the activated baseplate crystal structure. Analyses of this new structure also established the presence of a second distal tail (Dit) hexamer as a component of the baseplate, the topology of which differs largely from the first one. We also observed an uncoupling between the baseplate activation and the tail tip protein (Tal) opening, suggesting an infection mechanism more complex than previously expected.
Collapse
Affiliation(s)
- Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille CEDEX 09, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille CEDEX 09, France
| | - Denise Tremblay
- Département de Biochimie, de Microbiologie, et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada; (D.T.); (S.M.)
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada; (D.T.); (S.M.)
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille CEDEX 09, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille CEDEX 09, France
- Correspondence: (C.C.); (A.G.)
| | - Adeline Goulet
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, 13288 Marseille CEDEX 09, France;
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, 13288 Marseille CEDEX 09, France
- Correspondence: (C.C.); (A.G.)
| |
Collapse
|
12
|
Zhou H, Fang Y, Xu T, Ni W, Shen A, Meng X. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. Br J Pharmacol 2020; 177:3147-3161. [PMID: 32368792 PMCID: PMC7267399 DOI: 10.1111/bph.15092] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
As of April 9, 2020, a novel coronavirus (SARS-CoV-2) had caused 89,931 deaths and 1,503,900 confirmed cases worldwide, which indicates an increasingly severe and uncontrollable situation. Initially, little was known about the virus. As research continues, we now know the genome structure, epidemiological and clinical characteristics, and pathogenic mechanisms of SARS-CoV-2. Based on this knowledge, potential targets involved in the processes of virus pathogenesis need to be identified, and the discovery or development of drugs based on these potential targets is the most pressing need. Here, we have summarized the potential therapeutic targets involved in virus pathogenesis and discuss the advances, possibilities, and significance of drugs based on these targets for treating SARS-CoV-2. This review will facilitate the identification of potential targets and provide clues for drug development that can be translated into clinical applications for combating SARS-CoV-2.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yan Fang
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| | - Wei‐Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| | - Ai‐Zong Shen
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xiao‐Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
13
|
Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Res 2020; 9:72. [PMID: 32117569 PMCID: PMC7029759 DOI: 10.12688/f1000research.22211.2] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
A novel coronavirus (2019-nCoV) originating in Wuhan, China presents a potential respiratory viral pandemic to the world population. Current efforts are focused on containment and quarantine of infected individuals. Ultimately, the outbreak could be controlled with a protective vaccine to prevent 2019-nCoV infection. While vaccine research should be pursued intensely, there exists today no therapy to treat 2019-nCoV upon infection, despite an urgent need to find options to help these patients and preclude potential death. Herein, I review the potential options to treat 2019-nCoV in patients, with an emphasis on the necessity for speed and timeliness in developing new and effective therapies in this outbreak. I consider the options of drug repurposing, developing neutralizing monoclonal antibody therapy, and an oligonucleotide strategy targeting the viral RNA genome, emphasizing the promise and pitfalls of these approaches. Finally, I advocate for the fastest strategy to develop a treatment now, which could be resistant to any mutations the virus may have in the future. The proposal is a biologic that blocks 2019-nCoV entry using a soluble version of the viral receptor, angiotensin-converting enzyme 2 (ACE2), fused to an immunoglobulin Fc domain (ACE2-Fc), providing a neutralizing antibody with maximal breath to avoid any viral escape, while also helping to recruit the immune system to build lasting immunity. The ACE2-Fc therapy would also supplement decreased ACE2 levels in the lungs during infection, thereby directly treating acute respiratory distress pathophysiology as a third mechanism of action. The sequence of the ACE2-Fc protein is provided to investigators, allowing its possible use in recombinant protein expression systems to start producing drug today to treat patients under compassionate use, while formal clinical trials are later undertaken. Such a treatment could help infected patients before a protective vaccine is developed and widely available in the coming months to year(s).
Collapse
Affiliation(s)
- Robert L Kruse
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, 21287, USA
| |
Collapse
|
14
|
Abstract
A novel coronavirus (2019-nCoV) originating in Wuhan, China presents a potential respiratory viral pandemic to the world population. Current efforts are focused on containment and quarantine of infected individuals. Ultimately, the outbreak could be controlled with a protective vaccine to prevent 2019-nCoV infection. While vaccine research should be pursued intensely, there exists today no therapy to treat 2019-nCoV upon infection, despite an urgent need to find options to help these patients and preclude potential death. Herein, I review the potential options to treat 2019-nCoV in patients, with an emphasis on the necessity for speed and timeliness in developing new and effective therapies in this outbreak. I consider the options of drug repurposing, developing neutralizing monoclonal antibody therapy, and an oligonucleotide strategy targeting the viral RNA genome, emphasizing the promise and pitfalls of these approaches. Finally, I advocate for the fastest strategy to develop a treatment now, which could be resistant to any mutations the virus may have in the future. The proposal is a biologic that blocks 2019-nCoV entry using a soluble version of the viral receptor, angiotensin-converting enzyme 2 (ACE2), fused to an immunoglobulin Fc domain, providing a neutralizing antibody with maximal breath to avoid any viral escape, while also helping to recruit the immune system to build lasting immunity. The sequence of the ACE2-Fc protein is provided to investigators, allowing its possible use in recombinant protein expression systems to start producing drug today to treat patients under compassionate use, while formal clinical trials are later undertaken. Such a treatment could help infected patients before a protective vaccine is developed and widely available in the coming months to year(s).
Collapse
Affiliation(s)
- Robert L Kruse
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, 21287, USA
| |
Collapse
|
15
|
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. SCIENCE ADVANCES 2019; 5:eaaw7414. [PMID: 31663016 PMCID: PMC6795507 DOI: 10.1126/sciadv.aaw7414] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 06/01/2023]
Abstract
Phages infecting Staphylococcus aureus can be used as therapeutics against antibiotic-resistant bacterial infections. However, there is limited information about the mechanism of genome delivery of phages that infect Gram-positive bacteria. Here, we present the structures of native S. aureus phage P68, genome ejection intermediate, and empty particle. The P68 head contains 72 subunits of inner core protein, 15 of which bind to and alter the structure of adjacent major capsid proteins and thus specify attachment sites for head fibers. Unlike in the previously studied phages, the head fibers of P68 enable its virion to position itself at the cell surface for genome delivery. The unique interaction of one end of P68 DNA with one of the 12 portal protein subunits is disrupted before the genome ejection. The inner core proteins are released together with the DNA and enable the translocation of phage genome across the bacterial membrane into the cytoplasm.
Collapse
Affiliation(s)
- Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dana Štveráková
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
16
|
Ali A, Baby B, Vijayan R. From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Front Genet 2019; 10:17. [PMID: 30838017 PMCID: PMC6389616 DOI: 10.3389/fgene.2019.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Camels have an important role in the lives of human beings, especially in arid regions, due to their multipurpose role and unique ability to adapt to harsh conditions. In spite of its enormous economic, cultural, and biological importance, the camel genome has not been widely studied. The size of camel genome is roughly 2.38 GB, containing over 20,000 genes. The unusual genetic makeup of the camel is the main reason behind its ability to survive under extreme environmental conditions. The camel genome harbors several unique variations which are being investigated for the treatment of several disorders. Various natural products from camels have also been tested and prescribed as adjunct therapy to control the progression of ailments. Interestingly, the camel employs unique immunological and molecular mechanisms against pathogenic agents and pathological conditions. Here, we broadly review camel classification, distribution and breed as well as recent progress in the determination of the camel genome, its size, genetic distribution, response to various physiological conditions, immunogenetics and the medicinal potential of camel gene products.
Collapse
Affiliation(s)
| | | | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Mohseni A, Molakarimi M, Taghdir M, Sajedi RH, Hasannia S. Exploring single-domain antibody thermostability by molecular dynamics simulation. J Biomol Struct Dyn 2018; 37:3686-3696. [DOI: 10.1080/07391102.2018.1526116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ammar Mohseni
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Hasannia
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Abstract
Single-domain antibodies (sdAbs), the autonomous variable domains of heavy chain-only antibodies produced naturally by camelid ungulates and cartilaginous fishes, have evolved to bind antigen using only three complementarity-determining region (CDR) loops rather than the six present in conventional VH:VL antibodies. It has been suggested, based on limited evidence, that sdAbs may adopt paratope structures that predispose them to preferential recognition of recessed protein epitopes, but poor or non-recognition of protuberant epitopes and small molecules. Here, we comprehensively surveyed the evidence in support of this hypothesis. We found some support for a global structural difference in the paratope shapes of sdAbs compared with those of conventional antibodies: sdAb paratopes have smaller molecular surface areas and diameters, more commonly have non-canonical CDR1 and CDR2 structures, and have elongated CDR3 length distributions, but have similar amino acid compositions and are no more extended (interatomic distance measured from CDR base to tip) than conventional antibody paratopes. Comparison of X-ray crystal structures of sdAbs and conventional antibodies in complex with cognate antigens showed that sdAbs and conventional antibodies bury similar solvent-exposed surface areas on proteins and form similar types of non-covalent interactions, although these are more concentrated in the compact sdAb paratope. Thus, sdAbs likely have privileged access to distinct antigenic regions on proteins, but only owing to their small molecular size and not to general differences in molecular recognition mechanism. The evidence surrounding the purported inability of sdAbs to bind small molecules was less clear. The available data provide a structural framework for understanding the evolutionary emergence and function of autonomous heavy chain-only antibodies.
Collapse
Affiliation(s)
- Kevin A Henry
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada
| | - C Roger MacKenzie
- a Human Health Therapeutics Research Centre , National Research Council Canada , Ottawa , Ontario , Canada.,b School of Environmental Sciences , University of Guelph , Guelph , Ontario , Canada
| |
Collapse
|
19
|
Type IX secretion system PorM and gliding machinery GldM form arches spanning the periplasmic space. Nat Commun 2018; 9:429. [PMID: 29382829 PMCID: PMC5790014 DOI: 10.1038/s41467-017-02784-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/29/2017] [Indexed: 11/08/2022] Open
Abstract
Type IX secretion system (T9SS), exclusively present in the Bacteroidetes phylum, has been studied mainly in Flavobacterium johnsoniae and Porphyromonas gingivalis. Among the 18 genes, essential for T9SS function, a group of four, porK-N (P. gingivalis) or gldK-N (F. johnsoniae) belongs to a co-transcribed operon that expresses the T9SS core membrane complex. The central component of this complex, PorM (or GldM), is anchored in the inner membrane by a trans-membrane helix and interacts through the outer membrane PorK-N complex. There is a complete lack of available atomic structures for any component of T9SS, including the PorKLMN complex. Here we report the crystal structure of the GldM and PorM periplasmic domains. Dimeric GldM and PorM, each contain four domains of ~180-Å length that span most of the periplasmic space. These and previously reported results allow us to propose a model of the T9SS core membrane complex as well as its functional behavior.
Collapse
|
20
|
Unraveling the Self-Assembly of the Pseudomonas aeruginosa XcpQ Secretin Periplasmic Domain Provides New Molecular Insights into Type II Secretion System Secreton Architecture and Dynamics. mBio 2017; 8:mBio.01185-17. [PMID: 29042493 PMCID: PMC5646246 DOI: 10.1128/mbio.01185-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The type II secretion system (T2SS) releases large folded exoproteins across the envelope of many Gram-negative pathogens. This secretion process therefore requires specific gating, interacting, and dynamics properties mainly operated by a bipartite outer membrane channel called secretin. We have a good understanding of the structure-function relationship of the pore-forming C-terminal domain of secretins. In contrast, the high flexibility of their periplasmic N-terminal domain has been an obstacle in obtaining the detailed structural information required to uncover its molecular function. In Pseudomonas aeruginosa, the Xcp T2SS plays an important role in bacterial virulence by its capacity to deliver a large panel of toxins and degradative enzymes into the surrounding environment. Here, we revealed that the N-terminal domain of XcpQ secretin spontaneously self-assembled into a hexamer of dimers independently of its C-terminal domain. Furthermore, and by using multidisciplinary approaches, we elucidate the structural organization of the XcpQ N domain and demonstrate that secretin flexibility at interdimer interfaces is mandatory for its function. Bacterial secretins are large homooligomeric proteins constituting the outer membrane pore-forming element of several envelope-embedded nanomachines essential in bacterial survival and pathogenicity. They comprise a well-defined membrane-embedded C-terminal domain and a modular periplasmic N-terminal domain involved in substrate recruitment and connection with inner membrane components. We are studying the XcpQ secretin of the T2SS present in the pathogenic bacterium Pseudomonas aeruginosa. Our data highlight the ability of the XcpQ N-terminal domain to spontaneously oligomerize into a hexamer of dimers. Further in vivo experiments revealed that this domain adopts different conformations essential for the T2SS secretion process. These findings provide new insights into the functional understanding of bacterial T2SS secretins.
Collapse
|
21
|
Nguyen VS, Logger L, Spinelli S, Legrand P, Huyen Pham TT, Nhung Trinh TT, Cherrak Y, Zoued A, Desmyter A, Durand E, Roussel A, Kellenberger C, Cascales E, Cambillau C. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex. Nat Microbiol 2017. [DOI: 10.1038/nmicrobiol.2017.103] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Duhoo Y, Roche J, Trinh TTN, Desmyter A, Gaubert A, Kellenberger C, Cambillau C, Roussel A, Leone P. Camelid nanobodies used as crystallization chaperones for different constructs of PorM, a component of the type IX secretion system from Porphyromonas gingivalis. Acta Crystallogr F Struct Biol Commun 2017; 73:286-293. [PMID: 28471361 PMCID: PMC5417319 DOI: 10.1107/s2053230x17005969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
PorM is a membrane protein that is involved in the assembly of the type IX secretion system (T9SS) in Porphyromonas gingivalis, a major bacterial pathogen that is responsible for periodontal disease in humans. In the context of structural studies of PorM to better understand T9SS assembly, four camelid nanobodies were selected, produced and purified, and their specific interaction with the N-terminal or C-terminal part of the periplasmic domain of PorM was investigated. Diffracting crystals were also obtained, and the structures of the four nanobodies were solved by molecular replacement. Furthermore, two nanobodies were used as crystallization chaperones and turned out to be valuable tools in the structure-determination process of the periplasmic domain of PorM.
Collapse
Affiliation(s)
- Yoan Duhoo
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Jennifer Roche
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Thi Trang Nhung Trinh
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Aline Desmyter
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Anaïs Gaubert
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Christine Kellenberger
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Christian Cambillau
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Alain Roussel
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| | - Philippe Leone
- Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Marseille, France
| |
Collapse
|
23
|
Dieterle ME, Spinelli S, Sadovskaya I, Piuri M, Cambillau C. Evolved distal tail carbohydrate binding modules of L
actobacillus
phage J-1: a novel type of anti-receptor widespread among lactic acid bacteria phages. Mol Microbiol 2017; 104:608-620. [DOI: 10.1111/mmi.13649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Maria-Eugenia Dieterle
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, IQUIBICEN-CONICET; Buenos Aires Argentina
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université (AMU), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université (AMU), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
| | - Irina Sadovskaya
- Université Lille Nord de France, F-59000 Lille, France, Université du Littoral-Côte d'Opale, LR2B/UMT 08, Bassin Napoléon; Boulogne-sur-Mer Cedex BP 120, F-62327 France
| | - Mariana Piuri
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires, IQUIBICEN-CONICET; Buenos Aires Argentina
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique (CNRS), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université (AMU), Campus de Luminy; Case 932 Marseille Cedex 09 13288 France
| |
Collapse
|
24
|
Noël F, Malpertuy A, de Brevern AG. Global analysis of VHHs framework regions with a structural alphabet. Biochimie 2016; 131:11-19. [PMID: 27613403 DOI: 10.1016/j.biochi.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 02/08/2023]
Abstract
The VHHs are antigen-binding region/domain of camelid heavy chain antibodies (HCAb). They have many interesting biotechnological and biomedical properties due to their small size, high solubility and stability, and high affinity and specificity for their antigens. HCAb and classical IgGs are evolutionary related and share a common fold. VHHs are composed of regions considered as constant, called the frameworks (FRs) connected by Complementarity Determining Regions (CDRs), a highly variable region that provide interaction with the epitope. Actually, no systematic structural analyses had been performed on VHH structures despite a significant number of structures. This work is the first study to analyse the structural diversity of FRs of VHHs. Using a structural alphabet that allows approximating the local conformation, we show that each of the four FRs do not have a unique structure but exhibit many structural variant patterns. Moreover, no direct simple link between the local conformational change and amino acid composition can be detected. These results indicate that long-range interactions affect the local conformation of FRs and impact the building of structural models.
Collapse
Affiliation(s)
- Floriane Noël
- INSERM, U 1134, DSIMB, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France; Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| | | | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France; Laboratoire d'Excellence GR-Ex, F-75739 Paris, France.
| |
Collapse
|
25
|
Muyldermans S, Smider VV. Distinct antibody species: structural differences creating therapeutic opportunities. Curr Opin Immunol 2016; 40:7-13. [PMID: 26922135 PMCID: PMC4884505 DOI: 10.1016/j.coi.2016.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 02/11/2016] [Indexed: 11/27/2022]
Abstract
Antibodies have been a remarkably successful class of molecules for binding a large number of antigens in therapeutic, diagnostic, and research applications. Typical antibodies derived from mouse or human sources use the surface formed by complementarity determining regions (CDRs) on the variable regions of the heavy chain/light chain heterodimer, which typically forms a relatively flat binding surface. Alternative species, particularly camelids and bovines, provide a unique paradigm for antigen recognition through novel domains which form the antigen binding paratope. For camelids, heavy chain antibodies bind antigen with only a single heavy chain variable region, in the absence of light chains. In bovines, ultralong CDR-H3 regions form an independently folding minidomain, which protrudes from the surface of the antibody and is diverse in both its sequence and disulfide patterns. The atypical paratopes of camelids and bovines potentially provide the ability to interact with different epitopes, particularly recessed or concave surfaces, compared to traditional antibodies.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Vaughn V Smider
- Fabrus Inc., Division of Sevion Therapeutics, San Diego, CA 92121, United States; Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
26
|
The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. mBio 2016; 7:e01781-15. [PMID: 26814179 PMCID: PMC4742702 DOI: 10.1128/mbio.01781-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive bacterium Lactococcus lactis, used for the production of cheeses and other fermented dairy products, falls victim frequently to fortuitous infection by tailed phages. The accompanying risk of dairy fermentation failures in industrial facilities has prompted in-depth investigations of these phages. Lactococcal phage Tuc2009 possesses extensive genomic homology to phage TP901-1. However, striking differences in the baseplate-encoding genes stimulated our interest in solving the structure of this host’s adhesion device. We report here the X-ray structures of phage Tuc2009 receptor binding protein (RBP) and of a “tripod” assembly of three baseplate components, BppU, BppA, and BppL (the RBP). These structures made it possible to generate a realistic atomic model of the complete Tuc2009 baseplate that consists of an 84-protein complex: 18 BppU, 12 BppA, and 54 BppL proteins. The RBP head domain possesses a different fold than those of phages p2, TP901-1, and 1358, while the so-called “stem” and “neck” domains share structural features with their equivalents in phage TP901-1. The BppA module interacts strongly with the BppU N-terminal domain. Unlike other characterized lactococcal phages, Tuc2009 baseplate harbors two different carbohydrate recognition sites: one in the bona fide RBP head domain and the other in BppA. These findings represent a major step forward in deciphering the molecular mechanism by which Tuc2009 recognizes its saccharidic receptor(s) on its host. Understanding how siphophages infect Lactococcus lactis is of commercial importance as they cause milk fermentation failures in the dairy industry. In addition, such knowledge is crucial in a general sense in order to understand how viruses recognize their host through protein-glycan interactions. We report here the lactococcal phage Tuc2009 receptor binding protein (RBP) structure as well as that of its baseplate. The RBP head domain has a different fold than those of phages p2, TP901-1, and 1358, while the so-called “stem” and “neck” share the fold characteristics also found in the equivalent baseplate proteins of phage TP901-1. The baseplate structure contains, in contrast to other characterized lactococcal phages, two different carbohydrate binding modules that may bind different motifs of the host’s surface polysaccharide.
Collapse
|
27
|
Veesler D, Kearney BM, Johnson JE. Integration of X-ray crystallography and electron cryo-microscopy in the analysis of virus structure and function. CRYSTALLOGR REV 2015. [DOI: 10.1080/0889311x.2015.1038530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Cambillau C. Bacteriophage module reshuffling results in adaptive host range as exemplified by the baseplate model of listerial phage A118. Virology 2015; 484:86-92. [PMID: 26074066 DOI: 10.1016/j.virol.2015.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/10/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022]
Abstract
Each phage infects its specific bacterial host strain through highly specific interactions between the baseplate-associated receptor binding protein (RBP) at the tip of the phage tail and the receptor at the host surface. Baseplates incorporate structural core modules, Dit and Tal, largely conserved among phages, and peripheral modules anchoring the RBPs. Exploiting structural information from the HHpred program and EM data from the Bielmann et al. (2015) paper, a molecular model of the A118 phage baseplate was generated from different building blocks. This model implies the occurrence of baseplate module reshuffling and suggests that listerial phage A118 may have been derived from lactococcal phage TP901-1 through host species exchange. With the increase of available viral module structures, modelling phage baseplates will become easier and more reliant, and will provide insightful information on the nature of the phage host receptor and its mode of recognition.
Collapse
Affiliation(s)
- Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS, France; AFMB, Aix-Marseille University, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
| |
Collapse
|
29
|
Nguyen VS, Logger L, Spinelli S, Desmyter A, Le TTH, Kellenberger C, Douzi B, Durand E, Roussel A, Cascales E, Cambillau C. Inhibition of type VI secretion by an anti-TssM llama nanobody. PLoS One 2015; 10:e0122187. [PMID: 25811612 PMCID: PMC4374921 DOI: 10.1371/journal.pone.0122187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/12/2015] [Indexed: 12/28/2022] Open
Abstract
The type VI secretion system (T6SS) is a secretion pathway widespread in Gram-negative bacteria that targets toxins in both prokaryotic and eukaryotic cells. Although most T6SSs identified so far are involved in inter-bacterial competition, a few are directly required for full virulence of pathogens. The T6SS comprises 13 core proteins that assemble a large complex structurally and functionally similar to a phage contractile tail structure anchored to the cell envelope by a trans-membrane spanning stator. The central part of this stator, TssM, is a 1129-amino-acid protein anchored in the inner membrane that binds to the TssJ outer membrane lipoprotein. In this study, we have raised camelid antibodies against the purified TssM periplasmic domain. We report the crystal structure of two specific nanobodies that bind to TssM in the nanomolar range. Interestingly, the most potent nanobody, nb25, competes with the TssJ lipoprotein for TssM binding in vitro suggesting that TssJ and the nb25 CDR3 loop share the same TssM binding site or causes a steric hindrance preventing TssM-TssJ complex formation. Indeed, periplasmic production of the nanobodies displacing the TssM-TssJ interaction inhibits the T6SS function in vivo. This study illustrates the power of nanobodies to specifically target and inhibit bacterial secretion systems.
Collapse
Affiliation(s)
- Van Son Nguyen
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Laureen Logger
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS—UMR 7255, 31 chemin Joseph Aiguier, Marseille, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Aline Desmyter
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Thi Thu Hang Le
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Badreddine Douzi
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Eric Durand
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS—UMR 7255, 31 chemin Joseph Aiguier, Marseille, France
- * E-mail: (CC); (EC)
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS)—UMR 7257, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, Marseille, France
- * E-mail: (CC); (EC)
| |
Collapse
|
30
|
Nguyen VS, Spinelli S, Desmyter A, Le TTH, Kellenberger C, Cascales E, Cambillau C, Roussel A. Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. Acta Crystallogr F Struct Biol Commun 2015; 71:266-71. [PMID: 25760699 PMCID: PMC4356300 DOI: 10.1107/s2053230x15000709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
The type VI secretion system (T6SS) is a machine evolved by Gram-negative bacteria to deliver toxin effectors into target bacterial or eukaryotic cells. The T6SS is functionally and structurally similar to the contractile tail of the Myoviridae family of bacteriophages and can be viewed as a syringe anchored to the bacterial membrane by a transenvelope complex. The membrane complex is composed of three proteins: the TssM and TssL inner membrane components and the TssJ outer membrane lipoprotein. The TssM protein is central as it interacts with both TssL and TssJ, therefore linking the membranes. Using controlled trypsinolysis, a 32.4 kDa C-terminal fragment of enteroaggregative Escherichia coli TssM (TssM32Ct) was purified. A nanobody obtained from llama immunization, nb25, exhibited subnanomolar affinity for TssM32Ct. Crystals of the TssM32Ct-nb25 complex were obtained and diffracted to 1.9 Å resolution. The crystals belonged to space group P64, with unit-cell parameters a = b = 95.23, c = 172.95 Å. Molecular replacement with a model nanobody indicated the presence of a dimer of TssM32Ct-nb25 in the asymmetric unit.
Collapse
Affiliation(s)
- Van Son Nguyen
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille, France
| | - Aline Desmyter
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille, France
| | - Thi Thu Hang Le
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille, France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille, France
| | - Eric Cascales
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Campus de Luminy, Case 932, 13288 Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, Case 932, 13288 Marseille, France
| |
Collapse
|
31
|
Ghannam A, Kumari S, Muyldermans S, Abbady AQ. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. PLANT MOLECULAR BIOLOGY 2015; 87:355-69. [PMID: 25648551 DOI: 10.1007/s11103-015-0282-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/06/2015] [Indexed: 05/03/2023]
Abstract
Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Division of Plant Pathology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria,
| | | | | | | |
Collapse
|
32
|
Desmyter A, Spinelli S, Roussel A, Cambillau C. Camelid nanobodies: killing two birds with one stone. Curr Opin Struct Biol 2015; 32:1-8. [PMID: 25614146 DOI: 10.1016/j.sbi.2015.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
In recent years, the use of single-domain camelid immunoglobulins, termed vHHs or nanobodies, has seen increasing growth in biotechnology, pharmaceutical applications and structure/function research. The usefulness of nanobodies in structural biology is now firmly established, as they provide access to new epitopes in concave and hinge regions - and stabilize them. These sites are often associated with enzyme inhibition or receptor neutralization, and, at the same time, provide favorable surfaces for crystal packing. Remarkable results have been achieved by using nanobodies with flexible multi-domain proteins, large complexes and, last but not least, membrane proteins. While generating nanobodies is still a rather long and expensive procedure, the advent of naive libraries might be expected to facilitate the whole process.
Collapse
Affiliation(s)
- Aline Desmyter
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Silvia Spinelli
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Alain Roussel
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France
| | - Christian Cambillau
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques, France; Centre National de la Recherche Scientifique, AFMB, UMR 7257, case 932, 13288 Marseille Cedex 09, France.
| |
Collapse
|
33
|
Mahony J, van Sinderen D. Novel strategies to prevent or exploit phages in fermentations, insights from phage-host interactions. Curr Opin Biotechnol 2014; 32:8-13. [PMID: 25300036 DOI: 10.1016/j.copbio.2014.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 12/26/2022]
Abstract
Phages infecting lactic acid bacteria (LAB) provide some of the most advanced model systems for (tailed) phage-host interactions. In particular the identification of receptor molecules of representative lactococcal phages combined with the elucidation of the structure of the receptor-binding protein has permitted crucial insights into the early stages of infection. Dairy and biotechnological fermentations are persistently marred by the destructive activities of phages. Here, we discuss how recent advances in our knowledge on LAB phage-host interactions have provided a basis for the next generation anti-phage strategies. Furthermore, the significant increase in genomic data has furthered our understanding of the genetics of these phages, thereby permitting the exploitation of phage-derived components for food safety and biotechnological applications.
Collapse
Affiliation(s)
- Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
34
|
Abstract
UNLABELLED Lactococcus lactis, a Gram(+) lactic acid-producing bacterium used for the manufacture of several fermented dairy products, is subject to infection by diverse virulent tailed phages, leading to industrial fermentation failures. This constant viral risk has led to a sustained interest in the study of their biology, diversity, and evolution. Lactococcal phages now constitute a wide ensemble of at least 10 distinct genotypes within the Caudovirales order, many of them belonging to the Siphoviridae family. Lactococcal siphophage 1358, currently the only member of its group, displays a noticeably high genomic similarity to some Listeria phages as well as a host range limited to a few L. lactis strains. These genomic and functional characteristics stimulated our interest in this phage. Here, we report the cryo-electron microscopy structure of the complete 1358 virion. Phage 1358 exhibits noteworthy features, such as a capsid with dextro handedness and protruding decorations on its capsid and tail. Observations of the baseplate of virion particles revealed at least two conformations, a closed and an open, activated form. Functional assays uncovered that the adsorption of phage 1358 to its host is Ca(2+) independent, but this cation is necessary to complete its lytic cycle. Taken together, our results provide the complete structural picture of a unique lactococcal phage and expand our knowledge on the complex baseplate of phages of the Siphoviridae family. IMPORTANCE Phages of Lactococcus lactis are investigated mainly because they are sources of milk fermentation failures in the dairy industry. Despite the availability of several antiphage measures, new phages keep emerging in this ecosystem. In this study, we provide the cryo-electron microscopy reconstruction of a unique lactococcal phage that possesses genomic similarity to particular Listeria phages and has a host range restricted to only a minority of L. lactis strains. The capsid of phage 1358 displays the almost unique characteristic of being dextro handed. Its capsid and tail exhibit decorations that we assigned to nonspecific sugar binding modules. We observed the baseplate of 1358 in two conformations, a closed and an open form. We also found that the adsorption to its host, but not infection, is Ca(2+) independent. Overall, this study advances our understanding of the adhesion mechanisms of siphophages.
Collapse
|
35
|
Chapot-Chartier MP. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages. Front Microbiol 2014; 5:236. [PMID: 24904550 PMCID: PMC4033162 DOI: 10.3389/fmicb.2014.00236] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan (PG) to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze PG and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.
Collapse
|
36
|
Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein. J Virol 2014; 88:7005-15. [PMID: 24719416 DOI: 10.1128/jvi.00739-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Gram-positive bacterium Lactococcus lactis is used for the production of cheeses and other fermented dairy products. Accidental infection of L. lactis cells by virulent lactococcal tailed phages is one of the major risks of fermentation failures in industrial dairy factories. Lactococcal phage 1358 possesses a host range limited to a few L. lactis strains and strong genomic similarities to Listeria phages. We report here the X-ray structures of phage 1358 receptor binding protein (RBP) in complex with monosaccharides. Each monomer of its trimeric RBP is formed of two domains: a "shoulder" domain linking the RBP to the rest of the phage and a jelly roll fold "head/host recognition" domain. This domain harbors a saccharide binding crevice located in the middle of a monomer. Crystal structures identified two sites at the RBP surface, ∼8 Å from each other, one accommodating a GlcNAc monosaccharide and the other accommodating a GlcNAc or a glucose 1-phosphate (Glc1P) monosaccharide. GlcNAc and GlcNAc1P are components of the polysaccharide pellicle that we identified at the cell surface of L. lactis SMQ-388, the host of phage 1358. We therefore modeled a galactofuranose (Galf) sugar bridging the two GlcNAc saccharides, suggesting that the trisaccharidic motif GlcNAc-Galf-GlcNAc (or Glc1P) might be common to receptors of genetically distinct lactococcal phages p2, TP091-1, and 1358. Strain specificity might therefore be elicited by steric clashes induced by the remaining components of the pellicle hexasaccharide. Taken together, these results provide a first insight into the molecular mechanism of host receptor recognition by lactococcal phages. IMPORTANCE Siphophages infecting the Gram-positive bacterium Lactococcus lactis are sources of milk fermentation failures in the dairy industry. We report here the structure of the pellicle polysaccharide from L. lactis SMQ-388, the specific host strain of phage 1358. We determined the X-ray structures of the lytic lactococcal phage 1358 receptor binding protein (RBP) in complex with monosaccharides. The positions and nature of monosaccharides bound to the RBP are in agreement with the pellicle structure and suggest a general binding mode of lactococcal phages to their pellicle saccharidic receptor.
Collapse
|
37
|
Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R, Shneider MM, Bielmann R, Eugster MR, Loessner MJ, Klumpp J. Listeriaphage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Mol Microbiol 2014; 92:84-99. [DOI: 10.1111/mmi.12539] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Matthias Habann
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Petr G. Leiman
- Institut de Physique des Systèmes Biologiques; EPF Lausanne; 1015 Lausanne Switzerland
| | | | - An Van den Bossche
- Division of Gene Technology; Katholieke Universiteit Leuven; 3001 Leuven Belgium
| | - Rob Lavigne
- Division of Gene Technology; Katholieke Universiteit Leuven; 3001 Leuven Belgium
| | - Mikhail M. Shneider
- Institut de Physique des Systèmes Biologiques; EPF Lausanne; 1015 Lausanne Switzerland
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; 117997 Moscow Russia
| | - Regula Bielmann
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Marcel R. Eugster
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
38
|
Spinelli S, Veesler D, Bebeacua C, Cambillau C. Structures and host-adhesion mechanisms of lactococcal siphophages. Front Microbiol 2014; 5:3. [PMID: 24474948 PMCID: PMC3893620 DOI: 10.3389/fmicb.2014.00003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/04/2014] [Indexed: 12/29/2022] Open
Abstract
The Siphoviridae family of bacteriophages is the largest viral family on earth and comprises members infecting both bacteria and archaea. Lactococcal siphophages infect the Gram-positive bacterium Lactococcus lactis, which is widely used for industrial milk fermentation processes (e.g., cheese production). As a result, lactococcal phages have become one of the most thoroughly characterized class of phages from a genomic standpoint. They exhibit amazing and intriguing characteristics. First, each phage has a strict specificity toward a unique or a handful of L. lactis host strains. Second, most lactococcal phages possess a large organelle at their tail tip (termed the baseplate), bearing the receptor binding proteins (RBPs) and mediating host adsorption. The recent accumulation of structural and functional data revealed the modular structure of their building blocks, their different mechanisms of activation and the fine specificity of their RBPs. These results also illustrate similarities and differences between lactococcal Siphoviridae and Gram-negative infecting Myoviridae.
Collapse
Affiliation(s)
- Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| | - David Veesler
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| | - Cecilia Bebeacua
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Aix-Marseille Université Marseille, France ; Architecture et Fonction des Macromolécules Biologiques, UMR 7257, Centre National de la Recherche Scientifique Marseille, France
| |
Collapse
|
39
|
Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. J Virol 2013; 87:12302-12. [PMID: 24027307 DOI: 10.1128/jvi.02033-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcal siphophages from the 936 and P335 groups infect the Gram-positive bacterium Lactococcus lactis using receptor binding proteins (RBPs) attached to their baseplate, a large multiprotein complex at the distal part of the tail. We have previously reported the crystal and electron microscopy (EM) structures of the baseplates of phages p2 (936 group) and TP901-1 (P335 group) as well as the full EM structure of the TP901-1 virion. Here, we report the complete EM structure of siphophage p2, including its capsid, connector complex, tail, and baseplate. Furthermore, we show that the p2 tail is characterized by the presence of protruding decorations, which are related to adhesins and are likely contributed by the major tail protein C-terminal domains. This feature is reminiscent of the tail of Escherichia coli phage λ and Bacillus subtilis phage SPP1 and might point to a common mechanism for establishing initial interactions with their bacterial hosts. Comparative analyses showed that the architecture of the phage p2 baseplate differs largely from that of lactococcal phage TP901-1. We quantified the interaction of its RBP with the saccharidic receptor and determined that specificity is due to lower k(off) values of the RBP/saccharidic dissociation. Taken together, these results suggest that the infection of L. lactis strains by phage p2 is a multistep process that involves reversible attachment, followed by baseplate activation, specific attachment of the RBPs to the saccharidic receptor, and DNA ejection.
Collapse
|